EFFECTS OF TAXES AND AGE ON DEPRECIATION:
THE CASE OF COMBINE HARVESTERS

by
John Michael Goroski

A thesis submitted in partial fulfillment
of the requirements for the degree
of
Master of Science
in
Applied Economics

MONTANA STATE UNIVERSITY
Bozeman, Montana
April 1990
APPROVAL

of a thesis submitted by

John M. Goroski

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

Date _______________________________ Chairperson, Graduate Committee

Approved for the Major Department

Date _______________________________ Head, Major Department

Approved for the College of Graduate Studies

Date _______________________________ Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made.

Permission for extensive quotation from or reproduction of this thesis may be granted by my advisor, or in his absence, by the Dean of Libraries when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature____________________________
Date______________________________
ACKNOWLEDGMENTS

I would like to thank my advisors for their time, patience, and guidance during the course of this thesis: Drs. Joseph A. Atwood, Vince H. Smith, and Myles J. Watts.

Finally, sincere gratitude is expressed to my family, friends, and fellow grad students who had either the privilege of being in my presence or the unbearable burden of putting up with me during this whole ordeal. Thank you all.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STATEMENT OF PERMISSION TO USE</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER:</td>
<td>ix</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. REVIEW OF LITERATURE</td>
<td>4</td>
</tr>
<tr>
<td>3. MODEL DEVELOPMENT</td>
<td>9</td>
</tr>
<tr>
<td>Theoretical Model</td>
<td>9</td>
</tr>
<tr>
<td>Flexible Functional Forms</td>
<td>13</td>
</tr>
<tr>
<td>Previous Functional Forms</td>
<td>13</td>
</tr>
<tr>
<td>Alternative Functional Forms</td>
<td>15</td>
</tr>
<tr>
<td>4. DATA</td>
<td>20</td>
</tr>
<tr>
<td>5. ESTIMATION MODEL DEVELOPMENT AND EMPIRICAL RESULTS</td>
<td>27</td>
</tr>
<tr>
<td>Estimation Model Development</td>
<td>27</td>
</tr>
<tr>
<td>Empirical Results</td>
<td>31</td>
</tr>
<tr>
<td>Preliminary Results (Models 1, 2, 3)</td>
<td>32</td>
</tr>
<tr>
<td>Results from Model 4</td>
<td>35</td>
</tr>
<tr>
<td>Implications of Results</td>
<td>41</td>
</tr>
<tr>
<td>6. SUMMARY AND CONCLUSIONS</td>
<td>48</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>52</td>
</tr>
</tbody>
</table>
Table of Contents—Continued

APPENDICES:

| A. | COMBINE HARVESTER DATA | 57 |
| B. | RESULTS FROM MODEL 1, 2, 3 | 72 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Combine model information</td>
<td>22</td>
</tr>
<tr>
<td>2.</td>
<td>Model 4 results</td>
<td>38</td>
</tr>
<tr>
<td>3.</td>
<td>Combine prices</td>
<td>58</td>
</tr>
<tr>
<td>4.</td>
<td>Model 1 results</td>
<td>73</td>
</tr>
<tr>
<td>5.</td>
<td>Model 2 results</td>
<td>75</td>
</tr>
<tr>
<td>6.</td>
<td>Model 3 results</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Model 4a residual plot</td>
<td>36</td>
</tr>
<tr>
<td>2.</td>
<td>Model 4b residual plot</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>Model 4c residual plot</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>Model 4d residual plot</td>
<td>43</td>
</tr>
<tr>
<td>5.</td>
<td>Combine harvester depreciation rates under alternative tax regimes</td>
<td>44</td>
</tr>
</tbody>
</table>
Economic depreciation of the total capital stock of a physical asset is determined by the flow of services used in productive activities and by the size of the capital stock. Previous research studies have attempted to analyze economic depreciation by modeling the flow of services. These studies have often failed to fully specify the model by not including important asset specific explanatory variables, and their models were often estimated with restricted functional forms, which implicitly limited the pattern of economic depreciation.

This study, on the other hand, uses a flexible functional form which models price as an exponential quadratic function of age, and thus allows the pattern of economic depreciation to be derived within the model. The behavior of used asset prices are also estimated as an explicit dynamic process which permits a stronger statistical test of the results. In examining the economic depreciation of combine harvesters, this study utilizes specific explanatory variables to account for the effects of changes in the tax code, shocks in demand, and quality and technology differences across combine harvester models.

The major empirical results of this study state that depreciation rates are not constant across different ages of combine harvesters and that depreciation rates and patterns are not stable with respect to changes in tax codes. These results present evidence that if further examination of either economic depreciation or optimal replacement problems are to be solved in an internally consistent manner, a more flexible functional form of the used asset price equation must be utilized such as the flexible functional form used in this study, and changes in the tax code must be included as a specific explanatory variable.
CHAPTER 1

INTRODUCTION

Economic depreciation is an important factor in measuring net capital accumulation in the aggregate and in determining investment and replacement decisions for a physical asset at the firm level. Economic and technological variables that affect the value of capital services will also affect the economic rate of depreciation, assuming that the rate of depreciation of a physical asset is determined by the flow of capital services into productive activities. Accurately measuring economic depreciation has important implications with respect to current agricultural issues such as the capital/labor ratio, farm size, and efficient firm management investment decisions.

These implications are important in that government tax policies have been legislated and firm management decisions have been made using remaining value functions that have often assumed a constant rate of depreciation. The constant rate of depreciation hypothesis has been used in several previous studies. This study, however, questions the validity of the constant rate hypothesis. In addition, previous studies have failed to consider several important factors that affect the value of capital services and therefore asset price. One such
factor is the potential effect of tax policy changes upon asset values and costs.

The objective of this analysis is to statistically test two hypotheses. The first hypothesis is that economic depreciation occurs at a constant rate or (more simply) that the rate of depreciation does not change with the age of an asset. The second hypothesis is that the pattern and rate of depreciation are not affected by different tax regimes (major changes in the tax policy). This study examines the depreciation schedule for a major farm production asset, combine harvesters. An estimation model for used asset price is developed using a flexible functional form and is estimated as a dynamic process. The model includes asset specific explanatory variables to account for the effects of changes in the tax laws, shocks in demand, and quality and technology differences across combine harvester models.

This study is innovative in that it is the first study to use a flexible functional form that estimates the behavior of used asset prices as an explicitly dynamic process. This procedure permits a more powerful statistical test of the constant depreciation hypothesis because the effects of age can be examined at the margin and permits the data to reflect various depreciation patterns that might exist. The study also examines the effect of tax and demand shift variables on asset prices.
The thesis is organized as follows. In Chapter 2, a review of previous studies of used asset prices is presented, and the findings of these studies are discussed. In Chapter 3, a general theoretical model of the determinants of prices is presented and an expression for the rate of depreciation is derived. Changes in the tax code are shown to have potentially complex effects upon the rate and pattern of depreciation. In addition, four explicit models of asset prices are presented. The data used for the econometric estimation of parameters of explicit used asset price models for combine harvesters are described in Chapter 4. In Chapter 5, the estimated parameters of the combine harvester models are presented, and the implications of the results are examined. The summary and conclusions of the combine harvester case study are presented in Chapter 6.
CHAPTER 2

REVIEW OF LITERATURE

Understanding of depreciation is important at both the macro and micro level. Depreciation of the total capital stock of a physical asset is determined by the size of the capital stock and the flow of services used in productive activities. Understanding depreciation is also important in decisions about asset replacement at the firm level (Reid and Bradford, 1983, 1987). For analytical convenience, the rate of depreciation is often assumed to be constant over the asset's life. This assumption has been justified by an appeal to renewal theory (Jorgenson, 1976). Several empirical studies of asset prices have supported the constant depreciation rate hypothesis (Hulten and Wykoff, 1981; Hall, 1973), although Lee (1978) provided evidence that the hypothesis does not hold in the case of Japanese fishing vessels. Recently, examining tractor auction data, Perry and Glyer (1990) have concluded that while individual tractors may not depreciate at a constant rate, the aggregate depreciation rate for all tractors is "near constant."

In contrast, Feldstein and Rothschild (1974) provided a theoretical critique of the plausibility of assuming constant rate of depreciation for the aggregate capital stock. In
addition, Feldstein and Foot (1971) and Eisner (1972) showed that in U.S. manufacturing industries the ratio of replacement investment to gross investment varied in a manner completely inconsistent with a constant depreciation rate. Econometric analyses of physical depreciation also suggest that the depreciation rate is not constant at the sector level (Bitros, 1976; Bitros and Kelejian, 1974; Cowing and Smith, 1977). Penson et al. (1977), using engineering data, argued that for individual tractors the rate of depreciation increases.

Four of the above studies are particularly relevant to this analysis: Hall (1973), Reid and Bradford (1983, 1987), Hulten and Wykoff (1981), and Perry and Glyer (1990). These studies utilized one or both of two concepts examined by this present study. These concepts are: (1) the use of a flexible functional form which allows empirical estimation of depreciation rates and patterns (Hall, Reid and Bradford, Hulten and Wykoff, Perry and Glyer), and (2) the incorporation of tax variables (Reid and Bradford).

Reid and Bradford (1983, 1987), in large part following Hall (1973), developed a model to solve situation specific optimal replacement problems. In their model, they developed a used asset price equation which included age, net farm income, dummy variables for tractor models, and dummy variables for technology differences. Reid and Bradford's optimal replacement model accounted for the effects of
different tax policies when computing the optimal replacement solution.

Hulten and Wykoff (1981) applied the Box-Cox power transformation to the problem of estimating the rate and the form of the economic depreciation pattern for commercial and industrial structures. The Box-Cox transformation is a flexible functional form capable of discriminating among geometric, linear, and "one-hoss-shay" depreciation patterns. The Box-Cox power transformation has the following form:

\[F_i = a + \beta g_i + \gamma c_i + u_i \quad i=1,\ldots,N \]

(2.1)

where

\[\hat{F}_i = \frac{(P_i^{s-1})}{\theta_1}, \quad g_i = \frac{(s_i^{s-1})}{\theta_2}, \quad c_i = \frac{(t_i^{s-1})}{\theta_3} \]

(2.2)

In equation (2.1), \(P_i \) represents the market price of an asset of age \(s \) in year \(t \) for observation \(i \). Hulten and Wykoff concluded that for commercial and industrial structures asset price depreciation followed either an accelerated, straight-line, or (possibly) geometric pattern. However, it was definitely not a decelerated, linear, or "one-hoss-shay" pattern. In a cross-section analysis, Hulten and Wykoff estimated their model using different years of their data set and compared the resulting parameters. They concluded that depreciation rates were reasonably stable over time, suggesting that the rate of depreciation is constant.
Perry and Glyer (1990) attempted to explain why both non-constant rates of depreciation and constant rate geometric depreciation patterns for tractors could be empirically consistent. They hypothesized that while the aggregate depreciation rate for all tractors may well be "near constant," an individual tractor may have a non-constant depreciation rate.

Perry and Glyer (1990) first examined an aggregate simulation model which was used to calculate used asset prices in a controlled decision making environment. The simulation model is:

\[
RV = \sum_{t=0}^{n} [(\overline{P}_t \cdot \overline{C}_t - \overline{R}_t - \overline{B}_t) \cdot (1-a) + a \overline{D}_t] \cdot e^{r(t_1-t)} \tag{2.3}
\]

where \(P \) is the value of output, \(C \) is the productivity capacity, \(R \) is the repair and maintenance cost, \(B \) is the reliability costs, \(a \) is the marginal tax rate, \(r \) is the discount rate, and \(D \) is the amount of tax depreciation allowance claimed in time \(t \). \(\overline{P}, \overline{R}, \overline{B}, \) and \(\overline{D} \) are all proportions of the purchase price. Using this model, Perry and Glyer concluded that the aggregate depreciation rate from such a model was constant. They then proceeded to estimate a Box-Cox power transformation used asset price equation function. Assuming that the depreciation rate is influenced by the age, usage, and care of a particular machine, Perry and Glyer transformed the three variables and derived power transformation parameters for each using auction data for
individual tractors. Aggregate depreciation rates for all tractors were also calculated by using weighted averages. Perry and Glyer concluded that even if an individual asset had an accelerated depreciation pattern, it would not be inconsistent to expect a geometric pattern in the aggregate. By visual inspection, they also concluded that the econometric results they obtained were not greatly different from their simulation results which they claimed could be used for assets that are not commonly traded.

The analysis presented here takes into consideration the effects of taxes by including a tax variable in the used asset price equation together with other situation specific variables. The used asset price equation utilized in this analysis is not the flexible Box-Cox power transformation functional form, but an alternative polynomial flexible functional form which allows for many different depreciation patterns. This flexible form is also attractive in that its parameters can be estimated using more powerful statistical methods than those used in most previous studies.
CHAPTER 3

MODEL DEVELOPMENT

Theoretical Model

The equilibrium price of an asset is assumed to equal the present value of the net revenue stream it generates (Faustmann, 1849; Fisher, 1907, 1930; Taylor, 1923; Hotelling, 1925). Ignoring tax recapture and scrap value, let \(P(s) \) denote the asset price at age \(s \), \(D \) the present value of the depreciation allowances permitted per dollar of the price of the asset, \(T \) the marginal tax rate, \(i \) the percent of the asset price allowed as an investment tax credit, \(R(a) \) the net returns for the asset at age \(a \), and \(\rho \) the after-tax discount rate. Therefore, the price of an asset of age \(s \) can be written as:

\[
P(s) = (1-T) \int_s^\infty R(a) e^{-\rho(a-s)} \, da + iP(s) + TD\cdot P(s)
\]

In equation 3.1, all investment tax credits \((i\cdot P(s))\) are used immediately, thus avoiding complications due to investment tax credit carryover. Investment tax credits directly reduce income tax and are added directly back into net returns. \(TD\cdot P(s) \) is the net present value of tax reductions induced by tax depreciation allowances.
Two important implications of the above model are as follows. First, any event that increases (decreases) net revenues will increase (decrease) the asset’s price. Second, taxes have a complex and indirect effect on the net revenue stream.

The second implication can be illustrated by solving equation (3.1) for \(P(s) \); that is,

\[
P(s) = \frac{(1-T)}{(1-TD-i)} \int_s^\infty R(a) e^{-p(a-s)} da
\]

(3.2)

Taking the derivative of the above equation with respect to age, the following result is obtained:

\[
\frac{\partial P(s)}{\partial s} = \frac{(1-T)}{(1-TD-i)} \int_s^\infty \frac{\partial R(a)}{\partial a} e^{-p(a-s)} da
\]

(3.3)

Dividing equation (3.3) by \(P(s) \), substituting appropriately for \(P(s) \) using equation (3.2) and rearranging terms, the rate of economic depreciation can be expressed as:

\[
\frac{[\partial P(s)/\partial s]}{P(s)} = \frac{\int_s^\infty (\partial R(a)/\partial a) e^{-p(a-s)} da}{\int_s^\infty R(a) e^{-p(a-s)} da}
\]

(3.4)

Equation (3.4) appears to suggest that the rate of economic depreciation is independent of the tax structure. However, in this case, appearances are deceptive because the components of the net revenue stream (the \(R(a) \)'s and the after-tax discount rate, \(\rho \)) themselves are in part determined by the tax structure.

The after-tax discount rate, \(\rho \), will be affected by changes in the marginal tax rate, \(T \), although the precise
effects depend on general equilibrium considerations (for a discussion of this issue see Alston, 1986, or Darby, 1975). The effects of changes in the tax code on the R(a)'s are more subtle.

Suppose, to facilitate the discussion, that the price of a new asset, \(P(0) \), is constant with respect to changes in tax policy. (This assumption would hold if the industry purchases a small share of the total supply of the asset or, alternatively, the asset is produced with a constant returns to scale technology using inputs that are in elastic supply and intra-firm adjustment costs are not related to the level of investment in new equipment.) If the asset is new (that is, \(s=0 \)) then equation (3.2) can be rewritten as:

\[
P(0) = \frac{(1-T)}{(1-Td-1)} \int_0^\infty R(a) e^{-pa} da
\]

(3.5)

or, rearranging terms,

\[
\int_0^\infty R(a) e^{-pa} = \frac{(1-Td-1)}{(1-T)} \cdot P(0)
\]

(3.6)

If \(P(0) \) is constant, then the net revenue stream depends on the tax structure. For example, an increase in either \(D \) or \(i \) will reduce the present value of the net revenue stream for the new asset. Qualitatively similar results are obtained if \(P(0) \) changes in response to changes in the level of gross investment as long as the elasticity of supply of the asset is positive. \(T \) has no predictable effect on the revenue stream.
if D and i are assumed to be less than one and greater than zero.

These results can be explained in terms of what happens to the user cost of a unit of service from capital equipment. If D or i increase, the user cost or rental price of services from the asset falls. The result is substitution of the asset for other inputs (typically labor) and expansion of the industry in which the asset is used because production costs have declined. The former effect reduces the marginal physical product of the asset; the latter reduces the price of the industry's output. Both effects lower the value of the marginal product for the services of the asset, and net revenues from the services fall. The decline in the marginal value product of asset services also reduces net revenues associated with older machines and thus affects the pattern of economic depreciation.

The changes in depreciation rates across ages may be very complex if intricate changes in net revenue levels (the $R(a)$'s) occur as a result of changes in tax policy. This study, therefore, seeks to examine two testable hypotheses. The first hypothesis is that depreciation rates of combine harvesters are constant over the life of the combine. The second hypothesis is that changes in tax policy do not affect rates or the patterns of depreciation. Testing the hypothesis is tantamount to testing whether the integral expression in
equations (3.2) and (3.3) is unaffected by changes in tax policy.

Flexible Functional Forms for Asset Price Models

Estimating equations (3.2) and (3.3) directly will be extremely difficult due to the complexity of the integral expressions, and data problems with respect to quasi-rents and after the tax discount rate. However, equation (3.2) can be approximated with various flexible functional forms replacing the right-hand side of (3.2).

Previous Functional Forms

Flexible functional forms have been utilized in empirical used asset price models, but the extent of their flexibility has been somewhat limited. Some of the studies that have used a flexible functional form are Hall (1973), Lee (1978), Hulten and Wykoff (1981), and Perry and Glyer (1990). One of the more commonly used flexible functions has been the Box-Cox power transformation.

The Box-Cox power transformation allows the joint estimation of parameters that determine specific functional forms and also parameters which determine the slope and intercept of the equation. The Box-Cox power transformation function specified by Hulten and Wykoff (1981) is:

\[\hat{\beta}_i = \alpha + \beta \gamma_i + \gamma \epsilon_i + u_i \quad i=1, \ldots, N \]

(3.7)
where

\[P(s)_{i} = \frac{(P(s)^{\theta_1})^{\theta_1} - 1}{\theta_1}, \quad s_{i} = \frac{(s_{i}^{\theta_2})^{\theta_2} - 1}{\theta_2}, \quad t_{i} = \frac{(t_{i}^{\theta_3})^{\theta_3} - 1}{\theta_3} \] (3.8)

and \(\alpha, \beta, \gamma, \) and \(\theta=(\theta_1, \theta_2, \theta_3) \) are constant parameters. \(P(s)_{i} \) represents the market price of an asset of age \(s_{i} \) in year \(t_{i} \) for observation \(i \).

In equation (3.7), the unknown parameters \((\alpha, \beta, \gamma) \) determine the intercept and slope(s) of the model, while in equation (3.8) the unknown vector \(\theta=(\theta_1, \theta_2, \theta_3) \) determines the functional form. Thus, as the elements of \(\theta \) take on different values, the functional form of equation (3.7) changes. As a result, the model may reflect a linear, decelerated, or geometrically constant depreciation pattern.

A linear form exists if \(\theta=(1,1,1) \). The Box-Cox function then becomes:

\[P(s)_{i} = (\alpha - \beta - \gamma + 1) + \beta s_{i} + \gamma t_{i} + u_{i} \quad i=1,...,N \] (3.9)

This model has frequent accounting and tax applications. A geometric decay model can also be derived by restricting \(\theta=(0,1,1) \). In this case a semi-log function results:

\[\ln P(s)_{i} = (\alpha - \beta - \gamma) + \beta s_{i} + \gamma t_{i} + u_{i} \quad i=1,...,N \] (3.10)

This form of economic depreciation has been justified by appeals to renewal theory (for example, Jorgenson, 1976).

Another commonly assumed depreciation pattern is a one-hoss shay pattern in which the price of an asset declines
gradually in the early years of asset life and accelerates rapidly as the date of retirement approaches. A similar model can be derived by the Box-Cox function by restricting $\theta=(1,3,1)$; that is,

$$P(s)_i = (\alpha - \frac{1}{3} \beta - \gamma + 1) + \frac{1}{3} \beta (s_i)^3 + \gamma t_i + u_i \quad i = 1, \ldots, N \quad (3.11)$$

In this case, the function becomes cubic in age which causes depreciation to be slow during the early years while being rapid at the end of the asset's life.

The Box-Cox power transformation is a flexible form that represents a dynamic process. However, the Box-Cox function was estimated only in price levels and was not estimated as a dynamic process.

Alternative Functional Forms

In this study, a different functional form is considered which also models asset price behavior as a dynamic process. The first model, Model 1, is the following declining balance function, which is functionally equivalent to the remaining value function in the Agricultural Engineers Yearbook:

$$P(s) = \alpha \beta^s \quad (3.12)$$

where α and β are constants. In order to represent the behavior of the asset price as a dynamic process, equation 3.12 is lagged one period $P(s-1)$, $P(s)$ is subtracted by $P(s-1)$, the terms are rearranged, and the following model is derived:
\[P(s) = \beta P(s-1) \quad (3.13) \]

This function has little flexibility in its structure, because it implicitly assumes that the asset loses a constant fraction of its value \((1-\beta)\) each time period. The instantaneous rate of depreciation for Model 1 is constant; that is,

\[\frac{d(\ln P(s))/ds}{P(s)} = \ln \beta \quad (3.14) \]

Model 2 differs from Model 1 only in that an intercept term \((\delta)\) is added. This allows for increased flexibility in that it no longer imposes the restriction that the rate of depreciation be constant. Model 2 is:

\[P(s) = \delta + \alpha \beta^s \quad (3.15) \]

Model 2 contains a constant exponential component in the equation; however, the depreciation base is no longer \(P(s)\), but \(P(s)-\delta\). Solving for \(P(s)\) in terms of \(P(s-1)\), it follows that:

\[P(s) = \theta + \beta \cdot P(s-1) \quad (3.16) \]

where \(\theta = \delta(1-\beta)\). The instantaneous rate of economic depreciation implied by Model 2 is:

\[\frac{dP(s)/ds}{P(s)} = \frac{\alpha \beta^s \ln \beta}{\delta + \alpha \beta^s} \quad (3.17) \]

Thus if \(\delta \neq 0\), then the rate at which the asset price depreciates is not constant. However, if \(\delta = 0\), then the rate
of depreciation is constant. Thus it can be noted that Model 1 is nested within Model 2.

Model 3 contains additional properties. In Model 3, price is assumed to be an exponential quadratic function of age; that is,

$$P(s) = a e^{\beta s + \gamma s^2}$$ \hspace{1cm} (3.18)

where α, β, and γ are constants. The change in asset price over time for equation (3.18) can be found in the same manner as the first two models. After subtracting $P(s)-P(s-1)$ and rearranging terms, the following expression is derived:

$$P(s) = P(s-1) e^{\phi + \theta s}$$ \hspace{1cm} (3.19)

where $\phi = \beta + \gamma$; $\theta = 2\gamma$. Note that:

$$\frac{dP(s)}{ds} / P(s) = (\beta + 2\gamma s)$$ \hspace{1cm} (3.20)

Model 3 is a relatively inflexible functional form in that the rate of depreciation is a linear function of age.

Model 4 differs from Model 3 only in that it includes a constant term, δ; that is,

$$P(s) = \delta + a e^{\beta s + \gamma s^2}$$ \hspace{1cm} (3.21)

where α, β, δ, and γ are constants. Through recursive substitution, the following equation is derived:

$$P(s) = \left[P(s-1) - \delta\right] e^{\phi + \theta s} + \delta$$ \hspace{1cm} (3.22)
where $\phi=\beta+\gamma$; $\theta=2\gamma$. This model has the most flexible function form. The rate of depreciation is:

$$\frac{dP(s)}{ds} = \frac{\alpha(\beta+2\gamma s)e^{(\beta+\gamma s)}}{\delta+\alpha e^{(\beta+\gamma s)}}$$

(3.23)

For example, if $\delta=0$, then a test for Model 3 is available, because the rate of depreciation is variable but in a linear fashion. If γ is positive, the rate of depreciation increases in a linear fashion; if γ is negative, the inverse is true. If $\theta=0$ (which implies $\gamma=0$) and $\delta=0$, then Model 4 represents a declining balance function in which the rate of depreciation is constant (β). The model becomes:

$$P(s) = p(s-1)e^\beta$$

(3.24)

where β is negative. If $\theta=0$ and $\delta\neq0$, then the constant exponential component of the equation is adjusted by δ which means the depreciation rate is no longer constant. An equation similar to Model 2 (equation 3.16) is thus derived:

$$P(s) = \delta(1-e^\beta) + e^\beta P(s-1)$$

(3.25)

If both θ and δ are non-zero, Model 4 holds. Thus a direct test to reject the hypothesis, that the rate of depreciation is constant over time, is available. In other words, if either θ or δ is a non-zero value, age directly affects the rate of depreciation.

In this chapter, alternative models of asset price behavior have been presented. The models were based on a
dynamic specification of the behavior of the asset's price over its life, while still having somewhat flexible functional forms. These estimation models, however, are not asset specific. The development of a specific estimation equation for combine harvesters requires an understanding of what factors influence the prices for these assets, and the nature of data sets available for estimating the used asset price function.

The data sets selected to estimate models of asset prices for combine harvesters are presented in Chapter 4. Specific asset estimation equations and econometric estimates are presented in Chapter 5.
CHAPTER 4

DATA

The purpose of this study is to estimate used asset price functions for combine harvesters in order to test the hypothesis that the rate of economic depreciation is constant. In addition, the hypothesis that changes in tax policy affect economic depreciation rates is examined. Data were gathered on prices and other characteristics of 23 combine harvesters for the time period 1979-1989. The combines included in the sample were chosen because they are relatively homogeneous with respect to harvesting capacities and model technologies. Data were obtained from the 1979-1989 issues of the National Farm and Power Equipment Dealers Association (NFPEDA) publication, Official Guide for Tractors and Farm Equipment, and consisted of first year manufacturers' list prices and resale prices. The 1987-1989 issues of Quick Reference Guide for Farm Tractors and Combines, which is published by Hot Line, Inc., was also used as a source of data to facilitate the selection of combines to be used in the study because of the detailed information it contained on tested horsepower and field capacities.

The 23 combine models included in the sample were manufactured by six different firms. The manufacturers were
Allis-Chalmers, John Deere, International Harvester-McCormick, Massy-Ferguson, New Holland, and White. A list of each of the combine harvester models included in the data set, together with their characteristics, is presented in Table (1).

The data set contains 2,323 different observations of which 2,144 are relevant to prices for used machines. The prices reported by NFPEDA in the Official Guide for Tractors and Farm Equipment are based on the average of actual farm dealers' selling prices after adjusting for reconditioning costs. This data set is listed in Appendix A.

Price information included in this data set was obtained in the following manner. In any given year, spring and fall prices were available for each age of a given combine model. Thus, for example, in the fall of 1982, prices were collected for new, one year old, two year old, and three year old John Deere model 7720 combines (the model having been introduced in 1979).

Two concerns about the data set are: (1) average prices for traded combine harvesters may reflect the sale of a disproportionate number of "lemons," especially in the case of newer machines (Akerlof, 1970); and (2) new machinery prices are manufacturers' list prices instead of market negotiated selling prices (Perry and Glyer, 1990). Reported average used combine prices will be biased downward as a measure of the average value of all assets if a disproportionate number of "lemons" are being disposed of in the market. The lemons
Table 1. Combine model information.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Horse Power</th>
<th>Bushel Cap.</th>
<th>Weight</th>
<th>Years</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLIS-CHALMERS</td>
<td>L2</td>
<td>145</td>
<td>200</td>
<td>16177</td>
<td>1976-82</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>145</td>
<td>200</td>
<td>16177</td>
<td>1983-85</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>130</td>
<td>180</td>
<td>15207</td>
<td>1976-80</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>130</td>
<td>180</td>
<td>15552</td>
<td>1983-85</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>N5</td>
<td>190</td>
<td>200</td>
<td>21405</td>
<td>1979-85</td>
<td>C</td>
</tr>
<tr>
<td>JOHN DEERE</td>
<td>6620</td>
<td>125</td>
<td>166</td>
<td>18048</td>
<td>1979-88</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>7700</td>
<td>128</td>
<td>129</td>
<td>16256</td>
<td>1970-78</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>7720</td>
<td>145</td>
<td>190</td>
<td>19834</td>
<td>1979-88</td>
<td>C</td>
</tr>
<tr>
<td>INTERNATIONAL HARVESTER-McCORMICK</td>
<td>815</td>
<td>125</td>
<td>133</td>
<td>15587</td>
<td>1969-79</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>915</td>
<td>130</td>
<td>146</td>
<td>17373</td>
<td>1969-79</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1440</td>
<td>135</td>
<td>145</td>
<td>18818</td>
<td>1978-85</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>170</td>
<td>180</td>
<td>19558</td>
<td>1978-85</td>
<td>A</td>
</tr>
<tr>
<td>MASSY-FERGUSON</td>
<td>550</td>
<td>125</td>
<td>125</td>
<td>14908</td>
<td>1978-88</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>140</td>
<td>140</td>
<td>23136</td>
<td>1973-80</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>760</td>
<td>145</td>
<td>180</td>
<td>21516</td>
<td>1972-80</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>150</td>
<td>140</td>
<td>23231</td>
<td>1982-88</td>
<td>C</td>
</tr>
<tr>
<td>NEW HOLLAND</td>
<td>1500</td>
<td>125</td>
<td>133</td>
<td>15402</td>
<td>1973-80</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>TR-70</td>
<td>160</td>
<td>145</td>
<td>17241</td>
<td>1975-80</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>TR-75</td>
<td>155</td>
<td>140</td>
<td>21718</td>
<td>1979-85</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>TR-85</td>
<td>175</td>
<td>190</td>
<td>21944</td>
<td>1979-85</td>
<td>A</td>
</tr>
<tr>
<td>WHITE</td>
<td>8600</td>
<td>130</td>
<td>150</td>
<td>14896</td>
<td>1974-77</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>8800</td>
<td>145</td>
<td>170</td>
<td>16571</td>
<td>1974-77</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>8900</td>
<td>145</td>
<td>170</td>
<td>19761</td>
<td>1978-81</td>
<td>C</td>
</tr>
</tbody>
</table>

* Thresher type-Cylinder (C) or Axial Rotor (A).
problem is intractable. However, it seems likely that asset values of non-traded combines move in the same direction as asset prices for traded combines. A separate and more tractable problem is that the manufacturers' list prices overstate actual market prices for new machines. Therefore, care should be taken to account for the list price problem in econometric models of asset price behavior. This issue is discussed in more detail later in this analysis.

In order to account for demand shocks that affect the structure and level of asset prices, annual data on gross farm income for field crops were gathered for the period 1979-1989. The data were obtained from various issues of the USDA publication, Economic Indicators of the Farm Sector: National Financial Summary, for the period 1979-1988. Information on gross farm income for field crops for 1989 was not available. Instead the most recent USDA estimate for gross farm income of field crops was obtained from the USDA September, 1989 issue of Agricultural Outlook. The nominal combine harvester price and gross farm income data were converted into real terms by the Gross National Product implicit price deflator.

One of the objectives of this analysis was to examine what effect different tax policies have on used asset prices. For this study, the specific estimation equation includes variables that account for different tax regimes; that is, periods which differ significantly with respect to the structure of the tax code.
The federal tax code contains several provisions that affect investment and capital use decisions: the tax rate schedules, tax depreciation schedules, the allowance of investment tax credit (ITC), ITC recapture, ITC carryover, and expensing. A major change in any of the above as part of the tax code may affect the pattern of used asset prices, and thus alter the tax regime under which such decisions are made.

In 1979, the tax policy consisted of a 10% ITC of the eligible base up to $25,000 and 7% of the base over $25,000, ITC recapture, either a straight-line or double-declining depreciation schedule with an additional first year depreciation, and an eight year tax life for combines. The tax code was relatively stable until 1981. In 1981, the Economic Recovery Tax Act (ERTA) was enacted. The ERTA expanded the ITC to 10% of the eligible base up to $25,000 and 9% of the base over $25,000. The ERTA also introduced accelerated depreciation schedules under which, for example, a combine harvester would have the following percentages of asset price as a depreciation: 15%, 22%, 21%, 21%, 21%. In addition, under ERTA the additional first year depreciation provision was replaced with an expensing option, which in turn reduced the ITC basis. Finally, the ERTA also reduced marginal tax rates, and shortened the depreciation tax life for combines to five years from eight years.

Further significant tax revisions were enacted in 1984 with the modification of depreciation schedules and consequent
reductions in their net present values. This took the form of the Modified Accelerated Cost Recovery System (MACRS) which combined the double-declining balance schedule with the half year convention method. A third set of major tax code revisions took place in 1986 under the provisions of the Tax Reform Act (TRA). The TRA abolished the ITC and ITC carryovers, extended the depreciation tax life for combines from five to seven years, and lowered marginal tax rates for agricultural producers. Since the enactment of the TRA, tax policies have remained relatively stable.

Thus, data in this sample were generated under four distinct tax regimes. These tax regimes consist of the following periods: 1979-81, 1982-84, 1985-86, and 1987-89. The assumption is made that the changes in the tax codes affected asset prices the year after Congress passed the tax legislation, as the legislation was usually enacted late in the calendar year. The four tax regimes are accounted for in the econometric analysis through the use of three tax dummy variables.

Economic depreciation rates may differ across combine models or manufacturers because of slight differences in the technologies embodied in each model or manufacturer product. If each individual combine model is assumed to have a slightly different depreciation pattern, the effects of these differences may (in part) be explained by 22 model dummy variables. However, if it is assumed that there is no
significant difference in the depreciation patterns for the models of a particular manufacturer, but that there exist slight differences between manufacturers, then only five manufacturer dummy variables are required.

The following variables thus are incorporated into the estimation models presented in Chapter 5. Real gross farm income from field crops (GFI) is included in the model to account for demand shocks that affect the structure and level of asset prices. The corresponding coefficient is expected to be positive. Three slope and intercept tax dummies (T) are included to account for the effects of tax changes on asset prices. The problem of manufacturer's list price is accounted for by a new price dummy variable (D1). D1 is expected to have a negative coefficient. Either combine model or manufacturer dummy variables (M₁'s) are used to account for the slight technology differences that might exist between individual models or across manufacturers. Model and manufacturer dummies cannot be included in the same equation because of singularity between the sets of dummies. Thus the symbol M is used interchangeably in the following discussion. Finally, a dummy variable (SF) is included to test for systematic differences in combine prices between spring and fall. SF is expected to have a negative coefficient which is equal to the interest cost of holding a combine six months, from December to June.
CHAPTER 5

ESTIMATION MODEL DEVELOPMENT
AND EMPIRICAL RESULTS

Specific estimation models are developed in this chapter for the four asset price models presented in Chapter 3 using the explanatory variables that were discussed in Chapter 4. The order and procedure by which these models are analyzed is examined, and the results of the econometric estimates are presented in detail. Finally, major implications of these results are discussed.

Estimation Model Development

Specific estimation models are developed for the following four asset price models:

Model 1

\[P(s) = \beta P(s-1) \] \hspace{1cm} (5.1)

Model 2

\[P(s) = \theta + \beta \cdot P(s-1) \] \hspace{1cm} (5.2)

Model 3

\[P(s) = P(s-1) \cdot e^{(\delta + \theta s)} \] \hspace{1cm} (5.3)
Model 4

\[P(s) = [P(s-1) - \delta] e^{\theta \delta} + \delta \] \hspace{1cm} (5.4)

The following variable notation is used in specifying the estimation equations. \(P(s)_{i,t} \) denotes the asset price for model \(i \) at time period \(t \), \(D_1 \) the new machine list price dummy variable, \(SF \) the spring/fall dummy variable, \(GFI_t \) real gross farm income for time period \(t \), \(M_k \) the \(k \)'th model or manufacturer dummy variable, \(T_j \) the \(j \)'th tax regime dummy variable, and \(s \) the age of the machine. \(D_1 \) equals one for new machine list prices and zero for used combine resale prices; \(SF \) equals zero for spring prices and one for fall prices.

The most general estimation equation associated with Model 1 assumes that \(\theta \) (the parameter associated with \(P(s-1) \)) is a linear function of \(D_1 \), \(SF \), \(GFI \), model/manufacturer and tax dummy variables. The general estimation model is:

\[P(s)_{i,t} = \left[\beta_0 + \beta_{D1} D_1 + \beta_{SF} SF + \sum_{k=1}^{k_m} \beta_{M_k} M_k + \sum_{j=1}^{J_3} \beta_{T_j} T_j \right] P(s-1)_{i,t} + \epsilon_{i,t} \] \hspace{1cm} (5.5)

where \(\epsilon_{i,t} \) is an additive error term. Note that the above model has no intercept term, and thus it corresponds exactly to Model 1.

Model 2 is similar to Model 1 except that it includes an intercept term. The most general estimation equation corresponding to Model 2 assumes that both \(\theta \) and \(\beta \) are functions of the exogenous variables. The general estimation model associated with Model 2 can therefore be specified as:
where $\epsilon_{i,t}$ is an additive error term.

Equations (5.5) and (5.6) are linear in their parameters and are assumed to have additive error structures. These two models therefore can be estimated using the Ordinary Least Squares (OLS) procedure in SHAZAM, Version 6.1 (White et al., 1988).

In Model 3, the rate of depreciation is an exponential function of age. The estimation equation associated with Model 3 assumes that the parameters of the exponential function, ϕ and θ, are themselves functions of the exogenous variables. Thus,

\[
P(s)_{i,t} = P(s-1)_{i,t} \left[\exp(\phi_0 + \phi_{DI}D + \phi_{SF}SF + \sum_{k=1}^{K} \phi_k M_k + \sum_{j=1}^{J} \theta_j T_j \right] + \epsilon_{i,t}
\]

Equation (5.7) assumes that the error structure is additive. Consequently, because the estimation equation is non-linear in its parameters, it must be estimated using a non-linear estimation procedure.

If Model 3 is assumed to have a multiplicative error structure ($v_{i,t}$), the estimation equation can be written as:

\[
P(s)_{i,t} = P(s-1)_{i,t} \left[\exp(\phi_0 + \phi_{DI}D + \phi_{SF}SF + \sum_{k=1}^{K} \phi_k M_k + \sum_{j=1}^{J} \theta_j T_j \right] \cdot v_{i,t}
\]

Taking logs of both sides of equation (5.8), the following expression is obtained:
\[\ln P(s)_{i,t} = \ln P(s-1)_{i,t} + \left[\phi_o + \phi_{DL}D1 + \phi_{SF}SF + \sum_{k=1}^{k=m} \phi_k M_k \right] + \sum_{j=1}^{j=3} \phi_j T_j + \phi_{GFI}GFI + \theta_0 + \sum_{k=1}^{k=m} \theta_k M_k + S + \sum_{j=1}^{j=3} \theta_j T_j + \varepsilon_{i,t} \]

(5.9)

where \(\varepsilon_{i,t} = \ln v_{i,t} \). Equation (5.9) is also linear in its parameters and can be estimated using OLS.

Model 4 differs from Model 3 in that Model 4 contains a constant, \(\delta \). The estimation equations associated with Model 4 assume \(\delta \) is not a function of the exogenous variables while assuming \(\phi \) and \(\theta \) are functions of the exogenous variable. Under these assumptions and with the additional assumption that the error structure (\(\varepsilon_{i,t} \)) is additive, the estimation equation of Model 4 is:

\[P(s)_{i,t} = \left[P(s-1)_{i,t} - \delta \right] \cdot \exp(\phi_o \phi_{DL}D1 + \phi_{SF}SF + \sum_{k=1}^{k=m} \phi_k M_k + \sum_{j=1}^{j=3} \phi_j T_j + \phi_{GFI}GFI + \theta_0 + \sum_{k=1}^{k=m} \theta_k M_k + S + \sum_{j=1}^{j=3} \theta_j T_j + S) + \delta + \varepsilon_{i,t} \]

(5.10)

If the error structure is assumed to be multiplicative (\(v_{i,t} \)), the estimation equation associated with Model 4 is:

\[P(s)_{i,t} = \left[P(s-1)_{i,t} - \delta \right] \cdot \exp(\phi_o \phi_{DL}D1 + \phi_{SF}SF + \sum_{k=1}^{k=m} \phi_k M_k + \sum_{j=1}^{j=3} \phi_j T_j + \phi_{GFI}GFI + \theta_0 + \sum_{k=1}^{k=m} \theta_k M_k + S + \sum_{j=1}^{j=3} \theta_j T_j + S) + \delta \cdot \varepsilon_{i,t} \]

(5.11)

Taking logs on both sides of equation (5.11) the following expression is obtained:

\[\ln P(s)_{i,t} = \ln \left[P(s-1)_{i,t} - \delta \right] \cdot \exp(\phi_o \phi_{DL}D1 + \phi_{SF}SF + \sum_{k=1}^{k=m} \phi_k M_k + \sum_{j=1}^{j=3} \phi_j T_j + \phi_{GFI}GFI + \theta_0 + \sum_{k=1}^{k=m} \theta_k M_k + S + \sum_{j=1}^{j=3} \theta_j T_j + S) + \delta \cdot \varepsilon_{i,t} \]

(5.12)

where \(\varepsilon_{i,t} = \ln v_{i,t} \). Model 4 is clearly nonlinear in its parameters, irrespective of whether the error structure is additive or multiplicative, and therefore must be estimated.
using a nonlinear estimation procedure such as the nonlinear Quasi-Newton maximum likelihood procedure in SHAZAM which is used in this analysis.

Equation (5.12) has a form that permits a direct test of the two hypotheses. The first hypothesis can be rejected if any of the coefficients on age \((S)\) are statistically significant. The second hypothesis can be rejected if any of the coefficients on either tax intercept or slope dummies \((T)\) are statistically significant. If, however, the coefficients on all \(T\) and \(S\) are statistically insignificant, both hypotheses cannot be rejected.

Empirical Results

Models 1, 2, and 3 are, in effect, special cases of Model 4 as shown in Chapter 3. Estimation equations based on Model 4 are inherently nonlinear. Thus in order to obtain starting values and reduce the dimensions of the nonlinear estimation problem (because of a convergence problem), several versions of each estimation equation associated with Models 1, 2, and 3 (that is equations 5.5, 5.6, 5.9) are estimated. Each version of any given model differs with respect to tax, model, and manufacturing dummy variables that are included on the slope and intercept terms. The results obtained from estimating Models 1, 2, and 3 are used to screen potential explanatory variables in particular model dummy variables, and thus reduce the complexity of the nonlinear model at a
relatively low cost. Regression equations based on Model 3 are also estimated in order to provide starting values for Model 4. The parameter estimates and statistical results for Models 1, 2, and 3 are listed in Appendix B.

Preliminary Results from Models 1, 2, and 3

The interesting estimation results from Models 1, 2, and 3 are as follows. First, coefficients associated with the five manufacturer dummy variables on either the slopes or the intercept terms appear to provide as much explanatory power as any combination of the 22 model dummy variables on both the slopes and intercepts or equations which included both manufacturer slope and intercept dummies.

Second, the real gross farm income coefficients are positive and significant at the one percent level, while the list price dummy variable coefficients are negative and significant at the one percent level in all of the 62 model versions.

Third, the coefficients attached to the spring/fall dummies are negative and significant at the one percent level in all of the estimation equations associated with Models 1 and 2, while being insignificant at the 10 percent level in all of the estimation equations associated with Model 3.

Fourth, tax dummies appear to affect both intercept and slope terms. For example, in the six variations of equation (5.5), Model 1, all the tax slope dummies are significant at the one percent level. The tax slope dummy coefficients T_1
(1982-84) and T3 (1987-89) are positive but negative for T2 (1985-86). In the 28 versions of equation (5.6), Model 2, T2 slope dummy coefficients are also negative and significant at the one percent level. However, the slope coefficients associated with T1 are positive and significant in only six of the fourteen estimated equations which include tax slope dummies, while the coefficients for the other eight are negative in sign and insignificant at the five percent level. It should be noted that six of the T1 slope coefficients are negative and insignificant at the 10 percent level when tax dummies are included on both the slope and intercept terms. Coefficients associated with the T3 slope dummy are significant at the one percent level in 10 of the 14 models, with two more coefficients being significant at the 10 percent level; however, the signs change across equations. T1 and T3 intercept coefficients for Model 2 are positive and significant at the one percent level, while T2 intercept coefficients are positive and significant at the one percent level for 11 of the 14 models, with the other three coefficients being negative and insignificant at the 10 percent level. The 28 variations of equation (5.9), Model 3, have tax slope dummy variable coefficients that are all positive and significant at the one percent level. The results for coefficients of the tax intercept dummies of Model 3 are more mixed. T1 intercept coefficients are positive and significant at the one percent level in five of the 14 models,
while seven of the T1 coefficients are negative and insignificant at the 10 percent level. The remaining two coefficients are positive and significant at the 10 percent level. T2 intercept coefficients are negative and significant at the one percent level in nine of the 14 models, while the other five T2 coefficients are negative; four are insignificant and one is significant at the 10 percent level. T3 intercept dummy coefficients are positive and significant at the one percent level for half of the 14 models, while the other half are insignificant at the 10 percent level with different signs across the models.

Finally, it should be noted that tax and model interaction variables were examined in several variations of the above models, but these variables were found to have no explanatory power, and therefore were not considered further in this analysis.

The regression results from Models 1, 2, and 3 indicate that manufacturer dummies provide as much information on either the slope or intercept term as any combination of model dummies on the slope and intercept terms, and thus allow a reduction in the dimensionality of the nonlinear problem. Tax dummies have important simultaneous effects on both intercept and slope terms. D1, SF, and GFI also account for important effects in the used asset price equations. Estimation results from various equations based on Model 3 also provide starting values for Model 4.
Results from Model 4

The parameters of Model 4, as presented in equation (5.10), were estimated using the parameter estimates of Models 1, 2, and 3, as starting values. The estimated equation included manufacturing dummy variables on either the slope or intercept term in the exponential portion of the equation and included tax dummies on both the intercept and slope terms of the exponential. D1, SF, and GFI were also included in the exponential, but only on the intercept term. Two versions of Model 4 are thus estimated using equation (5.10) in which an additive error term is assumed. Inspection of the residuals from the estimated equations indicate possible presence of heteroscedasticity as is shown in Figures 1 and 2. This implies that there is probably a multiplicative error structure in terms of the level of price variables instead of the assumed additive error structure. Thus equation (5.12), the natural log equation based on Model 4, is also estimated.

Parameter estimates and statistical results for the four estimated equations of Model 4 are presented in Table 2. Equations 4a and 4b are estimated assuming an additive error structure, while equations 4c and 4d are estimated assuming a multiplicative error structure. Equations 4a and 4c are estimated with manufacturing dummy variables on the intercept term, φ, while equations 4b and 4d are estimated with the manufacturing dummy variables located on the slope term, θ.

Major empirical results obtained from the four different
Table 1. Model 4a residual points

<table>
<thead>
<tr>
<th>RESID4A</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>0.10E+05</td>
<td></td>
</tr>
<tr>
<td>0.20E+05</td>
<td></td>
</tr>
<tr>
<td>0.30E+05</td>
<td></td>
</tr>
<tr>
<td>0.40E+05</td>
<td></td>
</tr>
<tr>
<td>0.50E+05</td>
<td></td>
</tr>
<tr>
<td>0.60E+05</td>
<td></td>
</tr>
<tr>
<td>0.70E+05</td>
<td></td>
</tr>
<tr>
<td>0.80E+05</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Model 4a residual plot, where RESID4A equals one of the 2323 residual points from equation 4a.
Figure 2. Model 4b residual plot, where RESID4B equals one of the 2323 residual points from equation 4b.
Table 2. Model 4 results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 4a</th>
<th>Model 4b</th>
<th>Model 4c</th>
<th>Model 4d</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>7475.9</td>
<td>7514.2</td>
<td>1346.2</td>
<td>1658.8</td>
</tr>
<tr>
<td></td>
<td>(12.38)*</td>
<td>(12.68)</td>
<td>(2.077)</td>
<td>(2.591)</td>
</tr>
<tr>
<td>D1</td>
<td>-.3432</td>
<td>-.34361</td>
<td>-.33132</td>
<td>-.33209</td>
</tr>
<tr>
<td></td>
<td>(-40.60)</td>
<td>(-41.18)</td>
<td>(-37.88)</td>
<td>(-38.45)</td>
</tr>
<tr>
<td>ϕ_o</td>
<td>-.5863</td>
<td>-.56918</td>
<td>-.33644</td>
<td>-.32648</td>
</tr>
<tr>
<td></td>
<td>(-14.78)</td>
<td>(-14.91)</td>
<td>(-12.18)</td>
<td>(-12.04)</td>
</tr>
<tr>
<td>GFI</td>
<td>.00994</td>
<td>.00988</td>
<td>.00513</td>
<td>.00520</td>
</tr>
<tr>
<td></td>
<td>(15.28)</td>
<td>(15.18)</td>
<td>(11.06)</td>
<td>(11.15)</td>
</tr>
<tr>
<td>T1</td>
<td>.05862</td>
<td>.06247</td>
<td>.00068</td>
<td>.00365</td>
</tr>
<tr>
<td></td>
<td>(4.420)</td>
<td>(4.686)</td>
<td>(0.609)</td>
<td>(0.3287)</td>
</tr>
<tr>
<td>T2</td>
<td>-.14239</td>
<td>-.13911</td>
<td>-.12490</td>
<td>-.12393</td>
</tr>
<tr>
<td></td>
<td>(-8.914)</td>
<td>(-8.638)</td>
<td>(-9.549)</td>
<td>(-9.542)</td>
</tr>
<tr>
<td>T3</td>
<td>-.01468</td>
<td>-.00282</td>
<td>-.01054</td>
<td>.01494</td>
</tr>
<tr>
<td></td>
<td>(.7201)</td>
<td>(-1.434)</td>
<td>(.7139)</td>
<td>(1.011)</td>
</tr>
<tr>
<td>M1</td>
<td>.01677</td>
<td>.00587</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.565)</td>
<td>(.8315)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>.06169</td>
<td>.04948</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.685)</td>
<td>(6.776)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>.00782</td>
<td>.01440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.7400)</td>
<td>(2.192)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>.00024</td>
<td>.00535</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0228)</td>
<td>(.8055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>-.00623</td>
<td>.00390</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.5875)</td>
<td>(.5815)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>-.02670</td>
<td>-.03119</td>
<td>.04947</td>
<td>-.01759</td>
</tr>
<tr>
<td></td>
<td>(-8.740)</td>
<td>(-8.613)</td>
<td>(-7.842)</td>
<td>(-8.430)</td>
</tr>
<tr>
<td>T1(S)</td>
<td>.00291</td>
<td>.00252</td>
<td>.00566</td>
<td>.00545</td>
</tr>
<tr>
<td></td>
<td>(.9280)</td>
<td>(.81417)</td>
<td>(3.111)</td>
<td>(3.021)</td>
</tr>
<tr>
<td>T2(S)</td>
<td>.03707</td>
<td>.03715</td>
<td>.02197</td>
<td>.02227</td>
</tr>
<tr>
<td></td>
<td>(10.94)</td>
<td>(11.10)</td>
<td>(11.53)</td>
<td>(11.78)</td>
</tr>
<tr>
<td>T3(S)</td>
<td>.03858</td>
<td>.03715</td>
<td>.01487</td>
<td>.01502</td>
</tr>
<tr>
<td></td>
<td>(10.24)</td>
<td>(10.78)</td>
<td>(8.067)</td>
<td>(8.172)</td>
</tr>
<tr>
<td>M1(S)</td>
<td>.00301</td>
<td>.00301</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.155)</td>
<td>(1.155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2(S)</td>
<td>.01338</td>
<td>-.02230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.186)</td>
<td>(.8518)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3(S)</td>
<td>.00230</td>
<td>.00230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.00087)</td>
<td>(.00087)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.--Continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 4a</th>
<th>Model 4b</th>
<th>Model 4c</th>
<th>Model 4d</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4(S)</td>
<td>.00382</td>
<td>.00181</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.568)</td>
<td>(1.952)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5(S)</td>
<td>-.00195</td>
<td>.00136</td>
<td>.00560</td>
<td>.00594</td>
</tr>
<tr>
<td></td>
<td>(-.7750)</td>
<td>(-1.474)</td>
<td>(-3.974)</td>
<td>(-1.701)</td>
</tr>
<tr>
<td>FS</td>
<td>-.01774</td>
<td>-.01769</td>
<td>-.00560</td>
<td>-.00594</td>
</tr>
<tr>
<td></td>
<td>(.0044)</td>
<td>(-3.974)</td>
<td>(-1.701)</td>
<td>(-1.794)</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD FUNCTION
-21354.22 -21369.04 2723.331 2720.384
MAXIMUM LIKELIHOOD ESTIMATE OF SIGMA SQUARED
5650000 5722500 .0056137 .005628

*T-Ratios are contained in parentheses.

estimation equations for Model 4 are as follows. First, for each estimation equation, the age coefficients are negative and significant at the one percent level. Second, the constant term, δ, is negative and significant. Thus the null hypothesis that economic depreciation takes place at a constant rate is rejected.

Different tax regimes also have statistically significant effects on the rate and pattern of depreciation, and therefore the second hypothesis is also strongly rejected. For example, the coefficients for T2 intercept dummies (1985-86) are negative and significant at the one percent level in all four models, while T2 (1985-86) and T3 (1987-89) slope dummy coefficients are positive and significant at the one percent level. Results are mixed in the case of the other two tax intercept dummies (T1 and T3) and the T1 slope dummy coefficients. For example, the T1 intercept and slope dummy
coefficients are positive in all four equations; but both T1 intercept and slope dummy coefficients are significant at the one percent level in only two of the four equations, while the T3 intercept dummy coefficients are not significant at the 10 percent level with different signs across the four equations.

In each estimation equation based on Model 4, the real gross farm income coefficient is positive and significant at the one percent level, while the list price dummy variable is negative and significant at the one percent level. These results are as expected.

The manufacturer intercept and slope dummies, in general, are not significant. M2 (John Deere) is the only exception. The coefficient associated with M2 is positive and significant at the one percent level on the slope or intercept of every model in which it is included.

The coefficients associated with the spring/fall dummy variables are negative and significant at the 10 percent level. In the additive error structure equations, 4a and 4b, the spring/fall dummy variables are, however, significant at the one percent level. Moreover the signs of the coefficients in these regressions are also more realistic, implying a real discount rate for six months of about 1.77 percent.

The plotted regression residual results from equations 4c and 4d indicate that the heteroscedasticity problems in equations 4a and 4b appear to have been ameliorated through the use of a multiplicative error structure in equations 4c
and 4d. Residual plots for equations 4c and 4d are presented in Figure 3 and 4.

Implications of Results

Empirical evidence provided here indicates that rates of depreciation are not constant across different ages of combine harvesters. The evidence also suggests that depreciation rates are not stable with respect to major changes in the tax code. Figure 5 illustrates the behavior of the rate of economic depreciation for a representative combine under each of the four tax regimes when GFI is set at its mean.

In Figure 5, the rate of economic depreciation (the absolute value of the percentage change in the combine harvester's price as it ages one year) is measured on the vertical axis and combine harvester age on the horizontal axis. If the depreciation rate were constant across ages, the depreciation curve would be flat (parallel to the horizontal axis). None of the four depreciation curves in Figure 5 conform to this pattern. Under the 1979-81 and 1982-84 tax regimes, depreciation sharply diverges from this pattern. For the 1979-81 regime, the depreciation rate increases from an initial rate of about 12 percent to a maximum of 17 percent in the eleventh year before declining. Under the 1985-86 regime, the initial depreciation rate is 22.75 percent. It steadily declines by about one percent per year until year 12 and thereafter declines more slowly. These three depreciation
Figure 3. Model 4c residual plot, where RESID4C equals one of the 2323 residual points from equation 4c.
Figure 4. Model 4d residual plot, where RESID4D equals one of the 2323 residual points from equation 4d.
Figure 5. Combine harvester depreciation rates under alternative tax regimes.
patterns in no way correspond to the pattern associated with a constant rate of depreciation. Under the most recent tax structure (1987-89), the rate of depreciation is initially 12 percent and thereafter declines by about .15 percentage points each year over the first 15 years of life. In this case, the depreciation pattern is much closer to the constant rate. It is interesting to note that under the 1987-89 tax regime created by the Tax Reform Act (TRA), the benefits obtained from depreciation allowances and investment tax credits are much lower than under the other tax regimes.

These findings imply that studies of depreciation that ignore tax effects should be interpreted with caution. Studies that use remaining value functions based on asset price data in order to estimate the effects of changes in the tax code on optimal replacement rates are also problematic in that the remaining value function is assumed to be exogenous. This study, however, indicates that remaining value functions are in fact affected by the tax regime in which the remaining value function is observed. This means that the optimal replacement problem can no longer be solved using conventional methods.

These results offer further important ramifications. Hulten and Wykoff (1981) conclude that depreciation rates for buildings could be estimated using time-series data with models that do not account for demand and supply shocks and changes in tax regimes. The findings of this study suggest
that their conclusions are not generally valid. In the case of combine harvesters, the pattern of depreciation has been different across time when including age, the demand shocks from real gross farm income from field crops, and changes in the tax regimes between 1979-1989.

The coefficients on the manufacturer dummies implied that technology dummy variables were not an important factor in the used price equation. This, in part, could be explained by the fact that the manner in which the data were selected was intended to minimize the effects on depreciation caused by technological differences.

The list price dummy variable, on the other hand, was an important factor in the used asset price model. One of the objectives of this analysis was to develop a complete used asset price model which started at age zero. However, including the list price without a dummy variable would lead to a serious residual outlier problem. Two approaches to this problem were considered. The first was to omit list price data (Perry and Glyer, 1990), and the second was to include list price data with a dummy variable. A comparison of regression results between these two approaches using estimation equations based on Model 4 appeared to show no major differences in coefficient values after the first year. Thus, the approach including list price data with an instantaneous dummy variable was selected. The list price
dummy variable was, therefore, an important factor in this analysis.

Finally, the spring/fall dummy variable was relatively important in that it indicated fall prices to be lower in real terms relative to spring prices of combine harvesters.
CHAPTER 6

SUMMARY AND CONCLUSIONS

This study developed a used asset price model which is dynamic and utilizes a flexible functional form. An econometric model of used asset prices for combine harvesters was developed. The model incorporates demand shock variables specific to the asset (for example, gross farm income and tax regime dummy variables). The parameters of the specific model were estimated. Tests of the constant economic depreciation rate hypothesis and whether the pattern of depreciation is invariant with respect to changes in the tax code were then carried out. The results of the analysis provide important information about how changes in age, taxes, demand shocks, and technology affect the rate and pattern of economic depreciation in the case of combine harvesters. They also raise important questions about the validity of the conclusions of previous simulation studies of the effects of changes in tax regimes and asset replacement decisions.

The foundation of the theoretical model in this study rests on the assumption that the equilibrium price of an asset is assumed to equal the present value of the net revenue stream it generates. Two important insights were derived from the theoretical model. First, any event that affects net
revenues will also affect asset prices, and secondly, tax regimes have a complex and indirect effect on the net revenue stream. The theoretical results thus suggest that, because of the intricate structure of the net revenue stream over the life of an asset, the rate of depreciation will not necessarily be constant across ages. In addition, changes in tax regimes may have complex effects on net revenue streams and thus the pattern of depreciation is not likely to remain the same when changes are made to the tax code.

Flexible functional forms were used to model the dynamic asset price behavior. The asset price model that was chosen allowed the rate and pattern of depreciation to be flexible by modeling price as an exponential quadratic function of age.

The estimation model is inherently nonlinear. Thus the parameters of three linear models, each of which is nested within the quadratic model, were estimated in order to obtain starting values for and, by screening explanatory variables, reduce the dimensionality of the nonlinear model.

The major empirical results of this study are as follows. First, depreciation rates are not constant across different ages of combine harvesters. Second, depreciation rates and patterns are not stable with respect to changes in tax codes. Third, increases (decreases) changes in real gross farm income from fields crops have significant, positive (negative) effects on combine harvester prices. Fourth, the list price dummy is negative and significant. This suggests that
estimation models that include new machine list prices in the data set should incorporate dummy variables to take into account the instantaneous new list price effect. Finally, the spring/fall dummy variable is also significant, identifying systematic differences between fall and spring prices. These differences can be explained by the interest charge associated with buying an asset approximately six months before it is needed (for example, purchasing a combine harvester in the fall after harvest instead of in the following spring for that summer's use).

The general asset price model used in this study to test the constant rate of economic depreciation hypothesis could be applied to other specific physical assets such as trucks, tractors, and fishing vessels. Data sets on these specific assets have previously been examined, but with models that were based on different functional forms and that were estimated with different procedures.

Finally, this study has shown that used asset prices are in fact affected by changes in tax regimes. Thus remaining value functions based on a given data set include the effects of the tax regime under which the new or used asset prices were generated. The analysis raises questions about the validity of conventional methods used in previous asset replacement studies which assume constant rates of depreciation and do not include taxes as an explanatory variable in the remaining value functions. This study
indicates that new methods must be developed in which this problem is accounted for if the optimal replacement problem is to be solved in an internally consistent manner.
REFERENCES

APPENDIX A

COMBINE HARVESTER DATA
Table 3. Combine prices.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (AC-L2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>F89</td>
<td>S89</td>
<td>F88</td>
<td>S86</td>
<td>F85</td>
<td>S85</td>
<td>F87</td>
</tr>
<tr>
<td>1977</td>
<td>24410</td>
<td>23736</td>
<td>25164</td>
<td>35154</td>
<td>37859</td>
<td>40768</td>
<td>28899</td>
</tr>
<tr>
<td>1978</td>
<td>20771</td>
<td>20195</td>
<td>23218</td>
<td>29964</td>
<td>32278</td>
<td>34768</td>
<td>26672</td>
</tr>
<tr>
<td>1979</td>
<td>19154</td>
<td>18621</td>
<td>23736</td>
<td>27523</td>
<td>29798</td>
<td>32101</td>
<td>24613</td>
</tr>
<tr>
<td>1980</td>
<td>17658</td>
<td>17165</td>
<td>21897</td>
<td>27657</td>
<td>31923</td>
<td>32101</td>
<td>22707</td>
</tr>
<tr>
<td>1981</td>
<td>16274</td>
<td>15818</td>
<td>20195</td>
<td>25523</td>
<td>28754</td>
<td>30632</td>
<td>20944</td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>1983</th>
<th>1984</th>
<th>1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (AC-L3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>F89</td>
<td>S89</td>
<td>F88</td>
</tr>
<tr>
<td>1984</td>
<td>26234</td>
<td>25508</td>
<td>27044</td>
</tr>
<tr>
<td>1985</td>
<td>24199</td>
<td>23527</td>
<td>24948</td>
</tr>
<tr>
<td>1986</td>
<td>23317</td>
<td>21695</td>
<td>23010</td>
</tr>
<tr>
<td>1987</td>
<td>31064</td>
<td>28987</td>
<td>29887</td>
</tr>
<tr>
<td>1988</td>
<td>28667</td>
<td>26745</td>
<td>26745</td>
</tr>
<tr>
<td>1989</td>
<td>32570</td>
<td>30060</td>
<td>32011</td>
</tr>
<tr>
<td>1990</td>
<td>35090</td>
<td>32391</td>
<td>34895</td>
</tr>
<tr>
<td>1991</td>
<td>37797</td>
<td>34895</td>
<td>34895</td>
</tr>
<tr>
<td>1992</td>
<td>80771</td>
<td>40709</td>
<td>40709</td>
</tr>
<tr>
<td>1993</td>
<td>79577</td>
<td>43841</td>
<td>43841</td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>1976</th>
<th>1977</th>
<th>1978</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (AC-M2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>F89</td>
<td>S89</td>
<td>F88</td>
</tr>
<tr>
<td>1977</td>
<td>10663</td>
<td>10333</td>
<td>11100</td>
</tr>
<tr>
<td>1978</td>
<td>9811</td>
<td>9505</td>
<td>10214</td>
</tr>
<tr>
<td>1979</td>
<td>9022</td>
<td>8739</td>
<td>9396</td>
</tr>
<tr>
<td>1980</td>
<td>8293</td>
<td>8031</td>
<td>8639</td>
</tr>
<tr>
<td>Year</td>
<td>Model (AC-M2)</td>
<td>Model (AC-N5)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>S88 12057 11100 10214</td>
<td>F89 35318 32603 30092</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>F87 15510 14294</td>
<td>03518 32603 30092</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>S86 17016 15686</td>
<td>38992 36002</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>F86 18661 17209</td>
<td>38992 36002</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>S85 20460 18872</td>
<td>F85 30558 28213</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>F84 32447 29958</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>S83 26837 24771</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>F82 28362 26182</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>S82 29620 27346</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>F81 30558 28213</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>S81 29620 27346</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>F80 30558 28213</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>S79 36004 28038</td>
<td>F84 32447 29958</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with data from previous years not shown here.
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>Model (AC-N5)--Continued</td>
</tr>
<tr>
<td>F85 91200 49505 45818 42315 39076 36076 33076 30076 27076 24076</td>
</tr>
<tr>
<td>S85 91200 52542 48535 44829 41401 38230 35297 32360 29397 26430</td>
</tr>
<tr>
<td>F84 92800 55652 51412 47490 43862 40506 37134 33820 30506 27187</td>
</tr>
<tr>
<td>S84 88542 54817 50639 46775 43201 39894 36580 33307 30020 26747</td>
</tr>
<tr>
<td>F83 95574 67364 62245 57511 52177 46833 41501 36162 30820 25477</td>
</tr>
<tr>
<td>F82 90913 60076 54535 49076 43594 38127 32660 27187 21747 16297</td>
</tr>
<tr>
<td>S82 83464 63924 59497 54968 50435 45897 41357 36760 31117 25477</td>
</tr>
<tr>
<td>F81 69792 39595 36766 33941 31057 28130 25214 22295 19374 16457</td>
</tr>
<tr>
<td>S81 69792 37159 34501 32028 29729 27590 25601 23752 21927 19607</td>
</tr>
<tr>
<td>F80 71492 41485 38523 35769 33208 30826 28611 26550 24522 22578</td>
</tr>
<tr>
<td>S80 71492 42793 39740 36901 34260 31804 29520 27296 25072 22848</td>
</tr>
<tr>
<td>F79 69908 44142 40994 38067 35344 32813 30458 28017 25578 23078</td>
</tr>
<tr>
<td>S79 69908 44142 40994 38067 35344 32813 30458 28017 25578 23078</td>
</tr>
<tr>
<td>F79 69908 44142 40994 38067 35344 32813 30458 28017 25578 23078</td>
</tr>
<tr>
<td>S79 69908 44142 40994 38067 35344 32813 30458 28017 25578 23078</td>
</tr>
</tbody>
</table>

Model (JD-6620)

<table>
<thead>
<tr>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>F89 48617</td>
</tr>
<tr>
<td>S89 41392</td>
</tr>
<tr>
<td>F88 69792</td>
</tr>
<tr>
<td>S88 69792</td>
</tr>
<tr>
<td>F89 40157 41938 38945 36162 33572 31165 28926 26844 24908</td>
</tr>
<tr>
<td>S89 38438 35690 33134 30757 28546 26490 24579 22800 21147</td>
</tr>
<tr>
<td>F88 41298 38349 35607 33057 30686 28480 26429 24522 22748</td>
</tr>
<tr>
<td>S88 37473 34792 32299 29980 27824 25819 23954 22220 20607</td>
</tr>
<tr>
<td>F87 69792 39595 36766 34135 31688 29413 27296 25327 23497</td>
</tr>
<tr>
<td>S87 69792 37159 34501 32028 29729 27590 25601 23752 22031</td>
</tr>
<tr>
<td>F86 69792 39370 36557 33941 31507 29244 27140 25182 23217</td>
</tr>
<tr>
<td>S86 71492 41485 38523 35769 33208 30826 28611 26550 24522</td>
</tr>
<tr>
<td>F85 71492 42793 39740 36901 34260 31804 29520 27296 25072</td>
</tr>
<tr>
<td>S85 69908 44142 40994 38067 35344 32813 30458 28017 25578</td>
</tr>
<tr>
<td>F84 83884 55303 51360 47692 44282 41110</td>
</tr>
<tr>
<td>S84 65927 43453 40354 37472 34791 32298</td>
</tr>
<tr>
<td>F83 1244 52740 48991 45504 42262</td>
</tr>
<tr>
<td>S83 66755 49203 45701 42445 39417</td>
</tr>
<tr>
<td>F82 66755 50251 46676 43350</td>
</tr>
<tr>
<td>S82 59337 45080 41867 38879</td>
</tr>
<tr>
<td>F81 59337 45080 41867</td>
</tr>
<tr>
<td>S81 50852 38321 35581</td>
</tr>
<tr>
<td>F80 50852 38517</td>
</tr>
<tr>
<td>S80 44529 33830</td>
</tr>
<tr>
<td>F79 44529</td>
</tr>
<tr>
<td>S79 44529</td>
</tr>
</tbody>
</table>
Table 3.—Continued.

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (JD-7700)</td>
<td></td>
</tr>
<tr>
<td>F89</td>
<td>16697</td>
</tr>
<tr>
<td>S89</td>
<td>15938</td>
</tr>
<tr>
<td>F88</td>
<td>16283</td>
</tr>
<tr>
<td>S88</td>
<td>16921</td>
</tr>
<tr>
<td>F87</td>
<td>17961</td>
</tr>
<tr>
<td>S87</td>
<td>18956</td>
</tr>
<tr>
<td>F86</td>
<td>20226</td>
</tr>
<tr>
<td>S86</td>
<td>21339</td>
</tr>
<tr>
<td>F85</td>
<td>23470</td>
</tr>
<tr>
<td>S85</td>
<td>24799</td>
</tr>
<tr>
<td>F84</td>
<td>27656</td>
</tr>
<tr>
<td>S84</td>
<td>28863</td>
</tr>
<tr>
<td>F83</td>
<td>30105</td>
</tr>
<tr>
<td>S83</td>
<td>31305</td>
</tr>
<tr>
<td>F82</td>
<td>32078</td>
</tr>
<tr>
<td>S82</td>
<td>33105</td>
</tr>
<tr>
<td>F81</td>
<td>34105</td>
</tr>
<tr>
<td>S81</td>
<td>35105</td>
</tr>
<tr>
<td>F80</td>
<td>36105</td>
</tr>
<tr>
<td>S80</td>
<td>37105</td>
</tr>
<tr>
<td>F79</td>
<td>38105</td>
</tr>
<tr>
<td>S79</td>
<td>39105</td>
</tr>
</tbody>
</table>

Model (JD-7720)

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1988</td>
</tr>
<tr>
<td>F89</td>
<td>52203</td>
</tr>
<tr>
<td>S89</td>
<td>48391</td>
</tr>
<tr>
<td>F88</td>
<td>83077</td>
</tr>
<tr>
<td>S88</td>
<td>83077</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>4943</td>
</tr>
<tr>
<td>S89</td>
<td>48315</td>
</tr>
<tr>
<td>F88</td>
<td>44745</td>
</tr>
<tr>
<td>S88</td>
<td>83077</td>
</tr>
<tr>
<td>F87</td>
<td>83077</td>
</tr>
<tr>
<td>S87</td>
<td>46915</td>
</tr>
<tr>
<td>F86</td>
<td>83077</td>
</tr>
<tr>
<td>S86</td>
<td>84777</td>
</tr>
<tr>
<td>F85</td>
<td>84777</td>
</tr>
<tr>
<td>S85</td>
<td>82713</td>
</tr>
<tr>
<td>F84</td>
<td>82713</td>
</tr>
<tr>
<td>S84</td>
<td>78240</td>
</tr>
<tr>
<td>F83</td>
<td>84737</td>
</tr>
<tr>
<td>S83</td>
<td>78371</td>
</tr>
<tr>
<td>Year</td>
<td>Year Manufactured</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>F82</td>
<td>78371 59760 55516 51570</td>
</tr>
<tr>
<td>S82</td>
<td>68863 52406 48677 45209</td>
</tr>
<tr>
<td>F81</td>
<td>68863 52406 48677</td>
</tr>
<tr>
<td>S81</td>
<td>59173 44682 41494</td>
</tr>
<tr>
<td>F80</td>
<td>59173 44911</td>
</tr>
<tr>
<td>S80</td>
<td>51017 38836</td>
</tr>
<tr>
<td>F79</td>
<td>51017</td>
</tr>
<tr>
<td>S79</td>
<td>51017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>10293 9248 8303</td>
</tr>
<tr>
<td>S89</td>
<td>9845 8843 7936</td>
</tr>
<tr>
<td>F88</td>
<td>10199 9163 8225 7377</td>
</tr>
<tr>
<td>S88</td>
<td>10684 9602 8622 7736</td>
</tr>
<tr>
<td>F87</td>
<td>11607 10437 9379 8421 7554</td>
</tr>
<tr>
<td>S87</td>
<td>12393 11149 10022 9003 8081</td>
</tr>
<tr>
<td>F86</td>
<td>13456 12110 10893 9791 8794 7891</td>
</tr>
<tr>
<td>S86</td>
<td>14439 13000 11698 10520 9453 8488</td>
</tr>
<tr>
<td>F85</td>
<td>15492 13953 12561 11300 10160 9128 8194</td>
</tr>
<tr>
<td>S85</td>
<td>16617 14953 13482 12134 10914 9810 8811</td>
</tr>
<tr>
<td>F84</td>
<td>17821 15671 14467 13026 11721 10540 9472 8505</td>
</tr>
<tr>
<td>S84</td>
<td>20591 18568 16737 15079 13580 12223 10994 9882</td>
</tr>
<tr>
<td>F83</td>
<td>22193 20018 18049 16268 14655 13196 11875 10680 9598</td>
</tr>
<tr>
<td>S83</td>
<td>22901 20659 18629 16792 15130 13625 12263 11031 9916</td>
</tr>
<tr>
<td>F82</td>
<td>24407 22021 19862 17908 16140 14540 13091 11781 10594</td>
</tr>
<tr>
<td>S82</td>
<td>25659 23154 20887 18836 16980 15300 13779 12403 11157</td>
</tr>
<tr>
<td>F81</td>
<td>26758 24149 21788 19651 17717 15967 14383 12950 11653</td>
</tr>
<tr>
<td>S81</td>
<td>26758 24149 21788 19651 17717 15967 14383 12950 11653</td>
</tr>
<tr>
<td>F80</td>
<td>27035 24400 22515 19856 17903 16135 14535 13088 11777</td>
</tr>
<tr>
<td>S80</td>
<td>27315 24653 22244 20064 18091 16305 14689 13226 11903</td>
</tr>
<tr>
<td>F79</td>
<td>37035 27238 24583 22181 20007 18039 16258 14647 13188</td>
</tr>
<tr>
<td>S79</td>
<td>37035 27378 24710 22295 20110 18133 16342 14723 13258</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>1969</td>
</tr>
<tr>
<td>F82</td>
<td>9520</td>
</tr>
<tr>
<td>S82</td>
<td>10030</td>
</tr>
<tr>
<td>F81</td>
<td>10479 9417</td>
</tr>
<tr>
<td>S81</td>
<td>10479 9417</td>
</tr>
<tr>
<td>F80</td>
<td>10591 9518</td>
</tr>
<tr>
<td>S80</td>
<td>10705 9622</td>
</tr>
<tr>
<td>F79</td>
<td>11868 10674</td>
</tr>
<tr>
<td>S79</td>
<td>11931 10731</td>
</tr>
</tbody>
</table>
Table 3—Continued.

<table>
<thead>
<tr>
<th>Year</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH9</td>
<td>11348 10188 9138</td>
</tr>
<tr>
<td>SH9</td>
<td>10851 9738 8731</td>
</tr>
<tr>
<td>FH8</td>
<td>11245 10095 9053 8112</td>
</tr>
<tr>
<td>SH8</td>
<td>12520 11248 10097 9056</td>
</tr>
<tr>
<td>FH7</td>
<td>13605 12231 10986 9860 8841</td>
</tr>
<tr>
<td>SH7</td>
<td>14529 13067 11744 10546 9462</td>
</tr>
<tr>
<td>FH6</td>
<td>15777 14196 12765 11471 10299 9238</td>
</tr>
<tr>
<td>SH6</td>
<td>16933 15243 13713 12328 11074 9940</td>
</tr>
<tr>
<td>FH5</td>
<td>18170 16362 14726 13244 11904 10691 9593</td>
</tr>
<tr>
<td>SH5</td>
<td>19493 17559 15809 14224 12791 11494</td>
</tr>
<tr>
<td>FH4</td>
<td>20677 18631 16779 15102 13585 12212 10970 9845</td>
</tr>
<tr>
<td>SH4</td>
<td>23202 20915 18847 16974 15279 13746 12358 11101</td>
</tr>
<tr>
<td>FH3</td>
<td>25013 22555 20330 18173 16364 14727 13245 11905</td>
</tr>
<tr>
<td>SH3</td>
<td>25813 23278 20985 18909 17031 15331 13792 12400 11140</td>
</tr>
<tr>
<td>FH2</td>
<td>27516 24820 22379 20171 18173 16364 14727 13245 11905</td>
</tr>
<tr>
<td>SH2</td>
<td>28931 26100 23539 21221 19123 17224 15505 13950 12542</td>
</tr>
<tr>
<td>FH1</td>
<td>30172 27223 24555 22140 19355 17977 16187 14567 13101</td>
</tr>
<tr>
<td>SH1</td>
<td>30172 27223 24555 22140 19355 17977 16187 14567 13101</td>
</tr>
<tr>
<td>FH0</td>
<td>30486 27507 24812 22372 20165 18167 16359 14723 13243</td>
</tr>
<tr>
<td>SH0</td>
<td>30802 27794 25071 22607 20377 18360 16533 14880 13384</td>
</tr>
<tr>
<td>F79</td>
<td>42330 30685 27688 24976 22521 20229 18289 16469 14823</td>
</tr>
<tr>
<td>S79</td>
<td>42330 30843 27831 25105 22638 20405 18384 16556 14901</td>
</tr>
<tr>
<td>1970</td>
<td>1969</td>
</tr>
<tr>
<td>FH2</td>
<td>11269</td>
</tr>
<tr>
<td>SH2</td>
<td>10692</td>
</tr>
<tr>
<td>FH1</td>
<td>11774 10573</td>
</tr>
<tr>
<td>SH1</td>
<td>11774 10573</td>
</tr>
<tr>
<td>FH0</td>
<td>11902 10689</td>
</tr>
<tr>
<td>SH0</td>
<td>12030 10806</td>
</tr>
<tr>
<td>F79</td>
<td>13333 11984</td>
</tr>
<tr>
<td>S79</td>
<td>13403 12047</td>
</tr>
</tbody>
</table>

Model (IH-1440)

<table>
<thead>
<tr>
<th>Year</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH9</td>
<td>36512 33710 31119 28722 26504 24453 22556 20800</td>
</tr>
<tr>
<td>SH9</td>
<td>35819 32519 29516 26784 24297 22035 19975 18101</td>
</tr>
<tr>
<td>FH8</td>
<td>34332 31165 28285 25663 23277 21106 19131 17333</td>
</tr>
<tr>
<td>SH8</td>
<td>30592 27762 25187 22845 20713 18772 17007 15400</td>
</tr>
<tr>
<td>FH7</td>
<td>32958 29916 27147 24628 22335 20249 18350 16622</td>
</tr>
<tr>
<td>SH7</td>
<td>34737 31534 28620 25968 23554 21358 19360 17541</td>
</tr>
<tr>
<td>FH6</td>
<td>37210 33785 30668 27832 25251 22902 20765 18820</td>
</tr>
<tr>
<td>SH6</td>
<td>33696 30928 28383 26040 23885 21902 20078</td>
</tr>
<tr>
<td>FH5</td>
<td>73985 41769 37933 34443 31267 28377 25747 23353</td>
</tr>
<tr>
<td>SH5</td>
<td>73740 44249 40190 36497 33136 30078 27295 24762</td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>Year (IH-1440)--Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>F84</td>
<td>73740 46873 42578 38669 35113 31877 28932</td>
</tr>
<tr>
<td>S84</td>
<td>64825 41035 37265 33835 30714 27874 25289</td>
</tr>
<tr>
<td>F83</td>
<td>69745 50073 45491 41321 37525 34072</td>
</tr>
<tr>
<td>S83</td>
<td>69745 51648 46924 42624 38712 35151</td>
</tr>
<tr>
<td>F82</td>
<td>69745 54999 49973 45399 41236</td>
</tr>
<tr>
<td>S82</td>
<td>59493 41939 38089 34584 31395</td>
</tr>
<tr>
<td>F81</td>
<td>59663 43722 39711 36061</td>
</tr>
<tr>
<td>S81</td>
<td>59493 43722 39711 36061</td>
</tr>
<tr>
<td>F80</td>
<td>56456 34940 31719</td>
</tr>
<tr>
<td>S80</td>
<td>56456 35301 32048</td>
</tr>
<tr>
<td>F79</td>
<td>48260</td>
</tr>
<tr>
<td>S79</td>
<td>48260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>Year (IH-1460)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>40906 37140 33713 30594 27756 25174 22823 20685</td>
</tr>
<tr>
<td>S89</td>
<td>40154 36456 33090 30027 27240 24704 22396 20295</td>
</tr>
<tr>
<td>F88</td>
<td>39517 35875 32562 29547 26803 24304 22035 19967</td>
</tr>
<tr>
<td>S88</td>
<td>36329 32975 29923 27145 24617 22317 20224 18319</td>
</tr>
<tr>
<td>F87</td>
<td>39134 35527 32246 29259 26541 24068 21817 19768</td>
</tr>
<tr>
<td>S87</td>
<td>41244 37448 33992 30848 27987 25384 23015 20859</td>
</tr>
<tr>
<td>F86</td>
<td>44176 40116 36421 33058 29998 27214 24680 22374</td>
</tr>
<tr>
<td>S86</td>
<td>46801 42505 38595 35037 31799 28853 26171 23731</td>
</tr>
<tr>
<td>F85</td>
<td>45700 49580 45033 40896 37130 33704 30586 27749</td>
</tr>
<tr>
<td>S85</td>
<td>85260 51960 47199 42867 38924 35337 32072 29101</td>
</tr>
<tr>
<td>F84</td>
<td>85260 54452 49467 44931 40802 37045 33626</td>
</tr>
<tr>
<td>S84</td>
<td>74375 47515 43154 39185 35574 32288 29297</td>
</tr>
<tr>
<td>F83</td>
<td>79495 56762 51568 46842 42542 38629</td>
</tr>
<tr>
<td>S83</td>
<td>79495 58546 53192 48319 43886 39852</td>
</tr>
<tr>
<td>F82</td>
<td>79495 62343 56647 51464 46748</td>
</tr>
<tr>
<td>S82</td>
<td>67443 48238 43812 39785 36119</td>
</tr>
<tr>
<td>F81</td>
<td>67443 50286 45676 41480</td>
</tr>
<tr>
<td>S81</td>
<td>67443 50286 45676 41480</td>
</tr>
<tr>
<td>F80</td>
<td>63406 38853 35272</td>
</tr>
<tr>
<td>S80</td>
<td>63406 39255 35637</td>
</tr>
<tr>
<td>F79</td>
<td>53665</td>
</tr>
<tr>
<td>S79</td>
<td>53665</td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Year Manufactured</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (MF-550)</td>
<td></td>
</tr>
<tr>
<td>1988 1987</td>
<td></td>
</tr>
<tr>
<td>F89 30308 27680</td>
<td></td>
</tr>
<tr>
<td>S89 29628 27058</td>
<td></td>
</tr>
<tr>
<td>F88 57480 29536</td>
<td></td>
</tr>
<tr>
<td>S88 57480 29120</td>
<td></td>
</tr>
<tr>
<td>F87 57480</td>
<td></td>
</tr>
<tr>
<td>S87 57480</td>
<td></td>
</tr>
<tr>
<td>F89 25276 23075</td>
<td>21061</td>
</tr>
<tr>
<td>S89 24706 22554</td>
<td>20584</td>
</tr>
<tr>
<td>F88 26973 24628</td>
<td>22483</td>
</tr>
<tr>
<td>S88 26593 24280</td>
<td>22165</td>
</tr>
<tr>
<td>F87 31018 28330</td>
<td>25870</td>
</tr>
<tr>
<td>S87 28724 26230</td>
<td>23949</td>
</tr>
<tr>
<td>F86 57480 30763</td>
<td>28096</td>
</tr>
<tr>
<td>S86 60012 29258</td>
<td>26719</td>
</tr>
<tr>
<td>F85 60012 31335</td>
<td>28619</td>
</tr>
<tr>
<td>S85 58091 33556</td>
<td>30651</td>
</tr>
<tr>
<td>F84 58091 35931</td>
<td>32825</td>
</tr>
<tr>
<td>S84 54806 34097</td>
<td>31147</td>
</tr>
<tr>
<td>F83 60331 42981</td>
<td>39275</td>
</tr>
<tr>
<td>S83 57939 39808</td>
<td>36372</td>
</tr>
<tr>
<td>F82 55126 39689</td>
<td>36263</td>
</tr>
<tr>
<td>S82 54526 39713</td>
<td>36285</td>
</tr>
<tr>
<td>F81 54526 39713</td>
<td>36285</td>
</tr>
<tr>
<td>S81 51838 37726</td>
<td>34467</td>
</tr>
<tr>
<td>F80 48904 35140</td>
<td>32101</td>
</tr>
<tr>
<td>S80 44097 31675</td>
<td>28930</td>
</tr>
<tr>
<td>F79 41198</td>
<td></td>
</tr>
<tr>
<td>S79 37329</td>
<td></td>
</tr>
</tbody>
</table>

Model (MF-750)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F89 16631 15076 13662 12374</td>
</tr>
<tr>
<td>S89 16210 14694 13314 12057</td>
</tr>
<tr>
<td>F88 17676 16027 14527 13161 11919</td>
</tr>
<tr>
<td>S88 19054 17281 15668 14200 12864</td>
</tr>
<tr>
<td>F87 20537 18631 16896 15318 13881 12574</td>
</tr>
<tr>
<td>S87 21652 19645 17819 16158 14646 13269</td>
</tr>
<tr>
<td>F86 23202 21055 19103 17326 15709 14238 12899</td>
</tr>
<tr>
<td>S86 24859 22564 20475 18575 16845 15271 13838</td>
</tr>
<tr>
<td>F85 26631 24176 21942 19910 18060 16377 14846 13452</td>
</tr>
<tr>
<td>S85 28526 25902 23512 21338 19360 17560 15922 14431</td>
</tr>
<tr>
<td>F84 30554 27746 25191 22866 20751 18825 17073 15479</td>
</tr>
<tr>
<td>S84 33152 30111 27343 24825 22532 20446 18548 16821</td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Model (MF-750)--Continued</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F83 35991 32694 29693 26963 24479 22218 20160 18287</td>
<td></td>
</tr>
<tr>
<td>S83 37027 33637 30551 27744 25188 22864 20748 18823</td>
<td></td>
</tr>
<tr>
<td>F82 39219 35632 32367 29396 26692 24232 21993 19956</td>
<td></td>
</tr>
<tr>
<td>S82 41098 37341 33922 30551 27744 25188 22864 20748 18823</td>
<td></td>
</tr>
<tr>
<td>F81 42837 38924 35363 32123 29174 26491 24049 21827</td>
<td></td>
</tr>
<tr>
<td>S81 42837 38924 35363 32123 29174 26491 24049 21827</td>
<td></td>
</tr>
<tr>
<td>F80 57886 42660 38763 35217 31989 29053 26380 23948</td>
<td></td>
</tr>
<tr>
<td>S80 51797 38106 34618 31444 28557 25929 23538 21362</td>
<td></td>
</tr>
<tr>
<td>F79 48394 35560 32302 29337 26639 24184 21949</td>
<td></td>
</tr>
<tr>
<td>S79 43084 31954 29021 26351 23922 21711 19699</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model (MF-760)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89 19813 17972 16296 14772</td>
</tr>
<tr>
<td>S89 19315 17519 15884 14396</td>
</tr>
<tr>
<td>F88 20817 18885 17128 15529 14073</td>
</tr>
<tr>
<td>S88 22187 20132 18262 16561 15013</td>
</tr>
<tr>
<td>F87 23644 21458 19469 17660 16012 14514</td>
</tr>
<tr>
<td>S87 24922 22621 20528 18623 16889 15311</td>
</tr>
<tr>
<td>F86 26699 24239 22000 19962 18108 16420 14884</td>
</tr>
<tr>
<td>S86 28599 25968 23583 21393 19410 17606 15963</td>
</tr>
<tr>
<td>F85 30632 27817 25256 22926 20805 18875 17118 15519</td>
</tr>
<tr>
<td>S85 32805 29795 27055 24562 22293 20229 18350 16641</td>
</tr>
<tr>
<td>F84 35130 31910 28980 26314 23888 21680 19671 17843 16179</td>
</tr>
<tr>
<td>S84 38942 35380 32138 29188 26503 24060 21836 19813 17972</td>
</tr>
<tr>
<td>F83 42267 38406 34891 31693 28783 26134 23725 21532 19536</td>
</tr>
<tr>
<td>S83 43480 39509 35896 32607 29614 26891 24413 22158 20106</td>
</tr>
<tr>
<td>F82 46048 41846 38022 34542 31376 28494 25872 23486 21314</td>
</tr>
<tr>
<td>S82 48248 43848 39843 36199 32883 29866 27120 24621 22348</td>
</tr>
<tr>
<td>F81 50285 45701 41531 37735 34281 31138 28277 25675 23306</td>
</tr>
<tr>
<td>S81 50285 45701 41531 37735 34281 31138 28277 25675 23306</td>
</tr>
<tr>
<td>F80 65218 50090 45524 41369 37588 34147 31016 28167 25574</td>
</tr>
<tr>
<td>S80 59314 44642 40567 36858 33483 30412 27617 25074 22759</td>
</tr>
<tr>
<td>F79 55418 41464 37675 34226 31088 28232 25634 23269</td>
</tr>
<tr>
<td>S79 49043 36852 33478 30407 27612 25069 22755 20649</td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Year</th>
<th>Model (MF-850)</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1988 1987 1986</td>
<td></td>
</tr>
<tr>
<td>F89</td>
<td>39522 36315 33364</td>
<td></td>
</tr>
<tr>
<td>S89</td>
<td>38641 35505 32619</td>
<td></td>
</tr>
<tr>
<td>F88</td>
<td>74639 38847 35417</td>
<td></td>
</tr>
<tr>
<td>S88</td>
<td>74639 38038 34949</td>
<td></td>
</tr>
<tr>
<td>F87</td>
<td>74639 40502 37216</td>
<td></td>
</tr>
<tr>
<td>S87</td>
<td>74639 39508 36302</td>
<td></td>
</tr>
<tr>
<td>F86</td>
<td>77927 35778 32870</td>
<td></td>
</tr>
<tr>
<td>S86</td>
<td>77927 38304 35194</td>
<td></td>
</tr>
<tr>
<td>F85</td>
<td>76924 41006 37680</td>
<td></td>
</tr>
<tr>
<td>S85</td>
<td>76924 43896 40339</td>
<td></td>
</tr>
<tr>
<td>F84</td>
<td>73555 42403 38964</td>
<td></td>
</tr>
<tr>
<td>S84</td>
<td>79258 72220 72042</td>
<td></td>
</tr>
<tr>
<td>F83</td>
<td>15343 13821 12443</td>
<td></td>
</tr>
<tr>
<td>S83</td>
<td>15094 14048 12648</td>
<td></td>
</tr>
<tr>
<td>F82</td>
<td>17740 15989 14405</td>
<td></td>
</tr>
<tr>
<td>S82</td>
<td>19840 17890 16125</td>
<td></td>
</tr>
<tr>
<td>F81</td>
<td>22056 19895 17940</td>
<td></td>
</tr>
<tr>
<td>S81</td>
<td>23253 20979 18921</td>
<td></td>
</tr>
<tr>
<td>F80</td>
<td>24513 22119 19952</td>
<td></td>
</tr>
<tr>
<td>S80</td>
<td>26717 24113 21757</td>
<td></td>
</tr>
<tr>
<td>F79</td>
<td>28858 28051 23511</td>
<td></td>
</tr>
<tr>
<td>S79</td>
<td>31459 28405 25641</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Model (NH-1500)</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1980 1979 1978</td>
<td></td>
</tr>
<tr>
<td>F89</td>
<td>15343 13821 12443</td>
<td></td>
</tr>
<tr>
<td>S89</td>
<td>14617 13164 11848</td>
<td></td>
</tr>
<tr>
<td>F88</td>
<td>15594 14048 12648</td>
<td></td>
</tr>
<tr>
<td>S88</td>
<td>16726 15072 13575</td>
<td></td>
</tr>
<tr>
<td>F87</td>
<td>17740 15989 14405</td>
<td></td>
</tr>
<tr>
<td>S87</td>
<td>18608 16776 15117</td>
<td></td>
</tr>
<tr>
<td>F86</td>
<td>19840 17890 16125</td>
<td></td>
</tr>
<tr>
<td>S86</td>
<td>20920 18867 17010</td>
<td></td>
</tr>
<tr>
<td>F85</td>
<td>22056 19895 17940</td>
<td></td>
</tr>
<tr>
<td>S85</td>
<td>23253 20979 18921</td>
<td></td>
</tr>
<tr>
<td>F84</td>
<td>24513 22119 19952</td>
<td></td>
</tr>
<tr>
<td>S84</td>
<td>26717 24113 21757</td>
<td></td>
</tr>
<tr>
<td>F83</td>
<td>28858 26051 23511</td>
<td></td>
</tr>
<tr>
<td>S83</td>
<td>31459 28405 25641</td>
<td></td>
</tr>
<tr>
<td>F82</td>
<td>32885 29696 26809</td>
<td></td>
</tr>
<tr>
<td>S82</td>
<td>34283 30962 27955</td>
<td></td>
</tr>
<tr>
<td>F81</td>
<td>34283 30962 27955</td>
<td></td>
</tr>
<tr>
<td>S81</td>
<td>45925 34459 31121</td>
<td></td>
</tr>
<tr>
<td>F80</td>
<td>45889 34636 31280</td>
<td></td>
</tr>
<tr>
<td>S80</td>
<td>45889 34636 31280</td>
<td></td>
</tr>
<tr>
<td>F79</td>
<td>44600 30368 27418</td>
<td></td>
</tr>
<tr>
<td>S79</td>
<td>44600 30368 27418</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Model (NH-TR70)</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>17021 15433 13988 10773</td>
</tr>
<tr>
<td>S89</td>
<td>15916 14428 13074 11841</td>
</tr>
<tr>
<td>F88</td>
<td>16972 15388 13948 12636 11443</td>
</tr>
<tr>
<td>S88</td>
<td>18195 16402 14961 13558 12283</td>
</tr>
<tr>
<td>F87</td>
<td>16397 14874 13488 12226 11078 10033</td>
</tr>
<tr>
<td>S87</td>
<td>20229 18352 16645 15091 13677 12390</td>
</tr>
<tr>
<td>F86</td>
<td>21327 19351 17553 15918 14430 13075</td>
</tr>
<tr>
<td>S86</td>
<td>22481 20402 18510 16788 15221 13796</td>
</tr>
<tr>
<td>F85</td>
<td>23697 21508 19516 17704 16055 14554</td>
</tr>
<tr>
<td>S85</td>
<td>24976 22672 20576 18669 16932 15352</td>
</tr>
<tr>
<td>F84</td>
<td>26323 23898 21692 19683 17855 16193</td>
</tr>
<tr>
<td>S84</td>
<td>28908 26250 23832 21631 19629 17806</td>
</tr>
<tr>
<td>F83</td>
<td>31216 28350 25743 23370 21211 19246</td>
</tr>
<tr>
<td>S83</td>
<td>32200 29246 26559 24112 21886 19861</td>
</tr>
<tr>
<td>F82</td>
<td>34018 30900 28063 25482 23132 20995</td>
</tr>
<tr>
<td>S82</td>
<td>35556 32300 29336 26640 24186 21953</td>
</tr>
<tr>
<td>F81</td>
<td>37063 33671 30585 27777 25221 22895</td>
</tr>
<tr>
<td>S81</td>
<td>37063 33671 30585 27777 25221 22895</td>
</tr>
<tr>
<td>F80</td>
<td>49452 37362 33954 30852 28029 25460</td>
</tr>
<tr>
<td>S80</td>
<td>49452 37362 33954 30852 28029 25460</td>
</tr>
<tr>
<td>F79</td>
<td>49452 37744 34300 31167 28316</td>
</tr>
<tr>
<td>S79</td>
<td>49452 33152 30123 27365 24856</td>
</tr>
</tbody>
</table>

Model (NH-TR75)

<table>
<thead>
<tr>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
</tr>
<tr>
<td>S89</td>
</tr>
<tr>
<td>F88</td>
</tr>
<tr>
<td>S88</td>
</tr>
<tr>
<td>F87</td>
</tr>
<tr>
<td>S87</td>
</tr>
<tr>
<td>F86</td>
</tr>
<tr>
<td>S86</td>
</tr>
<tr>
<td>F85</td>
</tr>
<tr>
<td>S85</td>
</tr>
<tr>
<td>F84</td>
</tr>
<tr>
<td>S84</td>
</tr>
<tr>
<td>F83</td>
</tr>
<tr>
<td>S83</td>
</tr>
<tr>
<td>F82</td>
</tr>
<tr>
<td>S82</td>
</tr>
<tr>
<td>F81</td>
</tr>
<tr>
<td>S81</td>
</tr>
<tr>
<td>F80</td>
</tr>
<tr>
<td>S80</td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Model (NH-TR85)</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>37853 34574 31568 28820 26306 24006 21901</td>
</tr>
<tr>
<td>S89</td>
<td>32579 29747 27158 24788 22619 20634 18818</td>
</tr>
<tr>
<td>F88</td>
<td>38136 34830 31805 29038 26506 24188 22068</td>
</tr>
<tr>
<td>S88</td>
<td>40400 36901 33700 30771 28091 25639 23395</td>
</tr>
<tr>
<td>F87</td>
<td>42339 38676 35324 32258 29452 26884 24534</td>
</tr>
<tr>
<td>S87</td>
<td>43903 40106 36633 33455 30547 27887 25452</td>
</tr>
<tr>
<td>F86</td>
<td>46253 42257 38601 35255 32475 29394 26831</td>
</tr>
<tr>
<td>S86</td>
<td>48726 44520 40671 37150 33927 30979 28282</td>
</tr>
<tr>
<td>F85</td>
<td>85683 51057 46653 42623 38935 35562 32475</td>
</tr>
<tr>
<td>S85</td>
<td>85683 53499 48886 44667 40806 37274 34041</td>
</tr>
<tr>
<td>F84</td>
<td>85683 56054 51226 46807 42764 39065</td>
</tr>
<tr>
<td>S84</td>
<td>88655 58116 53112 48533 44343 40510</td>
</tr>
<tr>
<td>F83</td>
<td>82949 58703 53649 49024 44793</td>
</tr>
<tr>
<td>F82</td>
<td>82949 61998 56663 51782</td>
</tr>
<tr>
<td>S82</td>
<td>75033 56605 51730 47268</td>
</tr>
<tr>
<td>F81</td>
<td>75111 56706 51822</td>
</tr>
<tr>
<td></td>
<td>- - - - - - - - - - - - - - - - - - - -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model (WHITE-8600)</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>8807</td>
</tr>
<tr>
<td>S89</td>
<td>8437</td>
</tr>
<tr>
<td>F88</td>
<td>9133 8238</td>
</tr>
<tr>
<td>S88</td>
<td>9998 9024</td>
</tr>
<tr>
<td>F87</td>
<td>10938 9880 8918</td>
</tr>
<tr>
<td>S87</td>
<td>11622 10503 9484</td>
</tr>
<tr>
<td>F86</td>
<td>12558 11354 10260 9263</td>
</tr>
<tr>
<td>S86</td>
<td>13564 12270 11093 10021</td>
</tr>
<tr>
<td>F85</td>
<td>14646 13254 11989 10837</td>
</tr>
<tr>
<td>S85</td>
<td>15809 14313 12951 11713</td>
</tr>
<tr>
<td>F84</td>
<td>17059 15451 13987 12655</td>
</tr>
<tr>
<td>S84</td>
<td>18601 16853 15263 13816</td>
</tr>
<tr>
<td>F83</td>
<td>20174 18286 16567 15003</td>
</tr>
<tr>
<td>S83</td>
<td>20823 18875 17103 15491</td>
</tr>
<tr>
<td>F82</td>
<td>22203 20132 18246 16531</td>
</tr>
<tr>
<td>S82</td>
<td>23288 21119 19145 17349</td>
</tr>
<tr>
<td>F81</td>
<td>24292 22032 19976 18105</td>
</tr>
<tr>
<td>S81</td>
<td>24292 22032 19976 18105</td>
</tr>
<tr>
<td>F80</td>
<td>24545 22263 20186 18297</td>
</tr>
<tr>
<td>S80</td>
<td>24801 22496 20398 18489</td>
</tr>
<tr>
<td>F79</td>
<td>25059 22731 20612 18684</td>
</tr>
<tr>
<td>S79</td>
<td>25189 22849 20720 18782</td>
</tr>
</tbody>
</table>
Table 3.—Continued.

<table>
<thead>
<tr>
<th>Year</th>
<th>Year Manufactured</th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>9892</td>
</tr>
<tr>
<td>S89</td>
<td>9478</td>
</tr>
<tr>
<td>F88</td>
<td>10259 9255</td>
</tr>
<tr>
<td>S88</td>
<td>11229 10137</td>
</tr>
<tr>
<td>F87</td>
<td>12283 11097 10017</td>
</tr>
<tr>
<td>S87</td>
<td>13051 11795 10653</td>
</tr>
<tr>
<td>F86</td>
<td>14101 12751 11523 10405</td>
</tr>
<tr>
<td>S86</td>
<td>15229 13777 12456 11254</td>
</tr>
<tr>
<td>F85</td>
<td>16443 14882 13462 12170</td>
</tr>
<tr>
<td>S85</td>
<td>17748 16070 14542 13152</td>
</tr>
<tr>
<td>F84</td>
<td>19151 17346 15704 14210</td>
</tr>
<tr>
<td>S84</td>
<td>20762 18813 17039 15424</td>
</tr>
<tr>
<td>F83</td>
<td>22518 20411 18493 16748</td>
</tr>
<tr>
<td>S83</td>
<td>23242 21069 19092 17293</td>
</tr>
<tr>
<td>F82</td>
<td>24782 22471 20368 18454</td>
</tr>
<tr>
<td>S82</td>
<td>25992 23572 21369 19365</td>
</tr>
<tr>
<td>F81</td>
<td>27112 24591 22297 20209</td>
</tr>
<tr>
<td>S81</td>
<td>27112 24591 22297 20209</td>
</tr>
<tr>
<td>F80</td>
<td>27395 24848 22531 20422</td>
</tr>
<tr>
<td>S80</td>
<td>27681 25109 22768 20638</td>
</tr>
<tr>
<td>F79</td>
<td>27970 25371 23007 20856</td>
</tr>
<tr>
<td>S79</td>
<td>28115 25504 23128 20966</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F89</td>
<td>21219 19230 17421 15774</td>
</tr>
<tr>
<td>S89</td>
<td>20369 18457 16717 15133</td>
</tr>
<tr>
<td>F88</td>
<td>21726 19692 17841 16156</td>
</tr>
<tr>
<td>S88</td>
<td>23428 21241 19250 17439</td>
</tr>
<tr>
<td>F87</td>
<td>25257 22905 20765 18817</td>
</tr>
<tr>
<td>S87</td>
<td>26489 24026 21785 19746</td>
</tr>
<tr>
<td>F86</td>
<td>28235 25616 23231 21061</td>
</tr>
<tr>
<td>S86</td>
<td>30093 27306 24769 22462</td>
</tr>
<tr>
<td>F85</td>
<td>32069 29104 26406 23951</td>
</tr>
<tr>
<td>S85</td>
<td>34172 31018 28147 25535</td>
</tr>
<tr>
<td>F84</td>
<td>36409 33053 29999 27221</td>
</tr>
<tr>
<td>S84</td>
<td>38694 35133 31892 28942</td>
</tr>
<tr>
<td>F83</td>
<td>41902 38052 34549 31360</td>
</tr>
<tr>
<td>S83</td>
<td>43225 39255 35643 32356</td>
</tr>
<tr>
<td>F82</td>
<td>46039 41816 37974 34477</td>
</tr>
<tr>
<td>S82</td>
<td>48250 43828 39805 36144</td>
</tr>
<tr>
<td>F81</td>
<td>50613 42269 38386 34853</td>
</tr>
<tr>
<td>S81</td>
<td>50613 42269 38386 34853</td>
</tr>
<tr>
<td>F80</td>
<td>5613 42705 38782</td>
</tr>
<tr>
<td>S80</td>
<td>55363 39659 36011</td>
</tr>
</tbody>
</table>
Table 3.--Continued.

<table>
<thead>
<tr>
<th>Year</th>
<th>Model (WHITE-8900)--Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year Manufactured</td>
</tr>
<tr>
<td>F79</td>
<td>48036</td>
</tr>
<tr>
<td>S79</td>
<td>48036</td>
</tr>
</tbody>
</table>

(1) YEAR (F89) means fall data from 1989.
(2) AC Allis-Chalmers
JD John Deere
IH International Harverter
MF Massy-Ferguson
NH New Holland
WHITE White
APPENDIX B

RESULTS FROM MODELS 1, 2, AND 3
Table 4. Model 1 results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1a</th>
<th>Model 1b</th>
<th>Model 1c</th>
<th>Model 1d</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_o</td>
<td>0.68664</td>
<td>0.59788</td>
<td>0.68140</td>
<td>0.60335</td>
</tr>
<tr>
<td></td>
<td>(75.58)</td>
<td>(26.24)</td>
<td>(50.81)</td>
<td>(26.20)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-0.22887</td>
<td>-0.22190</td>
<td>-0.23174</td>
<td>-0.22517</td>
</tr>
<tr>
<td></td>
<td>(-62.47)</td>
<td>(-64.60)</td>
<td>(-61.11)</td>
<td>(-63.35)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-0.01019</td>
<td>-0.01060</td>
<td>-0.01082</td>
<td>-0.01134</td>
</tr>
<tr>
<td></td>
<td>(-3.021)</td>
<td>(-3.400)</td>
<td>(-3.376)</td>
<td>(-3.813)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>0.00435</td>
<td>0.00580</td>
<td>0.00470</td>
<td>0.00604</td>
</tr>
<tr>
<td></td>
<td>(21.84)</td>
<td>(14.76)</td>
<td>(21.17)</td>
<td>(16.03)</td>
</tr>
<tr>
<td>T1(P)</td>
<td>0.03062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-3.400)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(P)</td>
<td>-0.01984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.424)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(P)</td>
<td>0.07604</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.259)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1(P)</td>
<td></td>
<td></td>
<td>-0.45383</td>
<td>-0.02996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-2.515)</td>
<td>(-1.784)</td>
</tr>
<tr>
<td>M2(P)</td>
<td></td>
<td>-0.01129</td>
<td></td>
<td>-0.00649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.097)</td>
<td></td>
<td>(-0.6788)</td>
</tr>
<tr>
<td>M3(P)</td>
<td></td>
<td>0.02609</td>
<td></td>
<td>0.02302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.554)</td>
<td></td>
<td>(2.426)</td>
</tr>
<tr>
<td>M4(P)</td>
<td></td>
<td>0.00503</td>
<td></td>
<td>0.00980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.4844)</td>
<td></td>
<td>(1.018)</td>
</tr>
<tr>
<td>M5(P)</td>
<td></td>
<td>-0.02494</td>
<td></td>
<td>-0.02796</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.380)</td>
<td></td>
<td>(-2.648)</td>
</tr>
<tr>
<td>M6(P)</td>
<td></td>
<td>-0.05796</td>
<td></td>
<td>-0.06372</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.634)</td>
<td></td>
<td>(-5.460)</td>
</tr>
<tr>
<td>M7(P)</td>
<td></td>
<td>-0.01321</td>
<td></td>
<td>-0.00747</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.239)</td>
<td></td>
<td>(-0.7553)</td>
</tr>
<tr>
<td>M8(P)</td>
<td></td>
<td>-0.00623</td>
<td></td>
<td>0.00113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.5630)</td>
<td></td>
<td>(0.1142)</td>
</tr>
<tr>
<td>M9(P)</td>
<td></td>
<td>0.03126</td>
<td></td>
<td>0.03285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.856)</td>
<td></td>
<td>(3.238)</td>
</tr>
<tr>
<td>M10(P)</td>
<td></td>
<td>-0.08051</td>
<td></td>
<td>-0.02607</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-5.304)</td>
<td></td>
<td>(-4.429)</td>
</tr>
<tr>
<td>M11(P)</td>
<td></td>
<td>-0.04585</td>
<td></td>
<td>-0.04520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-3.176)</td>
<td></td>
<td>(-3.373)</td>
</tr>
<tr>
<td>M12(P)</td>
<td></td>
<td>0.02230</td>
<td></td>
<td>0.02034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.084)</td>
<td></td>
<td>(2.046)</td>
</tr>
<tr>
<td>M13(P)</td>
<td></td>
<td>-0.01796</td>
<td></td>
<td>-0.01590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.333)</td>
<td></td>
<td>(-1.272)</td>
</tr>
<tr>
<td>M14(P)</td>
<td></td>
<td>-0.05823</td>
<td></td>
<td>-0.05767</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-3.995)</td>
<td></td>
<td>(-4.263)</td>
</tr>
<tr>
<td>M15(P)</td>
<td></td>
<td>-0.05704</td>
<td></td>
<td>-0.05639</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.221)</td>
<td></td>
<td>(-4.496)</td>
</tr>
<tr>
<td>M16(P)</td>
<td></td>
<td>-0.00193</td>
<td></td>
<td>0.00290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-.1776)</td>
<td></td>
<td>(.2868)</td>
</tr>
<tr>
<td>M17(P)</td>
<td></td>
<td>-0.00816</td>
<td></td>
<td>-0.00676</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-.7025)</td>
<td></td>
<td>(-.6276)</td>
</tr>
</tbody>
</table>
Table 4.—Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1a</th>
<th>Model 1b</th>
<th>Model 1c</th>
<th>Model 1d</th>
</tr>
</thead>
<tbody>
<tr>
<td>M18(P)</td>
<td>-0.007526</td>
<td>-0.00629</td>
<td>(-0.6949)</td>
<td>(-0.6259)</td>
</tr>
<tr>
<td>M19(P)</td>
<td>-0.04340</td>
<td>-0.04235</td>
<td>(-3.420)</td>
<td>(-3.619)</td>
</tr>
<tr>
<td>M20(P)</td>
<td>-0.04149</td>
<td>-0.04094</td>
<td>(-3.339)</td>
<td>(-3.549)</td>
</tr>
<tr>
<td>M21(P)</td>
<td>-0.03677</td>
<td>-0.03424</td>
<td>(-1.982)</td>
<td>(-1.990)</td>
</tr>
<tr>
<td>M22(P)</td>
<td>-0.03628</td>
<td>-0.03372</td>
<td>(-2.127)</td>
<td>(-0.445)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1e</th>
<th>Model 1f</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.67418</td>
<td>0.59424</td>
</tr>
<tr>
<td></td>
<td>(56.39)</td>
<td>(25.33)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-0.23112</td>
<td>-0.22415</td>
</tr>
<tr>
<td></td>
<td>(-63.57)</td>
<td>(-65.68)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-0.01050</td>
<td>-0.01100</td>
</tr>
<tr>
<td></td>
<td>(-3.157)</td>
<td>(-3.545)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>0.00456</td>
<td>0.00588</td>
</tr>
<tr>
<td></td>
<td>(22.82)</td>
<td>(15.05)</td>
</tr>
<tr>
<td>T1(P)</td>
<td>0.02860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.683)</td>
<td></td>
</tr>
<tr>
<td>T2(P)</td>
<td>-0.22582</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.791)</td>
<td></td>
</tr>
<tr>
<td>T3(P)</td>
<td>0.07101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.848)</td>
<td></td>
</tr>
<tr>
<td>M1(P)</td>
<td>0.00290</td>
<td>0.00665</td>
</tr>
<tr>
<td></td>
<td>(0.3586)</td>
<td>(0.8816)</td>
</tr>
<tr>
<td>M2(P)</td>
<td>0.03202</td>
<td>0.02909</td>
</tr>
<tr>
<td></td>
<td>(3.930)</td>
<td>(3.823)</td>
</tr>
<tr>
<td>M3(P)</td>
<td>0.00158</td>
<td>0.00414</td>
</tr>
<tr>
<td></td>
<td>(0.1956)</td>
<td>(0.5494)</td>
</tr>
<tr>
<td>M4(P)</td>
<td>-0.00793</td>
<td>-0.00970</td>
</tr>
<tr>
<td></td>
<td>(-0.9835)</td>
<td>(-1.292)</td>
</tr>
<tr>
<td>M5(P)</td>
<td>-0.00655</td>
<td>-0.00325</td>
</tr>
<tr>
<td></td>
<td>(-0.8170)</td>
<td>(-0.4352)</td>
</tr>
</tbody>
</table>
Table 5. Model 2 results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2a</th>
<th>Model 2b</th>
<th>Model 2c</th>
<th>Model 2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_0</td>
<td>854.80</td>
<td>-1698.8</td>
<td>627.69</td>
<td>-1904.5</td>
</tr>
<tr>
<td></td>
<td>(5.721)</td>
<td>(-6.502)</td>
<td>(2.874)</td>
<td>(-6.374)</td>
</tr>
<tr>
<td>β_0</td>
<td>.64969</td>
<td>.54762</td>
<td>.63157</td>
<td>.53139</td>
</tr>
<tr>
<td></td>
<td>(58.55)</td>
<td>(37.99)</td>
<td>(55.67)</td>
<td>(36.95)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-.21478</td>
<td>-.22338</td>
<td>-.21268</td>
<td>-.22227</td>
</tr>
<tr>
<td></td>
<td>(-48.89)</td>
<td>(-52.86)</td>
<td>(-48.75)</td>
<td>(-52.73)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.00941</td>
<td>-.01117</td>
<td>-.00938</td>
<td>-.01121</td>
</tr>
<tr>
<td></td>
<td>(-2.806)</td>
<td>(-3.545)</td>
<td>(-2.841)</td>
<td>(-3.609)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00456</td>
<td>.00740</td>
<td>.00480</td>
<td>.00765</td>
</tr>
<tr>
<td></td>
<td>(22.67)</td>
<td>(23.29)</td>
<td>(23.79)</td>
<td>(24.34)</td>
</tr>
<tr>
<td>T1</td>
<td>1819.8</td>
<td></td>
<td>1918.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.757)</td>
<td></td>
<td>(9.350)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1215.6</td>
<td></td>
<td>-1338.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.758)</td>
<td></td>
<td>(5.286)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>3653.3</td>
<td></td>
<td>3731.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.2629)</td>
<td></td>
<td>(13.45)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>595.64</td>
<td></td>
<td>245.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.491)</td>
<td></td>
<td>(1.082)</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>1552.4</td>
<td></td>
<td>1334.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.490)</td>
<td></td>
<td>(5.916)</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>247.66</td>
<td></td>
<td>245.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.136)</td>
<td></td>
<td>(1.199)</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>190.24</td>
<td></td>
<td>-43.411</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.8521)</td>
<td></td>
<td>(-.2063)</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>177.30</td>
<td></td>
<td>-45.412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.7819)</td>
<td></td>
<td>(-.2126)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2e</th>
<th>Model 2f</th>
<th>Model 2g</th>
<th>Model 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_0</td>
<td>4234.1</td>
<td>3361.6</td>
<td>4621.5</td>
<td>2173.2</td>
</tr>
<tr>
<td></td>
<td>(12.32)</td>
<td>(7.144)</td>
<td>(13.64)</td>
<td>(4.121)</td>
</tr>
<tr>
<td>β_0</td>
<td>.42498</td>
<td>.40319</td>
<td>.46193</td>
<td>.51567</td>
</tr>
<tr>
<td></td>
<td>(29.23)</td>
<td>(25.60)</td>
<td>(21.81)</td>
<td>(22.27)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-.17937</td>
<td>-.17806</td>
<td>-.16876</td>
<td>-.17781</td>
</tr>
<tr>
<td></td>
<td>(-42.11)</td>
<td>(-38.53)</td>
<td>(-40.46)</td>
<td>(-40.08)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.00820</td>
<td>-.00869</td>
<td>-.00874</td>
<td>-.01002</td>
</tr>
<tr>
<td></td>
<td>(-2.739)</td>
<td>(-3.006)</td>
<td>(-3.143)</td>
<td>(-3.655)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00734</td>
<td>.00788</td>
<td>.00643</td>
<td>.00640</td>
</tr>
<tr>
<td></td>
<td>(32.15)</td>
<td>(26.37)</td>
<td>(18.05)</td>
<td>(18.49)</td>
</tr>
<tr>
<td>T1</td>
<td>1366.3</td>
<td></td>
<td>866.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.041)</td>
<td></td>
<td>(2.293)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>-165.79</td>
<td></td>
<td>3061.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.6611)</td>
<td></td>
<td>(7.740)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>1169.8</td>
<td></td>
<td>2040.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.935)</td>
<td></td>
<td>(4.959)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>-194.88</td>
<td>2.9617</td>
<td>315.04</td>
<td>426.32</td>
</tr>
<tr>
<td></td>
<td>(-.3518)</td>
<td>(.0055)</td>
<td>(.6097)</td>
<td>(.8388)</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2e</td>
<td>Model 2f</td>
<td>Model 2g</td>
<td>Model 2h</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>M2</td>
<td>1507.2</td>
<td>1551.8</td>
<td>1801.0</td>
<td>1660.0</td>
</tr>
<tr>
<td></td>
<td>(3.888)</td>
<td>(4.087)</td>
<td>(4.941)</td>
<td>(4.609)</td>
</tr>
<tr>
<td>M3</td>
<td>3158.0</td>
<td>3204.0</td>
<td>3451.8</td>
<td>3369.5</td>
</tr>
<tr>
<td></td>
<td>(8.399)</td>
<td>(8.698)</td>
<td>(9.651)</td>
<td>(9.581)</td>
</tr>
<tr>
<td>M4</td>
<td>1651.5</td>
<td>1706.2</td>
<td>1877.0</td>
<td>1826.9</td>
</tr>
<tr>
<td></td>
<td>(4.528)</td>
<td>(4.826)</td>
<td>(5.513)</td>
<td>(5.451)</td>
</tr>
<tr>
<td>M5</td>
<td>-945.46</td>
<td>-914.83</td>
<td>-940.79</td>
<td>-836.87</td>
</tr>
<tr>
<td></td>
<td>(-2.654)</td>
<td>(-2.663)</td>
<td>(-2.842)</td>
<td>(-2.569)</td>
</tr>
<tr>
<td>M6</td>
<td>50.437</td>
<td>178.52</td>
<td>478.14</td>
<td>532.11</td>
</tr>
<tr>
<td></td>
<td>(.1131)</td>
<td>(.4110)</td>
<td>(1.130)</td>
<td>(1.279)</td>
</tr>
<tr>
<td>M7</td>
<td>875.95</td>
<td>930.39</td>
<td>1135.1</td>
<td>1072.5</td>
</tr>
<tr>
<td></td>
<td>(2.306)</td>
<td>(2.524)</td>
<td>(3.199)</td>
<td>(3.070)</td>
</tr>
<tr>
<td>M8</td>
<td>1516.2</td>
<td>1590.4</td>
<td>1869.6</td>
<td>1819.2</td>
</tr>
<tr>
<td></td>
<td>(3.880)</td>
<td>(4.174)</td>
<td>(5.095)</td>
<td>(5.028)</td>
</tr>
<tr>
<td>M9</td>
<td>1126.8</td>
<td>1172.9</td>
<td>1187.3</td>
<td>1225.8</td>
</tr>
<tr>
<td></td>
<td>(3.100)</td>
<td>(3.348)</td>
<td>(3.516)</td>
<td>(3.692)</td>
</tr>
<tr>
<td>M10</td>
<td>-948.27</td>
<td>-753.26</td>
<td>-308.92</td>
<td>-154.52</td>
</tr>
<tr>
<td></td>
<td>(-1.752)</td>
<td>(-1.437)</td>
<td>(-.6106)</td>
<td>(-3.101)</td>
</tr>
<tr>
<td>M11</td>
<td>-2380.7</td>
<td>-2305.3</td>
<td>-2463.1</td>
<td>-2166.7</td>
</tr>
<tr>
<td></td>
<td>(-6.047)</td>
<td>(-6.004)</td>
<td>(-6.697)</td>
<td>(-5.954)</td>
</tr>
<tr>
<td>M12</td>
<td>2067.8</td>
<td>2108.3</td>
<td>2267.9</td>
<td>2284.0</td>
</tr>
<tr>
<td></td>
<td>(5.611)</td>
<td>(5.905)</td>
<td>(6.564)</td>
<td>(6.725)</td>
</tr>
<tr>
<td>M13</td>
<td>-1665.8</td>
<td>-1544.3</td>
<td>-1747.0</td>
<td>-1212.6</td>
</tr>
<tr>
<td></td>
<td>(-4.588)</td>
<td>(-4.276)</td>
<td>(-5.142)</td>
<td>(-3.530)</td>
</tr>
<tr>
<td>M14</td>
<td>-3005.2</td>
<td>-2861.9</td>
<td>-3169.1</td>
<td>-2496.6</td>
</tr>
<tr>
<td></td>
<td>(-8.349)</td>
<td>(-7.821)</td>
<td>(-9.335)</td>
<td>(-7.157)</td>
</tr>
<tr>
<td>M15</td>
<td>-2809.9</td>
<td>-2675.2</td>
<td>-2941.4</td>
<td>-2343.7</td>
</tr>
<tr>
<td></td>
<td>(-7.877)</td>
<td>(-7.452)</td>
<td>(-8.771)</td>
<td>(-6.857)</td>
</tr>
<tr>
<td>M16</td>
<td>825.46</td>
<td>872.45</td>
<td>956.09</td>
<td>986.39</td>
</tr>
<tr>
<td></td>
<td>(2.273)</td>
<td>(2.491)</td>
<td>(2.832)</td>
<td>(2.971)</td>
</tr>
<tr>
<td>M17</td>
<td>-1154.3</td>
<td>-1060.4</td>
<td>-1180.2</td>
<td>-955.77</td>
</tr>
<tr>
<td></td>
<td>(-3.274)</td>
<td>(-3.092)</td>
<td>(-3.593)</td>
<td>(-2.941)</td>
</tr>
<tr>
<td>M18</td>
<td>-676.00</td>
<td>-607.54</td>
<td>-666.00</td>
<td>-531.92</td>
</tr>
<tr>
<td></td>
<td>(-1.948)</td>
<td>(-1.811)</td>
<td>(-2.064)</td>
<td>(-1.673)</td>
</tr>
<tr>
<td>M19</td>
<td>-2181.7</td>
<td>-2077.8</td>
<td>-2261.9</td>
<td>-1917.9</td>
</tr>
<tr>
<td></td>
<td>(-6.121)</td>
<td>(-5.924)</td>
<td>(-6.784)</td>
<td>(-5.767)</td>
</tr>
<tr>
<td>M20</td>
<td>-1815.6</td>
<td>-1739.5</td>
<td>-1854.6</td>
<td>-1652.2</td>
</tr>
<tr>
<td></td>
<td>(-4.946)</td>
<td>(-4.877)</td>
<td>(-5.420)</td>
<td>(-4.889)</td>
</tr>
<tr>
<td>M21</td>
<td>-2503.4</td>
<td>-2344.1</td>
<td>-2623.0</td>
<td>-2146.2</td>
</tr>
<tr>
<td></td>
<td>(-6.012)</td>
<td>(-5.677)</td>
<td>(-6.717)</td>
<td>(-5.476)</td>
</tr>
<tr>
<td>M22</td>
<td>-2287.1</td>
<td>-2135.2</td>
<td>-2374.6</td>
<td>-1965.9</td>
</tr>
<tr>
<td></td>
<td>(-5.524)</td>
<td>(-5.234)</td>
<td>(-6.129)</td>
<td>(-5.081)</td>
</tr>
<tr>
<td>T1(P)</td>
<td>.01883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.418)</td>
<td>(-.4216)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(P)</td>
<td>-.57023</td>
<td>-.12714</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.648)</td>
<td>(-10.79)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(P)</td>
<td>-.01498</td>
<td>-.05534</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.469)</td>
<td>(-3.863)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.—Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2i</th>
<th>Model 2j</th>
<th>Model 2k</th>
<th>Model 2l</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_o</td>
<td>579.51</td>
<td>-2621.3</td>
<td>441.40</td>
<td>-3097.8</td>
</tr>
<tr>
<td>β_o</td>
<td>(3.950)</td>
<td>(-7.097)</td>
<td>(2.126)</td>
<td>(-7.851)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>.58186</td>
<td>.65667</td>
<td>.57611</td>
<td>.66108</td>
</tr>
<tr>
<td>(25.22)</td>
<td>(27.77)</td>
<td>(25.24)</td>
<td>(28.37)</td>
<td></td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.21250</td>
<td>-.22119</td>
<td>-.21021</td>
<td>-.22075</td>
</tr>
<tr>
<td>(-50.95)</td>
<td>(-54.22)</td>
<td>(-50.55)</td>
<td>(-54.46)</td>
<td></td>
</tr>
<tr>
<td>(-3.254)</td>
<td>(-4.086)</td>
<td>(-3.286)</td>
<td>(-4.221)</td>
<td></td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00580</td>
<td>.00593</td>
<td>.00580</td>
<td>.00592</td>
</tr>
<tr>
<td>(14.71)</td>
<td>(15.70)</td>
<td>(14.91)</td>
<td>(15.98)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>1395.6</td>
<td>1609.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.435)</td>
<td>(4.018)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>4576.9</td>
<td>4892.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11.14)</td>
<td>(12.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>4260.0</td>
<td>4709.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10.45)</td>
<td>(11.60)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>516.84</td>
<td>323.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.297)</td>
<td>(1.506)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>1346.6</td>
<td>1475.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5.958)</td>
<td>(6.865)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>231.66</td>
<td>389.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.134)</td>
<td>(2.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>81.666</td>
<td>-34.348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.3892)</td>
<td>(-1.722)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>129.97</td>
<td>8.2125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.6106)</td>
<td>(.0405)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1(P)</td>
<td>.03170</td>
<td>-.00302</td>
<td>.03107</td>
<td>-.00912</td>
</tr>
<tr>
<td>(5.140)</td>
<td>(-.2633)</td>
<td>(5.104)</td>
<td>(-.8082)</td>
<td></td>
</tr>
<tr>
<td>T2(P)</td>
<td>-.02098</td>
<td>-.13232</td>
<td>-.02331</td>
<td>-.01422</td>
</tr>
<tr>
<td>(-2.569)</td>
<td>(-10.47)</td>
<td>(-2.889)</td>
<td>(-11.40)</td>
<td></td>
</tr>
<tr>
<td>T3(P)</td>
<td>.07004</td>
<td>-.04501</td>
<td>.06288</td>
<td>-.06454</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2m</td>
<td>Model 2n</td>
<td>Model 2</td>
<td>Model 2p</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>θ_o</td>
<td>3152.2</td>
<td>1850.5</td>
<td>3013.2</td>
<td>583.70</td>
</tr>
<tr>
<td>β_o</td>
<td>(17.16)</td>
<td>(5.266)</td>
<td>(16.07)</td>
<td>(1.362)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>.48553</td>
<td>.47341</td>
<td>.50658</td>
<td>.55971</td>
</tr>
<tr>
<td>(28.53)</td>
<td>(26.95)</td>
<td>(22.36)</td>
<td>(23.09)</td>
<td></td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.19682</td>
<td>-.20088</td>
<td>-.19387</td>
<td>-.20100</td>
</tr>
<tr>
<td>(-47.89)</td>
<td>(-48.37)</td>
<td>(-49.79)</td>
<td>(-49.55)</td>
<td></td>
</tr>
<tr>
<td>(-3.200)</td>
<td>(-.0109)</td>
<td>(-.01038)</td>
<td>(-.01150)</td>
<td></td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00690</td>
<td>.00753</td>
<td>.00657</td>
<td>.00652</td>
</tr>
<tr>
<td>(28.13)</td>
<td>(24.60)</td>
<td>(18.18)</td>
<td>(18.37)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>986.71</td>
<td>1132.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.911)</td>
<td>(2.915)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2m</td>
<td>Model 2n</td>
<td>Model 2o</td>
<td>Model 2p</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>T2</td>
<td>-230.74</td>
<td>3172.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.8864)</td>
<td>(7.762)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>1624.0</td>
<td>2287.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.448)</td>
<td>(5.372)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1(P)</td>
<td>.01083</td>
<td>-0.01342</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.902)</td>
<td>(-1.223)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(P)</td>
<td>-.05165</td>
<td>-.12394</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-6.745)</td>
<td>(-10.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(P)</td>
<td>.01778</td>
<td>-0.03117</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.760)</td>
<td>(-2.105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1(P)</td>
<td>-.03386</td>
<td>-.02802</td>
<td>-0.01402</td>
<td>-0.00737</td>
</tr>
<tr>
<td></td>
<td>(-1.992)</td>
<td>(-1.709)</td>
<td>(-.8787)</td>
<td>(-.4681)</td>
</tr>
<tr>
<td>M2(P)</td>
<td>.01879</td>
<td>.01606</td>
<td>.02205</td>
<td>.02110</td>
</tr>
<tr>
<td></td>
<td>(1.907)</td>
<td>(1.686)</td>
<td>(2.386)</td>
<td>(2.301)</td>
</tr>
<tr>
<td>M3(P)</td>
<td>.05381</td>
<td>.05091</td>
<td>.05338</td>
<td>.05469</td>
</tr>
<tr>
<td></td>
<td>(5.516)</td>
<td>(5.399)</td>
<td>(5.806)</td>
<td>(2.301)</td>
</tr>
<tr>
<td>M4(P)</td>
<td>.02408</td>
<td>.02335</td>
<td>.0283</td>
<td>.02878</td>
</tr>
<tr>
<td></td>
<td>(2.449)</td>
<td>(2.464)</td>
<td>(3.078)</td>
<td>(3.168)</td>
</tr>
<tr>
<td>M5(P)</td>
<td>.03023</td>
<td>-.02909</td>
<td>-.03022</td>
<td>-.02584</td>
</tr>
<tr>
<td></td>
<td>(-2.821)</td>
<td>(-2.823)</td>
<td>(-3.019)</td>
<td>(-2.615)</td>
</tr>
<tr>
<td>M6(P)</td>
<td>-.03442</td>
<td>-.03590</td>
<td>-.03250</td>
<td>-.02738</td>
</tr>
<tr>
<td></td>
<td>(-2.903)</td>
<td>(-3.131)</td>
<td>(-2.893)</td>
<td>(-2.466)</td>
</tr>
<tr>
<td>M7(P)</td>
<td>.00812</td>
<td>.00725</td>
<td>.01309</td>
<td>.01322</td>
</tr>
<tr>
<td></td>
<td>(8.032)</td>
<td>(7.439)</td>
<td>(1.383)</td>
<td>(1.414)</td>
</tr>
<tr>
<td>M8(P)</td>
<td>.02331</td>
<td>.02207</td>
<td>.02951</td>
<td>.03094</td>
</tr>
<tr>
<td></td>
<td>(2.282)</td>
<td>(2.237)</td>
<td>(3.077)</td>
<td>(3.255)</td>
</tr>
<tr>
<td>M9(P)</td>
<td>.03701</td>
<td>.03773</td>
<td>.03790</td>
<td>.03997</td>
</tr>
<tr>
<td></td>
<td>(3.590)</td>
<td>(3.807)</td>
<td>(3.937)</td>
<td>(4.212)</td>
</tr>
<tr>
<td>M10(P)</td>
<td>-.05846</td>
<td>-.05418</td>
<td>-.03818</td>
<td>-.03042</td>
</tr>
<tr>
<td></td>
<td>(-4.109)</td>
<td>(-3.948)</td>
<td>(-2.855)</td>
<td>(-2.298)</td>
</tr>
<tr>
<td>M11(P)</td>
<td>-.08393</td>
<td>-.07433</td>
<td>-.08096</td>
<td>-.06833</td>
</tr>
<tr>
<td></td>
<td>(-6.094)</td>
<td>(-5.547)</td>
<td>(-6.276)</td>
<td>(-5.323)</td>
</tr>
<tr>
<td>M12(P)</td>
<td>.03830</td>
<td>.03702</td>
<td>.03953</td>
<td>.42454</td>
</tr>
<tr>
<td></td>
<td>(3.785)</td>
<td>(3.797)</td>
<td>(4.160)</td>
<td>(4.530)</td>
</tr>
<tr>
<td>M13(P)</td>
<td>-.06578</td>
<td>-.05102</td>
<td>-.06134</td>
<td>-.03803</td>
</tr>
<tr>
<td></td>
<td>(-5.064)</td>
<td>(-3.948)</td>
<td>(-5.033)</td>
<td>(-3.051)</td>
</tr>
<tr>
<td>M14(P)</td>
<td>-.13700</td>
<td>-.11557</td>
<td>-.13221</td>
<td>-.09752</td>
</tr>
<tr>
<td></td>
<td>(-9.467)</td>
<td>(-7.812)</td>
<td>(-9.693)</td>
<td>(-6.797)</td>
</tr>
<tr>
<td>M15(P)</td>
<td>-.11750</td>
<td>-.10074</td>
<td>-.11339</td>
<td>-.08684</td>
</tr>
<tr>
<td></td>
<td>(-8.900)</td>
<td>(-7.592)</td>
<td>(-9.136)</td>
<td>(-6.775)</td>
</tr>
<tr>
<td>M16(P)</td>
<td>.00621</td>
<td>.00722</td>
<td>.01080</td>
<td>.01270</td>
</tr>
<tr>
<td></td>
<td>(.6058)</td>
<td>(.7323)</td>
<td>(.1126)</td>
<td>(.343)</td>
</tr>
<tr>
<td>M17(P)</td>
<td>-.02781</td>
<td>-.02146</td>
<td>-.02557</td>
<td>-.01779</td>
</tr>
<tr>
<td></td>
<td>(-2.529)</td>
<td>(-2.015)</td>
<td>(-2.486)</td>
<td>(-1.745)</td>
</tr>
<tr>
<td>M18(P)</td>
<td>-.01380</td>
<td>-.01075</td>
<td>-.01243</td>
<td>-.00907</td>
</tr>
<tr>
<td></td>
<td>(-1.352)</td>
<td>(-1.094)</td>
<td>(-1.303)</td>
<td>(-.9640)</td>
</tr>
<tr>
<td>M19(P)</td>
<td>-.08251</td>
<td>-.07198</td>
<td>-.79390</td>
<td>-.06573</td>
</tr>
<tr>
<td></td>
<td>(-6.826)</td>
<td>(-6.083)</td>
<td>(-7.006)</td>
<td>(-5.789)</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2m</td>
<td>Model 2n</td>
<td>Model 2o</td>
<td>Model 2p</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>M20(P)</td>
<td>-.06622</td>
<td>-.05994</td>
<td>-.06388</td>
<td>-.05691</td>
</tr>
<tr>
<td></td>
<td>(-5.617)</td>
<td>(-5.256)</td>
<td>(-5.790)</td>
<td>(-5.210)</td>
</tr>
<tr>
<td>M21(P)</td>
<td>-.10632</td>
<td>-.08587</td>
<td>-.10084</td>
<td>-.07289</td>
</tr>
<tr>
<td></td>
<td>(-5.928)</td>
<td>(-4.829)</td>
<td>(-5.990)</td>
<td>(-4.261)</td>
</tr>
<tr>
<td>M22(P)</td>
<td>-.08961</td>
<td>-.07329</td>
<td>-.08482</td>
<td>-.06320</td>
</tr>
<tr>
<td></td>
<td>(-4.577)</td>
<td>(-4.555)</td>
<td>(-5.530)</td>
<td>(-4.090)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2q</td>
<td>Model 2r</td>
<td>Model 2s</td>
<td>Model 2t</td>
</tr>
<tr>
<td>θ₀</td>
<td>2918.0</td>
<td>2572.9</td>
<td>3645.7</td>
<td>2084.63</td>
</tr>
<tr>
<td></td>
<td>(4.059)</td>
<td>(766.3)</td>
<td>(5.333)</td>
<td>(2.710)</td>
</tr>
<tr>
<td>β₀</td>
<td>.49151</td>
<td>.46535</td>
<td>.49954</td>
<td>.53059</td>
</tr>
<tr>
<td></td>
<td>(19.64)</td>
<td>(18.49)</td>
<td>(18.08)</td>
<td>(18.44)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-.16864</td>
<td>-.16618</td>
<td>-.15933</td>
<td>-.16463</td>
</tr>
<tr>
<td></td>
<td>(-38.86)</td>
<td>(-35.01)</td>
<td>(-35.95)</td>
<td>(-35.44)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.00810</td>
<td>-.00845</td>
<td>-.00869</td>
<td>-.00962</td>
</tr>
<tr>
<td></td>
<td>(-2.850)</td>
<td>(-3.068)</td>
<td>(-3.268)</td>
<td>(-3.660)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00672</td>
<td>.00712</td>
<td>.00604</td>
<td>.00608</td>
</tr>
<tr>
<td></td>
<td>(28.74)</td>
<td>(24.26)</td>
<td>(17.80)</td>
<td>(18.07)</td>
</tr>
<tr>
<td>T1</td>
<td>1176.3</td>
<td>518.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.091)</td>
<td>(1.384)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>-284.48</td>
<td>2520.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.142)</td>
<td>(6.350)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>851.36</td>
<td>1451.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.927)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>6419.0</td>
<td>5451.9</td>
<td>4531.6</td>
<td>3929.8</td>
</tr>
<tr>
<td></td>
<td>(4.601)</td>
<td>(4.026)</td>
<td>(3.447)</td>
<td>(3.022)</td>
</tr>
<tr>
<td>M2</td>
<td>1766.6</td>
<td>1822.7</td>
<td>2015.0</td>
<td>1964.3</td>
</tr>
<tr>
<td></td>
<td>(1.941)</td>
<td>(2.066)</td>
<td>(2.344)</td>
<td>(2.302)</td>
</tr>
<tr>
<td>M3</td>
<td>3566.1</td>
<td>3486.9</td>
<td>3676.2</td>
<td>3478.0</td>
</tr>
<tr>
<td></td>
<td>(3.678)</td>
<td>(3.703)</td>
<td>(4.024)</td>
<td>(3.846)</td>
</tr>
<tr>
<td>M4</td>
<td>3433.2</td>
<td>3350.6</td>
<td>3302.6</td>
<td>3182.9</td>
</tr>
<tr>
<td></td>
<td>(3.883)</td>
<td>(3.913)</td>
<td>(3.976)</td>
<td>(3.875)</td>
</tr>
<tr>
<td>M5</td>
<td>697.11</td>
<td>600.44</td>
<td>499.81</td>
<td>300.70</td>
</tr>
<tr>
<td></td>
<td>(.8173)</td>
<td>(.7278)</td>
<td>(.6259)</td>
<td>(.3809)</td>
</tr>
<tr>
<td>M6</td>
<td>8074.0</td>
<td>7798.6</td>
<td>7656.1</td>
<td>7293.2</td>
</tr>
<tr>
<td></td>
<td>(7.619)</td>
<td>(7.593)</td>
<td>(7.701)</td>
<td>(7.409)</td>
</tr>
<tr>
<td>M7</td>
<td>2157.9</td>
<td>2053.5</td>
<td>2035.3</td>
<td>1931.8</td>
</tr>
<tr>
<td></td>
<td>(2.352)</td>
<td>(2.310)</td>
<td>(2.360)</td>
<td>(2.265)</td>
</tr>
<tr>
<td>M8</td>
<td>1494.8</td>
<td>1422.6</td>
<td>1407.6</td>
<td>1196.2</td>
</tr>
<tr>
<td></td>
<td>(1.582)</td>
<td>(1.552)</td>
<td>(1.576)</td>
<td>(1.349)</td>
</tr>
<tr>
<td>M9</td>
<td>-2158.3</td>
<td>-2061.7</td>
<td>-1859.5</td>
<td>-1852.2</td>
</tr>
<tr>
<td></td>
<td>(-2.289)</td>
<td>(-2.259)</td>
<td>(-2.104)</td>
<td>(-2.122)</td>
</tr>
<tr>
<td>M10</td>
<td>5770.5</td>
<td>5187.0</td>
<td>4555.2</td>
<td>4058.7</td>
</tr>
<tr>
<td></td>
<td>(4.862)</td>
<td>(4.505)</td>
<td>(4.072)</td>
<td>(3.664)</td>
</tr>
<tr>
<td>M11</td>
<td>-900.70</td>
<td>-1194.0</td>
<td>-1451.3</td>
<td>-1657.5</td>
</tr>
<tr>
<td></td>
<td>(-.9899)</td>
<td>(-1.353)</td>
<td>(-1.698)</td>
<td>(-1.963)</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2q</td>
<td>Model 2r</td>
<td>Model 2s</td>
<td>Model 2t</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>M12</td>
<td>4088.2</td>
<td>3924.4</td>
<td>3865.3</td>
<td>3607.5</td>
</tr>
<tr>
<td></td>
<td>(4.341)</td>
<td>(4.298)</td>
<td>(4.371)</td>
<td>(4.124)</td>
</tr>
<tr>
<td>M13</td>
<td>312.83</td>
<td>-48.187</td>
<td>-322.04</td>
<td>-443.08</td>
</tr>
<tr>
<td></td>
<td>(.3074)</td>
<td>(-.0485)</td>
<td>(-.3467)</td>
<td>(-.4673)</td>
</tr>
<tr>
<td>M14</td>
<td>-1275.6</td>
<td>-1508.0</td>
<td>-1922.9</td>
<td>-1899.8</td>
</tr>
<tr>
<td></td>
<td>(-1.512)</td>
<td>(-1.827)</td>
<td>(-2.415)</td>
<td>(-2.410)</td>
</tr>
<tr>
<td>M15</td>
<td>-983.62</td>
<td>-1210.7</td>
<td>-1622.5</td>
<td>-1525.3</td>
</tr>
<tr>
<td></td>
<td>(-1.165)</td>
<td>(-1.465)</td>
<td>(-2.036)</td>
<td>(-1.933)</td>
</tr>
<tr>
<td>M16</td>
<td>3766.0</td>
<td>3640.7</td>
<td>3561.9</td>
<td>3426.0</td>
</tr>
<tr>
<td></td>
<td>(4.301)</td>
<td>(4.296)</td>
<td>(4.341)</td>
<td>(4.226)</td>
</tr>
<tr>
<td>M17</td>
<td>-1810.9</td>
<td>-1891.0</td>
<td>-2178.5</td>
<td>-2261.5</td>
</tr>
<tr>
<td></td>
<td>(-.0438)</td>
<td>(-2.247)</td>
<td>(-2.678)</td>
<td>(-2.814)</td>
</tr>
<tr>
<td>M18</td>
<td>-1658.9</td>
<td>-1752.1</td>
<td>-2016.8</td>
<td>-1893.2</td>
</tr>
<tr>
<td></td>
<td>(-1.940)</td>
<td>(-2.106)</td>
<td>(-2.512)</td>
<td>(-2.383)</td>
</tr>
<tr>
<td>M19</td>
<td>-184.57</td>
<td>-375.22</td>
<td>-725.10</td>
<td>-841.79</td>
</tr>
<tr>
<td></td>
<td>(-2.2187)</td>
<td>(-4.563)</td>
<td>(-9.128)</td>
<td>(-1.072)</td>
</tr>
<tr>
<td>M20</td>
<td>410.95</td>
<td>218.11</td>
<td>-91.768</td>
<td>-201.08</td>
</tr>
<tr>
<td></td>
<td>(.4737)</td>
<td>(.2590)</td>
<td>(-.1126)</td>
<td>(-.2499)</td>
</tr>
<tr>
<td>M21</td>
<td>-1565.2</td>
<td>-1645.9</td>
<td>-2072.8</td>
<td>-2768.6</td>
</tr>
<tr>
<td></td>
<td>(-1.458)</td>
<td>(-1.576)</td>
<td>(-2.053)</td>
<td>(-2.763)</td>
</tr>
<tr>
<td>M22</td>
<td>-1379.2</td>
<td>-1445.1</td>
<td>-1860.6</td>
<td>-2471.8</td>
</tr>
<tr>
<td></td>
<td>(-1.282)</td>
<td>(-1.382)</td>
<td>(-1.840)</td>
<td>(-2.466)</td>
</tr>
<tr>
<td>T1(P)</td>
<td>.02107</td>
<td>.01108</td>
<td>.01108</td>
<td>.01108</td>
</tr>
<tr>
<td></td>
<td>(.3873)</td>
<td>(1.039)</td>
<td>(1.039)</td>
<td>(1.039)</td>
</tr>
<tr>
<td>T2(P)</td>
<td>-.04722</td>
<td>-.10502</td>
<td>-.10502</td>
<td>-.10502</td>
</tr>
<tr>
<td></td>
<td>(.6.515)</td>
<td>(-8.898)</td>
<td>(-8.898)</td>
<td>(-8.898)</td>
</tr>
<tr>
<td>T3(P)</td>
<td>-.00774</td>
<td>-.03521</td>
<td>-.03521</td>
<td>-.03521</td>
</tr>
<tr>
<td></td>
<td>(.7913)</td>
<td>(-2.463)</td>
<td>(-2.463)</td>
<td>(-2.463)</td>
</tr>
<tr>
<td>M1(P)</td>
<td>-.22319</td>
<td>-.18455</td>
<td>-.14538</td>
<td>-.12234</td>
</tr>
<tr>
<td></td>
<td>(-5.254)</td>
<td>(-4.475)</td>
<td>(-3.827)</td>
<td>(-3.080)</td>
</tr>
<tr>
<td>M2(P)</td>
<td>-.02000</td>
<td>-.01748</td>
<td>-.01638</td>
<td>-.01548</td>
</tr>
<tr>
<td></td>
<td>(.8582)</td>
<td>(-.7745)</td>
<td>(-.7480)</td>
<td>(-.7085)</td>
</tr>
<tr>
<td>M3(P)</td>
<td>-.02419</td>
<td>-.01867</td>
<td>-.01738</td>
<td>-.01216</td>
</tr>
<tr>
<td></td>
<td>(.9832)</td>
<td>(-.7841)</td>
<td>(-.7532)</td>
<td>(-.5319)</td>
</tr>
<tr>
<td>M4(P)</td>
<td>-.05492</td>
<td>-.04973</td>
<td>-.04426</td>
<td>-.04072</td>
</tr>
<tr>
<td></td>
<td>(-2.315)</td>
<td>(-2.167)</td>
<td>(-1.989)</td>
<td>(-1.847)</td>
</tr>
<tr>
<td>M5(P)</td>
<td>-.05536</td>
<td>-.05200</td>
<td>-.04979</td>
<td>-.04131</td>
</tr>
<tr>
<td></td>
<td>(-2.183)</td>
<td>(-2.119)</td>
<td>(-2.096)</td>
<td>(-1.756)</td>
</tr>
<tr>
<td>M6(P)</td>
<td>-.22408</td>
<td>-.21166</td>
<td>-.20089</td>
<td>-.18905</td>
</tr>
<tr>
<td></td>
<td>(-8.001)</td>
<td>(-7.808)</td>
<td>(-7.641)</td>
<td>(-7.246)</td>
</tr>
<tr>
<td>M7(P)</td>
<td>-.02452</td>
<td>-.03665</td>
<td>-.03128</td>
<td>-.02830</td>
</tr>
<tr>
<td></td>
<td>(-1.748)</td>
<td>(-1.557)</td>
<td>(-1.370)</td>
<td>(-1.251)</td>
</tr>
<tr>
<td>M8(P)</td>
<td>-.11567</td>
<td>-.00575</td>
<td>.00089</td>
<td>.00698</td>
</tr>
<tr>
<td></td>
<td>(-6.499)</td>
<td>(-2.414)</td>
<td>(.0384)</td>
<td>(.3019)</td>
</tr>
<tr>
<td>M9(P)</td>
<td>.09506</td>
<td>.09379</td>
<td>.08845</td>
<td>.08559</td>
</tr>
<tr>
<td></td>
<td>(3.587)</td>
<td>(3.658)</td>
<td>(3.563)</td>
<td>(3.649)</td>
</tr>
<tr>
<td>M10(P)</td>
<td>-.19711</td>
<td>-.17433</td>
<td>-.14573</td>
<td>-.12706</td>
</tr>
<tr>
<td></td>
<td>(-6.314)</td>
<td>(-5.760)</td>
<td>(-4.947)</td>
<td>(-4.338)</td>
</tr>
</tbody>
</table>
Table 5.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2q</th>
<th>Model 2r</th>
<th>Model 2s</th>
<th>Model 2t</th>
</tr>
</thead>
<tbody>
<tr>
<td>M11(P)</td>
<td>-.04538</td>
<td>-.03406</td>
<td>-.02920</td>
<td>-.01317</td>
</tr>
<tr>
<td></td>
<td>(-1.471)</td>
<td>(-1.137)</td>
<td>(-1.009)</td>
<td>(-.4583)</td>
</tr>
<tr>
<td>M12(P)</td>
<td>-.06321</td>
<td>-.05629</td>
<td>-.05073</td>
<td>-.04244</td>
</tr>
<tr>
<td></td>
<td>(-2.480)</td>
<td>(-2.281)</td>
<td>(-2.122)</td>
<td>(-1.792)</td>
</tr>
<tr>
<td>M13(P)</td>
<td>-.06700</td>
<td>-.05165</td>
<td>-.04642</td>
<td>-.02615</td>
</tr>
<tr>
<td></td>
<td>(-1.751)</td>
<td>(-1.386)</td>
<td>(-1.291)</td>
<td>(-.7330)</td>
</tr>
<tr>
<td>M14(P)</td>
<td>-.06130</td>
<td>-.05091</td>
<td>-.04233</td>
<td>-.02037</td>
</tr>
<tr>
<td></td>
<td>(-1.900)</td>
<td>(-1.622)</td>
<td>(-1.396)</td>
<td>(-.6760)</td>
</tr>
<tr>
<td>M15(P)</td>
<td>-.06356</td>
<td>-.05384</td>
<td>-.04434</td>
<td>-.30990</td>
</tr>
<tr>
<td></td>
<td>(-2.108)</td>
<td>(-1.837)</td>
<td>(-1.563)</td>
<td>(-1.101)</td>
</tr>
<tr>
<td>M16(P)</td>
<td>-.09101</td>
<td>-.08548</td>
<td>-.08092</td>
<td>-.07584</td>
</tr>
<tr>
<td></td>
<td>(-3.707)</td>
<td>(-3.598)</td>
<td>(3.516)</td>
<td>(-3.311)</td>
</tr>
<tr>
<td>M17(P)</td>
<td>.03709</td>
<td>.40468</td>
<td>.04749</td>
<td>.05536</td>
</tr>
<tr>
<td></td>
<td>(1.385)</td>
<td>(1.558)</td>
<td>(1.889)</td>
<td>(2.230)</td>
</tr>
<tr>
<td>M18(P)</td>
<td>.03818</td>
<td>.42047</td>
<td>.04949</td>
<td>.04842</td>
</tr>
<tr>
<td></td>
<td>(1.531)</td>
<td>(1.735)</td>
<td>(2.112)</td>
<td>(2.092)</td>
</tr>
<tr>
<td>M19(P)</td>
<td>-.06884</td>
<td>-.06139</td>
<td>-.05302</td>
<td>-.03954</td>
</tr>
<tr>
<td></td>
<td>(-2.471)</td>
<td>(-2.267)</td>
<td>(-.0424)</td>
<td>(-1.527)</td>
</tr>
<tr>
<td>M20(P)</td>
<td>-.07479</td>
<td>-.06763</td>
<td>-.05946</td>
<td>-.05115</td>
</tr>
<tr>
<td></td>
<td>(-2.740)</td>
<td>(-2.554)</td>
<td>(-2.319)</td>
<td>(-2.019)</td>
</tr>
<tr>
<td>M21(P)</td>
<td>-.01569</td>
<td>-.01241</td>
<td>-.00281</td>
<td>.04940</td>
</tr>
<tr>
<td></td>
<td>(-.3357)</td>
<td>(-.2711)</td>
<td>(-.0640)</td>
<td>(1.120)</td>
</tr>
<tr>
<td>M22(P)</td>
<td>-.01640</td>
<td>-.01430</td>
<td>-.00351</td>
<td>.03732</td>
</tr>
<tr>
<td></td>
<td>(-.3810)</td>
<td>(-.3202)</td>
<td>(-.0869)</td>
<td>(.9254)</td>
</tr>
<tr>
<td>M23(P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Model 2u</td>
<td>Model 2v</td>
<td>Model 2w</td>
<td>Model 2x</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>(\theta_0)</td>
<td>1010.8</td>
<td>-1626.0</td>
<td>-48.439</td>
<td>-2381.2</td>
</tr>
<tr>
<td></td>
<td>(6.701)</td>
<td>(-6.227)</td>
<td>(-1151)</td>
<td>(-5.230)</td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>.62201</td>
<td>.52484</td>
<td>.65626</td>
<td>.55246</td>
</tr>
<tr>
<td></td>
<td>(43.88)</td>
<td>(32.15)</td>
<td>(33.21)</td>
<td>(26.64)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-.21494</td>
<td>-.22368</td>
<td>-.21234</td>
<td>-.22229</td>
</tr>
<tr>
<td></td>
<td>(-49.56)</td>
<td>(-53.62)</td>
<td>(-48.38)</td>
<td>(-52.30)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.00968</td>
<td>-.01142</td>
<td>-.00941</td>
<td>-.01129</td>
</tr>
<tr>
<td></td>
<td>(-2.937)</td>
<td>(-3.691)</td>
<td>(-2.860)</td>
<td>(-3.650)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00486</td>
<td>.00770</td>
<td>.00489</td>
<td>.00767</td>
</tr>
<tr>
<td></td>
<td>(23.95)</td>
<td>(24.55)</td>
<td>(23.95)</td>
<td>(24.37)</td>
</tr>
<tr>
<td>T1</td>
<td>1895.7</td>
<td>1881.4</td>
<td>98.274</td>
<td>1170.4</td>
</tr>
<tr>
<td></td>
<td>(9.274)</td>
<td>(9.170)</td>
<td>(5.168)</td>
<td>(5.052)</td>
</tr>
<tr>
<td>T2</td>
<td>1300.8</td>
<td>1282.5</td>
<td>3669.1</td>
<td>(13.48)</td>
</tr>
<tr>
<td></td>
<td>(5.168)</td>
<td>(5.052)</td>
<td>(3669.1)</td>
<td>(13.19)</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td>623.43</td>
<td>(2.679)</td>
<td>(1.251)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.679)</td>
<td>(1.251)</td>
</tr>
<tr>
<td>M2</td>
<td>1424.0</td>
<td>1095.5</td>
<td>(2.624)</td>
<td>(2.144)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.624)</td>
<td>(2.144)</td>
</tr>
</tbody>
</table>
Table 5.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2u</th>
<th>Model 2v</th>
<th>Model 2w</th>
<th>Model 2x</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>759.04</td>
<td>789.59</td>
<td>(1.601)</td>
<td>(1.767)</td>
</tr>
<tr>
<td>M4</td>
<td>1881.5</td>
<td>1347.10</td>
<td>(3.660)</td>
<td>(2.782)</td>
</tr>
<tr>
<td>M5</td>
<td>1055.8</td>
<td>665.23</td>
<td>(2.125)</td>
<td>(1.422)</td>
</tr>
<tr>
<td>M1(P)</td>
<td>.01222</td>
<td>.00552</td>
<td>-.03237</td>
<td>-.01746</td>
</tr>
<tr>
<td></td>
<td>(1.503)</td>
<td>(0.0722)</td>
<td>(-1.801)</td>
<td>(-1.030)</td>
</tr>
<tr>
<td>M2(P)</td>
<td>.04051</td>
<td>.03495</td>
<td>-.00468</td>
<td>.00566</td>
</tr>
<tr>
<td></td>
<td>(4.957)</td>
<td>(4.547)</td>
<td>(-2.537)</td>
<td>(0.323)</td>
</tr>
<tr>
<td>M3(P)</td>
<td>.00558</td>
<td>.00413</td>
<td>-.02209</td>
<td>-.02284</td>
</tr>
<tr>
<td></td>
<td>(0.6954)</td>
<td>(0.5478)</td>
<td>(-1.259)</td>
<td>(-1.382)</td>
</tr>
<tr>
<td>M4(P)</td>
<td>-.00336</td>
<td>-.00863</td>
<td>-.02685</td>
<td>-.051295</td>
</tr>
<tr>
<td></td>
<td>(-.4192)</td>
<td>(-1.146)</td>
<td>(-3.426)</td>
<td>(-2.974)</td>
</tr>
<tr>
<td>M5(P)</td>
<td>.00113</td>
<td>-.00429</td>
<td>-.03500</td>
<td>-.02798</td>
</tr>
<tr>
<td></td>
<td>(.1407)</td>
<td>(-.5684)</td>
<td>(-1.980)</td>
<td>(-1.683)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2y</th>
<th>Model 2z</th>
<th>Model 2aa</th>
<th>Model 2bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_o</td>
<td>764.49</td>
<td>-2769.0</td>
<td>28.491</td>
<td>-3678.7</td>
</tr>
<tr>
<td></td>
<td>(5.142)</td>
<td>(-7.599)</td>
<td>(0.0722)</td>
<td>(-7.275)</td>
</tr>
<tr>
<td>β_o</td>
<td>.56783</td>
<td>.65365</td>
<td>.59339</td>
<td>.68494</td>
</tr>
<tr>
<td></td>
<td>(23.77)</td>
<td>(27.02)</td>
<td>(21.91)</td>
<td>(25.27)</td>
</tr>
<tr>
<td>D1(P)</td>
<td>-.21213</td>
<td>-.22217</td>
<td>-.20995</td>
<td>-.22091</td>
</tr>
<tr>
<td></td>
<td>(-51.48)</td>
<td>(-55.38)</td>
<td>(-50.23)</td>
<td>(-53.95)</td>
</tr>
<tr>
<td>SF(P)</td>
<td>-.01044</td>
<td>-.01263</td>
<td>-.01025</td>
<td>-.01249</td>
</tr>
<tr>
<td></td>
<td>(-3.381)</td>
<td>(-4.298)</td>
<td>(-3.328)</td>
<td>(-4.257)</td>
</tr>
<tr>
<td>GFI(P)</td>
<td>.00585</td>
<td>.00596</td>
<td>.00584</td>
<td>.00594</td>
</tr>
<tr>
<td></td>
<td>(.15.05)</td>
<td>(.16.12)</td>
<td>(.15.05)</td>
<td>(.16.07)</td>
</tr>
<tr>
<td>T1</td>
<td>1669.4</td>
<td>1718.7</td>
<td>1718.7</td>
<td>1718.7</td>
</tr>
<tr>
<td></td>
<td>(4.177)</td>
<td>(4.278)</td>
<td>(4.278)</td>
<td>(4.278)</td>
</tr>
<tr>
<td>T2</td>
<td>4866.1</td>
<td>4935.0</td>
<td>4935.0</td>
<td>4935.0</td>
</tr>
<tr>
<td></td>
<td>(12.04)</td>
<td>(12.11)</td>
<td>(12.11)</td>
<td>(12.11)</td>
</tr>
<tr>
<td>T3</td>
<td>4698.1</td>
<td>4702.8</td>
<td>4702.8</td>
<td>4702.8</td>
</tr>
<tr>
<td></td>
<td>(11.68)</td>
<td>(11.52)</td>
<td>(11.52)</td>
<td>(11.52)</td>
</tr>
<tr>
<td>M1</td>
<td>787.80</td>
<td>667.84</td>
<td>667.84</td>
<td>667.84</td>
</tr>
<tr>
<td></td>
<td>(1.582)</td>
<td>(1.407)</td>
<td>(1.407)</td>
<td>(1.407)</td>
</tr>
<tr>
<td>M2</td>
<td>1119.9</td>
<td>1313.5</td>
<td>1313.5</td>
<td>1313.5</td>
</tr>
<tr>
<td></td>
<td>(2.200)</td>
<td>(2.708)</td>
<td>(2.708)</td>
<td>(2.708)</td>
</tr>
<tr>
<td>M3</td>
<td>462.75</td>
<td>1013.5</td>
<td>1013.5</td>
<td>1013.5</td>
</tr>
<tr>
<td></td>
<td>(1.041)</td>
<td>(2.388)</td>
<td>(2.388)</td>
<td>(2.388)</td>
</tr>
<tr>
<td>M4</td>
<td>1689.4</td>
<td>1348.8</td>
<td>1348.8</td>
<td>1348.8</td>
</tr>
<tr>
<td></td>
<td>(3.510)</td>
<td>(2.936)</td>
<td>(2.936)</td>
<td>(2.936)</td>
</tr>
<tr>
<td>M5</td>
<td>620.81</td>
<td>623.74</td>
<td>623.74</td>
<td>623.74</td>
</tr>
<tr>
<td></td>
<td>(1.330)</td>
<td>(1.403)</td>
<td>(1.403)</td>
<td>(1.403)</td>
</tr>
<tr>
<td>M1(P)</td>
<td>.01351</td>
<td>.00848</td>
<td>-.01292</td>
<td>-.01656</td>
</tr>
<tr>
<td></td>
<td>(1.772)</td>
<td>(1.165)</td>
<td>(-.7634)</td>
<td>(-1.026)</td>
</tr>
</tbody>
</table>
Table 5.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 2y</th>
<th>Model 2z</th>
<th>Model 2aa</th>
<th>Model 2bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2(P)</td>
<td>.03613</td>
<td>.03878</td>
<td>-.00161</td>
<td>-.00200</td>
</tr>
<tr>
<td></td>
<td>(4.697)</td>
<td>(5.300)</td>
<td>(-.0931)</td>
<td>(-.1212)</td>
</tr>
<tr>
<td>M3(P)</td>
<td>.00709</td>
<td>.00798</td>
<td>-.01029</td>
<td>-.02589</td>
</tr>
<tr>
<td></td>
<td>(.9430)</td>
<td>(1.115)</td>
<td>(-.6255)</td>
<td>(-1.649)</td>
</tr>
<tr>
<td>M4(P)</td>
<td>-.00571</td>
<td>-.00785</td>
<td>-.05785</td>
<td>-.05126</td>
</tr>
<tr>
<td></td>
<td>(-.7603)</td>
<td>(-1.099)</td>
<td>(-3.369)</td>
<td>(-3.132)</td>
</tr>
<tr>
<td>M5(P)</td>
<td>.00245</td>
<td>-.00154</td>
<td>-.01974</td>
<td>-.02499</td>
</tr>
<tr>
<td></td>
<td>(.3254)</td>
<td>(-.2146)</td>
<td>(-1.190)</td>
<td>(-1.581)</td>
</tr>
<tr>
<td>T1(P)</td>
<td>.02969</td>
<td>-.01186</td>
<td>.02911</td>
<td>-.01320</td>
</tr>
<tr>
<td></td>
<td>(4.884)</td>
<td>(-1.052)</td>
<td>(4.791)</td>
<td>(-1.163)</td>
</tr>
<tr>
<td>T2(P)</td>
<td>-.02462</td>
<td>-.14299</td>
<td>-.02553</td>
<td>-.14472</td>
</tr>
<tr>
<td></td>
<td>(-3.055)</td>
<td>(-11.49)</td>
<td>(-3.173)</td>
<td>(-11.59)</td>
</tr>
<tr>
<td>T3(P)</td>
<td>.06246</td>
<td>-.06555</td>
<td>.06134</td>
<td>-.06501</td>
</tr>
<tr>
<td></td>
<td>(5.979)</td>
<td>(-4.358)</td>
<td>(5.876)</td>
<td>(-4.303)</td>
</tr>
</tbody>
</table>
Table 6. Model 3 results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3a</th>
<th>Model 3b</th>
<th>Model 3c</th>
<th>Model 3d</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_0</td>
<td>-.23379</td>
<td>-.36859</td>
<td>-.34830</td>
<td>-.31315</td>
</tr>
<tr>
<td></td>
<td>(-21.60)</td>
<td>(-15.06)</td>
<td>(-24.86)</td>
<td>(-12.72)</td>
</tr>
<tr>
<td>S</td>
<td>-.00002</td>
<td>-.00080</td>
<td>-.00927</td>
<td>-.01143</td>
</tr>
<tr>
<td></td>
<td>(-.0384)</td>
<td>(-1.324)</td>
<td>(-7.613)</td>
<td>(-7.638)</td>
</tr>
<tr>
<td>D1</td>
<td>-.31047</td>
<td>-.30894</td>
<td>-.32323</td>
<td>-.31695</td>
</tr>
<tr>
<td></td>
<td>(-41.89)</td>
<td>(-44.45)</td>
<td>(-45.62)</td>
<td>(-46.28)</td>
</tr>
<tr>
<td>SF</td>
<td>-.00471</td>
<td>-.00462</td>
<td>-.00473</td>
<td>-.00459</td>
</tr>
<tr>
<td></td>
<td>(-1.342)</td>
<td>(-1.405)</td>
<td>(-1.423)</td>
<td>(-1.445)</td>
</tr>
<tr>
<td>GFI</td>
<td>-.00232</td>
<td>.00488</td>
<td>.00517</td>
<td>.00479</td>
</tr>
<tr>
<td></td>
<td>(.2243)</td>
<td>(11.65)</td>
<td>(16.79)</td>
<td>(11.79)</td>
</tr>
<tr>
<td>T1</td>
<td>.01991</td>
<td>.00132</td>
<td>.01901</td>
<td>.00068</td>
</tr>
<tr>
<td></td>
<td>(2.848)</td>
<td>(.0387)</td>
<td>(2.833)</td>
<td>(.01986)</td>
</tr>
<tr>
<td>T2</td>
<td>-.00739</td>
<td>-.11571</td>
<td>-.07146</td>
<td>(-.1476)</td>
</tr>
<tr>
<td></td>
<td>(-.8140)</td>
<td>(-9.120)</td>
<td>(-5.808)</td>
<td>(-9.138)</td>
</tr>
<tr>
<td>T3</td>
<td>.08363</td>
<td>.02162</td>
<td>.01604</td>
<td>.00905</td>
</tr>
<tr>
<td></td>
<td>(7.681)</td>
<td>(7.634)</td>
<td>(7.750)</td>
<td>(7.648)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3e</th>
<th>Model 3f</th>
<th>Model 3g</th>
<th>Model 3h</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_0</td>
<td>-.29876</td>
<td>-.37007</td>
<td>-.38312</td>
<td>-.32120</td>
</tr>
<tr>
<td></td>
<td>(-17.95)</td>
<td>(-14.73)</td>
<td>(-21.03)</td>
<td>(-12.89)</td>
</tr>
<tr>
<td>S</td>
<td>.00436</td>
<td>.00227</td>
<td>-.00555</td>
<td>-.00660</td>
</tr>
<tr>
<td></td>
<td>(5.405)</td>
<td>(2.833)</td>
<td>(-4.157)</td>
<td>(-5.710)</td>
</tr>
<tr>
<td>D1</td>
<td>-.31066</td>
<td>-.30897</td>
<td>-.32926</td>
<td>-.31781</td>
</tr>
<tr>
<td></td>
<td>(-43.75)</td>
<td>(-46.32)</td>
<td>(-47.15)</td>
<td>(-48.29)</td>
</tr>
<tr>
<td>SF</td>
<td>-.00465</td>
<td>-.00452</td>
<td>-.00466</td>
<td>-.00456</td>
</tr>
<tr>
<td></td>
<td>(-1.386)</td>
<td>(-1.437)</td>
<td>(-1.459)</td>
<td>(-1.507)</td>
</tr>
<tr>
<td>GFI</td>
<td>.00354</td>
<td>.00502</td>
<td>.00568</td>
<td>.00500</td>
</tr>
<tr>
<td></td>
<td>(13.97)</td>
<td>(12.49)</td>
<td>(17.58)</td>
<td>(12.88)</td>
</tr>
<tr>
<td>T1</td>
<td>.01122</td>
<td>-.01721</td>
<td>-.01322</td>
<td>(-.1672)</td>
</tr>
<tr>
<td></td>
<td>(1.653)</td>
<td>(1.637)</td>
<td>(1.637)</td>
<td>(1.637)</td>
</tr>
<tr>
<td>T2</td>
<td>-.02036</td>
<td>-.14110</td>
<td>-.14110</td>
<td>(-.14110)</td>
</tr>
<tr>
<td></td>
<td>(-2.299)</td>
<td>(-11.04)</td>
<td>(-11.04)</td>
<td>(-11.04)</td>
</tr>
<tr>
<td>T3</td>
<td>.06464</td>
<td>-.00581</td>
<td>-.00581</td>
<td>-.00581</td>
</tr>
<tr>
<td></td>
<td>(5.889)</td>
<td>(-3.970)</td>
<td>(-3.970)</td>
<td>(-3.970)</td>
</tr>
<tr>
<td>M1</td>
<td>-.01446</td>
<td>-.02682</td>
<td>-.01099</td>
<td>-.00047</td>
</tr>
<tr>
<td></td>
<td>(-.0772)</td>
<td>(-1.519)</td>
<td>(-6.146)</td>
<td>(.275)</td>
</tr>
<tr>
<td>M2</td>
<td>-.00841</td>
<td>-.01190</td>
<td>-.00683</td>
<td>.000008</td>
</tr>
<tr>
<td></td>
<td>(-.6603)</td>
<td>(-.9949)</td>
<td>(-.5625)</td>
<td>(.0073)</td>
</tr>
<tr>
<td>M3</td>
<td>.03747</td>
<td>.02935</td>
<td>.03915</td>
<td>.04120</td>
</tr>
<tr>
<td></td>
<td>(3.031)</td>
<td>(2.523)</td>
<td>(3.321)</td>
<td>(3.656)</td>
</tr>
</tbody>
</table>
Table 6.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3e</th>
<th>Model 3f</th>
<th>Model 3g</th>
<th>Model 3h</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>0.02700</td>
<td>0.02432</td>
<td>0.02816</td>
<td>0.03286</td>
</tr>
<tr>
<td></td>
<td>(2.220)</td>
<td>(2.130)</td>
<td>(2.429)</td>
<td>(2.983)</td>
</tr>
<tr>
<td>M5</td>
<td>-0.01652</td>
<td>0.02301</td>
<td>-0.01466</td>
<td>-0.01306</td>
</tr>
<tr>
<td></td>
<td>(-1.380)</td>
<td>(-2.045)</td>
<td>(-1.284)</td>
<td>(-1.199)</td>
</tr>
<tr>
<td>M6</td>
<td>-0.02025</td>
<td>-0.03607</td>
<td>-0.01606</td>
<td>-0.01091</td>
</tr>
<tr>
<td></td>
<td>(-1.375)</td>
<td>(-2.541)</td>
<td>(-1.121)</td>
<td>(-1.7826)</td>
</tr>
<tr>
<td>M7</td>
<td>-0.00174</td>
<td>-0.00527</td>
<td>-0.00444</td>
<td>0.00593</td>
</tr>
<tr>
<td></td>
<td>(-1.375)</td>
<td>(-4.430)</td>
<td>(-0.369)</td>
<td>(5.156)</td>
</tr>
<tr>
<td>M8</td>
<td>-0.00544</td>
<td>-0.00852</td>
<td>-0.00320</td>
<td>0.00501</td>
</tr>
<tr>
<td></td>
<td>(-4.217)</td>
<td>(-7.035)</td>
<td>(-2.601)</td>
<td>(4.282)</td>
</tr>
<tr>
<td>M9</td>
<td>0.01995</td>
<td>0.01988</td>
<td>0.02064</td>
<td>0.02045</td>
</tr>
<tr>
<td></td>
<td>(1.636)</td>
<td>(1.738)</td>
<td>(1.777)</td>
<td>(1.860)</td>
</tr>
<tr>
<td>M10</td>
<td>-0.04634</td>
<td>-0.05705</td>
<td>-0.02460</td>
<td>-0.02939</td>
</tr>
<tr>
<td></td>
<td>(-3.319)</td>
<td>(-2.540)</td>
<td>(-2.447)</td>
<td>(-1.757)</td>
</tr>
<tr>
<td>M11</td>
<td>-0.04234</td>
<td>-0.04157</td>
<td>-0.04168</td>
<td>-0.04408</td>
</tr>
<tr>
<td></td>
<td>(-3.246)</td>
<td>(-3.396)</td>
<td>(-3.355)</td>
<td>(-3.741)</td>
</tr>
<tr>
<td>M12</td>
<td>0.04433</td>
<td>0.03621</td>
<td>0.04601</td>
<td>0.04806</td>
</tr>
<tr>
<td></td>
<td>(3.586)</td>
<td>(3.113)</td>
<td>(3.903)</td>
<td>(4.265)</td>
</tr>
<tr>
<td>M13</td>
<td>-0.01396</td>
<td>-0.00412</td>
<td>0.00860</td>
<td>0.00386</td>
</tr>
<tr>
<td></td>
<td>(-1.128)</td>
<td>(-0.3527)</td>
<td>(0.7217)</td>
<td>(3.407)</td>
</tr>
<tr>
<td>M14</td>
<td>-0.05692</td>
<td>-0.04847</td>
<td>-0.03621</td>
<td>-0.04021</td>
</tr>
<tr>
<td></td>
<td>(-4.761)</td>
<td>(-4.297)</td>
<td>(-3.146)</td>
<td>(-3.681)</td>
</tr>
<tr>
<td>M15</td>
<td>-0.05611</td>
<td>-0.04766</td>
<td>-0.03541</td>
<td>-0.03941</td>
</tr>
<tr>
<td></td>
<td>(-4.693)</td>
<td>(-4.225)</td>
<td>(-3.076)</td>
<td>(-3.607)</td>
</tr>
<tr>
<td>M16</td>
<td>0.03409</td>
<td>0.03132</td>
<td>0.03493</td>
<td>0.03978</td>
</tr>
<tr>
<td></td>
<td>(2.793)</td>
<td>(2.707)</td>
<td>(3.003)</td>
<td>(3.599)</td>
</tr>
<tr>
<td>M17</td>
<td>-0.02169</td>
<td>-0.01477</td>
<td>-0.01006</td>
<td>-0.01556</td>
</tr>
<tr>
<td></td>
<td>(-1.825)</td>
<td>(-1.321)</td>
<td>(-0.8863)</td>
<td>(-1.444)</td>
</tr>
<tr>
<td>M18</td>
<td>-0.02093</td>
<td>-0.01376</td>
<td>-0.00721</td>
<td>-0.01215</td>
</tr>
<tr>
<td></td>
<td>(-1.776)</td>
<td>(-1.241)</td>
<td>(-0.6400)</td>
<td>(-1.135)</td>
</tr>
<tr>
<td>M19</td>
<td>-0.03222</td>
<td>-0.02530</td>
<td>-0.02059</td>
<td>-0.02609</td>
</tr>
<tr>
<td></td>
<td>(-2.711)</td>
<td>(-2.264)</td>
<td>(-1.814)</td>
<td>(-2.421)</td>
</tr>
<tr>
<td>M20</td>
<td>-0.02622</td>
<td>-0.02193</td>
<td>-0.02059</td>
<td>-0.02448</td>
</tr>
<tr>
<td></td>
<td>(-2.136)</td>
<td>(-1.902)</td>
<td>(-1.760)</td>
<td>(-2.205)</td>
</tr>
<tr>
<td>M21</td>
<td>-0.04571</td>
<td>-0.03446</td>
<td>-0.02806</td>
<td>-0.03625</td>
</tr>
<tr>
<td></td>
<td>(-3.288)</td>
<td>(-2.632)</td>
<td>(-2.110)</td>
<td>(-2.869)</td>
</tr>
<tr>
<td>M22</td>
<td>-0.00450</td>
<td>-0.03372</td>
<td>-0.02732</td>
<td>-0.03551</td>
</tr>
<tr>
<td></td>
<td>(-3.234)</td>
<td>(-2.575)</td>
<td>(-2.054)</td>
<td>(-2.811)</td>
</tr>
<tr>
<td>T1(S)</td>
<td>0.00505</td>
<td>0.00657</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.779)</td>
<td>(3.916)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(S)</td>
<td>0.00477</td>
<td>0.02153</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.925)</td>
<td>(12.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(S)</td>
<td>0.01368</td>
<td>0.01283</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1368)</td>
<td>(7.461)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Model 3i</td>
<td>Model 3j</td>
<td>Model 3k</td>
<td>Model 3l</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>ϕ_0</td>
<td>-0.24795</td>
<td>-0.37308</td>
<td>-0.36571</td>
<td>-0.31550</td>
</tr>
<tr>
<td></td>
<td>(-19.22)</td>
<td>(-15.03)</td>
<td>(-23.72)</td>
<td>(-12.76)</td>
</tr>
<tr>
<td>S</td>
<td>0.0020</td>
<td>-0.0069</td>
<td>-0.01001</td>
<td>-0.12624</td>
</tr>
<tr>
<td></td>
<td>(-0.3050)</td>
<td>(-1.125)</td>
<td>(-8.219)</td>
<td>(-8.477)</td>
</tr>
<tr>
<td>$D1$</td>
<td>-0.31271</td>
<td>-0.31112</td>
<td>-0.32688</td>
<td>-0.32127</td>
</tr>
<tr>
<td></td>
<td>(-42.60)</td>
<td>(-45.18)</td>
<td>(-46.73)</td>
<td>(-47.52)</td>
</tr>
<tr>
<td>SF</td>
<td>-0.00467</td>
<td>-0.00459</td>
<td>-0.00469</td>
<td>-0.00455</td>
</tr>
<tr>
<td></td>
<td>(-1.346)</td>
<td>(-1.411)</td>
<td>(-1.432)</td>
<td>(-1.459)</td>
</tr>
<tr>
<td>GFI</td>
<td>0.00239</td>
<td>0.00486</td>
<td>0.00537</td>
<td>0.00472</td>
</tr>
<tr>
<td></td>
<td>(11.33)</td>
<td>(11.72)</td>
<td>(17.61)</td>
<td>(11.83)</td>
</tr>
<tr>
<td>$T1$</td>
<td>0.01935</td>
<td></td>
<td>-0.00282</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.799)</td>
<td></td>
<td>(-2.658)</td>
<td></td>
</tr>
<tr>
<td>$T2$</td>
<td>-0.00800</td>
<td></td>
<td>-1.2358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.8903)</td>
<td></td>
<td>(-9.859)</td>
<td></td>
</tr>
<tr>
<td>$T3$</td>
<td>0.08187</td>
<td></td>
<td>0.00781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.583)</td>
<td></td>
<td>(5.514)</td>
<td></td>
</tr>
<tr>
<td>$M1$</td>
<td>0.00612</td>
<td>-0.0041</td>
<td>-0.0040</td>
<td>0.00458</td>
</tr>
<tr>
<td></td>
<td>(0.8134)</td>
<td>(-0.0577)</td>
<td>(-0.0566)</td>
<td>(0.6732)</td>
</tr>
<tr>
<td>$M2$</td>
<td>0.04183</td>
<td>0.03516</td>
<td>0.04303</td>
<td>0.04530</td>
</tr>
<tr>
<td></td>
<td>(5.622)</td>
<td>(5.034)</td>
<td>(6.124)</td>
<td>(6.702)</td>
</tr>
<tr>
<td>$M3$</td>
<td>0.00842</td>
<td>0.00526</td>
<td>0.01056</td>
<td>0.01453</td>
</tr>
<tr>
<td></td>
<td>(1.226)</td>
<td>(0.8182)</td>
<td>(1.628)</td>
<td>(2.338)</td>
</tr>
<tr>
<td>$M4$</td>
<td>0.00321</td>
<td>-0.00167</td>
<td>0.00282</td>
<td>0.00420</td>
</tr>
<tr>
<td></td>
<td>(0.4573)</td>
<td>(-0.2536)</td>
<td>(0.4249)</td>
<td>(0.6615)</td>
</tr>
<tr>
<td>$M5$</td>
<td>0.00343</td>
<td>0.00006</td>
<td>0.00006</td>
<td>0.00351</td>
</tr>
<tr>
<td></td>
<td>(0.4817)</td>
<td>(0.0089)</td>
<td>(0.0095)</td>
<td>(0.5474)</td>
</tr>
<tr>
<td>$T1(S)$</td>
<td></td>
<td></td>
<td>0.00595</td>
<td>0.00563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.563)</td>
<td>(3.288)</td>
</tr>
<tr>
<td>$T2(S)$</td>
<td></td>
<td></td>
<td>0.00645</td>
<td>0.02129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.274)</td>
<td>(12.11)</td>
</tr>
<tr>
<td>$T3(S)$</td>
<td></td>
<td></td>
<td>0.01602</td>
<td>0.01406</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12.23)</td>
<td>(8.235)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3m</th>
<th>Model 3n</th>
<th>Model 3o</th>
<th>Model 3p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_0</td>
<td>-0.31434</td>
<td>-0.37702</td>
<td>-0.38424</td>
<td>-0.31970</td>
</tr>
<tr>
<td></td>
<td>(-24.48)</td>
<td>(-15.95)</td>
<td>(-26.18)</td>
<td>(-13.44)</td>
</tr>
<tr>
<td>S</td>
<td>0.00353</td>
<td>0.00292</td>
<td>-0.00627</td>
<td>-0.00857</td>
</tr>
<tr>
<td></td>
<td>(2.578)</td>
<td>(1.751)</td>
<td>(-3.046)</td>
<td>(-4.016)</td>
</tr>
<tr>
<td>$D1$</td>
<td>-0.29584</td>
<td>-0.29865</td>
<td>-0.31257</td>
<td>-0.30639</td>
</tr>
<tr>
<td></td>
<td>(-40.96)</td>
<td>(-43.41)</td>
<td>(-44.14)</td>
<td>(-45.24)</td>
</tr>
<tr>
<td>SF</td>
<td>-0.00486</td>
<td>-0.00472</td>
<td>-0.00485</td>
<td>-0.00471</td>
</tr>
<tr>
<td></td>
<td>(-1.451)</td>
<td>(-1.490)</td>
<td>(-1.510)</td>
<td>(-1.437)</td>
</tr>
<tr>
<td>GFI</td>
<td>0.00355</td>
<td>0.00487</td>
<td>0.00558</td>
<td>0.00475</td>
</tr>
<tr>
<td></td>
<td>(15.26)</td>
<td>(11.65)</td>
<td>(18.23)</td>
<td>(12.19)</td>
</tr>
<tr>
<td>$T1$</td>
<td>0.01423</td>
<td>0.01202</td>
<td>0.00551</td>
<td>(-0.5306)</td>
</tr>
</tbody>
</table>
Table 6.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3m</th>
<th>Model 3n</th>
<th>Model 3o</th>
<th>Model 3p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>-.01976</td>
<td>(-2.219)</td>
<td>-.13248</td>
<td>(-10.67)</td>
</tr>
<tr>
<td>T3</td>
<td>.06100</td>
<td>(5.560)</td>
<td>-.00115</td>
<td>(-.0810)</td>
</tr>
<tr>
<td>M1(S)</td>
<td>.00672</td>
<td>-.00037</td>
<td>.00361</td>
<td>.00289</td>
</tr>
<tr>
<td>M2(S)</td>
<td>.02077</td>
<td>-.00099</td>
<td>-.0026</td>
<td>-.0014</td>
</tr>
<tr>
<td>M3(S)</td>
<td>.01011</td>
<td>.00674</td>
<td>.00773</td>
<td>.00758</td>
</tr>
<tr>
<td>M4(S)</td>
<td>.00901</td>
<td>.00642</td>
<td>.00688</td>
<td>.00689</td>
</tr>
<tr>
<td>M5(S)</td>
<td>(4.913)</td>
<td>(3.143)</td>
<td>(3.565)</td>
<td>(3.671)</td>
</tr>
<tr>
<td>M6(S)</td>
<td>.00173</td>
<td>-.00109</td>
<td>-.0041</td>
<td>-.0056</td>
</tr>
<tr>
<td>M7(S)</td>
<td>.00939</td>
<td>.00299</td>
<td>.00647</td>
<td>.00589</td>
</tr>
<tr>
<td>M8(S)</td>
<td>(2.735)</td>
<td>(.8814)</td>
<td>(1.901)</td>
<td>(1.792)</td>
</tr>
<tr>
<td>M9(S)</td>
<td>.00380</td>
<td>.00075</td>
<td>.00144</td>
<td>.00154</td>
</tr>
<tr>
<td>M10(S)</td>
<td>(1.840)</td>
<td>(.3470)</td>
<td>(.6632)</td>
<td>(.7467)</td>
</tr>
<tr>
<td>M11(S)</td>
<td>.00260</td>
<td>-.00043</td>
<td>.00031</td>
<td>.00049</td>
</tr>
<tr>
<td>M12(S)</td>
<td>(1.254)</td>
<td>(-.1981)</td>
<td>(.1432)</td>
<td>(.2380)</td>
</tr>
<tr>
<td>M13(S)</td>
<td>.00302</td>
<td>.00113</td>
<td>.00121</td>
<td>.00113</td>
</tr>
<tr>
<td>M14(S)</td>
<td>(1.767)</td>
<td>(.6123)</td>
<td>(.6460)</td>
<td>(.6336)</td>
</tr>
<tr>
<td>M15(S)</td>
<td>-.00188</td>
<td>-.00512</td>
<td>-.00120</td>
<td>-.00196</td>
</tr>
<tr>
<td>M16(S)</td>
<td>(.4110)</td>
<td>(-1.155)</td>
<td>(-.2697)</td>
<td>(-.4566)</td>
</tr>
<tr>
<td>M17(S)</td>
<td>-.00336</td>
<td>-.00501</td>
<td>-.00503</td>
<td>-.00521</td>
</tr>
<tr>
<td>M18(S)</td>
<td>(-1.885)</td>
<td>(-2.610)</td>
<td>(-2.585)</td>
<td>(-2.824)</td>
</tr>
<tr>
<td>M19(S)</td>
<td>.01287</td>
<td>.00950</td>
<td>.01049</td>
<td>.01034</td>
</tr>
<tr>
<td>M20(S)</td>
<td>(6.257)</td>
<td>(4.432)</td>
<td>(4.840)</td>
<td>(5.009)</td>
</tr>
<tr>
<td>M21(S)</td>
<td>.00111</td>
<td>.00070</td>
<td>.00249</td>
<td>.00197</td>
</tr>
<tr>
<td>M22(S)</td>
<td>(.7519)</td>
<td>(.41518)</td>
<td>(1.448)</td>
<td>(1.204)</td>
</tr>
<tr>
<td>M23(S)</td>
<td>-.00384</td>
<td>-.00436</td>
<td>-.00248</td>
<td>-.00291</td>
</tr>
<tr>
<td>M24(S)</td>
<td>(-2.661)</td>
<td>(-2.622)</td>
<td>(-1.463)</td>
<td>(-1.806)</td>
</tr>
<tr>
<td>M25(S)</td>
<td>-.00381</td>
<td>-.00432</td>
<td>-.00245</td>
<td>-.00288</td>
</tr>
<tr>
<td>M26(S)</td>
<td>(-2.637)</td>
<td>(-2.601)</td>
<td>(-1.443)</td>
<td>(-1.785)</td>
</tr>
<tr>
<td>M27(S)</td>
<td>.01247</td>
<td>.00974</td>
<td>.01021</td>
<td>.01026</td>
</tr>
<tr>
<td>M28(S)</td>
<td>(6.667)</td>
<td>(4.907)</td>
<td>(5.081)</td>
<td>(5.373)</td>
</tr>
<tr>
<td>M29(S)</td>
<td>-.00186</td>
<td>-.00178</td>
<td>-.00098</td>
<td>-.00178</td>
</tr>
<tr>
<td>M30(S)</td>
<td>(-.7941)</td>
<td>(-1.051)</td>
<td>(-.5724)</td>
<td>(-1.088)</td>
</tr>
<tr>
<td>M31(S)</td>
<td>-.00103</td>
<td>-.00163</td>
<td>-.00053</td>
<td>-.00119</td>
</tr>
<tr>
<td>M32(S)</td>
<td>(-.7051)</td>
<td>(-.9706)</td>
<td>(-.3120)</td>
<td>(-.7345)</td>
</tr>
<tr>
<td>M33(S)</td>
<td>-.00095</td>
<td>-.00155</td>
<td>-.00075</td>
<td>-.00154</td>
</tr>
<tr>
<td>M34(S)</td>
<td>(-.6392)</td>
<td>(-.9144)</td>
<td>(-.4378)</td>
<td>(-.9460)</td>
</tr>
<tr>
<td>M35(S)</td>
<td>-.00004</td>
<td>-.00107</td>
<td>-.00082</td>
<td>-.00134</td>
</tr>
<tr>
<td>M36(S)</td>
<td>(-.0265)</td>
<td>(-.6085)</td>
<td>(-.4585)</td>
<td>(-.7883)</td>
</tr>
<tr>
<td>M37(S)</td>
<td>-.00295</td>
<td>-.00313</td>
<td>-.00231</td>
<td>-.00340</td>
</tr>
<tr>
<td>M38(S)</td>
<td>(-1.773)</td>
<td>(-1.705)</td>
<td>(-1.241)</td>
<td>(-1.918)</td>
</tr>
<tr>
<td>M39(S)</td>
<td>-.00000</td>
<td>-.00304</td>
<td>-.00222</td>
<td>-.00331</td>
</tr>
<tr>
<td>M40(S)</td>
<td>(-1.482)</td>
<td>(-1.655)</td>
<td>(-1.192)</td>
<td>(-1.867)</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 3m</td>
<td>Model 3n</td>
<td>Model 3o</td>
<td>Model 3p</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>T1(S)</td>
<td>.00537</td>
<td>.00516</td>
<td>(5.076)</td>
<td>(3.078)</td>
</tr>
<tr>
<td>T2(S)</td>
<td>.00516</td>
<td>.00516</td>
<td>(4.217)</td>
<td>(11.94)</td>
</tr>
<tr>
<td>T3(S)</td>
<td>.01365</td>
<td>.01216</td>
<td>(10.24)</td>
<td>(7.105)</td>
</tr>
<tr>
<td>C/J0</td>
<td>-.25364</td>
<td>-.32320</td>
<td>-.32640</td>
<td>-.29020</td>
</tr>
<tr>
<td>S</td>
<td>-.0062</td>
<td>-.00430</td>
<td>-.01164</td>
<td>-.01283</td>
</tr>
<tr>
<td>D1</td>
<td>-.28579</td>
<td>-.29400</td>
<td>-.30773</td>
<td>-.30801</td>
</tr>
<tr>
<td>SF</td>
<td>-.00449</td>
<td>-.00447</td>
<td>-.00455</td>
<td>-.00457</td>
</tr>
<tr>
<td>GFI</td>
<td>.00307</td>
<td>.00471</td>
<td>.00518</td>
<td>.00478</td>
</tr>
<tr>
<td>T1</td>
<td>.01255</td>
<td>(1.895)</td>
<td>(1.420)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>-.01613</td>
<td>-.13071</td>
<td>(-1.842)</td>
<td>(-10.23)</td>
</tr>
<tr>
<td>T3</td>
<td>.06414</td>
<td>(5.998)</td>
<td>(-12.58)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>-.18220</td>
<td>-.14626</td>
<td>-.15705</td>
<td>-.07073</td>
</tr>
<tr>
<td>M2</td>
<td>-.04668</td>
<td>-.04118</td>
<td>-.03917</td>
<td>-.01122</td>
</tr>
<tr>
<td>M3</td>
<td>.00172</td>
<td>-.00674</td>
<td>.00783</td>
<td>.02164</td>
</tr>
<tr>
<td>M4</td>
<td>-.03513</td>
<td>-.03421</td>
<td>-.03109</td>
<td>-.01001</td>
</tr>
<tr>
<td>M5</td>
<td>-.07306</td>
<td>-.08264</td>
<td>-.06756</td>
<td>-.05505</td>
</tr>
<tr>
<td>M6</td>
<td>-.19813</td>
<td>-.20174</td>
<td>-.17991</td>
<td>-.14760</td>
</tr>
<tr>
<td>M7</td>
<td>-.04945</td>
<td>-.04473</td>
<td>-.04333</td>
<td>-.01721</td>
</tr>
<tr>
<td>M8</td>
<td>-.04364</td>
<td>-.03532</td>
<td>-.03298</td>
<td>.00046</td>
</tr>
<tr>
<td>M9</td>
<td>.06844</td>
<td>.06593</td>
<td>.06793</td>
<td>.07075</td>
</tr>
<tr>
<td>M10</td>
<td>-.25099</td>
<td>-.21802</td>
<td>-.22861</td>
<td>-.14757</td>
</tr>
<tr>
<td>M11</td>
<td>-.04820</td>
<td>-.05362</td>
<td>-.05062</td>
<td>-.05652</td>
</tr>
</tbody>
</table>

Table 6.--Continued.
Table 6.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3q</th>
<th>Model 3r</th>
<th>Model 3s</th>
<th>Model 3t</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>-.01365</td>
<td>-.02211</td>
<td>-.00754</td>
<td>.00627</td>
</tr>
<tr>
<td></td>
<td>(-.5437)</td>
<td>(-.9297)</td>
<td>(-.3128)</td>
<td>(.2710)</td>
</tr>
<tr>
<td>M13</td>
<td>-.04540</td>
<td>-.06682</td>
<td>-.05983</td>
<td>-.05806</td>
</tr>
<tr>
<td></td>
<td>(-1.452)</td>
<td>(-2.253)</td>
<td>(-1.991)</td>
<td>(-2.025)</td>
</tr>
<tr>
<td>M14</td>
<td>-.06985</td>
<td>-.08806</td>
<td>-.08919</td>
<td>-.08918</td>
</tr>
<tr>
<td></td>
<td>(-2.485)</td>
<td>(-3.306)</td>
<td>(-3.305)</td>
<td>(-3.461)</td>
</tr>
<tr>
<td>M15</td>
<td>-.06516</td>
<td>-.08337</td>
<td>-.08450</td>
<td>-.08449</td>
</tr>
<tr>
<td></td>
<td>(-2.318)</td>
<td>(-3.129)</td>
<td>(-3.131)</td>
<td>(-3.279)</td>
</tr>
<tr>
<td>M16</td>
<td>-.07011</td>
<td>-.06851</td>
<td>-.06549</td>
<td>-.04447</td>
</tr>
<tr>
<td></td>
<td>(-2.764)</td>
<td>(-2.856)</td>
<td>(-2.692)</td>
<td>(-1.912)</td>
</tr>
<tr>
<td>M17</td>
<td>.01817</td>
<td>.00182</td>
<td>.00666</td>
<td>.01071</td>
</tr>
<tr>
<td></td>
<td>(.6732)</td>
<td>(.0711)</td>
<td>(.2571)</td>
<td>(.43336)</td>
</tr>
<tr>
<td>M18</td>
<td>.02044</td>
<td>.00382</td>
<td>.00697</td>
<td>.01039</td>
</tr>
<tr>
<td></td>
<td>(.7620)</td>
<td>(.1505)</td>
<td>(.2708)</td>
<td>(.4231)</td>
</tr>
<tr>
<td>M19</td>
<td>-.06692</td>
<td>-.08327</td>
<td>-.07843</td>
<td>-.07438</td>
</tr>
<tr>
<td></td>
<td>(-2.480)</td>
<td>(-3.259)</td>
<td>(-3.028)</td>
<td>(-3.010)</td>
</tr>
<tr>
<td>M20</td>
<td>-.06983</td>
<td>-.07988</td>
<td>-.07439</td>
<td>-.07642</td>
</tr>
<tr>
<td></td>
<td>(-2.538)</td>
<td>(-3.070)</td>
<td>(-2.812)</td>
<td>(-3.036)</td>
</tr>
<tr>
<td>M21</td>
<td>-.02450</td>
<td>-.04945</td>
<td>-.02560</td>
<td>-.01955</td>
</tr>
<tr>
<td></td>
<td>(-.6460)</td>
<td>(-1.376)</td>
<td>(-.7023)</td>
<td>(-.5613)</td>
</tr>
<tr>
<td>M22</td>
<td>-.02447</td>
<td>-.04942</td>
<td>-.02557</td>
<td>-.01952</td>
</tr>
<tr>
<td></td>
<td>(-.6452)</td>
<td>(-1.376)</td>
<td>(-.7014)</td>
<td>(-.5604)</td>
</tr>
<tr>
<td>M1(S)</td>
<td>.04569</td>
<td>.03071</td>
<td>.03829</td>
<td>.01711</td>
</tr>
<tr>
<td></td>
<td>(4.105)</td>
<td>(2.909)</td>
<td>(3.585)</td>
<td>(1.666)</td>
</tr>
<tr>
<td>M2(S)</td>
<td>.00686</td>
<td>.00460</td>
<td>.00521</td>
<td>.00091</td>
</tr>
<tr>
<td></td>
<td>(.4157)</td>
<td>(1.033)</td>
<td>(1.154)</td>
<td>(.2114)</td>
</tr>
<tr>
<td>M3(S)</td>
<td>.00612</td>
<td>.00598</td>
<td>.00462</td>
<td>.00253</td>
</tr>
<tr>
<td></td>
<td>(1.357)</td>
<td>(1.403)</td>
<td>(1.069)</td>
<td>(.6100)</td>
</tr>
<tr>
<td>M4(S)</td>
<td>.01195</td>
<td>.01104</td>
<td>.01113</td>
<td>.00799</td>
</tr>
<tr>
<td></td>
<td>(2.779)</td>
<td>(2.716)</td>
<td>(2.701)</td>
<td>(2.030)</td>
</tr>
<tr>
<td>M5(S)</td>
<td>.01089</td>
<td>.01147</td>
<td>.00982</td>
<td>.00790</td>
</tr>
<tr>
<td></td>
<td>(2.588)</td>
<td>(2.882)</td>
<td>(2.433)</td>
<td>(2.049)</td>
</tr>
<tr>
<td>M6(S)</td>
<td>.05121</td>
<td>.04693</td>
<td>.04591</td>
<td>.03886</td>
</tr>
<tr>
<td></td>
<td>(7.216)</td>
<td>(6.991)</td>
<td>(6.739)</td>
<td>(5.960)</td>
</tr>
<tr>
<td>M7(S)</td>
<td>.00910</td>
<td>.00695</td>
<td>.00765</td>
<td>.00362</td>
</tr>
<tr>
<td></td>
<td>(1.944)</td>
<td>(1.571)</td>
<td>(1.705)</td>
<td>(.8454)</td>
</tr>
<tr>
<td>M8(S)</td>
<td>.00685</td>
<td>.00415</td>
<td>.00471</td>
<td>-.00045</td>
</tr>
<tr>
<td></td>
<td>(1.423)</td>
<td>(.9115)</td>
<td>(1.021)</td>
<td>(-.1016)</td>
</tr>
<tr>
<td>M9(S)</td>
<td>-.00848</td>
<td>-.00807</td>
<td>-.00830</td>
<td>-.00887</td>
</tr>
<tr>
<td></td>
<td>(-2.021)</td>
<td>(-2.033)</td>
<td>(-2.063)</td>
<td>(-2.314)</td>
</tr>
<tr>
<td>M10(S)</td>
<td>.05905</td>
<td>.04477</td>
<td>.05230</td>
<td>.03237</td>
</tr>
<tr>
<td></td>
<td>(5.728)</td>
<td>(4.579)</td>
<td>(5.288)</td>
<td>(3.402)</td>
</tr>
<tr>
<td>M11(S)</td>
<td>.00171</td>
<td>.00279</td>
<td>.00228</td>
<td>.00266</td>
</tr>
<tr>
<td></td>
<td>(.3864)</td>
<td>(.6653)</td>
<td>(.5357)</td>
<td>(.6556)</td>
</tr>
<tr>
<td>M12(S)</td>
<td>.01168</td>
<td>.01154</td>
<td>.01018</td>
<td>.00808</td>
</tr>
<tr>
<td></td>
<td>(2.589)</td>
<td>(2.708)</td>
<td>(2.355)</td>
<td>(1.956)</td>
</tr>
<tr>
<td>M13(S)</td>
<td>.00595</td>
<td>.01002</td>
<td>.01062</td>
<td>.00920</td>
</tr>
<tr>
<td></td>
<td>(1.401)</td>
<td>(2.480)</td>
<td>(2.591)</td>
<td>(2.355)</td>
</tr>
</tbody>
</table>
Table 6.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3q</th>
<th>Model 3r</th>
<th>Model 3s</th>
<th>Model 3t</th>
</tr>
</thead>
<tbody>
<tr>
<td>M14(S)</td>
<td>.00367</td>
<td>.00729</td>
<td>.00885</td>
<td>.00776</td>
</tr>
<tr>
<td></td>
<td>(.9182)</td>
<td>(1.920)</td>
<td>(2.297)</td>
<td>(2.111)</td>
</tr>
<tr>
<td>M15(S)</td>
<td>.00319</td>
<td>.00681</td>
<td>.00838</td>
<td>.00728</td>
</tr>
<tr>
<td></td>
<td>(.7988)</td>
<td>(1.794)</td>
<td>(2.173)</td>
<td>(1.981)</td>
</tr>
<tr>
<td>M16(S)</td>
<td>.02112</td>
<td>.01995</td>
<td>.02008</td>
<td>.01695</td>
</tr>
<tr>
<td></td>
<td>(4.873)</td>
<td>(4.870)</td>
<td>(4.832)</td>
<td>(4.276)</td>
</tr>
<tr>
<td>M17(S)</td>
<td>-.00396</td>
<td>-.00051</td>
<td>-.00056</td>
<td>-.00230</td>
</tr>
<tr>
<td></td>
<td>(-.9888)</td>
<td>(-.1341)</td>
<td>(-.1444)</td>
<td>(-.6269)</td>
</tr>
<tr>
<td>M18(S)</td>
<td>-.00390</td>
<td>-.00044</td>
<td>-.00002</td>
<td>-.00161</td>
</tr>
<tr>
<td></td>
<td>(-.9860)</td>
<td>(-.1171)</td>
<td>(-.0063)</td>
<td>(-.4442)</td>
</tr>
<tr>
<td>M19(S)</td>
<td>.00633</td>
<td>.00978</td>
<td>.00973</td>
<td>.00799</td>
</tr>
<tr>
<td></td>
<td>(1.582)</td>
<td>(2.578)</td>
<td>(2.530)</td>
<td>(2.177)</td>
</tr>
<tr>
<td>M20(S)</td>
<td>.00765</td>
<td>.00995</td>
<td>.00933</td>
<td>.00871</td>
</tr>
<tr>
<td></td>
<td>(1.849)</td>
<td>(2.542)</td>
<td>(2.352)</td>
<td>(2.301)</td>
</tr>
<tr>
<td>M21(S)</td>
<td>-.00055</td>
<td>.00421</td>
<td>.00205</td>
<td>-.00027</td>
</tr>
<tr>
<td></td>
<td>(-.1100)</td>
<td>(.8938)</td>
<td>(.4280)</td>
<td>(-.0595)</td>
</tr>
<tr>
<td>M22(S)</td>
<td>-.00046</td>
<td>.00430</td>
<td>.00213</td>
<td>-.00018</td>
</tr>
<tr>
<td></td>
<td>(-.0925)</td>
<td>(.9124)</td>
<td>(.4463)</td>
<td>(-.0404)</td>
</tr>
<tr>
<td>T1(S)</td>
<td>.00463</td>
<td>.00617</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.500)</td>
<td>(3.708)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(S)</td>
<td>.00441</td>
<td>.02033</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.705)</td>
<td>(11.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(S)</td>
<td>.01280</td>
<td>.01225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.830)</td>
<td>(7.050)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3u</th>
<th>Model 3v</th>
<th>Model 3w</th>
<th>Model 3x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_o)</td>
<td>-.23365</td>
<td>-.36665</td>
<td>-.35148</td>
<td>-.30189</td>
</tr>
<tr>
<td></td>
<td>(-21.24)</td>
<td>(-15.11)</td>
<td>(-25.33)</td>
<td>(-12.41)</td>
</tr>
<tr>
<td>S</td>
<td>-.00180</td>
<td>-.00208</td>
<td>-.01211</td>
<td>-.01497</td>
</tr>
<tr>
<td></td>
<td>(-1.961)</td>
<td>(-2.413)</td>
<td>(-8.637)</td>
<td>(-9.052)</td>
</tr>
<tr>
<td>D1</td>
<td>-.31042</td>
<td>-.30963</td>
<td>-.32552</td>
<td>-.31977</td>
</tr>
<tr>
<td></td>
<td>(-42.15)</td>
<td>(-44.85)</td>
<td>(-46.37)</td>
<td>(-47.19)</td>
</tr>
<tr>
<td>SF</td>
<td>-.00471</td>
<td>-.00463</td>
<td>-.00475</td>
<td>-.00461</td>
</tr>
<tr>
<td></td>
<td>(-1.352)</td>
<td>(-1.420)</td>
<td>(-1.449)</td>
<td>(-1.475)</td>
</tr>
<tr>
<td>GFI</td>
<td>.00231</td>
<td>.00485</td>
<td>.00529</td>
<td>.00469</td>
</tr>
<tr>
<td></td>
<td>(10.92)</td>
<td>(11.67)</td>
<td>(17.38)</td>
<td>(11.74)</td>
</tr>
<tr>
<td>T1</td>
<td>.01993</td>
<td></td>
<td>-.00106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.877)</td>
<td></td>
<td>(-.1001)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>-.00673</td>
<td></td>
<td>-.12265</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.7473)</td>
<td></td>
<td>(-9.767)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>.00413</td>
<td></td>
<td>.01072</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.771)</td>
<td></td>
<td>(7.569)</td>
<td></td>
</tr>
<tr>
<td>M1(S)</td>
<td>.00114</td>
<td>-.00051</td>
<td>-.00068</td>
<td>-.00011</td>
</tr>
<tr>
<td></td>
<td>(1.037)</td>
<td>(-.4900)</td>
<td>(-.6557)</td>
<td>(-1.147)</td>
</tr>
<tr>
<td>M2(S)</td>
<td>.00606</td>
<td>.00522</td>
<td>.00631</td>
<td>.00667</td>
</tr>
<tr>
<td></td>
<td>(5.949)</td>
<td>(5.469)</td>
<td>(6.559)</td>
<td>(7.221)</td>
</tr>
</tbody>
</table>
Table 6.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3u</th>
<th>Model 3v</th>
<th>Model 3w</th>
<th>Model 3x</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3(S)</td>
<td>0.00151</td>
<td>0.00097</td>
<td>0.00206</td>
<td>0.00253</td>
</tr>
<tr>
<td></td>
<td>(1.689)</td>
<td>(1.160)</td>
<td>(2.430)</td>
<td>(3.112)</td>
</tr>
<tr>
<td>M4(S)</td>
<td>0.00119</td>
<td>0.00065</td>
<td>0.00110</td>
<td>0.00126</td>
</tr>
<tr>
<td></td>
<td>(1.271)</td>
<td>(0.7427)</td>
<td>(1.243)</td>
<td>(1.492)</td>
</tr>
<tr>
<td>M5(S)</td>
<td>0.00155</td>
<td>0.00086</td>
<td>0.00086</td>
<td>0.00116</td>
</tr>
<tr>
<td></td>
<td>(1.617)</td>
<td>(0.9531)</td>
<td>(0.9493)</td>
<td>(1.339)</td>
</tr>
<tr>
<td>T1(S)</td>
<td>0.00594</td>
<td>0.00546</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.527)</td>
<td>(3.181)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(S)</td>
<td>0.00661</td>
<td>0.02146</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.354)</td>
<td>(12.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(S)</td>
<td>0.01627</td>
<td>0.01410</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.29)</td>
<td>(8.200)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3y</th>
<th>Model 3z</th>
<th>Model 3aa</th>
<th>Model 3bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_0)</td>
<td>-.20924</td>
<td>-.34428</td>
<td>-.32846</td>
<td>-.27952</td>
</tr>
<tr>
<td></td>
<td>(-10.44)</td>
<td>(-12.13)</td>
<td>(-15.70)</td>
<td>(-9.952)</td>
</tr>
<tr>
<td>S</td>
<td>-.00488</td>
<td>-.00468</td>
<td>-.01507</td>
<td>-.01761</td>
</tr>
<tr>
<td></td>
<td>(-2.396)</td>
<td>(-2.451)</td>
<td>(-6.783)</td>
<td>(-7.616)</td>
</tr>
<tr>
<td>D1</td>
<td>-.31141</td>
<td>-.31031</td>
<td>-.32686</td>
<td>-.32114</td>
</tr>
<tr>
<td></td>
<td>(-42.23)</td>
<td>(-44.89)</td>
<td>(-46.48)</td>
<td>(-47.21)</td>
</tr>
<tr>
<td>SF</td>
<td>-.00465</td>
<td>-.00460</td>
<td>-.00472</td>
<td>-.00460</td>
</tr>
<tr>
<td></td>
<td>(-1.342)</td>
<td>(-1.419)</td>
<td>(-1.447)</td>
<td>(-1.477)</td>
</tr>
<tr>
<td>GFI</td>
<td>0.00235</td>
<td>0.00485</td>
<td>0.00532</td>
<td>0.00469</td>
</tr>
<tr>
<td></td>
<td>(10.93)</td>
<td>(11.70)</td>
<td>(17.42)</td>
<td>(11.77)</td>
</tr>
<tr>
<td>T1</td>
<td>0.01958</td>
<td>-.00213</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.837)</td>
<td>(-2.014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>-.00720</td>
<td>-.12317</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.8019)</td>
<td>(-9.824)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.08347</td>
<td>0.00860</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.720)</td>
<td>(.6045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>-.02933</td>
<td>-.01478</td>
<td>-.01787</td>
<td>-.01102</td>
</tr>
<tr>
<td></td>
<td>(-1.600)</td>
<td>(-.8598)</td>
<td>(-1.034)</td>
<td>(-.6678)</td>
</tr>
<tr>
<td>M2</td>
<td>0.00476</td>
<td>0.00253</td>
<td>0.00491</td>
<td>0.00500</td>
</tr>
<tr>
<td></td>
<td>(0.2603)</td>
<td>(.1477)</td>
<td>(.0285)</td>
<td>(.3035)</td>
</tr>
<tr>
<td>M3</td>
<td>-.02214</td>
<td>-.01711</td>
<td>-.02885</td>
<td>-.02485</td>
</tr>
<tr>
<td></td>
<td>(-1.247)</td>
<td>(-1.028)</td>
<td>(-1.722)</td>
<td>(-1.554)</td>
</tr>
<tr>
<td>M4</td>
<td>-.03921</td>
<td>-.04211</td>
<td>-.03776</td>
<td>-.03683</td>
</tr>
<tr>
<td></td>
<td>(-2.202)</td>
<td>(-2.523)</td>
<td>(-2.251)</td>
<td>(-2.296)</td>
</tr>
<tr>
<td>M5</td>
<td>-.05022</td>
<td>-.04168</td>
<td>-.04646</td>
<td>-.03968</td>
</tr>
<tr>
<td></td>
<td>(-2.790)</td>
<td>(-2.472)</td>
<td>(-2.740)</td>
<td>(-2.451)</td>
</tr>
<tr>
<td>T1(S)</td>
<td>0.00600</td>
<td>0.00560</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.595)</td>
<td>(3.270)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2(S)</td>
<td>0.00665</td>
<td>0.02148</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.394)</td>
<td>(12.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3(S)</td>
<td>0.01631</td>
<td>0.01432</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.32)</td>
<td>(8.287)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.--Continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 3y</th>
<th>Model 3z</th>
<th>Model 3aa</th>
<th>Model 3bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1(S)</td>
<td>0.00476</td>
<td>0.00101</td>
<td>0.00122</td>
<td>0.00085</td>
</tr>
<tr>
<td></td>
<td>(1.839)</td>
<td>(.159)</td>
<td>(.4995)</td>
<td>(.3662)</td>
</tr>
<tr>
<td>M2(S)</td>
<td>0.00508</td>
<td>0.00459</td>
<td>0.00533</td>
<td>0.00573</td>
</tr>
<tr>
<td></td>
<td>(2.075)</td>
<td>(2.000)</td>
<td>(2.309)</td>
<td>(2.598)</td>
</tr>
<tr>
<td>M3(S)</td>
<td>0.00412</td>
<td>0.00298</td>
<td>0.00549</td>
<td>0.00549</td>
</tr>
<tr>
<td></td>
<td>(1.791)</td>
<td>(1.384)</td>
<td>(2.522)</td>
<td>(2.640)</td>
</tr>
<tr>
<td>M4(S)</td>
<td>0.00597</td>
<td>0.00584</td>
<td>0.00571</td>
<td>0.00578</td>
</tr>
<tr>
<td></td>
<td>(2.551)</td>
<td>(2.665)</td>
<td>(2.587)</td>
<td>(2.746)</td>
</tr>
<tr>
<td>M5(S)</td>
<td>0.00788</td>
<td>0.00610</td>
<td>0.00671</td>
<td>0.00615</td>
</tr>
<tr>
<td></td>
<td>(3.291)</td>
<td>(2.720)</td>
<td>(2.971)</td>
<td>(2.854)</td>
</tr>
</tbody>
</table>