A PERFORMANCE THEATRE
WITH COMMERCIAL FACILITIES

THESIS
SUMMER '77
MIKE O'LEARY
STATEMENT OF PERMISSION TO COPY

In presenting this thesis (paper) in partial fulfillment of the requirements for an advanced degree at Montana State University, I agree that the Library shall make it freely available for inspection. I further agree that permission for extensive copying of this thesis (paper) for scholarly purposes may be granted by my major professor, or, in his absence, by the Director of Libraries. It is understood that any copying or publication of this thesis (paper) for financial gain shall not be allowed without my written permission.

Signature____________________________________

Date__
A PERFORMANCE THEATER AND COMMERCIAL
FACILITIES FOR BUTTE, MONTANA

by

MICHAEL F. O'LEARY

A thesis submitted in partial fulfillment
of the requirements for the degree
of
BACHELOR OF ARCHITECTURE

Approved:

Advisor

Head, Major Department

Dean, Arts and Architecture

MONTANA STATE UNIVERSITY
Bozeman, Montana
August, 1977
Vita

Michael O'Leary was born in Butte, Montana, September 29, 1954. Educated through the educational school system of that city he graduated from Butte Central High School in June of 1972. He has been attending Montana State University enrolled in the School of Architecture since that date.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Permission to Copy</td>
<td>i</td>
</tr>
<tr>
<td>Title Page</td>
<td>ii</td>
</tr>
<tr>
<td>Vita</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Empirical Expressions</td>
<td>7</td>
</tr>
<tr>
<td>Research and Conflict</td>
<td>14</td>
</tr>
<tr>
<td>Solution and Summary</td>
<td>18</td>
</tr>
<tr>
<td>Program</td>
<td>22</td>
</tr>
<tr>
<td>First Quarter Presentation</td>
<td>23</td>
</tr>
<tr>
<td>Sketches</td>
<td>28</td>
</tr>
<tr>
<td>Final Presentation</td>
<td>31</td>
</tr>
<tr>
<td>Articles</td>
<td>38</td>
</tr>
<tr>
<td>Books</td>
<td>40</td>
</tr>
</tbody>
</table>
For my thesis program in architecture I chose a somewhat two-sided approach. First of all I wished to study the effect of rapid technological advance on today's world and the effect this advance may have on architecture. Secondly, I wished to take advantage of the freedom of expression possible during educational exercises.

My interest in technology probably stems from as far back as my early childhood. This strong of an interest seemed to maintain positive attitudes through the duration of the study. The interest is rooted in a fascination with complex machinery, a strong interest in the sciences, an identification with the space program and a total addiction to science fiction literature.

I feel a science fiction illustration may begin to bring some insight into the lines of interest which produced my thesis project. Many people think of science fiction as swashbuckle adventures across imaginary galaxies; Star Wars being a fine example. The science fiction I am most interested in deals very closely with scientific theory, and then explores divergent lines of thought. The purpose being to propose questions which stimulate new ways of looking at familiar situations.

As an example I would like to briefly look at the Viking land missions to Mars, a project which captured my imagination almost totally.
To achieve the objective of placing an instrument package on the surface of Mars men had to set in motion energy systems of calculation, design navigation, and exploratory analysis which were carried out completely removed from man's physiology. The craft did send back information and adjustments could be made from earth. It was, however, for the most part, totally automated and independent of man.

I feel this is a very significant step in the evolutionary process. Man has managed to extend his consciousness outside of his body, nine million miles across space to make the first tentative paw marks on foreign soil. One might look back to the first amphibian emerging from the primeval swamp, or forward to a point when man no longer needs the physiological support systems for consciousness. This is a familiar theme in science fiction literature.

My desire to take advantage of the freedom available in school stems from having returned from internship to begin my thesis. This initial taste of monetary and clientele restrictions impressed upon me the value of scholarly exercises. One may do architectural studies outside actual commissions after leaving school, but seldom will he again have opportunities for similar peer response.
Several observations of our present conditions of existence also contributed to my interest in the technological nature of our society. These were; a recognition of parallels between this time and the time of the industrial revolution; observation of an apparent constantly rising rate of technological advance; and finally repulsion with the recent nostalgia wave, which though I did not realize, was finally beginning to die out.

During my fourth year as I kept tabs on developments of the sciences, I could see phenomenal advances on all fronts. At the same time I could see little evidence of similar advance taking place in my own field of architecture. In my opinion this was all too similar to architects of the industrial revolution who failed to advance with the technology of their time.

Admittedly the developments of steel and ferro-cement were more directly related to architecture than present advances in say electronics and bio-chemistry. However, the designers of the industrial revolution seem to have had as much trouble recognizing the importance of the innovations of their time as we have recognizing the values of ours.

We have seen experimenters in new forms and materials just as a few visionaries broke tradition during the indus-
trial revolution. Buckminster Fuller, Frie Otto and others follow somewhat traditional variations. Others, Ant Farm and Archigram, begin investigation into non-traditional exercises, i.e. mobile architecture and instant city. Fuller also touched such attitudes with dymaxion experiments although they still followed traditional machine esthetics. Archigram's work exceeds the machine esthetic as the calculator exceeds the adding machine.

Similar is Banham's comment on Fuller's work and technology in general:

"Permanent structures are only one of the ways in which an architect creates human environments today: electronics and other non architectural studies are further means to extend our control over environments, and if architects cannot make them part of their art then the human race may decide to disencumber itself of the art of architecture, just as it disencumbered itself of the arts of witch doctors and rain dancers."

Banham (1975)

Concern over the populous' ability to assimilate rapid changes in technology developed from observations of decreasing periods of time for the assimilation of advances into society. In an interview at M.I.T., Donald Schon
"The rate of technological change has been exponential since 1750, but now we have reached such levels of inputs per year that one person in his own lifetime must confront the kinds of adaptations that in earlier times were handled as one generation succeeded another." Schon (74:62)

The electronic calculator was assimilated very quickly into society yet carried strong repercussions. Its use challenged many traditional methods of teaching mathematics. Suddenly the concept of mathematical calculation could exist separately from the process for finding answers. Was then knowledge of the process essential; should arithmetic or calculator operations be taught in primary education? Our own structures examinations advanced to the point that the single student still using a slide rule found himself at a severe disadvantage and was more or less forced to purchase a calculator.

Margret Mead the famous anthropologist/sociologist, whom I hardly expected to be a high tech advocate, stated in Time, September 4, 1954:

"Too many complaints about society having to move too fast to keep up with the machine."
There is great advantage in moving fast, if you move completely, if social, educational, and recreational changes keep pace. You must change the whole pattern at once and the whole group together—and the people themselves must decide to move."

Empirical evidence of technological/social friction is readily visible. I personally know people highly disturbed by microwave ovens that bake potatoes in minutes. Needless to say explanations of electromagnetic radiation causing friction heat between water molecules does little to placate their misgivings.

In my initial report to the thesis director I made the following statement:

"In bio-chemistry alone recent developments have included the discovery of keys to the transfer of genetic information within the DNA molecule and the development of synthetic amino acids. Such developments are pointing the way to the conception of artificial life."

Four months later the recombatant D.N.A. research controversy was dominating the news media nationwide.

Daniel Bell made an interesting comparison along this line:
"In the first third of the century,... the self-assured, rationalistic, moralistic and mechanically minded Victorians were told in effect that; solid matter is mostly void, that time is relative and perfectly accurate clocks run at different speeds; that the world is governed by probabilistic laws of wave mechanics, and finally that a good deal of what passes for rational behavior is actually motivated by unconscious impulses and feelings of a socially unacceptable character."

Mr. Bell goes on to claim the Victorians acceptance of such radical attitudes is evidence of our own capability to adapt. I feel he has overlooked relative periods and methods of information dispersion. Further, I would argue that Victorians ignored such theories with little acceptance existing in first generation of the postulations existance.

My final piece of empirical information dealt with the recent nostalgia wave. I seemed to see this trend develop from 1972 when I entered college. My major area of notice was popular music which seemed to be stagnating at this time, this could be due to some maturation on my part. However, circa 1950 music soon began replacing this material and led the return of 'grease.' I suppose this may have
been reaction to political problems of the period but it still disturbed me.

I was excited by the possibilities of the period I lived in and considered the 50's to be a totally retrograde culture. It provided a model of apathy to the youth of a country that had just completed massive revisions of social attitudes and changed the course of the nation.

As I realized that nostalgia is a reaction against the time it occurs in, I became even more unset. How could anyone ignore the wonders of our period, especially the recent lunar landings?

Mr. Schon describes it:

"...as institutions within a society become unstable, it becomes much harder for the individuals attached to organizations to set personal goals to maintain their own stability. So you get a desire to slow things down and go back to the past."

Schon (74:61)

Marshal McLuhan describes the same action as the new technology; that which creates instability in above institutions; becomes an energy system which remakes the environment it enters. The old environment becomes an art form and scale for comparison of new. McLuhan (73:90)
This sounds pretty disassociated from architecture. My personal curiosity compelled me to pursue this line. Although only vague lines were beginning to be drawn to architectural application, I felt confident that the first understanding of my own environment would on some level aid in the development of architectural solutions.

At this point curriculum guidelines demanded a thesis statement. Therefore:

"The ability of architecture to anticipate rapid changes in modern technology and the resulting effect on society may well be a deciding factor in architecture's capacity to provide man with lucid built environments."

Let me say that this statement fulfilled certain technical requirements and more or less followed attitudes I expressed earlier. The major objective of my 'thesis' was to gain an understanding of the technological conditions of my own life and to let that understanding shape the design process. Since I was not out to prove one theory or another the development of a thesis statement became a troublesome detail I would as soon lay to rest until the end of the text.
Due to my confidence in the inherent value of this line of investigation, I continued reading broad cross disciplinary material while consciously forming ties between separate readings and back to architecture. Through this process a gradual coalescence of the performance center emerged. The keys which I believe made the building a success, however, did not occur until I was able to make a major change of approach. This will be described later in the text.

The cause and effect relationships revealed in my study will compose the following section.

One of my strongest theoretical decisions was that all technological advances; from the primates first use of a rock to break open nuts; to the development of microchip circuitry, is part of the natural evolution process. Given this assumption, I would not be surprised if it were discovered that the genius of men such as Aristotle, Newton and Einstein was the result of genetic mutation. The random or selective aberrations of the D.N.A. molecule as a random mechanism would account for the small per capita percentage.

The conscious decisions made by men each day simply moves the selective process out of the environment and into the collective cerebelum. The rational and seemingly irrational choices of all individuals become summarized into the
Darwinian selective process.

I am not saying our fate is predetermined; an infinite number of possibilities lie before us. Whatever course we take will be the proper one because it will have been selected as naturally as the decision for a lizard to give up its gills.

The study of industrial revolution parallels led to the understanding of the transition between the two societies. As society passes from pre-industrial to industrial, employment passes from primary through tertiary or from farming through processing into services. As mechanization increases more people move into tertiary employment and into quateriary or services to services. The lessened demand for manhours will result in increased leisure for the middle class. (Bell, 68:30,31)

Consumption is of course directly related to the industrial society and trends can be expected to continue. However, greater numbers of people in tertiary and quateriary employment allows consumption to shift toward areas of service and information.

The transportation for such consumption goods has become the focus of much of the technological writing. Charles Jenks in Architecture 2000 predicted the rise of the Semio-
logical school in about 1990 "which will grow out of the idealist tradition and see its main purpose as making the information-rich society comprehensive." Jenks (69:120)

This is much the attitude I was conveying in my original thesis statement. I falsely assumed prediction was necessary to prepare the society for 'coming attractions.' I now realize that education of present conditions will serve the purpose adequately.

Marshal McLuhan is undoubtedly the finest narrator of existing conditions and has concentrated much of his study on media as on information transport. He speaks of the cool agrarian society, of the high interaction between information carrier and receiver, being disrupted by the hot, low interaction media of print, radio and television. In effect these hot, electric medias destroy the tribal aspects of this society. Strange as it seems, McLuhan states that as this media spreads throughout the world, its effect will become cool by initiating interaction between distant members of the planet. He refers to this as the global village. McLuhan (69:22-25)

At any rate this study began the development of the architectural project. Greater leisure time and the threat of hot media combined to suggest a facility to provide beneficial activities for the populous. (Beneficial explored later.)
The facility eventually became a performance theater in the round. To support the facility in a small community; this being what I am most familiar with, commercial facilities of restaurant, lounge and shopping mall were added. (See table of contents for early programming.)

I now found myself up against a blank wall. Though I had compiled numerous material on the cause and effect relations of technology and society; I still felt that I had very little grasp on the effect of technology. I had found studies on popular opinion but numbers had little effect on me. (See preliminary presentation.) Numbers will not give personal reactions. Therefore, I performed some exercises involving student reaction to visual images (collages) of technological nature. Students were allowed to write on plexiglass covers over the images (see slides).

This exercise had no intended objective but rather an open ended experiment. Its effects will be discussed in the next section.
I found early in my reading that I had a strong personal preference for writers who were more or less high tech oriented. It became rather easy to discredit anti-technologists. Though hardly the objective investigator I should be; I feel strongly in the rational I chose to use.

This attitude did, however, very nearly prevent me from finding what I now feel to be the most significant links for society, culture and architecture. The problem arose directly out of my affinity with technology and the sciences. With this affinity comes a tendency to follow scientific or experimental thought processes. This is of course the cause and effect relationships that the preceding portions of this text discuss.

As a result of being locked into this frame of reference not only did I reject those attitudes of the anti-technologists, I also began by disregarding pro-technological attitudes presented in either spiritual or mystical manners. The fact that I originally discredited these works and then grew back to consider them possibly as the most important, convinces me of their inherent value.

The first author to start to scratch the surface I was looking for was Max Kaplan who explained how social sciences get wrapped up in their titles and fail to catch the purposes
and organic relationships inherent in their fields of study. "Measurement is an adequate tool only for the measurable aspects of the subject matter." Kaplan (71: 48,49) This is exactly what is wrong with my earlier studies and what was right about the collage study. They left a strong impression not necessarily explainable but probably on some subconscious level the information they contain seems to be encoded external to the English language.

Kaplan began to look into the quality of the leisure experience sounding similar to Maslow's self-actualization theory, Kaplan talks of allowing a person to perfect his personal resources "so to speak to invest in himself."

Kaplan (71:47)

Now comes the most important and most difficult area to talk about. The writings of two authors gave me both the conceptual base I was searching for in my project and the key to analyzing information from all my sources up to this point.

Irving Thompson’s *Passages About The Earth* and Robert Pirsig's *Zen and The Art of Motorcycle Maintenance*, both wrote extensively on technology and its effects. Neither man could use the English language with the artistic sense of McLuhan, but both had an obvious grasp on the roots of the technological relations.
The technology I had been speaking of was not contained within a Mars lander or calculator, or in the social manifestations of improper management. It was rather a highly spiritual aspect. Technology whether it seems to be threatening the individual or aiding him, is a product of that individual's mind not of the physical world.

The conceptual base I received from these men came when I realized they had both placed themselves outside their native cultures by immersing their thought in Eastern philosophies (Pirsig) and Mysticism (Thompson). This then grew to the thought that since we cannot expect most people to try Eastern mysticism, would it be possible to create a building that is reflective of our technology in some manner and at the same time outside our culture? The assumption behind this is that people fail to confront this spiritual energy of technology because in doing so they challenge base levels of their existence.

I understand that due to the subjective nature of this material it is nearly impossible to judge right or wrong. Which is why a thesis statement gave me so much trouble. I feel the building must be judged. The theater section becomes a catalyst, organic in nature, and in constant motion. It is both confronted and caressed by the more massive commercial portion. There is a dual sense of connection and
separation almost as if a transfer occurs at the meeting; solid into gas, matter into energy.

These feelings came from an understanding of technology and the way it appears to affect us.
Program of Facilities:

Performance Center: approx. sq. ft.
- normative seating capacity approx. 1000-1500
- basic theater in the round format
- possible exterior amphitheater area 23,000

Support Areas:
- vestibule 2500
- ticket/offices 125
- toilets 1250
- workshop 4000
- storage 3500
- dressing/lockers 1500
- multi-purpose 1200
- manager 200
- lounge 200

Subtotal 37,475

Restaurant Dining - capacity 80 2,440
Lounge - Night Club capacity 50 1,400

Rental Space
- retail stores 6 to 8 stores at 3750 sq. ft. 26,250

Subtotal 30,090
Total 67,575

Mall Space + 20% 81,090

Parking - 800 cars 250,000 sq. ft.
STATEMENT

The ability of architecture to anticipate and/or introduce rapid changes in modern technology and the resulting effects on society may well be a deciding factor in architecture's capacity to provide man with lucid built environments.

GENESIS

Identification with the romanticism of the space program; fascination with complex machinery or hardware; desire for an understanding of hardware development; indirect reasons for entering architecture.

RESPONSE

As an educational experience the thesis becomes a process or tool through which the student gains a greater understanding of himself. A thesis is a transition, a beginning and as such reflects a point in the developing attitudes of the student.
DEVELOPMENT & PROCESS

PERSONAL ATTITUDES

INTELLIGENT IDEAS

TECHNOLOGY

RESEARCH

SPEECH

SYNTHESIS

LEISURE

INTERFACE

ARCHITECTURE

PERSONAL UNDERSTANDING

INTUITION IDEAS

GENESIS

MAN'S ABILITY TO COPE

PARALLEL INDUSTRIAL REVOLUTION

SPIRITUAL ASPECTS

ORGANIC DEVELOPMENT

POST INDUSTRIAL SOCIETY

EDUCATION

RECREATION

MEDIA - MELACAH

SELF DISCOVERIES

THESIS

ARCHITECTURE

PROCESS

SCIENCE - ART

TECHNOLOGY - ARCHITECTURE

THINKING LATERALLY

SURFACE INVESTIGATION OF CAUSAL RELATIONS

OF SOCIETY, ARCHITECTURE, AND MAN

SUBSURFACE DEVELOPMENT IN PERSONAL UNDERSTANDING

OF ARCHITECTURAL INVESTIGATION AND ITS BASIS

WITHIN MYSELF

ESTABLISHMENT OF A MIND FRAME PREPARED TO DEAL

WITH INVESTIGATION BEYOND THE SURFACE OF CAUSAL

RELATIONSHIPS, ADVANCE BEYOND PREVIOUS CAPACITIES

FOR IDEA BASES.
PUBLIC OPINION STUDIES

POPULAR VALUES FOR TECHNOLOGY

<table>
<thead>
<tr>
<th>GOALS</th>
<th>%</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Employment</td>
<td>60.6</td>
<td>3.00</td>
</tr>
<tr>
<td>Reduce Pollution</td>
<td>72.3</td>
<td>3.14</td>
</tr>
<tr>
<td>Make Life Enjoyable</td>
<td>47</td>
<td>3.31</td>
</tr>
<tr>
<td>Reduce Taxes</td>
<td>56.3</td>
<td>3.71</td>
</tr>
<tr>
<td>Reduce Poverty</td>
<td>59.7</td>
<td>3.76</td>
</tr>
<tr>
<td>Improve C.S. Image</td>
<td>32.6</td>
<td>5.05</td>
</tr>
<tr>
<td>Increase Leisure</td>
<td>17.8</td>
<td>5.46</td>
</tr>
</tbody>
</table>

ATTITUDE TOWARD SPACE PROGRAM FUNDING

- 70% Maintain
- 60% Increase
- 50% Decrease
- 40%
- 30%
- 20%
- 10%

<table>
<thead>
<tr>
<th>AGE: UNDER 30</th>
<th>30-50</th>
<th>OVER 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR: 5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

DISENCHANTMENT WITH TECHNOLOGY

<table>
<thead>
<tr>
<th>ATTITUDES</th>
<th>LOW TO HIGH DISENCHANTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back to Nature Desire</td>
<td>35.3 34.6 8.7 22.1 12.2</td>
</tr>
<tr>
<td>Life Too Complicated</td>
<td>24.6 33.3 8.0 24.3 10.0</td>
</tr>
<tr>
<td>Overdependence On Machines</td>
<td>9.2 12.8 5.7 34.3 38.0</td>
</tr>
<tr>
<td>Technology Solves Problems</td>
<td>5.8 10.3 6.2 30.9 48.3</td>
</tr>
</tbody>
</table>

CONTROL OF SCIENCE AND TECHNOLOGY

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>AGREE — DISAGREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Studies for Future Benefits</td>
<td>54.2 38.1 3.8 5.9 4.0</td>
</tr>
<tr>
<td>Science Good, Use of Science Bad</td>
<td>45.9 29.0 6.4 15.8 6.0</td>
</tr>
<tr>
<td>Control of Invention Worsens Life</td>
<td>44.7 22.6 11.0 29.8 21.9</td>
</tr>
<tr>
<td>Interference with Commerce Unjustifiable</td>
<td>18.1 22.8 8.3 23.1 18.6</td>
</tr>
<tr>
<td>Insufficient Knowledge for Regulation</td>
<td>21.4 26.1 10.8 27.4 15.5</td>
</tr>
</tbody>
</table>

SUMMARY

- Public makes a distinction in its evaluation of science and technology.
- Public reaction to impact of technology is one of wariness and some skepticism.
- Public applies a wide range of sometimes contradictory values in its evaluations.

OBSERVATIONS

Public opinion studies are locked into temporal perspectives indicated by concerns such as economy, national pride, ecology. This cause and effect approach by both the public and researchers reflects the inadequacy of existing forms of thought to deal with present situations.
SOCIAL/TECHNOLOGICAL CHANGE

HUNTING AND FOOD GATHERING.

- Tribal and nomadic communities. Strong hereditary ties.
- Hostility to those out of blood lines inhibits development.
- All functions work for survival and reproduction of the group.
- Family at most basic level.
- Single individual can survive outside of society.

DOMESTICATION OF PLANTS AND ANIMALS.

- Continuation of small social groups but a break from strict tribal family becomes an economic strength working unit.
- Caste system prevents class separation of family members.
- Subdivision of existing wealth weakens individual's position increase in personal possessions.

PROFICIENCY IN FOOD PRODUCTION.

- Surplus food stuffs. Development of market place.
- Some members of community free for other duties.
- Craftsmen, artisans, builders, warriors.
- Weakening caste system.
- Extended family.

MASTERY OF METALS.

- Development of more complex social systems for protection.
- Stronger materials.
- Advances in simple machines.
- Development of analytical thinking.
- Family economic strength increases.
- Higher productivity.
- Private ownership of land.

THE INDUSTRIAL REVOLUTION.

- Change from agricultural to industrial emphasis.
- Development of the industrial city end of working for subsistence.
- Exploitation of the working man.
- Start of labor unions.
- Family as economic system ends offspring no longer an economic necessity.

DEVELOPING POST-INDUSTRIAL SOCIETY.

- Leisure society, served culture, tertiary employment, increasing freetime.
- Development of a separate adolescent period.
- Increased youth independence.
- Reduction of need for family to act as social or educational group.
- Nuclear family.
PERSONAL FEELINGS HAVE DEVELOPED THE THOUGHT: THE ARCHITECT OF TODAY IS TO FIXED IN HIS NON TRADITIONAL METHODS AND MATERIALS. THIS IS REFLECTIVE OF ARCHITECTURAL CONDITIONS DURING THE INDUSTRIAL REVOLUTION.

THE TECHNOLOGICAL ADVANCE WE ARE NOW EXPERIENCING IS A PART OF THE NATURAL EVOLUTIONARY DEVELOPMENT OF HUMANKIND. THE COMPLEXITIES OF THIS DEVELOPMENT SEEM TRIVIAL COMPARED TO THE NATURAL SYSTEMS STUDIED IN NATURE. BIOLOGY CHEMISTRY - PHYSICS. (BEAUVOIS)

MAN FEELS THREATENED BY A TECHNOLOGY HE SEES AS TAKING CONTROL OF HIS ENVIRONMENT. HE MISTAKES PROBLEMS OF ECOLOGY AND SUPPLY AS PROBLEMS OF TECHNOLOGY RATHER THAN OF APPLICATION.

WE NOW LIVE IN A MASS SOCIETY DEALING IN MASS CONSUMPTION. THIS PROBLEM IS NEITHER TECHNOCAL OR PHYSICAL BUT IDEOLOGICAL. (DONALD)

CONSUMPTION OF MATERIALS, PRODUCTS INFORMATION, INFORMATION CONSUMPTION RATHER THAN INFORMATION PROCESSING.

PROCESSING - INTERACTION - RELATION - RESPONSE - IDENTIFICATION.

MEDIA - ALL MEDIA.

PRINT TECHNOLOGY CREATED THE PUBLIC ELECTRONIC TECHNOLOGY CREATED MASS. (HELSTON)

IS MAN BEING CONTROLLED BY TECHNOLOGY OR IS HE ALLOWING HIMSELF TO BE CONTROLLED. LOOKING FOR A RULEING FORCE.

TO GRASP ONE MUST STAND OUTSIDE OF. (THOMPSON)

TO LIVE WITH TECHNOLOGY ONE MUST ACCEPT IT - CONTRADICTION?

ACCEPTANCE IS NOT SUBMISSION DEVELOPMENT OF INTEREST.

SHIFT OF BASIC APPROACH.

RATHER THAN DEALING WITH TECHNOLOGY ON A STRAIGHT LINE CAUSE AND EFFECT METHOD IT IS IMPORTANT TO SHIFT TO A LATERAL THINKING PROCEDURE. A NEW APPROACH A NEW PHILOSOPHY.
Articles

Forester, Jay W. "Limits To Growth Revisited" 1974. From speech at Franklin Institute, Philadelphia.

U.S. News and World Report. "Sooner Than You Think"
1975, March 3.

Woodward, Kenneth L. "Thinking Small" Newsweek.
Books

Persig, Robert M. *Zen and the Art of Motorcycle Maintenance.*

Why Technology First?

Write on this

What's all this mean!

Do it!
ARCHITECTURE

Technology creates architecture out of the world.

Technology becomes architecture.

Architecture controls technology.

Architecture hides technology.

Visa Versas.

How can it relate?
WHAT WON'T THEY THINK OF?
MUST MAN BE PRESENT
CANNOT HIS MACHINES
CARRY HIS SPIRIT

WHAT WON'T THEY THINK OF?

POWER OF
GOOD ol'
U.S.A.

NEXT THING.

QUALITY TO THE
COMMON MAN.

SOLUTION TO HUN NEEDS
TOO MUCH CONTROL?

WHAT ABOUT THE FRAMEWORK OF OUR LIFE?

IS IT THE EFFECT OF TECHNOLOGY?

IS THE RACING OF OUR LAND WORTH IT FOR THESE LUXURIES?
WHAT'S REALITY?

WHAT WON'T THEY THINK OF NEXT?

THE NEXT THING

16.7 MINUTE TRIP FOR LIGHT TOTALLY INDESPENSIBLE ACHIEVEMENT

HAS TECHNOLOGY BECOME OUR GOD?

I HOPE SO.

11/2 days.

$1,000,000,000,000,000

20,000,000 MILES

LEAP WAS HERE

N0

INVASION

USE MORE COLOR

$20,000,000

WAS IT WORTH IT

DAMN RIGHT

OK. WHO TOOK THE BLUE PEN - OR CAN I?

CULTURE LADS... MORE AND MORE