Neutron stars are extremely dense objects that are created during star deaths. They typically follow either a “standard” cooling process, or a faster “non-standard” cooling process. Non-standard cooling is caused by the presence of exotic particles such as pions, quarks, or hyperons in the core. This poster focuses on non-standard cooling using a quark core model. Cooling curves were created using a neutron star thermal evolution code modified to account for cores made of exotic particles. These models can be compared to previous models and experimental data to learn more about actual cooling behavior.

Acknowledgements: Marcus Teter (PhD), Andrew Liebmann (MSU Postdoc/Research Scientist) - Physics