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The sums in (4.7) depend directly on N* and P•. Thus, the likelihood 

function is not differentiable with respect to these parameters. 

Further, the derivatives for the remaining parameters are not defined. 

However, if we fix the values of N* and P* at their estimated values, 

these derivatives are defined. This assumption probably results in an 

understatement of the estimated standard errors. However, 

asymptotically this difference is expected to be zero. The production 

function estimates and related are presented and discussed in 

the following section. 

Empirical Results 

The empirical results are presented in Table 1. Estimation of model 

parameters for the quadratic, transcendental, translog and Spillman 

functions was carried out using a nonlinear least squares procedure (SAS 

Institute Inc., 1984). The of the von Liebig mddel were 

estimated using a Fortran-based software for solving linearly 

constrained optimization problems (Murtagh and Saunders). 

The estimated regression coefficients for the quadratic function 

are all statistically significant at the 5 percent level, except for the 

intercept. transcendental function, all parameter estimates are 

statistically significant at the 5 percent level, except the constant 

terms, B1 and a2 , and p0 . The estimated parameters for the translog 

function are all statistically significant at the 5 level, 

except p0 , the intercept a2 ,· and p2 . The fact that a1 is statistically 

significant for the estimated translog function implies that the sample 

data indicate a positive amount of nitrogen already present in the soil. 



Table 1. Production Function Estimates and Related Statisticsa 

Quadratic: 

Y1 = -7.509 + .584N1 + .664P1 

(6.637) (.0635) (. 0635) (.000353) (.000353) (.000155) 

d.f. = 108 R2 = .832 SSE = 40728.9 

Transcendental: 

.655 .307 [ ] Y.1 =· 1. 791CH1 + 9.0369) CP; + .142) exp -.00288CH; + 9.0369) - .0012HP1 + .142) 

(1.235) (5. 0914 )( .144) (.232)(.0776) (.000690) (5.0914) (.000488) (.0776) 

SSE·= 17570.8 

Trans log: 

2.554 .304 [ 
.0412CH1 + 24.380) CP 1 + 2.0877) exp .1231og(H; + 24.380llog(P; + 2.0877) (.5).583Clog(H1 + 24.380))2 ·- (.5).169(1og(P1 + 2.0877!12] 

(.105) (9. 340 )(. 949) (1. 729)( .355) ( .0366) (9.340) (1.729) (.183) (9.340) ( .0712) (1. 729) 

d.f. = 106 R2 = .935 SSE 15847.3 

Spillman: 

. 775( .981 lN, HI 
P, 

yl .= 127 -~28(1 - - .857(.973) ) 

(2.423) ( .0265)(.00216) (.0275)(;00313) 

d.f. = 109 R2 = .924 SSE 18551.8 



Table 1 (continued) 

von Liebig: 

Y1 = Hin(124.579 I 29.1200 + .95459N1 ; 19.9814 + !.23056P1l 

(1.7025) (19.1035) (.0370) (17.3305) (.0423) 

d.f. 109 

aNumbers In parentheses are standard errors •. 

SSE = 21260.5 

w· 
10 
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All the estimated parameters of -the Spillman function are statistically 

significant at the 5 percent level. The estimated parameters of the von 

Liebig model are statistically significant at the 5 percent level, 

except the terms ~ 1 and ~ 2 • 

With regard to the parameter estimates of the quadratic function, 

it is interesting to note that the standard errors of ~ 1 and ~ 2 are 

equal, as are the standard errors of ~ 3 and ~4 • This is a result of the 

experimental design. The observations on nitrogen and phosphorous are 

such that they occur in the same number of levels (40 pound increments), 

the same number of times, Thus, lNi = IP 1 and IN1 = IP1. 

The parameter restrictions implied by the satisfaction of 

monotonicity and concavity conditions, as outlined in Chapter 2, hold 

for each of the selected models. Therefore, each of the function~ is 

well-behaved and consistent with an interior solution for a . perfectly 

competitive.profit-maximizing or cost-minimizing equilibrium for a firm. 

The parameter restrictions which are in the form of a set of inequality 

constraints, in generali are difficult to test. Although no measure of 

the statistical precision of the estimates is presented, the inequality 

constraints can be examined at specific points to check if they hold. 

If the inequality can be shown to hold at a point, it is satisfied in 

general. In particular, the set of .constraints [~1 > 0, ~2 > O, ~3 < O, 

~ 4 < 0 ,~ 3 ~ 4 > ~g] holds for the estimated quadratic function. Also, 

[~ 4 < 0, ~ 5 < 0, 0 < [~ 1 + ~ 4 1ogCX 1 > + ~ 3 logCX2 >] < 1, 0 < [~ 2 + 

~slogCX2 ) + ~ 3 1ogCX 1 >] < 1] hdlds fa~ the estimated translog function. 

The parameter estimates of ~ 3 , ~ 4 and ~ 5 for the quadratic function 

are given in Table 1. It can be seen that ~ 3 ~ 4 = .0000113 is always 
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greater than ~~ = .000000658. Further, using the means of the observa­

tions for nitrogen and phosphorous cx 1 = 160, x2 = 160), ~t can be shown 

that the inequality constraints for the translog function hold at that 

point. Using the estimated values of the parameters given in Table 1 and 

the means of the sample observations, the constraints 0 < ~1 + 

p4log(160) + p31og(160) < 1 and 0 < ~ 2 + ~ 5 1og(160) + ~ 3 log(160) < 1 

become 0 < 0.219 < 1 and 0 < 0.071 < 1, respectively. Thus, it appears 

that the translog function in concave at that point. 

Notice that the results for the .von Liebig function in Table 1 are 

reported in the more general form (2~12) rather than the reformulated 

model gfven in (4.5). The solution to the constrained minimization 

problem (4.6) implied estimates of N* = 100 and P* = 85 in addition to 

the maximum yield (Y* = 124.579) and slope coefficients (~ 2 = .9545 and 

~ 4 = 1.2305) reported. Trese values were used to derive estimates for 

the intercepts p1 and p3 given in (2.12). The estimated intercepts were 

found by solving the rel~tionships Y* = p1 + ~2 N* = ~ 3 + ·p 4P*. This 

resulted in estimates of p1 = 29.1200 and p3 = 19.9814. Further, 

variances (conditional on the estimated knots) for p1 and p3 were 

calculated from Var<P 1 > = Var(Y*- p2N*) and Varc~ 3 1 = Var(Y*- p 4P*)~ 

A measure commonly used to describe how well an estimated model 

fits the observed data is the multiple correlation coefficient, R2 . The 

value of R2 is presented for each of the models in Table 1. While the 

quadratic function appears to fit the data poorly, the values of the R2-

statistic for the transcendental, translog, Spillman and von Liebig 

functions are all high and comparable in magnitude. In general, it 

appears that these four models are equally suitable for representing 
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corn yield response to fertilizer inputs, in terms of satisfying the 

given regularity conditions and goodness of fit. However, a sharper 

criterion for judging the specification of the models is provided by 

non-nested hypothesis tests. 

The results of non-nested hypothesis tests, in general, allow one 

or more of the models to be rejected. This allows us to narrow the set 

of competing models. If none of the specifications can be rejected, the 

tests indicate that the models are equally suitable for representing· the 

production process under consideration. The results of the non-nested 

tests are presented and. discussed in the following section. 

Model Selection Test Results 

As outlined earlier, the non-nested hypothesis tests were carried 

out on a pairwise basis. In this manner, each model was tested against 

the specification of each alternativa model. The selection· of non-

nested models depends on a test of the hypothesis H0 : a = 0 in (3.6) or 

(3.7), depending on whether the currently maintained model was linear or 

nonlinear. If Ho is rejected, the currently held null model is rejected. 

However, nothing can be inferred about the truth 6r falsity of the 

currently held alternative model. The test is based on an asymptotic t­

statistic with a significance level of S percent. 

The model selection test results are presented in Table 2. The 

columns represent the models when they serve as the maintained hypothe­

sis, while the rows represent the models when they serve as the alterna-

tive. 

( 3. 7). 

The reported statistics are the estimates of a in (3.6) or 

The numbers in parentheses are standard errors. 
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Table 2. 

Alternative 
Hypothesis 

Quadratic 

Transcendental 

Trans log 

Spillman 

von Liebig 
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Model Selection Test Resultsa 

Quadratic 

I .00639 

( .0753) 

.983 

( .0753) 

.954 

( .0779) 

.8371 

( .08039) 

Maintained 
Hypothesis 

Transcendental Trans log 

.0568 -.00791 

(.115) ( .127) 

-.224 

(,637) 

.900 

( .289) 

-.552 -.662 

(.683) ( .556) 

.2621 .01388 

( .1634) ( .1919) 

4 rne reported sta~lstlcs are estimates of a In (3.6) or (3.7). 
standard errors. 

Spillman von Liebig 

.133 .1875 

( .120) ( .0807) 

;964 . 7250 

( .406) ( .1578) 

1.00062 .8875· 

(.235) ( .2202) 

.7250 

( .1801) 

.2588 

( .1755) 

Numbers In parentheses are 
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Takin~ the compa~ison· between the quadratic and the alternative 

models first (column 1 in Table 2), we see that the null hypothesis, a= 

0 in (3.6), is rejected in every case. In other words, the t-statistic, 

which is defined by the estimated.value of a divided by its standard 

error, is greater than 2.0 for all cases. Similarly, when the quadratic 

function serves as the alternative model (row 1 in Table 2), the null 

hypothe~is cannot be rejected, excepi in the case of the von Liebig vs. 

the quadratic. When the quadratic serves as the maintained model, the 

null hypothesis is clearly rejected ( at-value of 0.8371/0.08039 = 

10.413 in row 5 and column 1). However, when the von Liebig serves as 

the maintained model, the null hypothesis cannot be rejected at a 5 

percent significance level (ro~ 1 and column 5). This outcome seems 

unlikely, particularly in light of the recent work of Ackello-Ogutu, 

Paris and Williams (1985), which finds that the von Liebig clearly 

rejects polynomial specifications, in particular the quadratic. The 

fact that the von Liebig specification cannot reject the quadratic may 

depend on the method in which the asymptotic standard errors were 

calculated. As mentioned earlier, the standard errors are conditional 

on the estimated values of N* and P*, .which results in an understat~ment 

of their. value. However, due to the consistency of the maximum 

likelihood estimates, this bias should be very small. In particular, 

the likelihood ratio statistic corresponding to the restriction a= O, 

which is not conditional on N* and P*, implies an asymptotic t-statistic 

of 2.24. This result is valid since there is only one implicit 

restriction. Thus, there is very little difference with the 

"conditional" t-statistic. It follows that the asymptotic t-ratio may 
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be larger than it would b~ if N* and P* were treated as random 

variables. However; the relatively small value of 0.1875 for a (when 

compared to the other values in the fifth column of Tabla 2) indicates 

that ~he quadratic is only "marginally" preferred to the von Liebig. If 

a significance of 0.01 were chosen, we would reject the quadratic. In 

general, all of the chosen models provide evidence against the truth of 

the quadratic specification. Similar results were obtained for the von 

Liebig. 

The von Liebig specification is clearly rejected by the Spillman; 

transcendental and translog functions. When it serves as the maintained 

model, the null hypothesis is rejected for all cases. Although the von 

Liebig appears to be a better specification than the quadratic, it is 

inferior to the more flexible specifications, e.g., transcendental, 

translog and Spillman. The Spillman model rejects both the quadratic and 

von Liebig specifications. However, when tested against the other flexi-

ble forms, it is rejected. 

The final 
I 

comparison is between the transcendental and translog 

models. When the transcendental function serves as the maintained 

hypothesis and the translog as the alternativ~, the null hypothesis 

is rejected (t-value = 3.114). That is, a in (3.7) is statistically 

different from zero at the 5 percent level. When the roles of the 

models are reversed, the result is that the null hypothesis cannot be 

rejected. At. the 5 percent level, a·.is not statistically different from 

zero. 

The results of the non-nested hypothesis test indicate that the 

translog function is a superior specification in that it cannot be 
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rejected in pairwise comparisons with any of the alternative model.s. 

Thus, it appears to provide the most satisfactory explanation of the 

production process. A comparison of R2-statistics indicated that the 

performance of the transcendental, translog, Spillman and von Liebig in 

terms of fitting the data, were very similar. The non-nested hypothesis 

tests provided an additional criterion with which to judge the specifi­

cation of the competing models and, in fact, allowed one model, the 

translog, to be chosen above the rest. 

The translog specification has frequently been used in industrial 

studies because. of its flexibility in representing any production 

technology. In a comparison with several commonly used agricultural 

production functions, it appears that it can also be used, successfully, 

to represent crop response to fertilizer inp~ts. A graphical representa­

tion of the response surface of the estimated translog function is given 

in Figure 4. It can be seen that the function exhibits a plateau with 

respect to phosphorous, P. In terms of nitrogen, N, the function in­

creases at a decreasing rate for low levels of the input and decreases 

at an increasing rate at higher levels. From a technical standpoint, 

this implies that excessive applications of P will not decrease yields, 

while the opposite is true for N t within the range of the sample data). 

The rejection of the von Liebig by the translog specification indicates 

that the hypothesis of input non-substitution is also rejected. 

This chapter has presented the results of the non-nested hypo~~esis 

tests for the five models discussed in this study. The results indicate 

that the translog model is a supert~r specification for the pr6duction 

process under consideration. With regard to the von Liebig function, the 
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results of the non-nested t~sts indicate that it appears to be ~ 

superior specification to lower order polynomials, such as the 

quadratic, but inferior to the more flexible functional forms. The 

following chapter presents a summary and conclusions of this study, 

together with recdmmendations for further study. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this study was to address the problem of production 

function specification choice when faced with several alternative or 

competing models arising from different parametric families. Five 

functional forms representing observed and maintained differences in 

plant yield response to nutrient inputs were considered. They included 

the quadratic, transcendental, translog, Spillman and von Liebig 

production functions. 

There were three specific objectives for this research. The first 

was to establish the parameter·restrictions necessary to sati.sfy the 

regularity conditions consistent with optimizing behavior of individuals 

or firms. The second was to estimate the parameters of each model using 

experimental data on ~orn yield response to nitrogen and phosphorous 

fertilization. This included evaluating the consistency of the 

parameter estimates with accepted production theory. The final 

objective was to statistically test the restrictions implied by produc­

tion theory on the parameters of each functional form and between 

functional forms using non-nested hypothesis testing procedures. 

Estimation was carried out using a nonlinear least squares procedure 

and a procedure for solving linearly constrained optimization problems. 

The parameter restrictions implied by the satisfaction of monotonicity 

and concavity conditions held for each of the choseri models. That is, 



50 

each functional . form was consistent with ~n interior solu~ion · for a 

perfectly competitive profit-maximizing or cost-minimizing equilibrium 

for a firm. The hypothesis tests were conducted using an artificial· 

linear regression technique based on the initial works of Cox. The 

procedure involved nesting two models in one comprehensive model. The 

tests were made on a pairwise basis so that each model was. tested 

against the specifications of the alte~native models. 

The results of the tests indicated that the translog production 

function was a superior specification in that it could not be rejected 

against any of the alternative models, including the von Liebig. 

Although ·the translog function has been used almost exclusively in 

industrial production studies, it appears that it can be used 

successfully to represent crop response to fertilizer inputs. Because 

of its more general, flexible form, the translog production function is 

capable of representing a wide range of substitution possibilities 

between inputs, including non-substitution. This may be one reason for 

its superior performance~ 

The results of this study indicated that the von Liebig model was 

an inferior specification of the production process, given the sample 

data. However, the results confirm~d that the von Liebig is a better 

specification than the quadratic. This supports the recent work of 

Ackello-Ogutu, Paris and Williams (1985), which found that the von 

Liebig performed better than more traditional polynomial forms, e·.g., 

the quadratic and square root functions. However, the authors concluded 

that these polynomials "should be abandoned" in favor of models which 

exhibit the agronomic principles of input nonsubstitution and plateau 
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response. The results of this study suggest that other specifications 

may be superior to the von Liebig. In particular, both the translog and 

Spillman functions fit the data better than the von Liebig and allow for 

input subs.titution and plateau response. Thus, the conclusion of input 

nonsubstitution reached by Ackello-Ogutu, Paris and Williams is not 

supported by the results of this study. 

The objective of model specification is not only to best describe 

the production process, but also to provide information on optimum 

resource use. If the optimization criterion is to maximize profits, it 

would be of interest to know the actual cost (in terms of lost profits), 

of model misspecification . Using the current price of corn per 

bushel, 1.61, and the current prices of fertilizer in the form of 

nitrogen, 0.21, and phosphorous (P205 ), 0.233, the profit equations for 

each of the five models, given in equations (2.8) - (2.12), were de-

rived. The profit-maximizing levels of inputs, output and maximum 

profit were obtained and are presented in table 3. 

Table 3. Profit Maximizing Values for the Various Functions 

Function output N p Profit 
(bu.) ( 1 bs. ) ( 1 bs. ) ( $) 

Quadratic 137.01 191.80 188.00 136.51 
Transcendental 119.75 156.00 126.80 130.50 
Trans log 116.41 134. 10 106.40 134.46 
Spillman 115.23 137.20 108.60 1 31. 40 
von Liebig 124.57 100.00 85.00 159.75 

Referring to Table 3, the quadratic function implies relatively 

large application rates, while the von Liebig implies relatively small 

·. ,.··. 
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application rates. The transc~ndental, translog and Spillman functions 

are similar with respect to the profit maximizing input mix. Of course, 

the choice of the "true" application rate depends on which specification 

is "true". 

The results of the non-nested hypothesis tests indicated that the 

translog function was the superior specification in that it could not be 

rejected in pairwise comparisons with any of the alternative models. 

Thus, it appears to provide the most satisfactory explanation of the 

production process. It would be valuable to know the cost, in terms of 

profits, of choosing one of the alternative models. Assuming that the 

translog is the true specification, but using the input mix implied by 

the alternative functions, yields the results given in Table'4. 

Table 4. Values Implied by Translog Functiona 

Function 

Quadratic 
Transcendental 
Spillman 
von Liebig 

Output 
(bu.) 

128.3'3 
121.34 
117.11 
106.68 

N 
( 1 bs. ) 

191.80 
156.00 
137.00 
100.00 

p 
( 1 bs.) 

188.00 
126.80 
108.60 
85.00 

aAssumes that the translog ·is the true specification. 
the optimal values. implied by profit maximization of 
models. 

Prof it 
( $) 

122.52 
133.06 
134.43 
130.95 

Input values are 
the alternat.ive 

The cost of model misspecification, in terms of lost profits,· can 

be obtained by comparing the results presented in Table 4 with the 

maximum profit implied by the translog model. For example, if the input 

mix implied by profit maximization of the quadratic function is used 
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rather than that implied by the· translog, the loss in profits, per acr~, 

is $11.94 ($134.43 minus $122.52). The result of using the input mix 

implied by the von Liebig function is smaller, $3.51 per acre. The 

smallest loss occurs when the input mix implied by the Spillman function 

is used, 

trans log, 

only 

but 

$0.03 per acre. Thus, if the true model were the 

the resource mix implied by the Spillman function were 

used, the cost of misspecification would be very small. 

Recommendations for Further Study 

Application of non-nested hypothesis tests to production function 

models is relatively new. However, this area of research can offer 

insights into the problem of model specification. During the course of 

this study, a number of possibilities for further research have become 

evident. 

First, future studies need to examine a wider range of functional 

forms, including more general flexible forms. For example, a number of 

alternative functions· exist for analyzing the fertilizer-yield 

relationship. Some of these express specific agronomic principles held 

by soil scientists, such as the Leontief function which repre~ents the 

absence of nutrient substitution and 

Mitscherlich-Baule which represents the 

(Balmukand, Bray, Russell). Higher-order 

the model developed by 

theory of relative yield 

polynomials, such as the 

cubic, which allow more generality and flexibility in the parameters 

should also be included. In addition, there exists a class of flexible 

functional forms which are capable of representing a vari~ty of 

production possibilities and technical properties. 
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The set of flexible forms includes the generalized power production 

function (DeJanvry), the generalized Leontief and generalized linear 

production functions (Diewert), the Fourier flexible form (Gallant) and 

a number of additional second-Qrder flexible forms including the 

Laurent, translog and Box-Cox. These models have appeared relatively 

recently in the literature ahd are receiving attention because they have 

enough parameters to permit a wide variety of technical properties. For 

example, the generalized power production function, introduced by 

DeJanvry (1972), includes as special cases the Cobb-Douglas and 

transcendental production functions and allows variability in a number 

of properties, including returns to scale, marginal productivities and 

elasticities of substitution. The generalized Leontief and linear 

production functions proposed by Diewert (1971), 

of partial elasticities of substitution, 

parsimonious in parameters. 

can attain any number 

yet remain relatively 

In general, the increased flexibility of this class of functions is 

achieved through a sighificant increase in the number of parameters. 

This may cause 

computationally 

problems to arise in hypothesis 

and conceptually. Because of the 

testing, 

large number 

both 

of 

parameters and interaction terms, there may be a greater problem with 

multicollinearity and in calculating F in equation ( 3. 7). 

Conceptually, it may be difficult to explain some interactions in terms 

of agronomic principles, if the problem ls one such as the fertiltzer­

yield problem in this study. In addition, some testing procedures have 

been shown to favor more parsimonious model specifications. This 

introduces a second area where further research would be of interest. 
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That is, the varidus procedures which exist for testing non~nested 

hypotheses and their ability to reject false hypotheses. 

Several procedures for non-nested hypothesis testing have been 

developed that might be used for the problem of model specification. 

Most work has· focused on the likelihood ratio and comprehensive 

approaches initially proposed by Cox (1961, 1962). It was Cox's 

intention to develop a procedure which provided high power of one model 

against an alternative. Because of the existence of many large-sample 

equivalents of Cox's test, for example Pesaran (1974), Pesaran and 

Deaton (1978), Davidson and MacKinnon (1981, 1983), McAleer (1981) and 

Fisher a~d McAleer (1981), it would be of interest to explore the 

advantages provided by the different tests, in terms of robustness. In 

addition, Godfrey and Pesaran (1983) developed small sample adjustments 

for tests of non-nested hypotheses. Their 'Wald-type' test (W-test) 

appears to be superior for moderate sized samples, for instance samples 

less than 60 observations. Such a test may offer some improvement for 

the sample size used in this study. Godfrey and Pesaran showed in a 

Monte Carlo simulation that the J-test lacked power for these smaller 

samples. However, the difference between the power of the J-test and W-

test decreased as sample size increased to 60. Therefore, this 

difference may be small for sample sizes greater than 110. 

It has been suggested by Mizon and Richard (1982) and H~ll 

(1983),as well as others, that there is room for conflict in· the 

inferences to be drawn from these tests. McAleer (1981) shows that the 

test of Davidson and MacKinnon (1981) favors models with fewer 

parameters than the test developed by Fisher and McAleer (1981). Quandt 
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(1974) shows that a comprehensive model formed by a linear weighting 

scheme may have the greatest ability to reject false hypotheses. In 

addition, there exist procedures for testing a model against several 

alternative hypotheses simultaneously, 

MacKinnon (1981) and MacKinnon (1983). 

for example, Davidson and 

It is of interest to know if 

testing against a single model is more powerful than testing against 

several alternative models simultaneously. Therefore, it waul d be 

useful for future empirical applications to use more than one test. 

However, achieving higher power may come at the cost of computational 

ease. 

In addition to including .a wider range of functional forms, 

examining the power of various tests and applying more than one test in 

empirical applications, there is another area of non-nested hypothesis 

testing which has received little attention, yet is of interest. Cox 

proposed three procedures for testing non-nested hypothes~s. The 

procedure which has received the least attention, is the Bayesian 

approach. 

The Bayesian approach to choosing between alternative functional 

forms is based an a comparison of the posterior probabilities of the 

models under consideration. The model with the highest posterior 

probability is chosen. One of the qisadvantages of the more frequently 

used approaches, the log-likelihood ratio and artificial nesting, is 

that the researcher must arbitrarily choose the maintained hypothesis. 

The outcome of these tests is directly dependent on which mod~l is 

considered the maintained hypothesis and a result which rejects or 

accepts both models is possible. 
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With the Bayesian approach, acceptance or rejection of both. models 

is not possible. The posterior probabilities of the models, which 

represent the prior probability and sample evidence for a particular 

model, are summarized by the posterior odds ratio. This ratio can be 

applied to non-nested models without modification and the decision 

outcomes are inde~endent on which model is considered the maintained 

hypothesis. That model which is favored by the posterior odds ratio is 

the preferred model. One application of the Bayesian approach for 
-: 

choosing between non-nested models is given by Rossi (1984). He com-

pares two cost-share equation systems, calculated for aggregate U.S. 

manufacturing cost data, using two flexible functional forms, the 

translog and Fourier.. He found that the posterior odds ratios favored 

the Fourier form. The Bayesian approach to non-nested hypothesis 

testing, together with a wider variety of functional forms and power 

comparisons of existing procedures provide a wide range of possible 

topics deserving further study. 

•, ,.·. 
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Table 5. Experimental Yields of Corn For Varying Levels of Fertilizer 
Inputs a 

Nttrogen 
P205 (I bs.) 
(1 bs. ) 

0 40 ao 120 160 200 240 2aO 320 

24.5 23.9 2a.7 25.1 17.3 7.3 16.2 26.a 25.1 
0 6.2 11 .a 6.4 24.5 4.2 10.0 6.a 7. 7 19.0 

26.7 60.2 96.0 95.4 81.9 
40 29.6 a2.5 107.0 95.4 76.4 

22.1 99.5 115.9 112.4 129.0 
80 30.6 115.4 72.6 125.6 a2.0 

44.2 119.4 113.6 114.9 124.6 
120 21.9 97.3 102 .I 129.2 a3.0 

12.0 96.2 102.2 133.3 129.7 105.7 130.5 123.6 135.6 
160 34.0 ao.7 IOa.5 124.4 116.3 115.5 124.3 142.5 122.7 

37.7 at.1 128.7 140.3 136.0 
200 34.2 51.0 109.3 142.2 11 a.2 

38,0 97.2 '127 .6 121 .I 130.9 
240 35 .o· 101 .a 125.a 114.2 144.9 

32.4 129.5 134.4 130.0 124.a 
280 27.4 125.2 127.6 141.9 114 .I 

5.3 79.5 116.9 135.7 122.9 13a.7 127.3 131.a 127.9 
320 17.9 39.7 a3.6 121.5 122.7 126.1 139.5 Ill. 9 tla.a 

aTwo numbers are shown In each cell si.nce treatme.nts were replicated. 
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The asymptotic standard errors of the von Liebig model were 

calculated using the well known result 

(1) 

where e is a vector of parameters, Cov(B) is the asymptotic covariance 

matrix and I is the Fisher information matrix. The matrix, I, is 

defined as 

( 2) 

wher~ e1 and ej are t~e ;th and jth elements of a. An estimate of 

Cov(B) can ·be obtained by setting all parameters equal to their maximum 

likelihood estimates. The log-likelihood function .for the von Liebig 

model is 

( 3) L = k - c 1/2 cr2 > [ I c v , - Y*)2 + l<Y; - Y* - p2 CN; - N*) )2 
1 N1 N2 

+ l<Y; - Y* - {34(P; P*))2 + L(Yi - Y* - (3 2 CNi - N*) )2 
N3 

+ L(Y; - Y* - (3 4 CP; - P*))2], 
Ns 

N4 

where k = (-NT/2)[log(2n) + log(cr2 >] and N1 represents the observations 

for which N; ~ N* and Pi > P*, .N2 are the observations for which N; < N* 

and P; < P*, N3 are the observations for which N; ~ N* and P; < P*, N4 

are the observations for which N; < N*, P; < P* and (Y* + (3 2 CN; - N*)) < 

(Y* + p4cPi - P*)), and N5 are the observations for which Ni < N*, 
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N3 , N4 and N5 represent the total number of sample observations, NT. 

The required derivatives of the log- likelihood function (after 

simplification) are: 

(4) aLtav* = 1t~2 (I<Yi - Y*) + I<Yi - Y*- ~ 2 <Ni - N*)) + I<Yi -
Nl N2 N3 

Y*- ~4CP; - P*)) +ICY; - Y*- ~2(Ni - N*)) +ICY; -
N4 Ns 

(5) 8L/a~ 2 = 11~2 (I<Y; .- Y* - P2<N; 
N2 

I<Yi - Y*- p2(Ni - N*))(Ni - N*>) 
N4 

(6) aL/a~4 = 11~2 [I<Y; - Y* - p2<P; 
N3 

( 8) a2 uav*a~ 2 

(9) a2 uav*a~4 

(10) a2 ua~~ = 

( 11 ) a 2 Lta~~ = 

< 12 > a2Ltap2ap 4 

= 

= 

J(Y; - Y*- p2(Pi - P*))(Pi - P*)J 
Ns 

- 11 0"2 [ I ( N i - N*) + I<N; N*l) 
N2 N4 

- 1to-2[I<P; - P*) + I<P; - P*>] 
N3 Ns 

- 11 0"2 [ I ( N i N*)2 + I<N; N*l 2) 
N2 N4 

11 o-2 [I c P' - P*l2 + 
N3 

ICP; 
Ns 

- P*> 2], and 

= l2l 
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Expressions (7)-(12) fully deflne (2) since the Information matr·lx is 

symmetric. 

Notice that the derivatives with respect to ~2 are not presented. 

These derivatives are not needed to calculate the standard errors of Y*, 

~ 2 and ~ 4 since the information matrix is also block diagonal. Thus, 

the matrix of derivatives defined by (7)-(12) can be inverted without 

accounting for ~2 . However, the maximum likelihood estimator of ~2 is 

SSE/NT, where SSE represents the error sums of squares and NT is the 

total number of observations. This latter estimate was used (along with 

the maximum likelihood estimates of Y*, ~ 2 and ~ 4 1 to determine point 

estimates of the needed asymptotic variances. 
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APPENDIX C 

CALCULATIOM OF THE NON-NESTED TEST 
FOR THE VON LIEBIG MODEL 



73 

The non-nested test for a linear null model is 

where gi is the predicted Yi under the alternative model. 

For the von Liebig model this equation is 

( 2) Y; = (1 - o:)Min(Y*, ~1 + ll2Ni' {33 + /l4P;) + ag; + € i J 

which can be rewritten as 

o:)Min(Y* + 
' 

P*)dp) ( 3) Y; = (1 - {l2(Ni - N*ldn, Y* + ~4(P; - + agi + E i 

where dni = 0 if Ni > Ni* 

= if Ni < Ni* 

and 

dpi = 0 if pi > Pi* 

= 1 if pi < Pi*· 

In order to test a= 0, the standard error of a must be estimated. 

This can be accomplished by setting up the information matrix 

corresponding to the log-likelihood function for the above model 

(assuming the error terms to be normally distributed). The log-

likelihood function is 

(4) L = k -( 1/2a2 >[Icvi- (1- o:)Y*- o:g 112 + I<Yi - (1- a)(Y* + 

Nl N2 

{J 2 CN; - N*)) - agi >2 + I<Yi - (1 - o:)(Y* + {3 4 (Pi - P*)) 
N3 

- o:g;J 2 + I<Yi- (1- o:)(Y* + {l2(N;- N*))- o:g;) 2 

N4 
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--
+ l<Yi - (1 - a)(Y* + /:1 4(Pi - P*)) - agi )2), 

Ns . 

where the sums are defined in Appendix B. 

The required derivatives are: 

( 5) aLlaY* = ((1 - a ) I a2 ) [ I ( Y ; - (1 - a)Y* - ag;) + }:CYi - ( 1 - a) (Y* + 
Nl N2 

b2 (Ni - N*)) - ag;) + }:<Y; - (1 - a) ( Y* + P4 <P; - P*)) 
N3 

- agi) + l<Y; - ( 1 - a)(Y* + /:12(N; - N*)) - ag;) 
N4 

~ 

+ l<Y; - ( 1 - a) ( Y* 

Ns 
+ /:14<P; - P*)) - ag;) 1 

( 6) 3LI3{32 = ( ( 1 - a) I 0"2 ) [l ( Y i - (1 - a) ( Y* + b2 CNi - N*)) 
N2 

- ag i ) ( N i - N*) + l<Y; - (1 - a)(Y* + {3 2CN; - N*)) 

- N*l) 
N4 

- agi)(Ni 

( 7) aLtap 4 = ( ( 1 - a ) I 0"2 ) [ L ( Y i - (1 - a)(Y*+ b4(P; - P*)) 
N3 

- ag i ) (Pi - P*) + }:<Y; - ( 1 - a) ( Y* + {34(P; - P*)) 

- P*lJ 
Ns 

- ag;)(P; 

( 8) 3L/3a = - < u u2 ) [I< v; - ( 1 - ci) Y* - ag; )( Y* - 9; ) + }:<Y; - ( 1 - a) 
Nl N2 

(Y* + b2(Ni - N*)) - ag; )( Y* + {32(N; - N*) - g i ) + l<Y; -
N3 .. 

( 1 - a)(Y* + {34(P; - P*)) - ctQ;)(Y* + f34(P; - P*) - g i ) 

-1 (Y i (1 - a)(Y* + p2 (N; - N*)) a:g i ) ( Y* + b2 ( N; - N*) 
N4 

-:- g i ) + }:<Y; - ( 1 - er:)(Y* + 13 4<P; - P*)) - ag i ) ( Y* + 
Ns 
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(10) a2uav*a13 2 = - (1 - ex)21cr2[}:<N; - N*) + }:CN; - N*)] 
N2 N4 

( 11 ) a2uav*a13 4 = - (1 - ex)21cr2[I<P; - P*) + I<P; - P*l] 
N3 Ns 

( 12) a2LiaY*aex = - 1/ cr2 [ }:Y i - 2Nr< 1 - ex)Y* + (1 - ex)I9; -
Nr Nr 

2 ( 1 - ex)f32<I<N; - N*) + I<N; N*)) -
N2 N4 

2(1 - ex)f3 4C}:CP; - P*) + I<P; - P*)) 
N3 Ns 

( 13) a2 L 1 a13~ = - (1 - ex ) I cr2 [ I ( N i - N*)2 + I<N; - N*l 2 ] 
N2 N4 

(14) a 2 ua13~ = - (1 - ex ) I cr2 [l ( P i - P*)2 + I<P; - P*l 2] 
N3 Ns 

(16) a2L1a13 2aex =- 11cr2(CIY 1 CN; - N*) + IY;(N; - N*)) 
N2 N4 

- 2(1 - ex)Y*<I<N; - N*) + I<N; - N*)) 
N2 N4 

- 2(1 - ex)f32C}:(N; - N*) 2 + I<N; - N*)2) 
N2 N4 

+ (1- 2exHt9;CN;- N*) + }:g 1CN;- N*ll) 
N2 N4 

(17) a2L1a134aex =- llcr2(ciY;(P; - P*) + }:Y;CP; - P*)) 
N3 N5 

- 2(1 - ex)Y*<I<P; - P*) + I (Pi - P*)) 
N3 Ns 

- 2(1 - ex)f34C}:CP; - P*l2 + I<P; - P* )2) 
I 

N3 Ns 
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+ (1- 2c£)(}:g;(P;- P*) + }:g;(P;- P*))] 
N3 Ns 

(18) a2Ltaa2 =- lt~2 [NrY*2 + 2Y*~2 C}:CN; - N*) + }:CN; - N*)) 
N2 N4 

+ ~~<ICN; - N*> 2 + I<N; - N*) 2 ) 
N2 N4 

-2P 2 C}:g 1 CN; - N*) + }:g;CN; - N*)) 
N2 N4 

+ 2Y*P 4<}:<P; - P*) 
N3 

+ I (pi - P*)) 
Ns 

+ P~ <I< P; -
N3 

P*) 2 + }:CP; - P*)2) 
Ns -. 

-2P4<L9;CP; - P*) + L9;CP; - P*)) 
N3 Ns 

-
- 2Y*L9; + l9~] 

NT . NT 

Expressions (9) - (18) were used to estimate the covariance matrix for 

the estimated parameters in (2) as outlined in Appendix B. The 

estimated asymptotic standard error for a was used to test H0 : a= 0 in 

( 2) • 


