









































































































































Table 1. Production Function Estimates and Related Statistics?

Ouadrgt!c:
Yy = -7.509 + ,5B4N; + .664P; - (.5).00316N{ - (.5).00356P% + .000B11NP,
16.637) (.0635)  (.0635) {.000353) {.000353) (.000155)
d.f. = 108 ' r? = .B32 ) SSE = 40728.9
Transcendental:

655

307
Py + .142)7 exp[-.00288(N; + 9.0369) - .00121(P; + .142)]

Yy = 1.781(H; + 9.0369)° i

(1.235) (5.0914)(.144) (.232)(.0776) (.000690) (5.0914) (.000488) (.0776)

gifi=u07 - R? = .928 i - SSE = 17570.8

Translog:
2.
Yy = .0412(N; + 24.380)
(.105) (9.340)(.949)  (1.729)(.355) (.0366) (9.340) (1.729)

d.f. = 106 . R2 = 935 ' SSE = 15847.3

Spiliman:
LA

N
Y; .= 127.628(1 - .775(.981) ')(1 - .857(.973) )

(2.423) (.0265)(.00216) (.0275)(:003135

d.f. = 109 R? = .924 SSE = 18551.8

5 .304
4(Pi + 2.0877) %0 exp[.tzalog(ui + 24.380)10g(P; + 2.0877) - (.5).583(log(N; + 24.380))2 - (.5).169(1og(P; + 2.0877))2]
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Table 1 (continued)

von Liebig:

Y; = Min(124.579 ; 29.1200 + -95459N; ; 19.9814 + 1.23056P;)

(1.7025} (19.1035) (.0370) (17.3305) (.0423)

d.f. = 109 o R? = .912

SSE = 21260.5

Bnumbers in parentheses are standard errors..
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All the estimated parameters of -the Spillman function are statistica]ly
sigﬁificant at the 5 percent level. The estimated ﬁérameters of the von
Liebig model are statistically significant at the 5 percent level,
except the terms B4 and B,.

With regard to the parameter estimates of the quadratic function,
it is interesting to note that the standard errors of f; and f§, are
equal, as are the standard errors of 33 and By This is a rasult of the
experimental design. The observatioﬁs on nitrogen and phosphorous are
such that they occur in the same number of levels (40 pound increments),
the same number of times. Thus, ZN; = }P; and XN% = IP%.

| The =~ parameter restrictions jimpHed by the satisfaction  of
monotonicity and concavity conditioﬁs, as out]iped in Chapter 2, hold
for each of the selected models. Therefore, each of the functions is
well—behavadl and consistent with an interior solution for a perfectly
competitiva.profit-maximizﬁng.or cost-minimizing equilibrium for a firm.
The parameter restriqtions which are in the form of a set of inequality
constraints, in general@ are diffiﬁult to.test; Although no measure of
the statistical precision of the estimates is presented, the inequality
constraints can be examined at spe#ifi; points‘fo check if they hold.
If the inequality can be shown to hold at a point, it is satisfied in
-general. fn particular, the set of constraints {ﬁl > 0, By > 0, 53 < 0,
Bg <0 ,Bq384 > ﬁ%} holds for the estimated quadratic functf;n. Also,
{8g <0, B <o, 0 < [ + Bglog(Xy) + Balog¥y)] <1, 0c< [8, +

‘ﬁslog(xzj * ﬁalog(xll] ? i} holds for the estimated transiog function.
The parameter estimates of 53, B4 and Bg for the quadratic function

are given in Table 1, It can be seen that f,8, = .0000113 1is always
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greater than B% = ,000000658. Further, wusing the means of the observg—
t16n5 for nitrogen and phospharous (Xl = 160, Xé = 160), it can be shown
that the inequality constraints for the translog function hold at that
point, Using tﬁe estimated values of fhe parameters given in Table lvand
the means of the sémple observations, the constraints 0 < 51 +
B4log(160) + ﬁ3log(1605 <1 and 0 < 8, + 55109(160) + Bqlog(160) < 1
become 0 < 0.219 < 1 and 0 < 0.071 < 1, respectively. Thus; it appears
'that the translog function in concave at that point.

Notice that the results for the von Liebig function in Table 1 are
reported in the more'general‘form (2.12) rather than the reformulated
model given in (4.5), The solution to the constrained minimization
problem (4.6) implied estimates of N* = 100 and P* = 85 in addition to
the maximum yield (Y% = 124,579) and slope coeffici'ents'('{;2 = ,9545 and
;4 = 1,2305) reported.  These values were used to derive estimates for
the intercepts El and ;3 given in (2.1?). The sstimated 1ntef¢epts wera
found by so]vingvthe rel&tionships ;* = ;1 + Ezﬁy = 53 +'l;4;*. This
resulted in estimates' of ;1 = 29,1200 and 53 = 19.9814.  Further,
variances (conditional on ﬁhe "estimated knots) for ;1 and ;3 were
calculated from Var(gl) = Var(;* - 52§¥) and Var(gg) = Var(;* - 54;*),

A measure commonly used to describe how well an estimated model
fits the observed data is the multiple correlation coefficient, RZ. The
value of R? is presented for each of the models in Table 1. While the
quadratic function appears to fit the data poorly, the values of the R?-
statistic for the transcendental, translog, Spillman and von Liebig

functions are all high and comparable in magnitude. In general, it

appears that these four models are equally suitable for rébresenting
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corn vyield response to fertilizer inputs, in terms of satisfying the
givén regularity conditions and gdodness of fit. However, a sharper
criterion for judging the specification of the models is provided by
non-nested hypothesis tests.

The results of non-nested hypothesis tests, in general, allow one
or more of the models to be rejected. This allows us to naréow the set
of competing models. If none of the specifications can be rejected, the
tests indicate that the models are equallyvsuitable for representing the
production process under consideration, The results of the non-nested

tests are presented and discussed in the following section.

Model Selection Test Resultis

As outlined earlier, the.non-nested hypothesié tests were carried
out on a pairwise bésis. ~fn this manner, each model Was tested against
the specification of each a]ternativéAmodei. The se]ectién' of non-
nested models depends on a tést of the hypothesis Hy: a = 0 in (3.6) or
(3.7), depending on whether the currently maintaiﬁed mode] was linear or
nonlinear. If Hy is reje&ted, the currently held null model is rejected,
However, nothing cén be inferred abbut the truth or falsity of thé
éurrently held alternative model. The test is baéed on an asymptotic t-
statistic with a significance leve} of 5 percent.

The model selection test results are presented in Table 2. The
columns represent the models when they serve as the maintaineﬁ hypothe~
sis, while the rbws represent the models when they serve as the alterna-
tive. The reported statistics are'the estimates of o in: (3.6) or

(3.7). The numbers 1in parentheses are standard errors.
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Table 2. Model Selection Test Results®

Maintained
Hypothesis
Alternative
Hypothesis -
Quadratic Transcendental Translog Spiliman von Liebig
Quadratic - ,0568 - -.00791% .133 1875
(.115) (.127) (.120) (.0807)
Transcendental ~ 1.00639 - -.224 964 .7250
(.0753) : (.637) (.406) (.1578)
Translog .983 .900 — {.00062 .8875.
(.0753) (.289) (.235) (.2202)
Spiliman .954 ~.552 -.662 - . 7250
(.0779) (.683) (.556) (.1801)
von Liebig .8371 L2621 . .01388 .2588 -
(.08039) (.1634) (.1919) (.1755)

Arhe reported statistics are estimates of « in (3.6) or (3.7).

. standard errors,

Numbers in parentheses

are
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Takinq the compahison'betweén ihg quadratic and the alternative
modeis first (column 1 fn Table 2), we see that the null hypothésis. a =
0 in (3.6)} is rejected in every case. In other words, the t-statistic,
wh{ch is defined by the estimate&.valﬂa of a divided by its standard
error, is greater than 2.0 for all cases. Similarly, when the quadratic
function serves as the alternative model. (row 1 in Table 2), the null
hypothesis cannot be rejected, except in the case of the von Liebig vs.
the quadratic. When the quadratic serves as the maintained model, the
null Ahypothesis is cfear]y rejected ( a t-value of 0,8371/0.08038 =
»10.413 in row 5 and column 1).‘ However, when the von Liebig serves as
the maintained model, the null hypothesis cannot be rejected at a 5
percent significance level (row 1 and column 5). This outcome seems
unlikely, particularly in light of the recent Work of Ackello-Ogutu,
Paris and Williams (1985), which finds that the von Liebig clearly
rejects quynomial specifications, 1in particular the quadfatic. .Tha
fact that the von Ligbig specification cannot reject the quadratic wmay
depend on the method in which fhe asymptotic standard errors were
calculated. As mentioned eariier, the sténdard errors are conditional
on the estimated values of N+ and Px, which results in an un&erstatément
of their. value. However,' due to the consistency of the‘ maximum
likelihood estimates, this bias should be véry small, In particular,
the 1likelihood ratio statistic corresponding to the restriction a = O,
which is not conditional on N* and P, implies an asymptotic t-statistic
of 2.24. . This result is valid since there is only one implicit
restriction. Thus, there is very little difference with the

"conditional” t-statistic. It follows that the asymptotic t-ratio may
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be larger than it would be if N¥ and P* were treated as random
variables. However, the relatively small value of 0.1875 for a (when
compared to tﬁe other values in phe fifth column of Table 2) indicates
that ‘the quadratic is only "marginally" preferred to the von Liebig. If
a significance of 0.01 were chosen, we would rejecf the quadratic. In
general, all of the chosen models provide evidence against the truth of
the quadratic specification. Similar resulté were obtained for the von
Liebig.

The von Liebig specification is clearly rejected by the Spiliman,
transcendental and translog functions., When it‘serves as the maintained
model,‘ the null hypothesis is rejected for all éases. Although the von
Liebig appears to be a better specification than the quadratic, it is
‘inferior to the more flexible specifications; é;g., trénscendental,
tranSlog and Spillman. The Spiliman model rejetts both the quadratic and
von Liebig specificatﬁons. HoWever,_When tested against the other flexi-
ble fofms, it is rejected.

The final compariéon'is‘between the transcendental and tranélog
models. - When the transcendental fuhction serves as the 4maintained
hypothesis and the translog as the alternative, the null ﬁypothes%s
is rejected (t—valué = 3.114). That is, « in (3.7) is statistically
different from =zero at the 5 percent level. When the roles of the
models are reversed, the result is tﬁat thé null hypothesis cannot be
rejected. At‘the'S percent level, a is not statistically different from
zero.

The results of the non-nested hypothesis test indicate that the

translog function 1is a superior specification in that it cannot be
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rejected in pairwise compariéonsAwith any of the alternative models.
Thus, it appears +to provide the‘most satisfactory explanation of the
productiaon pfocess. A comparison of RZ-statistics indicated that the
perfnrmance of the transcendental, translog, Spillman and von Liebig in
terms of fitting the data, were very similar. The non-nested hypothesis
tests provided an additional criterion with which to judge the specifi-
cation of the competing mbde]s and, in fact, allowed one model, the
translog, to be chosen above the rest.

The translog specification has frequently been used in industrial
production studies because. of its flexibility in representing any
tecﬁnology. In a comparison with several commonly used agricultural
production functions, it appears that it can also be used, successfully,
to represent crop response to fertilizer inputs. Algraphical‘representa—
tion of the response surface of the estimated translog function is given
in Figure 4. It can be seen that the funétion exhibits a pfateau with
respect to phosphorous, P. In terms of nitrogen, N, the function in-
creases at a decreasing rate for *ow levels of the input and decreases
at an increasing rate at highér levels: From a technica1  standpoint,
this implies fhaf excessive applicatiﬁns of P will not decrease yields,
while the opposite ié true for N ('wiﬁhin the range of the sample data).
The rejection of the von Liebié by the translog specifiqation indicates
that the hypothesis of input non-substitution is also rejacteg.

This chapter has presented the re§u1ts of the non-nested hypothesis
tests for the five models discussed in this study. The results indicate
that the translog model is a superior specification for tﬁe production

process under consideration. With regard to the von Liebig function, the
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results of the ‘non—nested tests indicate that it appears to be a
superior specification to 1lower order polynomials, such as the
quadratic, but inferior to the more flexible functional forms. The
following chapter presents a summary and conclusions of this study,

together with recommendations for further study.
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CHAPTER §
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The purpose of this study was to address the problem of production
function specification choice when faced with several alternative or
competing models» arising from different parametric families. Five
functional forms representing obserﬁed and maintained differences in
plgnt yield response to nutrient inputs were considered. They inpluded
the quadratic, transcendental, translog, Spillman and von Liebig
production functions.

There weré three specific objectives for this research. The first
was to establish the parameter restrictions necessary to satisfy the
regularity cohditions consistent with optimizing behavior of individuals
or firms, The sebond was to estimate the parameters of each modél using
experimental data on corn yield response to nitrogen and phosphorous
fertilization. This dincluded evaluating the consistency of the
parameter estimates with .accepted production theory. The final
objective was to statistically tgst the restrictions 1mélied by prodﬁc-‘
tion theory on the parameters Qf each functional form and between
functional forms using non-nested hypothesis testing procedures.

Estimation was carried out using a noniinear least squares procedure
and a procedure for solving lineafly constrained optimization problems.
The parameter restrictions implied by the satisfaction of monotonicity

and concavity conditions held for each of the chosen models. That is,
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each functional form was consistent with an interior solution: for a

perfectly competitive profit-maximizing or cost-minimizing equilibrium

for a firm. The hypothesis tests were conducted using an artificial
linear regression technique based on the initial works of Cox. The
procédure involved nesting two models in one comprehensive model. The

tests were made on a pairwise basis so that each model was tested
against the specifications of the aiternative models,

The results of the tests indicated that the transliog production
function was a superior specification in that it could not be rejected
against any of the alternative models, including the von Liebig.
Although the translog function has been used almost exciusively in
industrial . production studies,.' it appears that it can be used
successfdlfy to represent crop response to fertilizér inputs. Because
of its more general, flexible form, the translog productioh function is
capable of representing a wide rahge of substitution possibi1ities
betwegn inputs, including non—substitﬂtion.' This may be one reason for
its superior‘performance;A

The results of this study indicated that the von Liebig model was
an inferior specification of the production process, given the sample
data. However, the results cthirmgd that the von Liebig is a better
specificétion than the quadratic. This supports the recent .wérk of
Ackello-Ogutu, Paris and Williams (1985), which found that the von
Lieb{g performed better than more traditional po]ynomial 'forms, e.g.,
the quadratic and square root functions. However, the authors concluded
that these polynomials "should be abandoned” in favor of models which

exhibit the agronomic principlies of input nonsubstitution and plateau
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response. The results of this study suggest that other specificatiﬁns
may be superior to the von Liebig. 1In particular, both the translog and
Spiliman functions fit the data better than the von Liebig and alfow for
input substitution and plateau response. Thus, the conclusion of input
nonsubstitution reached by Ackello-Ogutu, Paris and w1lliams’ is‘ not
supported by thé results of fh{s study.

The objective of model specif%cation is not only to best describe
the production process, but also to provide information on optimum
resoﬁrce use. If the optimization criterion is to maximize-préfits, it
would be of interest to know the actual cost (in terms of lost profits),
of' model misspecification . Using the current price of corn per
bushel, 1.61, and the current prices of fertilizer in the form ofy
nitrogen, 0.21, and phosphorous (9205), 0.233, the'profit equations for
each of the five models, given in equations (2.8) - (2.12), Were.,de~
rived. The prdfit~maximiziﬁg fevels of inputs, output and maximum

profit were obtained and are presented in table 3.

Table 3. Profit Maximizing Values for the Various Functions

Function Output N P Profit
{bu.) (1bs.) - (1bs.) ($)
Quadratic ' 137.01 . 191.80 188.00 136.51
Transcendental 119.75 156.00 126,80 130.50
Translog 116.41 134.10 106.40 134.46
Spiliman 115.23 137.20 108.60 131.40

von Liebig 124.57 100.00 85.00 159.75

Referring to Table 3, the quadratic function implies relatively

large application rates, while the von Liebig implies relatively small
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application rates. The transcendental, translog and Spillman functions
are similar with respect to the profit maximizing input mix. Of course,
the choice of the “"true" application rate depends on which specification
is "true".

The results of the non-nested hypothesis tests indicatéd that the
transiog function was the superior specification in that it could not be
rejected in pairwise comparisons with any of the alternative models.
Thus, it appears to provide the most satisfactory explanation of the
production process, It would be véluable to know the cost, in terms of
prqfits, of choosing one of the alternative models. Assuming that the
translog is the true specification, but using the input mix implied by

the alternativé functions, yields ‘the results given in Table 4.

Table 4, Values Implied by Translog Function®

Function output N P Profit

(bu.) {1bs.) (1bs.) ($)
Quadratic 128.33 191.80 188.00 122.52
Transcendental 121.34 _' 156.00 126.80 133.06
Spiliman 117.11 . 137.00 108.60 134.43

von Liebig 106.68 100.00 85.00 130.95

dpssumes that the translog is the true specification. Input values are

“‘the optimal wvalues.implied by profit maximization of the alternative
models. )

The cost of model misspecification, in terms of lost profits, can

be obtained by comparing the results presented in Table 4 with the

maximum profit implied by the translog model. For example, if the input

mix implied by profit maximization of the quadratic function is wused



53
rather than that implied by the-translog; the loss in profits, per acrq,
is. $11.94 ($134.43 minus $122.52). The result of using the input mix
implied by the von Liebig function is smaller, $3.51 per acre. The
smallest loss occurs when the input mix implied by the Spillman function
is wused, only $0.03 per acre. Thus, if the true model were the
trgnslag, but the resource mix implied by the Spililman function were

used, the cost of misspecification would be very small.

Recommendations for Further Study

Application of non-nested hypothesis tésts to production function
models is relatively new. However, ‘this area of research can offer
insights into the problem of model specification. During the course of
this study, a number of possibilities for further research have become
evident. |

First, future studies need to examine a widgr range of functional
forms, 1including more general flexible forms, For example, a number of
alterﬁative ‘ functions" exist for analyzing the fertilizer-yield
relationship. Some of these express specific agronomic principles held
by soil sciéntists, such‘as the Leontief function which represents the
abgence of nutrient substitution and the model - developed by
Mitscherlich-Baule which represents the theory of relative vyield
(Balmukand, Bray, Russel{). Higher—order polynomials, such as the
cubic, which allow more geﬁerality and flexibility in the parameters
should also be ﬁnclqded. In‘addition, there exists a class of flexible
functional forms which are cépab]e of representing a variety of

production possibilities and technical properties.
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The set of flexible forms includes the generalized power-produétiqn
fuﬁction {DeJanvry), the generalized Leontief and generalized 1linear
production functions (Diewert), the Fourier flexible form (Gallant) and
a number of additional second-order . flexible forms including the
Laurent, transliog and Box-Cox. ‘These models have appeared relatively
recently in the literature ahd are receiying attention because they have
enough parameters to permit a wide vériety of technical properties. For
example, the generalized power production function, introduced by
DeJanvry (1972), 1includes as Spacial cases the Cobb-Douglas and
transcendental production functions and allows variability in a number
of pruperties, including returns to scale, marginal productivities and
elasticities of substitution. The generalized Leontfef and linear
production functions. proposed Ey Diewert-(1971), can attain any number
of partial elasticities of substitution, yet remain relatively
parsimonious in parameters. |

In general,; the increased flexibi]ity of this class of functions is
achieved through a significant increase in the number of parameters,
This may cause problems to arise in hypothesis testing, both
computationally and conceptually. Because of the 1large number of
parameters and interaction terms, there may be a greéter problem with
muiticollinearity and in calcu]éting ; in equation (3.7).
Conceptually, it may be difficult to explain some interactions in terms
of agronomic principles, if the problem is one such as the fertilizer-
yield problem in this study. In addition, some testiﬁg procedures have

been shown to favor more parsimonious model ‘specifications. This

introduces a second area where further research would be of interest.
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That s, the various procedures which exist for testing non-nested
hypétheses and their ability to reject false hypotheses.

Several procedures for non-nested hypothesis testing have been
developéd that might be used for the problem of model specification.
Most work has focused on the likelihood ratio and comprehensive
approaches initiélly proposed by Cox (1961, 1962). It was Cox’s
intention to develop a procedure which provided high power of one model
against an alternative. Because of the existence of many large-sample
equivalents of Cox’s test, for example Pesaran (1974), Pesaran and
Deatdn (1978), Davidson and MacKinnon (1981, 1983), McAleer (1981) and
Fisher and McAleer (1981), it would be of interest to éxplore the
advantages providéd by the different tests, 1in terms of robustness. In
addition, Godfrey and Pesaran (1983) developed small sample adjdstments
for tests of non-nested hypotheses. .Their 'Wald“type"'test (W-test)
appears to be superiof for moderate sized samples, for instance samples
less thgn 60 observations. Such a test may offer some improvement for
the sample size used in this study. Godfrey and Pesaran showed in a
Monte Carlo simu]afion that the J-test lacked power for these smaller
samples. However, the difference between the power of the J-test and W-
test decreased as sample size increased to 60. Therefore, this
difference may be small for sample sizes greater than 110,

It has been suggested by Mizon and Richard (1982) and ﬁqll
(1983),as well as others, that there is room for conflict in ';he

“inferences to be drawn from these tests. McAleer (1981) shows that the
test of Davidson and ‘MacKinnon (1981) favors models with fewer

parameters than the test develqped by Fisher and McAleer (1981). Quandt
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(1974) shows that a comprehensive modél formed by a linear weighting
schéme may have the greatest ability to reject false hypotheses. In
addition, there exist procedures for testing a model against several
alternative hypotheses simultaneously, for example, DaQidson and
MacKinnon (1981) and MacKinnon (1983). It is of 1nteres£ to know if
testing against a single model is more powerful than testing against
several alternative models simultaneously. Therefore, it would be
useful for future empirical applications to use more than one test.
HoWever, achieving higher power may come at the cost of computational
easa. |

In addition to including a wjder‘ range of functional forms,
exam%ning the power of various tests and applying more than one test in
empirical applications, there is aﬁother area of non-nested hypothesis

testing which has received 1ittle aitantion, yet is aof interest. Cox

proposed three procedures for testing non-nested hybothesés. The

procedure which has received the least attention, 1is the Bayesian
approach.

The Bayesian approaqh to choosing between alternativa functional
forms is based on a comparison df the posterior probabilities of the

models wunder consideration. The model with the highest posterior

“probability is chosen. One of the disadvantages of the more frequently

used approaches, the log-likelihood ratio and artificial nesting, is

that the researcher must arbitrar{ly choose the maintained hypothesis.

-The outcome of these tests is directly dependent on which model is

considered the maintained hypothesis and a result which rejects or

accepts both models is possible.
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With the Bayesian approach, acceptance or rejection of both models
isv,not possible. . The posterior probabilities of the models, which
represent the prior probability and sample evidence for a particular
modei, are summarfzed by the posterior odds ratio. This ratio can be
appiied to non-nested models withodt modification and the decision
outcomes are independent on which model is considered the maintained
hypothesis. That model which is favored by the posterior odds ratio is

the preferred model. One application of the Bayesian approach for

choosing between non-nested models is given by Rossi (1984). He com-

pares two cost—sharelaquation systems, cglculated for aggregate U.S.
maﬁufacturing cost data, using two flexible functional forms, the
transiog and Fourier.. He found that the posterior odds ratios favored
the Fourier - form. The Bayes1an approach to non-nested hypothesis
testing, together with a widser vériety of fﬁnctional forms and power
comparisons of existing procedures provide a wide range of possible

topics deserving further study.
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5. Experimental Yields of Corn For Varying Levels of Fertilizer
Inputs?
Nitrogen
P,0g {1bs.)
(ibs.)
0 40 80 120 160 200 240 280 20
24.5 23.9 28.17 25.1 17.3 7.3 16.2 26.8 25.1
0 6.2 11.8 6.4 24.5 4.2 10.0 6.8 7.7 19
26,7 60.2 96.0 95.4 81.9
40 29.6 82.5 107.0 95 6.4
22.1 99.5 115.9 112.4 129.0
80 30.6 115.4 72.6 125.6 82.0
44,2 119.4 113.6 114.9 124.6
120 21.9 97.3 102.1 120.2 83.0
12.0 96.2 102.2 133.3 129.7 105.7 130.5 123.6 135.6
160 34,0 80,7 108,5 124.4 116.3 115.5 124.3 142.5 122.7
37.7 . 128.7 140.3 136.0
200 34.2 . 109.3 142,2 118.2
38.0 97.2 "127.6 121.1 130.9
240 35.0 107.8 125.8 114.2 144.9
32.4 129.5 134.4 130.0 . 124.8
280 27.4 125.2 127.6 141.9 114.1
5.3 79.5 116.9 135.7 122.9 138.7 127.3 131.8 127.9
320 17.9 39.7 83.6 121.5 122.7 126.1 139.5 111.9 118.8

8Two numbers are shown in each cell since treatments were replicated.
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APPENDIX B

CALCULATION OF THE STANDARD ERRORS
FOR THE VON LIEBIG MODEL
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“The asymptotic standard errors of the wvon. Liebig model were

calculated using the well known resuilt
(1) covee) = -e[1]71,

where 6 is a vector of parameters, Cov(8) is the asymptotic covariance
matrix and I is the Fishér information matrix. The matrix, I, is
defined as

(2) : I'= [azL/aeiaej],

where 6; and Bj are the 1M and jth elements of 6. An estimate of

Cov(8) can ‘be obtained by setting all parameters equal to their maximum

likelihood estimates. The log-likelihood function for the von Liebig
model is

e - 2 i 2 - - - 2
(3) L=k = (17209)[J(¥; - Y%)2 + J(Y; - Y¥ = By(N; - N¥))

N N2

+-

TOYg = Y¥ = By = P22+ T(Y = Y - By(N; ~ N))?
N3 Ng

+ 50 - Yx - Bu(py - Px))?],
Ng ‘

where k = (—NTIZ)[Iogtzn) + log(c?)] and Ny represents the observations
for which Ny > N* and P; > P*, N, are the observations for which N; < Nx
“énd P; < Px, Ng are the observations for which N; > N* and P; < Px, N,

are the observations for which Nj < Nx, Py

; < P*oand (Yx + Bo(Ng —- N¥)) <

(Y¥ + B4(P; - P¥)), and Ng are the observations for which. N; < Nx,
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Py < Px and (Y# + Bu(Py - P*)) < (Y* + By(Ny - N¥)). The sum of Ny, No,
N3, N4 and Ng represent the total number of sample observations, Nt.

The required derivatives of the log- likelthood function (after

simplification) are:

(4)  aL/avx = 1/02[J(Yy - Y¥) + J(Y; - Yx - BNy - N¥)) + Y(Yy -

l

Y = Ba(Py - PE)) o+ J(Y4 - YR - By(Ny - N¥)) + J(Y, -

Vi - Bu(P, - P¥))]

1702[J0Yy = Y% = By(Ny = N¥)I(N; - Nk) +
N
2

LY5 = YE - By (N,

(5) B8L/ap,

N$DI (NG - N) ]

(6) aL/ap, =

i
s
~
Q

[%]
—~—
1
-~
-<
-—ha
[

Y¥ - By(Py - P*))(P; - Px) +

1
1

I(Y; = Y= = By(Py - P¥))(P; - Px)]

(7)  8%L/aY*? = - Np/o?

(8) a2Lsavxap, = - 1/02[Y(N; - N#) + J(N; - Nx)]
N
2

Ng

(9) a%Lsavxap, = - 1/02[Y(P; - P*) + J(P; - P#)]

Ny . Ng
(10) 8217885 = - 1/62[T Ny - NI+ T(Ng - N#)Z]
Ny Ny
(11) a2L/apg = - 1/62[JPy - P2)2 + Y(Py - P#)2], and
N N
3 5

(12) 8%L/3p, 3By = @



, 71
Expresstons (7)-(12) fully define (2) since the infaormation matrix is
symmetric.

Notice that the derivatives with respect to o2

are not presented.
These derivatives are not needed to calculate the standard errors of Y,
B, and B, since the information matrix is also block diagonal. Thus,
the matrix of derivatives defined by (7)-(12) can be inverted without
accounting for a?. However, the maximum likelihood estimator of o? is
' SSE/Ny, where SSE represents the error sums of squares and Ny is the
. total number of observations. This latter estimate was used (along with

the maximum 1ikelihood estimates of Y%, ﬁé and B4) to determine point

estimates of the needed asymptotic variances,
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APPENDIX C

CALCULATION OF THE NON-NESTED TEST
FOR THE VON LIEBIG MODEL
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The non-nested test for a tinear null model is

(1) Yi = (1 - Ct)f(Xi, ‘3) + agi + €.i

-

where g; is the predicted Y; under the alternative model.

for the von Liebig model this equation is

-

(2) Y = (1 - a)Min[Y, B, + BNy, By + B4P;] + agy + €5,

- which can be rewritten as

-

(3) Yi = (1 - a)Min{Y* + ﬁé(Niv— N*)dn, Y¥ + ﬂ4(Pi - P*)dp] T oag; + o€y

where dg; = 0 if Ny > Nox
=1 1f Ny < Ng*
and |
dys =0 if Py > P.%

pi i =74

-~

In order to test a = 0, the standard error of o must be estimated.
This can be accomplished‘ by ‘séfting up the information matrix
corresponding to the log-likelihood function for the above modé}
tassuming the error terms to be lnormally distributed). The log-
1ikelihood function is
(4) L = k —( 1/202){2(Yi - (1 - a)Y¥* - a;i)z + )Y - (1 - a)(YE 4
Ny | N2

Ba(Ny - N¥)) - &95)2 + Z(Yi ; (1 - a)(Y* + Bu(P; - P*))
3

- ag;)? + E(Yi = (1 - ) (Y + By(Ny - N¥)) - ag;)?
4 .
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+ YUYy - (1 - @)(V% + B,(P, - P¥)) - agy)?],
Ng '
where the sums are defined in Appendix B.
The required derivatives are:

(5) aL/avx = ((1 - @)/c?)[J(¥; - (1 - a)¥* - agy) + J(Y, - (1 - a)(¥* +
N N :
1 2

by(Ny = N¥)) - ag;) + g(vi = (1 = a)(Yx + B (P, - P*x))
3

- agg) + %(Yi = (1 - a)(Yx + By(N; - N¥)) - ag;)
4

+ %‘Yi = (1 = @) (Y + Bu(Py - P*)) - ag;)]
b
5

(6) aL/ap,

il

((1 - a)/o®)[JCY; = (1 = a)(¥+ + bBy(Ny - N¥))
N, ,
- g )Ny - N¥) o+ J(Yy - (1= a)(YE + By(N;  — N¥))

- Ny
~ ag;)(N; - N¥)]

(7) 8L/3B, = ((1 - a)/e®)[JUYy - (1 - @)(Yx + b,(P, - P¥))
N3
- agy )Py = PE) 4 YUYy - (L= ) (Y + Bu(Py -~ Px))
~ ,N5
- ag;)(P; - P)]

(8) aL/auw = —(1/02){2(Yi - (1 - ad)y* - ag; ) (Yx - g;) + Z(Yi - (1 - @)
N : Nq
1 2

N¥)) - agy) (Y% + fo(Nj - N#) - gi) + J(Y; -
N-
3

i

(1~ a)(Yx + By(Py - P#)) - agi )Yk + Bu(Py - P¥) - g9:)

1

-~

SOV = (1 = @) (YF ¢ By(Ng - N¥)) = agd(Y# + by(N, - N¥)

Ng

i

Tg5) LYy - (L - @)Yk + PPy - PE)) - gy (Ve o+
N
5
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-

by (Py - P¥) - g;]

(9) 2%L/av% = -(Np(1 - a)?)/0?

(10)
(11)

S {12)

(13)
(14)
(15)

(16)

(17)

a2Lsavxap, = - (1 - a)2/a?[ YNy - N¥) + J(N; - N&) ]
a2L/ayxap, = - (1 - w)2/a%[Y(P; - Px) + J(P; - P%)]
N3 Ns
a?L/avkaa = - 1/02[JY; - 2Np(1 - @)Y+ + (1 - a)ig; -
201 - @By (T(N; - N#) + J(N; - N#)) -
201 = a)B (Y(Py - P*) + J(P; - Px))
N3 Ns
82L/8B% = - (1 - a)/a?[J(N; - N%)2 + TN, - N#)2)
| N2 Ny
82L/8p3 = - (1 - w)/a?[J(Py - Px)2 + Y(P; - Px)2]
N3 Ns
82L/aB,3B, = O
82L/88,80 = = 1/a2[(JY Ny = N#) + JYi(N; - N#))
N, Ny
- 201 = @)Yx(T(N; - N¥) + J(N; - Nx))
N, Ng
- 201 - @By (TIN; - N¥)Z + TNy - N¥)2)
N, Ng
“
+ (1 - 20)(Jg(N; = N&) + Jgq(N; - Ne))]
| Ny Ng
82L/8B 80 = - 1/02[(JY;(P; - Px) + JY (P, - P¥))
N N
3 5

= 201 - a)Y*(J(P; - P¥) + J(P; - P¥))
N3 N5

- 201 - @) (Y Py - P*)2 + Y(P; - Px)2)
' - N Ng
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+ (1 - 2a)(Jg;(P; - P*) + Jgy(P; - Px))]
' N3 Ns

(18) 82L/8a? = - 1/0?[NpY%2 4 2v#B(J(Ny - N¥) + TNy - N#))

N, Ny

+ BSCYING - N%)2 + J(N, - N#)?)
Ny Ng

=2B,(3g;(N; = N¥) + Jgq(N; = N¥))

+ 2Y%B (J(P; - Px) + Y(P, - P¥))

. Ny Ni

+ B3Iy - P#)2 + (P, - P%)?)
N3 Ng

—2B4(39;(P; - P*) + §g:(P; - P%))

- 2v¥Yg; + Jgf)

Nt 'NT
Expressions (9) - (18) were used to estimate the covariance matrix for
the estimated parameters 1in (2) as outlined in Appendix B. The
estimated asymptotic standard error for a was used to test Ho: =0 in

(2).



