Who Goes in and Out of the Hospital Patient Room?

Authors: James Arbogast, Jeff Quinn, Tracy Clark, Lori Moore, Maria Thompson, Pamela Wagner, Beth Young, & Albert Parker

NOTICE: this is the author’s version of a work that was accepted for publication in American Journal of Infection Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in American Journal of Infection Control, [vol. 45,issue no. 6, June 2017] DOI# 10.1016/j.ajic.2017.04.054


Made available through Montana State University’s ScholarWorks scholarworks.montana.edu
METHODS: In August 2015, the State Health Department (SHD) developed a standardized 3-page data collection worksheet to assess cleaning, high-level disinfection, and sterilization practices in ambulatory care. The worksheet included questions on instrument design (e.g., hinged, plastic), timing of cleaning, biological monitoring, instrument packaging, staff training, and maintenance records. The tool included yes/no, multiple choice, and free text fields. SHD staff administered the tool to clinic staff via phone interview or during a SHD site visit. Rationale for tool administration were prior reports of lapses in reprocessing and sites requesting a voluntary, consultative infection prevention visit. Data from the completed worksheets were imported into Excel and frequencies calculated.

RESULTS: From August 2015 to May 2016, SHD conducted a total of 26 assessments in standalone and hospital-affiliated clinics. The majority were completed via telephone (84.6%) and prompted by reports of infection control lapses (84.6%). Telephone interviews ranged from 20-45 minutes and on-site visit assessments from 30-60 minutes. Cleaning practice gaps included lack of instrument drying (15.4%) and visual inspection (34.6%). Infrequent staff training was reported with 42.3% of the clinics offering training only upon hire. Additional gaps discovered were insufficient autoclave main-tenance, spore testing, and biologic testing.

CONCLUSIONS: Implementation of a data collection tool to capture cleaning, high-level disinfection, and sterilization practices is an efficient way to identify reprocessing gaps in ambulatory care. Knowledge of these gaps can target education for ambulatory care. Administering the tool through the SHD allows for a broader characterization of community practices.

Session ADS-026
12:30-1:30 p.m.
What Happens When the FDA Recalls Frequently Used, High Risk Equipment?

JoEllen Harris, RN, CIC, Director of Patient Safety and Quality Improvement, Sibley Memorial Hospital; Maire Zeipel, RN, MPH, Infection Prevention, Sibley Memorial Hospital; Tammy Bock, RN, Manager, Endoscopy, Sibley Memorial Hospital; Malorie Givan, MPH, CIC, Infection Preventionist, Sibley; Tina Hoang, MHE, CHES, Infection Preventionist, Sibley Memorial Hospital;
Ann Marie Thomas, RN, Director, Perioperative Services, Sibley Memorial Hospital

BACKGROUND: High level disinfection (HLD) is indicated for semi-critical items, such as endoscopes, that come in contact with mucous membranes and nonintact skin. Due to multiple outbreaks implicating ERCP scopes, there was an increased focus on reprocessing and the role of the Automated Endoscope Reprocessors (AERs). On November 13, 2015 the FDA recommended that hospitals transition from using Custom Ultrasound reprocessors for HLD of endoscopes. We describe the response to a recall of AERs used for HLD.

METHODS: Our first step in the response to the FDA recall was to conduct a Risk Assessment of all scopes reprocessed using the re-called AERs. The Risk Assessment focused on: volume and type of scopes reprocessed per AER; communicating with vendor and re-viewing Instructions For Use (IFU) for alternate ways to reprocess the scopes; feasibility of using alternative AERs or manual repro-cessing of scopes. Both short and long term interventions were initiated based on findings.

RESULTS: After careful review of the IFU for alternative HLD options it was determined that new AERs did not fit into the old decontamination room. A long term plan was developed to relocate the decontamination and clean storage spaces to a renovated space in the existing Endoscopy suite, improving the overall workflow. An interim plan was developed to continue reprocessing lower risk scopes on existing AERs with ad-ditional QA checks to ensure sufficient HLD. All ERCP scopes were reprocessed using a rented FDA-approved AER.

CONCLUSIONS: Responding to an FDA recall is multi-faceted and requires coordination from Infection Prevention, Engineering, Endoscopy staff, Central Sterile, Leadership, as well as outside vendors. A recall can take many months of coordination, planning, and incur unexpected expenses. In order to ensure safe patient care, all identified risks must be mitigated prior to implementing a permanent solution.

Session ADS-027
12:30-1:30 p.m.
Who Goes in and Out of the Hospital Patient Room?

James Arbogast, PhD, Hygiene Sciences & Public Health Advancements Vice President, GOJO Industries, Inc.; Jeff Quinn, PhD, Behavioral Science and Market Research Manager, GOJO Industries, Inc.; Tracy Clark, MSN, RN, Clinical Application Specialist, GOJO Industries; Lori Moore, BA, BSN, RN, MPH, CPPS, CHES, Clinical Application Specialist, GOJO Industries, Inc.; Maria Thompson, Clinical Application Specialist, GOJO Industries; Pamela Wagner, Clinical Application Specialist, GOJO Industries; Beth Young, Clinical Specialist, GOJO Industries; Albert Parker, Professor, Montana State University

BACKGROUND: The objective of this study was to determine what percentage of entries and exits (E/E) in and out of the patient room should be attributed to healthcare workers (HCWs) in a wide variety of hospital units. This is a critical question for hospitals considering an automated monitoring system (AMS) to measure hand hygiene performance (HHP) as a complement to data from visual observation. HCWs often implicate others and do not perceive a need to change their HH behavior because they are convinced that visitors, patients, and others are responsible for very low HHP data.

METHODS: Events (defined as patient room E/E) were observed and recorded by nurses not employed by the hospital. Observations were made in US and Canadian hospital units including emergency, ICU, medical surgical, oncology, and pediatrics. Observers classified events by: HCWs (e.g., nursing staff, aides, doctors, EVS, etc.), patients plus visitors, and other (e.g., clergy, hospice workers). Logistic regression was used to determine who was responsible for the most E/E events by category of individuals.

RESULTS: Observers recorded a total of 14,876 E/E events in 29 units of 16 hospitals with units varying in size from 10 to 41 beds. 84.3%of all E/E were attributed to HCWs; 15.0% were from patients plus visitors and 0.7% from others. The odds are 6 to 1 that an E/E into a patient room is by a HCW (P < .0005). Pediatric units had the lowest percentage of HCWs E/E (76.7% total).

CONCLUSIONS: This study demonstrates HCWs account for the greatest proportion of hospitalized patient room E/E. Further, the data show that others share a very small percentage of room E/E. Countering the argument that those individuals are responsible for the low unit HHP measured by AMS. This study demonstrates that other categories of individuals are not a deterrent to increasing unit-level HHP.