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ABSTRACT

Monothetic clustering is a divisive clustering method that uses a hierarchical,
recursive partitioning of multivariate responses based on binary decision rules that
are built from individual response variables. This clustering technique is helpful for
applications where the rules of groupings of observations as well as predicting new
subjects into clusters are both important. Based on the ideas of classification and
regression trees, a monothetic clustering algorithm was implemented in R to allow
further explorations and modifications.

One of the common problems in performing clustering is deciding whether a
cluster structure is present and, if it is, how many clusters are “enough”. Some well-
established techniques are reviewed as well as new methods based on cross-validation
and permutation-based hypothesis tests at each split are suggested.

Monothetic clustering is of interest to be applied in a variety of situations. This
can include data sets with circular variables, where the variables’ natures are not
linear. A method for monothetic clustering and visualizations of clusters with circular
variables was developed that could also be used in other classification and regression
tree situations. Clustering is also interesting for data sets where the responses can be
transformed into functional data, which has unique properties that need exploring.
Partitioning Using Local Subregions (PULS), a clustering technique inspired by
monothetic clustering to overcome some of its disadvantages in clustering functional
data, is discussed. In this algorithm, clusters are formed based on aggregating the
information from several variables or time intervals. In both monothetic clustering
and PULS, it is possible to limit the set of feasible splitting variables to be able to
create clusters for new observations without observing all variables or times to assign
new observations to the clusters.

R packages for these methods have been developed for others to use and test
and support the proposed research, and a detailed vignette is provided for utilizing
all the functions developed here.
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CHAPTER ONE

INTRODUCTION

Abstract: Cluster analysis, or clustering, is a set of techniques for dividing data

into groups, or clusters, that both maintain the internal cohesion within clusters

and the external isolation between clusters. It is widely used in statistics, data

mining, and machine learning with applications in data exploration, marketing,

medical diagnostics, computational biology, and many other areas. A specific type

of clustering, monothetic clustering, that uses a hierarchical, recursive partitioning

of multivariate responses based on binary decision rules that are built from individual

response variables, is the main theme of this dissertation, where we explore its

performance and applications to special data such as circular variables and functional

data. This chapter reviews the literature that paves a way for methods mentioned in

other chapters, including clustering, circular data analysis, functional data analysis,

and available statistical packages for those techniques in R.

1.1 Cluster Analysis

Cluster analysis, or clustering, is an unsupervised learning technique that

attempts to group subjects based on (multivariate) observations into clusters so that

the dissimilarity within clusters is smallest while the between cluster dissimilarities

are largest. The purpose of clustering is to identify hidden patterns where little or no

information about those patterns in the data are known. Clustering is widely used in

statistics, data mining, and machine learning with applications in data exploration,
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marketing, medical diagnostics, computational biology, and many others.

Let yiq be the ith observation on variable q with q = 1, . . . , Q, where Q is the

number of response variables and i = 1, . . . , n where n is the number of observations.

We seek to divide the n objects into partitions C1, . . . , Ck, . . . , CK , where K is the

number of clusters and Ck is the k-th cluster. As a simple example to illustrate

cluster analysis, we consider an artificial data set introduced by Ruspini (1970)

with 75 observations on two variables, x and y. The scatterplot of the data set

is shown in Figure 1.1 and a potential four cluster result of k-means and k-medoids

(mentioned below) are also plotted. In this simple example with only two variables,

a cluster includes data points that are “similar” to each other and “dissimilar” to

data points in other clusters. In higher dimensional data sets, the dissimilarities

between data points are more difficult to visualize, so a dissimilarity measure must

be defined, with choices such as Euclidean, Gower’s, Manhattan, and Mahalanobis

often considered. Commonly used clustering algorithms include k-means, k-medoids,

and Ward’s agglomerative hierarchical method, which are discussed below.

The k-means algorithm for a K group cluster analysis (MacQueen, 1967) starts

by initializing the K data points (called K cluster centers, or centroids). The

assignment step starts by assigning other data points to one of the K centers which

has the smallest squared Euclidean distance, in which the distance between two data

points yi and yj is defined as

d(yi,yj) = d2euc(yi,yj),

where deuc(yi,yj) is the Euclidean distance between two data points yi and yj,

deuc(yi,yj) =

√∑
q

(yiq − yjq)2. (1.1)
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(a) Four cluster result by k-means.
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(b) Four cluster result by k-medoids.

Figure 1.1: Scatterplot of the ruspini data set with two variables x and y. The data
points are colored by the cluster membership. Centroids and medoids are plotted
double in size and in different colors.

After this step, K groups (clusters) of data points have been formed. The centroid

yCk
, the center point of cluster Ck, is re-calculated as the mean of all data points in

that cluster, which is

yCk
=

∑
i∈Ck

yi

nk

,

where nk is the number of the data points in cluster Ck. This is called the update

step. It then repeats the assignment step by re-assigning data points to their closest

centroids. The update and assignment steps are repeated until there is no more

change in the assignment step. By doing this, k-means clustering tries to minimize

the within-cluster sum of squares and, at the same time, maximize the between-cluster

sum of squares. k-means clustering has a straightforward algorithm, but it has some
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disadvantages. The problem of minimizing the total squared distance within clusters

is a non-deterministic polynomial-time (NP) hard. Lloyd’s algorithm (Lloyd, 1982),

which is commonly mentioned in textbooks (e.g., Hastie et al., 2016; James et al.,

2013), uniformly randomly selects initial centroids from the clustering data points.

However, the clustering result can be locally optimal and is not guaranteed to be

the global optimum. Moreover, the clustering result can be different for each run,

depending on the initial K data points. This algorithm has been examined extensively

since it was introduced. Some researchers suggested modifications on the algorithms

such as introducing various algorithms to pick the initial points (Celebi et al., 2013)

or methods to avoid local optima (for example, a method suggested by Hartigan and

Wong, 1979). For more details on some of the research on k-means, see Everitt et al.

(2011, p 125).

Kaufman and Rousseeuw (1990) suggested using actual observations as the

representatives of the clusters (which they called medoids) instead of centroids, the

means of all data points in the clusters, as in k-means. The corresponding k-medoids

clustering technique then assigns other observations to their nearest medoids to form

the clusters. Partitioning around medoids (PAM) is an algorithm suggested for

performing k-medoids. PAM starts with the build step by choosing the initial K

representative observations that have the minimum average (or sum) distance to

other observations. Subsequently, other observations are considered to replace the

representative ones in the swap step until the average (or sum) distance to other

observations cannot be any smaller. Although k-medoids shares many similarities

to k-means, the use of actual observations as the representative data points of the

clusters provides a different optimization target, that is, to minimize the average

(or sum) distance (or dissimilarity) of observations to their closest medoids. This

makes k-medoids more flexible than k-means in terms of allowing any dissimilarity
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measure besides (squared) Euclidean distance. Moreover, k-medoids is more robust

with respect to outliers (Kaufman and Rousseeuw, 1990).

Another standard clustering method is hierarchical clustering. This approach

is different from k-means and k-medoids in that the number of clusters do not

have to be decided a priori. The agglomerative (or bottom-up) hierarchical method

starts by considering each individual observation as one cluster. The two clusters

(observations) that are most similar to each other will then be fused with each other

to form a larger cluster. The algorithm continues this step until there is only one

cluster containing all observations. The clustering process can be represented in a

tree, called a dendrogram, and the researchers can decide on the number of resulting

clusters using the dendrogram. There are two issues that need to be addressed in

the hierarchical methods. First, hierarchical clustering is based exclusively on the

(dis)similarity between observations, so it is important to choose a suitable distance

metric. The most common distance metric used is Euclidean distance. Second,

the (dis)similarity measure between clusters, which is called linkage, needs to be

defined for the algorithm to decide which two clusters to be fused in the next step.

Linkages include complete (the greatest distance between all pairs of observations

in two clusters), single (the smallest distance between all pairs of observations in

two clusters), average (the average distance between all pairs of observations in two

clusters), centroid (the distance between the centroids of two clusters), and Ward’s

method.

Ward (1963) introduced the criterion for fusing two clusters based on minimizing

the change in the total within-cluster sum of squared distance when fusing the clusters,

defined as
∑

k I(Ck), where

I(Ck) =
∑
i∈Ck

d2euc(yi, yCk
). (1.2)
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(b) The four cluster solution.

Figure 1.2: Result of Ward’s agglomerative hierarchical method on ruspini data.

Therefore, the target of Ward’s method is similar to k-means, which is to minimize

the total sum of squared distance of the clusters. According to Murtagh and Legendre

(2014), there are two realizations of Ward’s method target function, one that uses

the sum of squared distance between observations (Ward1) and another one that uses

the square root sum of squared distance between observations (Ward2). Ward2 is

the one attributed to Ward (1963). It maintains the original target function (Eq.

1.2) correctly, and is suggested as the better version of the algorithm. Murtagh and

Legendre (2014) also showed that Ward1 can produce the same results as Ward2 if

the input distance of Ward1 is the squared input distance of Ward2. For example,

Ward1 using squared Euclidean distance to calculate distance matrix will result in

the same clustering results as Ward2 using Euclidean distance. The Ward2 algorithm
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applied to ruspini data set gives a dendrogram and the four cluster result displayed

in Figure 1.2.

1.2 Monothetic Clustering and Cluster Visualization

The previous three clustering methods belong to a group of methods called

polythetic clustering (MacNaughton-Smith et al., 1964), that use combined infor-

mation of variables to partition data. Clusters created are similar “on average”

but may share no common characteristics. In contrast, monothetic cluster analysis

(Sneath and Sokal, 1973) is a clustering algorithm that produces clusters with shared

characteristics, such as the same category of a categorical response or in the same

interval of a quantitative variable, using a hierarchical, recursive partitioning of

multivariate responses based on binary decision rules that are built from individual

response variables. Monothetic clustering is the main interest of this dissertation and

is examined in different perspectives throughout the chapters.

Inspired by classification and regression trees (Breiman et al., 1984), Chavent

(1998) suggested a monothetic clustering algorithm that searches for splits from each

response variable that provides the best split of the multivariate responses in terms of

a global criterion called inertia, the total variability around the cluster centroid. In

the case of Euclidean distance (Equation 1.1), the inertia I(Ck) for cluster Ck would

be Equation 1.2.

It has been shown that the squared Euclidean distances for all observations

within a cluster and variation around the means within a cluster are directly related

(James et al., 2013), so the within cluster inertia can be equivalently calculated from
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the dissimilarity matrix as

I(Ck) =
1

nk

∑
(i,j)∈Ck,i>j

d2euc(yi,yj), (1.3)

where nk is the cardinality (size) of Ck. This result is used to justify the application

of many distance-based methods to non-Euclidean dissimilarities. For example,

Anderson (2001) applied Equation 1.3 to Bray-Curtis dissimilarities (Bray and Curtis,

1957), a non-Euclidean semi-metric measure that does not satisfy the triangular

inequality. Hence the monothetic clustering algorithm can also be directly applied to

non-Euclidean distances and other dissimilarities, including data that contain circular

variables (see Chapter 3), mixed data with categorical and quantitative variables, and

even data with missing observations.

A binary split s(Ck) on a cluster Ck divides its observations into two smaller

clusters, CkL and CkR. The inertia decrease before and after the partition is defined

as

∆(s, Ck) = I(Ck)− I(CkL)− I(CkR), (1.4)

and the best split s∗(Ck) is the split that maximizes this decrease in inertia,

s∗(Ck) = argmax
s

∆(s, Ck). (1.5)

The same algorithm is then recursively applied to each sub-partition, recording

splitting rules on its way. The result of the algorithm is a set of hierarchical binary

rules for assigning cluster membership. Therefore, the resulting hierarchy can be read

and displayed as a decision tree.

In the example of clustering the ruspini data to a four cluster solution, the

splitting rule tree and the application of the rules to the data set can be seen in Figure
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(b) Cluster result with splitting rules.

Figure 1.3: Monothetic clustering on the ruspini data with four cluster solution.

1.3. The figure clearly shows that the clusters belong to four distinct quadrants.

Therefore, the characteristics of each cluster can be interpreted based on the values

of y (whether the observations have y larger or smaller than 91), then the values of

x (if observations have y < 47 then the cut point is x = 47, and if observations have

y > 47 then the cut point is x = 68.5).

Chavent et al. (2007) compared the monothetic clustering to k-means and Ward’s

method by simulation and application to six real-life data sets (three data sets with

numerical variables and three data sets with categorical variables with known true

cluster memberships) from the UCI Machine Learning repository (Dua and Graff,

2019). They found that monothetic clustering performed better than k-means and

Ward’s methods in terms of correct classifications of objects when the number of

clusters is small. Also, for numerical data sets, the monothetic clustering had a

better performance when the number of observations were larger.

In multivariate data analysis, because scatterplots are limited at 2 or 3
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Figure 1.4: CLUSPLOT of monothetic clustering of the ruspini data with two clusters.
The axes are the first and second principal components from the PCA of the data.
We can see bimodal patterns in both clusters, indicating that the two cluster result
is not sufficient for these data.

dimensions, it is not possible to visualize the results of a cluster analysis effectively

when the number of variables is larger than 3. There are statistical methods

to attempt to combine the variables to reduce the dimensions such as Principal

component analysis (PCA) and Multi-dimensional scaling (MDS), that can be used

to visualize clusters in a 2-dimensional plot such as CLUSPLOT by Kaufman and

Rousseeuw (1990). The clusplot function in the clusplot package (Pison et al.,

1999) can create a CLUSPLOT in R (R Core Team, 2019), with an example of

plotting the ruspini cluster results in Figure 1.4. Although plots like CLUSPLOT

can help visually check if more clusters are needed or if there is any misclassification

in the cluster result, because of the dimension reduction through linear combinations

of variables done by the methods, the meaning of the original variables is lost, making

it more difficult to interpret the results.

The Parallel coordinates plot (PCP, Inselberg and Dimsdale, 1987) is a means
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Figure 1.5: The points in Euclidean coordinates (left) and their representations in
Parallel coordinates plots (right). The variables in PCPs are scaled to have the same
length with the minimum and maximum values shown.

to display multi-dimensional data where Q variables are represented by Q lines,

placed equidistant and perpendicular to the traditional x-axis (hence the name

parallel coordinates). A multivariate data point yi (1 ×Q) that has the coordinates

(yi1, yi2, . . . , yiQ), a point in a Euclidean Q-dimensional space, is a polygonal line

whose q-th vertex is at the yiq value on the q-axis for q = 1, 2, . . . , Q. Because points

in Euclidean space can be displayed in a PCP as line segments (see Figure 1.5 for

a visual explanation), the linear dependencies between variables can be detected.

Mostly parallel lines in PCP are evidence for a positive linear relationship between
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Figure 1.6: A parallel coordinates plot for the ruspini data. The cluster result of
monothetic clustering with 4 clusters is displayed in colors. The thicker lines are the
medoids of the clusters.

neighboring variables, mostly intersecting or crossing lines are evidence for a negative

linear relationship, and other patterns may be discerned by tracking combinations

of results across the Q variables. Another useful characteristic of a PCP as a

visualization tool for cluster analysis is the ability to display and explore the identified

sub-groups and highlight cluster centroids or medoids. Finally, the convergence of

lines to discrete values of a (discrete or categorical) variable is visual evidence of

sub-groups in the data set with common characteristics (Härdle and Simar, 2015,

Chapter 1). For the ruspini example, the PCP of the four cluster result of monothetic

clustering is shown in Figure 1.6. The values of x and y are scaled to have the same

value range (same minima and maxima). The characteristics of the clusters regarding

the relationship between x and y can be visualized. When a cluster result of a real

data set is plotted in PCP with an appropriate choice of variable order on the x-axis

and rotation (for circular variables), the interpretations can be more interesting, as

in Section 3.4.2 in Chapter 3.
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Figure 1.7: Different possible cluster solutions of monothetic clustering for ruspini
data.

1.3 Choosing the Number of Clusters

One of the main benefits of cluster interpretation is to describe the shared

characteristics of the members of each cluster. The choice of the number of clusters,

K, greatly impacts the group memberships and, hence, the interpretation of the

results. If K is too small, it puts “unlike” subjects together. On the other hand,

if K is too large, it would split observations that should be together. Picking the

“reasonable” K is critical for any cluster analysis. For example, possible cluster

solutions of ruspini with different numbers of clusters using monothetic clustering

can be seen in Figure 1.7. Visually, the two and four cluster solutions seem to be

reasonable, but if five clusters are chosen, another cut has to be done even though

the clusters are not visually separated, so it would not be recommended.

Many metrics for choosing the number of clusters have been mentioned in the

clustering literature, such as a paper on the comparison of metrics by Milligan and

Cooper (1985), and implemented in software such as the package NbClust (Charrad
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et al., 2014) in R. However, there is no universally “good” metric for all clustering

problems or algorithms even though some are more commonly used than others. In

this dissertation, we chose two classic metrics that have good performance and are

suitable for monothetic clustering to compare to our new approaches.

1.3.1 Average Silhouette Width

Rousseeuw (1987) introduced the average silhouette width to quantify the

structure of a cluster result. The silhouette width is a measure of how “comfortable”

an observation is in the cluster it resides in. Let a(i) be the average dissimilarity

between observation i and other observations in the same cluster, d(i)k be the average

dissimilarity between i and other observations in cluster k that is not its own cluster,

and b(i) = mink(d(i)k) be the minimum average dissimilarity from i to other clusters,

then the silhouette width of an observation i is defined to be

s(i) =
b(i)− a(i)

max(a(i), b(i))
. (1.6)

The silhouette width, s(i), can obtain values from −1 to 1 corresponding to the

state of observation i in its cluster. The recommended interpretation is that if the

silhouette width is between 0 and 1 it is “happiest” in its existing cluster; if it is 0, the

observation is ambivalent about cluster membership vs. the next closest cluster(s);

and if it is between −1 and 0, the observation “wants to leave” the current cluster.

A global measure for a cluster solution is found by averaging all n silhouette

widths, defining the average silhouette width as

s̄ =

∑n
i=1 s(i)

n
. (1.7)

The cluster structure with K clusters that has the maximum average silhouette width
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will be considered as the “optimal” structure. Rousseeuw (1987) suggested that a

graphical display of the average silhouette width should also be used to detect unusual

average silhouette width values due to outliers.

Although average silhouette width is explicitly recommended by Kaufman and

Rousseeuw (1990) for selecting the number of clusters in their PAM algorithm, it can

be applied to any cluster solution if the dissimilarity matrix and cluster memberships

are available. While average silhouette width is a clear criterion for choosing the

number of clusters in a clustering problem, it has a major limitation in that it cannot

select a single cluster solution because it is not defined on K = 1. In practice, large

average silhouette width values for K = 2 are often observed when no real clusters

exist in the data set, making its use for selecting between K = 1 or K = 2 problematic.

1.3.2 Caliński and Harabasz (CH)’s Pseudo-F

Caliński and Harabasz (1974) proposed the use of the idea of an F -statistic as

a criterion to choose the number of clusters, K, to maximize the variation between

clusters relative to the variation within clusters. Their pseudo-F can be calculated

as

pseudo−F =
B(K)/(K − 1)

W (K)/(n−K)
(1.8)

where B(K) is the between cluster sums of squares

B(K) =
K∑
k=1

Q∑
q=1

nk(y·qk − y·q·)
2,

and W (K) is the within cluster sums of squares

W (K) =
K∑
k=1

∑
i∈Ck

Q∑
q=1

(yiqk − y·qk)
2,
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where nk is the number of data points in cluster Ck, yiqk is the ith observation of

variable q in cluster Ck, y·qk is the average value for all observations for variable q in

cluster Ck, and y·q· is the grand mean of all n observations in variable q.

Because the pseudo-F is the ratio of the variance between the groups to the

variance in the residuals, the use of K clusters is suggested when the observations

are similar within groups (small W (K)) but different between groups (large B(K)).

However, like the average silhouette metric, the pseudo-F needs at least two clusters

to be calculated so it cannot select a single cluster solution and often shows large

values for K = 2 when only one cluster is present.

To overcome the limitation of not being able to consider a one cluster solution

(that no clustering should be done), we suggest two methods that are inspired by the

decision trees of monothetic clustering to assist in choosing a potentially reasonable

number of clusters when no other information about the context or problem is

available. Having been widely used in classification and regression trees (Breiman

et al., 1984), M -fold cross-validation is adapted for use in deciding the number of

clusters in monothetic clustering. Another method is inspired by conditional inference

trees (Hothorn et al., 2006), where a hypothesis test is done at every split to assess

evidence against the global null hypothesis of independence between the response

variable and the covariates. A simulation study is done to compare the performance

of suggested methods with average silhouette width and CH’s pseudo-F in correctly

picking the true simulated number of clusters. Finally, a hybrid method is also

suggested to exploit the combined benefits of different methods. More details are

given in Chapter 2.
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1.4 Clustering Data with Circular Variables

In some applications, a variable can be measured in angles, when the directions

of an object or event are observed. Examples include the wind directions in a

study interested in counting the number of particles carried in the air in Antarctica

(Šabacká et al., 2012), or the aspect of the slope at various positions in a study of

the relationship between the snow density with other factors in a mountainous area

(Wetlaufer et al., 2016). Such variables are referred to as circular variables.

There are several characteristics of circular variables that make them different

from conventional variables. Directional data are appropriately measured in angular

units (either degrees or radians), creating values that are bound between the “starting

point” (e.g., 0 degrees) and the “ending point” (e.g., 360 degrees) where these two

points coincide with each other. As the result, these data are usually depicted by

angles in a circle, hence the usage of the name circular variable. The rotation

direction is also an important feature of this type of variable as conventions differ

across fields and software. For instance, in the R package circular (Agostinelli and

Lund, 2017), true east is 0o and counter-clockwise is the rotation direction, while

geographic information system (GIS) software such as ArcGIS (Esri, 2018) takes true

north as zero and clockwise as the rotation direction. This means that in R an angle

of 60o would be 30o in ArcGIS. A related issue is whether the angle is from or to

the direction of, say, the wind. It is important for interpretation of results for these

aspects to be clearly defined.

To properly display these characteristics, circular variables are usually depicted

in or on circles, with the data points put on the circle, or by vectors based on the

angles in the circle. Standard exploratory data analysis plots, such as the dotplot,

histogram, stem and leaf, density plot, etc., have circular versions. A unique plot that
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Figure 1.8: A circular data display of the distribution of the wind directions measured
at the Bonney Riegel location in McMurdo Dry Valleys in the Antarctic from July 7,
2008 to July 14, 2008 (details in Chapter 3). The plot includes rose diagram (bars),
dot plot (dots around circle), and nonparametric density plot (red line outside or on
circle).

can be used to examine the distribution of a circular variable is the rose diagram,

which is believed to first be used in 1858 to depict the effect of sanitation of the

hospitals for the British Army by months across the year (the months were treated

as circular) (Fisher, 1993). It is very similar to a circular version of the histogram,

but the bars are wider at the end. Figure 1.8 is an example of a combination of rose

diagram, circular dotplot, and circular density plot on a circle for wind direction data

measured in Antarctica (more in Chapter 3).

The analysis of data sets including circular variables with such unique char-

acteristics requires a different set of statistical methods from conventional “linear”

variables. There are books dedicated to this topic (e.g., Fisher, 1993; Jammalamadaka

and SenGupta, 2001; Pewsey et al., 2013) that develop parametric models and

analytic tools for circular variables. They addressed statistical techniques focused
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Figure 1.9: An example of a two partition split of a circular variable. Two arcs are
created by splits at 0 and 125 degrees.

on modeling with circular variables but do not address the topic of multivariate data

analysis, specifically classification, regression trees, or visualizations with more than

2 variables.

Circular variables were also mentioned in the context of a regression tree scheme

where they are used as response as well as explanatory variables. When a circular

predictor is used to split the tree, all of the possible “arcs” formed by two values are

examined to determine which one optimizes the target function. Therefore, the split

on this variable, if it happens, will rely on two values, not just one value as with a

typical quantitative variable (Lund, 2002). For example, in Figure 1.9, two arcs (0,

125) and (125, 0) can only be created by splitting at both 0 and 125.

As mentioned above, the first crucial decision in a clustering problem is how the

distance between data points is measured. While there are plenty of available distance

metrics for conventional quantitative, categorical, and mixed variables to choose from,

there is little literature on this for circular variables. It is important to note that the
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Figure 1.10: Distance between two points (in degrees) of a circular variable.

distance metric needs to work in data sets with a mixture of conventional and circular

variables.

Lund (1999), while examining the least squares regression for a model involving

a circular response and/or predictor, defined the distance between two data points y1

and y2 (measured in either radian/degree units) as

dlund(y1, y2) =
1

2
(1− cos(y1 − y2)) . (1.9)

The value dlund(y1, y2) therefore has the range from 0 when y1 = y2 and 1 when y1 is

opposite of y2 in a circle (Figure 1.10a). It is a distance metric because it satisfies the

set of four required properties of a distance metric (Arkhangel’skii and Pontryagin,

1990), including:

1. Non-negativity: d(y1, y2) ≥ 0,

2. Identity of indiscernibles: d(y1, y2) = 0 ⇔ y1 = y2,

3. Symmetry: d(y1, y2) = d(y2, y1), and
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4. Triangle inequality: d(y1, y3) ≤ d(y1, y2) + d(y2, y3).

Another possible measure of distance between two data points is the measure of

the smaller angle between the points on a circle, i.e.,

dsma(y1, y2) = 180− |180− |y1 − y2|| , (1.10)

where y1 and y2 are measured in degrees (Jammalamadaka and SenGupta, 2001,

Section 1.3.2). When y1 and y2 are measured in radians, Eq. 1.10 uses π in place of

180. This measure of distance retains linearity so the change in distance is constant

across all values (Figure 1.10b). This distance measure also satisfies all properties of

a distance metric and it can be used in monothetic clustering using Equation 1.3.

A (dis)similarity measure for mixed data types is Gower’s dissimilarity (Cuadras

and Arenas, 1990; Gower, 1971; Pavoine et al., 2009). Gower (1971) proposed a

similarity measure among observations from various types of variables: quantitative,

categorical, and binary. It can be used in Equation 1.3 when converted to a

dissimilarity measure. Gower’s dissimilarity for a data set with Q variables is

dgow(i, j) =

∑Q
q=1w(yiq, yjq)d(yiq, yjq)∑Q

q=1w(yiq, yjq)
, (1.11)

where d(yiq, yjq) is the distance between observations i and j regarding the variable q

and w(yiq, yjq) is the weight coefficient. It can incorporate categorical variables with

d(yiq, yjq) is 0 if the two observations belong to the same category of q and 1 otherwise.

An additional feature of Gower’s dissimilarity is that it can also accommodate some

missing values, with w(yiq, yjq) set to 0 if the value is missing for either or both of the

observations and w(yiq, yjq) is set to 1 if both are available. This drops the comparison

between two observations on that variable and re-weights the resulting dissimilarity.
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If q is a linear quantitative variable,

d(yiq, yjq) =
|yiq − yjq|

maxi,j |yiq − yjq|

is a scaled Manhattan (city block) distance, which is 0 when yiq and yjq are the same

and 1 for maximum differences. Gower’s dissimilarity formula provides distances

between 0 and 1. Details and examples can be seen in Everitt et al. (2011). The

original Gower’s dissimilarity does not have a formula for calculating the distances

between pairs of data points in circular variables, but Pavoine et al. (2009) extended

Gower’s dissimilarity to this type of variable by using Lund’s distance, dlund(y1, y2),

or a fraction of smaller arc distance, dsma(y1, y2)/180, to ensure that the distance

lies in [0, 1] as other Gower’s dissimilarity formulas. In Chapter 3, we apply this

Gower’s dissimilarity for circular variables to achieve a distance matrix of the data

set of particle counts in Antarctica which includes a circular wind direction variable

and perform monothetic clustering on it to explore structure in that data set.

1.5 Functional Data

Measurements y taken over some ordered index t such as time, frequency, or

space and thought of as curves or functions of the index t are called functional data,

y(t) (Ramsay and Silverman, 2005). Functional data have, possibly, a high frequency

of observations over the index t and are assumed to be generated by a smooth

underlying process. Some examples of functional data include the growth curves

for girls in the Berkeley Growth Study (Tuddenham and Snyder, 1954), hydraulic

gradients in wetlands (Greenwood et al., 2011), or daily sea ice extent area over time

in the Arctic Sea (Fetterer et al., 2018). The last example is the motivational data

set for this dissertation in Chapter 4, although this is the first work to consider these
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data as functional.

Clustering can be useful for functional data to find groups of curves sharing

common characteristics and find representative curves corresponding to different

modes of variation in the data. Early applications of clustering functional data

considered the functions at arbitrary, or originally observed, discrete values of the

argument t, which does not fully capitalize on the functional nature of the data.

More recently, various approaches to clustering functional data have been proposed.

An extensive overview of various functional data clustering research can be seen in

Hitchcock and Greenwood (2015).

Functional data are usually represented as a combination of basis functions and

estimated coefficients for each basis function. Tarpey and Kinateder (2003) used k-

means on these basis representations of functional data which ends up being a cluster

analysis of the estimated basis coefficients when the bases used are orthogonal. In

the same paper, Tarpey and Kinateder also showed that if the variability of shapes of

curves is of interest, the clustering algorithm can be performed on the first derivative

of the function to effectively remove the variability of the mean of each curve.

Some researchers have attempted to adapt traditional multivariate clustering

methods to functional data. Distance-based clustering techniques such as agglomer-

ative hierarchical clustering (Clarkson et al., 2002) and PAM (Hitchcock et al., 2007)

have been used on dissimilarity matrices from pairs of functions. Tarpey (2007) used

L2 distance between functions, yi(t) and yj(t), with t the index within a fixed interval

T , defined as

d(yi, yj) =

√∫
T

[yi(t)yj(t)]2dt, (1.12)

as a distance measure between functions and their cluster mean in the k-means

clustering framework. He showed that using different basis functions (hence different
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linear transformations) to represent functions can result in very different cluster

results. Therefore, this approach is more effective when some linear transformation

is performed on the curves to minimize the within-cluster variance and maximize

the between-cluster variance. Moreover, when the basis functions are orthogonal,

clustering directly on functions using the L2 metric is equivalent to clustering the

raw data using Euclidean distance. Suarez and Ghosal (2016) suggested calculating

dissimilarity based on the average number of shared detail coefficients in the Wavelet

basis representation of the functions. This approach involves using assigning Dirichlet

process prior distributions to the detail coefficients and estimating them by the

Monte Carlo Markov Chain (MCMC) method. Model-based clustering (Banfield

and Raftery, 1993) is also used in functional data clustering. James and Sugar

(2003) further parameterized the function’s basis coefficients to form a random

effects model to cluster sparsely sampled functional data. Other functional data

clustering approaches involve using a conventional clustering approach using rank-

based correlation as the dissimilarity measure for functional data (Heckman and

Zamar, 2000); or projecting sparsely measured functional data into a reduced-

dimensional subspace by applying the functional principal component analysis

(FPCA) and then applying conventional clustering techniques on the FPCA scores

(Zajacova et al., 2015).

In Chapter 4, we apply monothetic clustering and a similar clustering method

that utilizes the combined information of variables in intervals of the functional data

called Partitioning Using Local Subregions (PULS) on the Arctic sea ice extent data

to show that cluster analysis can give some similar conclusions as other studies and

suggest new ones. It gives us the ability to characterize similarities and differences in

the yearly ice patterns from 1978 to 2018. Also, a simulation study with simulated

functional data explores the performance of various clustering techniques in re-
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creating the true cluster membership.

Two criteria are used to evaluate the performance of the clustering methods.

The Rand index (Rand, 1971) is a simple measure to compare two different cluster

solutions. It counts the number of pairs of observations that either appear together

or are separate in two cluster solutions (number of agreements, A), divided by the

possible number of pairs from the data set (total number of agreements A and

disagreements D),

c(Ck, Ck′) = A/(A+D) (1.13)

Therefore, a higher Rand index indicates a better agreement between two cluster

solutions and 1 implies identical solutions. Hubert and Arabic (1985) argued that the

original Rand index does not account for “the agreement by chance”, which means

that there is no common baseline for the “worst case” and hence it is difficult to say

which cluster result is better than another based solely on the Rand index. Let nij

be the number of observations that are common to cluster Ci of the cluster result U

and cluster Cj of the cluster result V , and ni· and n·j be the number of observations

in cluster Ci and Cj, respectively. They suggested an adjusted version of the index by

subtracting both the numerator and denominator by the expected number of pairs in

which the objects are placed in the same clusters in two clustering results

c(Ck, Ck′) = (A− E)/(A+D − E), (1.14)

where

E = E

(∑
i,j

(
nij

2

))
=
∑
i

(
ni·

2

)∑
j

(
n·j

2

)/(
n

2

)
, (1.15)

thus, ensuring that the adjusted Rand index is bounded between 0 and 1. This index

is a better measure of agreement between two cluster results if the sizes of the clusters
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are not uniform or there are many clusters and provides the amount of agreement

over chance.

The variation around the cluster means is another criterion used in the simulation

study in Chapter 4 to compare the performance of clustering techniques. It is similar

to the idea of the coefficient of determination (the proportion of the variance of the

response variable explained by a model, R2). Chavent et al. (2007) used this criterion

under the name of the proportion of inertia explained, which is the proportion of total

within cluster inertia
∑

k I(Ck) (Equation 1.2) over the total inertia of the data set Ω,

I(Ω). This criterion has been subject to some recent criticisms based on the potential

to be inflated by scaling or projecting the data (Loperfido and Tarpey, 2018). Even

with its potential issues across transformations of data, it provides for somewhat

interesting comparisons of different methods on the same distance matrix.

1.6 R Implementation of the Suggested Methods

Most of the statistical methods mentioned above have been implemented in

various R (R Core Team, 2019) packages. Here is the overview of some packages used

in this dissertation.

Commonly used clustering methods such as k-means and Ward’s hierarchical

clustering are implemented in functions kmeans and hclust, respectively, in the core

stats package. There are two realizations of Ward’s method in the hclust function,

defined in the argument method of that function. Ward1 is implemented in the ward.D

option while Ward2 is achieved by using the ward.D2 option. Chavent et al. (2007)

created a package for their DIVCLUS-T method called divclust on GitHub (https:

//github.com/chavent/divclust). divclust can perform monothetic clustering

on numerical and/or categorical variables, visualize the splitting rules tree, and

calculate the total inertia at each step to assist the choice of number of clusters.

https://github.com/chavent/divclust
https://github.com/chavent/divclust
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However, because it is not based on the classification and regression tree (CART)

implementation (although the method is inspired by that method), its implementation

lacks several options such as specifying the minimum number of observations that

must exist in a node in order for a split to be attempted (minsplit) or the minimum

number of observations allowed in a terminal leaf (minbucket) and is not compatible

with existing output and plots commonly used in the rpart package (Therneau and

Atkinson, 2018).

The rpart package is an R package that implements methods in “Classification

and Regression Trees” (Breiman et al., 1984). The package focuses on creating

regression trees with text and graphical outputs, implementing cross-validation

methods to prune the trees and dealing with missing data in the CART methodology.

It is considered as a “standard” package for CART problems and the basis of other

packages such as party (Hothorn et al., 2006) created to improve the visualizations

of rpart results.

There are several packages in R that are designed to work with circular or

directional data. Some packages focus on the visualization of individual circular

variables (circlize, Gu et al., 2014) while other packages are designed for specific data

sources such as circularly distributed stimulus variables in psychology (CircularDDM,

Lin et al., 2018) or non-parametric circular methods (OmicCircos, Oliveira et al.,

2014). circular (Agostinelli and Lund, 2017) is another package that has many useful

functions related to circular variables, such as standard plots and model fitting with

circular variables. Pewsey et al. (2013) discussed the use of this package in their

book related to circular statistics. However, as far as we know, there is no package

that is designed to perform clustering on variables with circular variables. There

are packages designed for making PCPs with categorical variables such as ggalluvial

(Brunson, 2018) or ggparallel (Hofmann and Vendettuoli, 2013), extensions of existing
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functions in ggplot2 (Wickham, 2016). However, there are no packages that can mix

circular variables into PCPs, as discussed in Chapter 3.

A commonly used R package for performing FDA is the fda package (Ramsay

et al., 2018) which was developed to accompany the classic FDA book “Functional

Data Analysis” by Ramsay and Silverman (2005). Febrero-Bande and Fuente (2012)

extensively added other FDA methods such as depth measurements, regression

models, and unsupervised classification, among others, to the fda package with the

fda.usc package.

In this dissertation, most of the methods and functions are implemented in the

monoClust package maintained on GitHub (https://github.com/vinhtantran/

monoClust). This package was started by Brian McGuire and Mark Greenwood

as a small project and transferred to the current authors to maintain and improve.

This package reuses and modifies several core functions and arguments of the rpart

package, especially the text and plot outputs. It implements monothetic clustering

on numerical, categorical (in experimental phase), and circular variables. It can

also perform clustering on functional data in their discretized forms. Its extended

functionalities include plotting splitting rule trees in more details and colors, assisting

the choice of number of clusters by a permutation-based hypothesis test, and making

PCPs plot with circular variables. Additionally, another clustering method inspired

by monothetic clustering but designed to work directly with functional data called

Partitioning Using Local Subregions (details in Chapter 4) has also been assembled in

a separate package named PULS on GitHub (https://github.com/vinhtantran/

PULS). The functionalities, arguments, and usage of the two packages are described

in detail in Chapter 5.

https://github.com/vinhtantran/monoClust
https://github.com/vinhtantran/monoClust
https://github.com/vinhtantran/PULS
https://github.com/vinhtantran/PULS
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Abstract: Monothetic clustering is a divisive clustering method based on recursive

bipartitions of the data set determined by choosing splitting rules from any of the

variables to conditionally optimally partition the multivariate responses. Similar to

other clustering methods, the choice of the number of clusters is important in this

method to facilitate interpretations when there is no a priori information about a

reasonable number of clusters. The connections between monothetic clustering and

decision trees motivate the consideration of pruning methods to aid in the selection of

the number of clusters. We propose a cross-validation technique to find the number

of clusters that optimize prediction error or using permutation-based hypothesis tests

at each bi-splitting step, retaining splits with “small” p-values. A simulation study

is performed to evaluate the performance of the new methods and compare to some

other existing techniques.

2.1 Introduction

Cluster analysis (or clustering) attempts to group observations into clusters

so that the observations within a cluster are similar to each other and dissimilar

from observations in other clusters. It is often used when dealing with the question

of discovering structure from data where no supervised variable, the variable used

to evaluate the structure of other variables, exists. Therefore, cluster analysis is

considered a type of unsupervised learning. It is used in many fields including

statistics, machine learning, and image analysis. For a general introduction to cluster

analysis, see Everitt and Hothorn (2011, Chapter 6).

Let yiq be the ith observation (i = 1, . . . , n, where n is the number of observations

or sample size) on variable q (q = 1, . . . , Q, the number of response variables). Because

there is no supervised variable, all Q variables are considered “response” variables

and the interest is in exploring potential groups in these (multivariate) responses.
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Occasionally other information in the data set is withheld to be able to understand

clusters found in Q variables used in clustering. Clustering algorithms then attempt

to partition the n observations into K mutually exclusive clusters C1, C2, . . . , CK ,

so that the observations within a cluster are “close” to each other and “far away”

from those in other clusters. Clustering algorithms depend on the choice of data, the

desired number of clusters, and the selected measure of distance or dissimilarity among

observations. Commonly used distance metrics are Euclidean distance, Manhattan

distance, and Gower’s distance but there are many other ways to define proximity of

multivariate observations.

Because of the typically unknown structure of the data, there is no known

“correct” solution in most clustering problems. In general, it is desirable for a

clustering algorithm to create interpretable clusters, be computationally efficient,

and identify true structure in data sets, when it exists. Given a clustering algorithm,

the ability to interpret clusters is heavily influenced by the choice of K, the number

of clusters. If K is too small, it puts “dissimilar” observations together. On the

other hand, if K is too large, it would split observations into different clusters

that share many characteristics. Therefore, picking a “sufficient” K is critical

for any clustering algorithm. Moreover, there is also a question of whether any

cluster structure is present in the data for clustering to even take place. When the

data do not have a true cluster structure (e.g., a data set generated from a single

Gaussian distribution), the results of a clustering algorithm can be arbitrary and

misleading. This problem is related to the quantification of the degree of cluster

structure, called notions of clusterability (Ben-David, 2015). In a paper detailing the

question of one vs. more than one cluster, Adolfsson et al. (2019) suggested several

measures of clusterability, a measure of the degree of inherent cluster structure,

based on dimension reduction techniques (e.g., principal component analysis) and
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multimodality tests (e.g., Hartigan’s dip test, Hartigan and Hartigan, 1985). To

compare measures of clusterability, they performed a simulation study using different

cluster structures, such as one true cluster to assess the Type I error results for

unclusterable data and more than one true cluster to evaluate the power of the

measures, among others. These methods were developed to be independent of the

choice of clustering algorithm but do depend on choices of variables and dissimilarities.

Here, we first describe the use of monothetic cluster analysis in Section 2.2.

Next, we give an overview of several well-known methods for choosing the number of

clusters in a cluster analysis (Section 2.3) and introduce two novel methods that use

cross-validation and permutation tests to pick the “reasonable” number of clusters

(Section 2.4), which also relates to a type of clusterability assessment in monothetic

clustering. Finally, in Section 2.5, a comparison among those methods is performed

using a simulation study. Conclusions are presented in Section 2.6.

2.2 Monothetic Cluster Analysis

Monothetic clustering is a type of clustering that provides a hierarchical,

recursive partitioning of multivariate responses based on binary decision rules that are

built from individual response variables (Sneath and Sokal, 1973). Chavent (1998)

developed an algorithm implementing monothetic cluster analysis that was inspired

by classification and regression trees (CART, Breiman et al., 1984). This monothetic

clustering algorithm searches for splits from each response variable that provide the

best split of the multivariate responses in terms of a global criterion called inertia,

the total variability around the cluster centroid, and recursively partitions the data

set. In the case of Euclidean distances, the inertia, I(Ck) for cluster Ck, is defined as
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I(Ck) =
∑
i∈Ck

d2euc(yi, yCk
), (2.1)

where yCk
is the centroid of all observations in cluster Ck and d2euc(yi,yj) is the

Euclidean distance between observations yi and yj, defined as

deuc(yi,yj) =

√∑
q

(yiq − yjq)2. (2.2)

It has been shown that the sum of squared Euclidean distances for all

observations within a cluster and variation around the means within a cluster are

equivalent (James et al., 2013, p 388), so the within cluster inertia (Equation 2.1)

can be equivalently calculated from the dissimilarity matrix as

I(Ck) =
1

nk

∑
(i,j)∈Ck,i>j

d2euc(yi,yj). (2.3)

This result is used to justify the application of many distance-based methods to non-

Euclidean dissimilarities (Anderson, 2001). Hence the monothetic clustering algo-

rithm can also be directly applied to non-Euclidean distances and other dissimilarities,

including data that contain circular variables and mixed data with categorical and

quantitative variables or even data with missing observations.

A binary split s(Ck) on a cluster Ck divides its observations into two smaller

clusters CkL and CkR. The inertia decrease based on a proposed partition is defined

as

∆(s, Ck) = I(Ck)− I(CkL)− I(CkR), (2.4)
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Figure 2.1: Monothetic clustering on the ruspini data with four cluster solution.

and the best split s∗(Ck) is the split that maximizes this decrease in inertia,

s∗(Ck) = argmax
s

∆(s, Ck). (2.5)

The same algorithm is then recursively applied to each sub-partition, recording

splitting rules on its way. The result of the algorithm is a set of hierarchical binary

rules for determining cluster membership. The resulting hierarchy can be read and

displayed as a decision tree.
Figure 2.1 shows an example of the splitting rules and the created clusters for the

ruspini data set (Ruspini, 1970) using monothetic clustering for the Q = 2 variables
(x and y) and n = 75 observations. The monothetic clustering algorithm suggests
the first split at y = 91. In the newly created cluster that includes the data points
that had y ≥ 91, the algorithm suggests splitting at x = 68.5, while for observations
with y < 91, it suggests partitioning at x = 47. The set of splitting rules can be
summarized in hierarchical tree form as shown in Figure 2.1a with each rule being
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generated from one variable. The rules can be used to generate an interpretation of
the four selected clusters as: Cluster 1 includes observations that have y < 91 and
x < 47, while observations having y < 91 and x > 47 belong to cluster 2. Similarly,
having y > 91 and x < 68.5 are the characteristics of the observations in cluster 3, and
the rest of the data set that has large y (> 91) and x (> 47) belongs to cluster 4. The
clusters are visualized in Figure 2.1b. The plot colors are coded to be consistent with
the color in the terminal nodes of the tree. Using the MonoClust function (discussed
in Chapter 5), the splitting rules can also be printed as follows.

n= 75

Node, N, Within Cluster Deviance, Proportion Deviance Explained,

* denotes terminal node

1) root 75 250000 0

2) y < 91 35 43000 0.63

4) x < 47 20 3700 0.16 *

5) x >= 47 15 1500 0.16 *

3) y >= 91 40 47000 0.63

6) x < 68.5 23 3200 0.16 *

7) x >= 68.5 17 4600 0.16 *

While Chavent (1998) used simple data sets, ruspini and iris (Fisher, 1936),

to demonstrate the monothetic clustering algorithm, Piccarreta and Billari (2007)

have also used the same monothetic divisive clustering idea to group women based on

their life course states (marriage, child-bearing, and having a job) in each year of their

lives, and creating groups of life course trajectories based on the combination of work

and family orientation. Although they decided to retain 12 clusters, much more than

three original categories from a previous study (family oriented, work oriented, and

“the best of both worlds” groups), they are still able to interpret the resulting clusters
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using the participants’ life course states due to the rules defining those clusters.

Chavent et al. (2007) compared monothetic clustering to k-means (MacQueen,

1967) and Ward’s method (Ward, 1963) by simulation and application to six real-

life data sets (three data sets with numerical variables and three data sets with

categorical variables) from the UCI Machine Learning repository (Dua and Graff,

2019). Compared to k-means and Wards’ method, a benefit of monothetic clustering

is the ability to interpret the clusters based on shared characteristics from the split

variables and predict new observations by using the decision tree. However, the

partitioning based on one variable at a time is not as flexible as some other algorithms,

limiting its performance for complicated data structures and cluster shapes. They

found that monothetic clustering performed better than k-means and Ward’s methods

in terms of correct classification of known group memberships when the number of

clusters is small. Also, for numerical data sets, the larger the data set is, the better

result monothetic clustering had. Nevertheless, there have been limited studies to

compare monothetic clustering performance to other algorithms.

2.3 Some Existing Metrics for Choosing the Number of Clusters

Deciding on the number of clusters to report and interpret is an important part of

cluster analysis. In many applications, researchers can decide on a sufficient number

of groups based on the knowledge of the subject or sometimes based on visualization

of the data or clusters. However, in many cases, when there is little knowledge about

the structure of the data, a criterion based on the cluster results themselves may

provide useful information for this problem. Many metrics for choosing the number

of clusters have been mentioned in the clustering literature, such as papers on the

comparison of metrics by Milligan and Cooper (1985) and Hardy (1996), and also

implemented in statistical software such as the package NbClust (Charrad et al.,
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2014) in R (R Core Team, 2019). In those papers, Caliński and Harabasz (CH)’s

pseudo-F (Caliński and Harabasz, 1974) is among the metrics that have typically

good or even the best performance in the simulation studies on selecting the optimal

number of clusters, depending on the scenario and algorithm considered. Average

silhouette width (Rousseeuw, 1987) is a measure of how “comfortable” an observation

is in the cluster it resides in and has been commonly used to select an appropriate

number of clusters, especially for applications of the Partitioning Around Medoids

(PAM) algorithm (Handl et al., 2005; Kaufman and Rousseeuw, 1990).

2.3.1 Average Silhouette Width

Silhouette width (Rousseeuw, 1987) is a measure of how “comfortable” an

observation is in the cluster it resides in. Let a(i) be the average dissimilarity

between observation i and other observations in the same cluster, d(i)k be the average

dissimilarity between i and other observations in cluster k, and b(i) = mink(d(i)k) be

the minimum “distance” from i to other clusters, then the silhouette width is defined

to be

s(i) =
b(i)− a(i)

max(a(i), b(i))
. (2.6)

The silhouette value for the i-th observation, s(i), can then obtain values from −1 to

1. The recommended interpretation is that if the silhouette width is between 0 and

1, the observation is “happiest” in its existing cluster; if it is 0, the observation is

ambivalent about cluster membership versus next closest cluster; and if it is between

−1 and 0, the observation “wants to leave” the current cluster.

A global measure for a cluster solution is found by averaging all n silhouette
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widths, defining the average silhouette width for a K cluster solution as

sK =

∑n
i=1 s(i)

n
. (2.7)

The cluster structure that has the maximum average silhouette width is considered

as the “optimal” structure.

Average silhouette width is recommended by Kaufman and Rousseeuw (1990)

for selecting the number of clusters specifically in their PAM algorithm, but it can

be applied to any cluster solution if the dissimilarity matrix and cluster memberships

are available. Although average silhouette width is a clear criterion for choosing the

number of clusters in a clustering problem, it has a major limitation in that it cannot

select a single cluster solution because it is not defined on K = 1. In practice, large

average silhouette width values for K = 2 are often observed when no real clusters

exist in the data set, making its use for selecting K = 1 or K = 2 problematic.

Moreover, outliers are influential in the average silhouette width calculation. Because

of this, Kaufman and Rousseeuw (1990) suggested that unusual observations be

removed from the average silhouette width calculation, making subjective decisions

about outliers being singleton clusters part of using this criterion in practice.

2.3.2 Caliński and Harabasz (CH)’s Pseudo-F

Caliński and Harabasz (1974) proposed the use of an F -statistic as a criterion

to choose the number of clusters, K, in order to maximize the ratio between the

variation between clusters and the variation within clusters. The pseudo-F can be

calculated as

pseudo−F =
B(K)/(K − 1)

W (K)/(n−K)
(2.8)
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where B(K) is the between cluster sums of squares

B(K) =
K∑
k=1

Q∑
q=1

nk(y·qk − y·q·)
2,

and W (K) is the within cluster sums of squares

W (K) =
K∑
k=1

∑
i∈Ck

Q∑
q=1

(yiqk − y·qk)
2,

where nk is the number of data points in cluster Ck, yiqk is the ith observation of

variable q in cluster Ck, y·qk is the average value for all observations for variable q

in cluster Ck, and y·q· is the grand mean of all n observations in variable q. Both

B(K) and W (K) can be found from a dissimilarity matrix as a result of Equation

2.3, avoiding the need to calculate y·qk or y·q·. Because the pseudo-F is the ratio of

the variance of the groups to the variance in the residuals, K clusters are considered

a good choice when the observations are similar within groups (small W (K)) but

different between groups (large B(K)). However, like the average silhouette metric,

the pseudo-F needs at least two clusters to be defined so it cannot select a single

cluster solution and often shows large values for K = 2 when only one cluster is

present.

In Figure 2.2, the average silhouette width and CH’s pseudo-F methods are

applied to the ruspini data to find the “optimal” number of clusters with monothetic

clustering. In both methods, the criteria agree with each other and reach their maxima

at K = 4, suggesting the four cluster solution for this data set.
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Figure 2.2: The choice of clusters for the ruspini data made by Average silhouette
width and CH’s pseudo-F methods for monothetic clustering. Both suggest the use
of the K = 4 cluster solution.

2.4 Proposed Methods for Choosing the Number of Clusters

Average silhouette width and CH’s pseudo-F methods have shown their utility

for selecting optimal numbers of clusters when the true K > 1. However, they are

both unable to ever select a single cluster structure because their formula require

at least two clusters to be defined. Moreover, there is no “best” method across all

cluster analyses. Depending on the shape of the data and/or the clustering algorithm,

a specific metric may be better or worse than others in its suggestion for the number

of clusters. Because monothetic clustering is inspired by CART (Breiman et al.,

1984), methods developed for pruning the trees have potential to select the number

of clusters in monothetic cluster analysis. In particular, we explore an adaptation of a

cross-validation technique, where a global criterion related to prediction error is used

to compare different cluster solutions. Another approach inspired from conditional

inference trees (Hothorn et al., 2006) uses hypothesis tests at each split to decide if a

split should be performed or not.
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2.4.1 M -Fold Cross-Validation

Cross-validation (CV) is a popular method to “tune” many methods (see Hastie

et al., 2016, for example). In CART, cross-validation is used to prune the decision tree

after it is grown, often into an overly complicated (too large) tree with more terminal

nodes (groups) than needed. The M -fold cross-validation randomly partitions data

into M subsets with equal (or close to equal) sizes. M − 1 subsets are used as the

training data set to create a tree with a desired number of terminal nodes and the

other subset is used as validation data set to evaluate the predictive performance of

the trained tree. The process repeats for each subset as the validating set and the

mean squared difference of the observed and predicted is calculated.

To perform cross-validation in monothetic clustering, the partitioning tree is

built based on a training data set. An observed value, yiq, of the validation data set

will fall into one of the K clusters based on applying the rules from the tree built

with the training data and is predicted to be equal to the “central” point of that

cluster, ŷ(−i)q, which is the cluster mean on the variable q of the cluster created by

the training data when Euclidean distance is used. The estimate for the test error

for the m-th subset is

MSEm =
1

nm

Q∑
q=1

∑
i∈m

d2euc(yiq, ŷ(−i)q). (2.9)

This process is repeated for the M subsets of the data set and the average of these test

errors is the cross-validation-based estimate of the mean squared error of predicting

a new observation. The overall cross-validation based estimate is then

CVK = MSE =
1

M

M∑
m=1

MSEm. (2.10)
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The purpose of the cross-validation is to find a cluster solution that achieves

the smallest prediction error for new observations by comparing CVK for different

K. A naive approach is to pick the solution that has the smallest CVK (minCV

rule). However, in many cases, it can result in a very high number of clusters as the

error rate often keeps decreasing slightly as the number of clusters grows. To avoid

this problem in CART, Breiman et al. (1984) suggested picking the solution that is

simplest within 1 or 2 standard errors of the minimum error estimate (CV1SE and

CV2SE rules), where the standard error (SE) is

SE =

√√√√ 1

M − 1

M∑
m=1

(MSEm −MSE)2 (2.11)

and is generated from the cluster solution with the smallest CVK .

Because monothetic clustering is one of the few clustering algorithms that

provides a clear cluster prediction rule, we can use the binary rules to assign a

new observation to a cluster and use the multivariate cluster mean, when Euclidean

distance is used, to predict the response to find the cross-validation error estimate.

Further, because the MSE can be calculated for K = 1, the cross-validation method

can compare between the solution of one cluster versus more than one cluster. When

Euclidean distance is not used, the representative point of a cluster ŷ(−i)q can be

estimated using the medoid point (Kaufman and Rousseeuw, 1990). However, the

downside of the cross-validation methods is the tree has to be created M times for

each cluster size K one wants to check. It would be computationally expensive for

data sets with large n and/or large Q. Extensions of these ideas to other metrics

or dissimilarities have not been developed as far as we know. Simulation studies in

Section 2.5 assess its performance and compare it to other methods for Euclidean

distances.
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Figure 2.3: The choice of clusters for ruspini data made by 10-fold CV where minCV
selects 10 clusters and CV1SE selects 4.

An example of the criterion for the ruspini data is in Figure 2.3. The prediction

mean squared error (CVK) decreases when the number of clusters K increases. Ideally,

we should see CVK decrease and then increase, showing a clear choice of K that

minimizes prediction error. In this case, the number of clusters explored was not

large enough to observe an increase in CVK , if it occurs. That is the reason why the

minCV rule suggested that the maximum number of clusters considered as optimal,

which was 10. When adding the amount of 1 standard error to this minimum CVK ,

it creates a region that covers solutions of 4 to 10 clusters. Because 4 is the smallest

cluster solution in the region, it is the solution suggested by the CV1SE rule. We

can see that the CV1SE rule is much more conservative (i.e., choosing fewer clusters)

than the minCV rule, and it often picks the solution at or near the “elbow” in the

CVK plot.

2.4.2 Hypothesis Tests at Each Bipartition

This section is based on the idea of a formal hypothesis test for each split in

the partitioning tree and using p-values to stop tree growth. Specifically, the tree is
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grown until a split has a p-value higher than a pre-determined threshold (α or Type

I error rate) and then that split or any other sub-divisions are not considered. This

threshold is continually adjusted when the split is further down the tree to account

for inflated Type I error rates as sequences of tests are combined using Bonferroni

corrections (discussed below).

For monothetic cluster analysis, at any cluster (or node on the decision tree),

the proposed idea is to perform a hypothesis test, in which the hypotheses can be

stated as

H0 : The two new clusters are identical to each other, and

HA : The two new clusters are different from each other.

If there is strong evidence against the null hypothesis, then the cluster will be split into

two new clusters and the algorithm goes on to find the next best split in each cluster.

Alternatively, if the test shows insufficient evidence to reject the null hypothesis, the

monothetic algorithm stops, no other split is considered, the examined cluster will

be the last cluster in the cluster solution, and the tree is the final tree. The pair of

hypotheses, when clearly defined below, dictate how the test is done, what statistic

to be used, and how evidence against the null hypothesis (p-value) is calculated.

To allow applications with any dissimilarity measure, a nonparametric method

based on a permutation test is used. Permutation-based tests are attractive because

they do not require distributional assumptions (Berry et al., 2016; Boik, 1987). This

property is useful in clustering when the data points can come from any multivariate

distribution function. Anderson (2001) developed a multivariate nonparametric

testing approach called perMANOVA that involves calculating the pseudo-Fobs-ratio

(same as defined by Caliński and Harabasz, 1974) directly from any symmetric

distance or dissimilarity matrix using Equation 2.8 where the sum of squares are

calculated directly from the dissimilarities (Equation 2.3). The p-value can then
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be calculated by tracking the pseudo-F ∗ across B permutations and comparing the

results to our observed result, with p-value = count(F ∗≥Fobs)
B

.

A similar process has been used in the context of conditional inference trees by

Hothorn et al. (2006). They used a different test statistic but used its p-values to

limit trees developed to explain categorical, quantitative, or multivariate responses.

Some adjustments need to be made to account for the differences with

monothetic clustering compared to typical applications of perMANOVA. The aim

of the permutation test in clustering is to simulate sampling distribution of the test

statistic under the null hypothesis that two clusters are identical to each other. Under

that null hypothesis, the cluster labels are arbitrary, and can be randomly shuffled

to any observation. The pseudo-F ’s calculated from the shuffles using Equation 2.8

create the reference distribution and the proportions of the shuffled pseudo-F ’s that

are greater than or equal to the observed pseudo-F of the two original clusters out of

the number of shuffles, B, is the p-value of the test.

However, a complication that arises in these tests is that in monothetic

clustering, the split is based on the variable that has the maximum decrease in the

difference inertia between the current cluster and two new proposed clusters (Equation

2.5). This affects the permutation-based hypothesis test by systematically creating

p-values that tend to be too small relative to stated Type I error rate because the

chosen split is already the most extreme result possible on the variable that defined

the bipartition so results in inflated Type I error rates. A possible remedy is to use

only variation from the Q− 1 variables not used to define the candidate split in the

calculation of the pseudo-F statistic. Then the hypothesis test will assess whether

the binary split is useful on other variables by assessing the differences between the

two groups on the other Q − 1 variables. This modification means the test cannot

be performed in a data set that has only one variable (Q = 1). We call the shuffling
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between two cluster labels with the splitting variable excluded from the pseudo-F

statistic calculation cluster shuffling.

Even with the suggested remedy above, the fact that the optimization was not

repeated in developing the permutation distribution may be problematic. To avoid

that issue, we also propose another permutation-based hypothesis test that uses

a slightly different method for generating the null distribution. In this approach,

we first find our optimal split on the chosen variable and calculate some “measure

of clustering” as an observed test statistic. Then, we permute the values of the

selected splitting variable and repeat the optimization of finding an optimal split

on that variable to calculate the test statistic. The permuted test statistics form a

permutation distribution under the null hypothesis which is used to calculate a p-

value based on the number of times the permuted and then optimized results exceed

the original optimal result. Two different measures of clustering are considered, which

are the average silhouette width (AW) and CH’s pseudo-F . We call this permuted

hypothesis test method variable shuffling.

In both cluster shuffling and variable shuffling approaches, the p-value also needs

to be adjusted to account for multiple hypothesis tests required to reach a node further

down in the tree. For example, in the ruspini data set, the second split happens with

x at 68.5 but the hypothesis test for the split is conditional on the result of the

hypothesis test at its father node (where y was cut at 91 after rejecting its null

hypothesis). The next split at x = 47, in turn, is conditional on the rejections of the

previous two hypothesis tests. The probability of a Type I error on at least one of

these two tests is inflated unless we control for the accumulating number of tests. This

probability is getting higher and higher as the tree grows. Bonferroni-adjustment of

p-values involves multiplying the p-value by the number of tests required to get to

that node to consider it for splitting and can be used to control the overall Type I
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error rate for each set of tests. Specifically, we use

p-valueadj = min((No. of previous tests + 1)× p-valueunadj, 1). (2.12)

These adjusted p-values are compared to a pre-defined cutoff to decide if a split should

be made (p-valueadj < cutoff). Note that this is a slightly different use of Bonferroni

corrections than Hothorn et al. (2006) considered; they used depth in tree to adjust

their p-values.

For example, Figure 2.4 is the monothetic splitting tree with the cluster

shuffling permutation test’s p-value and AW statistic at each node. In the first

four partitions, the p-values from the permutation-based hypothesis tests are small

(< 0.05), indicating strong evidence that the split should be made. However, at the

fifth split (data are split at a x-value of 45 to generate the six cluster result), the

test has a very large adjusted p-value (p = 0.745), indicating that the split should

not be made and the tree growing should stop. Visually, in the cluster which has

observations having y > 91 and x < 68.5, a partition at x = 45 looks like a slice in

the middle of the points. If we consider the difference between two new partitions in

terms of the y-values only, the observations are basically the same. So in this case,

the hypothesis testing method suggests the five cluster solution.

The advantage of using these approaches in picking the cluster solution is that

it can choose the one cluster solution. The test can also be performed at the root

of the decision tree to decide if the data set should be partitioned at all. We assess

the “clusterability” using our suggested permutation-based methods in Section 2.5.1.

However, permutation-based tests can have a higher rate of wrongly rejecting the null

hypothesis when in fact it is true in some situations, such as when there are differing

distributions, especially variances, across groups (Boik, 1987). Another advantage of
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Figure 2.4: Monothetic clustering on the ruspini data with permutation-based
hypothesis tests (cluster shuffling method with pseudo-F statistic) applied at the
splits. Panel (a) contains the splitting rule tree with permuted p-value, and panel
(b) contains the scatterplot with the cuts as dashed lines. The last split happens
at x = 45 with p = 0.745, so the split (red dashed line) is not performed and the
clustering stops at the 5 cluster result.



50

this approach is the test can be embedded into the tree building procedure, so that

the test is performed every time a split is about to be made. With this combination,

the cluster analysis algorithm stops when the predefined significance level is crossed.

It may depend on the application to assess whether this is an advantage or limitation

of this method.

2.5 Simulation Study

2.5.1 Study 1: Unclusterable Data

The first simulation study assesses the ability of the methods in deciding whether

some cluster structure (with more than two clusters) is present in the data set or

not. Failure to identify data generated from a multivariate uniform distribution as

unclusterable leads to misleading cluster results and is a waste of time and resources.

A similar study to evaluate the Type I error of the measures of clusterability has

been done by Adolfsson et al. (2019). Type I error in a hypothesis test occurs when

the test incorrectly rejects the null hypothesis (Casella and Berger, 2002). Knowing

how a hypothesis test controls Type I error rate corresponding to a significance level

is helpful to decide whether that test is suitable for an application. A test that rejects

the null hypothesis with a higher error rate than nominal is a liberal test and is a

dangerous test to use while a test that is conservative may have low power to detect

real differences when present.

In order to check the Type I error rate of the suggested permutation tests with

different numbers of observations n and variables Q, we created 3 groups of data sets

with different sizes, namely 200 × 4, 200 × 8, and 300 × 4. Each group has 1,000

data sets with values randomly sampled from a multivariate uniform distribution in

R (R Core Team, 2019). These data sets were designed to have only one true cluster

of all data points so no distinct groups are present (Figure 2.5). The proportions of
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Figure 2.5: The realization of a simulated unclusterable data set (200 × 4). The data
set was simulated from a multivariate uniform distribution.

incorrectly choosing a greater than or equal to two cluster result are calculated for

the permutation-based hypothesis tests criteria including the cluster shuffling and the

variable shuffling approaches (either using AW or F statistics). In each permutation-

based hypothesis test, the observed test statistic is compared to the reference null

distribution from 1,000 permutations to calculate the p-value. A threshold of α = 0.05

is used to decide whether to reject the null hypothesis or not. The cross-validation-

based criteria (Section 2.4.1) are also performed on the simulated data to compare

its selection rates for one cluster (Table 2.1).

In the 200× 4 data sets, all three permutation-based hypothesis tests are liberal

tests with the rates of falsely rejecting the null hypothesis of no clustering structure

higher than α. The cluster shuffling method with the F -statistic has the highest

Type I error rate among the three methods (0.15), while the two versions of variable

shuffling methods are close to α = 0.05 (0.074 for AW statistic and 0.076 for F

statistic). There is not a substantial difference in the rejection rates using either test

statistic in the variable shuffling methods. Cross-validation-based criteria did not
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Table 2.1: Percentage of unclusterable data sets that the methods consider as
clusterable (out of 1000 simulated data sets). Overall α = 0.05 for hypothesis tests.

Rate of not choosing one cluster result

Clustering method 200 x 4 200 x 8 300 x 4

Cluster shuffling 0.150 0.251 0.142

Permutation Variable Shuffle w/ AW 0.074 0.112 0.064

Permutation Variable Shuffle w/ F 0.076 0.111 0.065

minCV 1.000 1.000 1.000

CV1SE 0.994 0.596 1.000

CV2SE 0.419 0.029 0.804

perform well in this study. MinCV and CV1SE almost never correctly picked one

cluster result, while CV2SE was wrong 42% of the time.

When the dimensions of the data increased from 4 to 8, both CV1SE and CV2SE

methods improved (false rejection rate of CV1SE and CV2SE are down to 0.596 and

0.029, respectively). All permutation-based methods did worse (around 0.112 for both

variable shuffling methods), while minCV was still not able to pick the one cluster

result. Conversely, when the number of data points increased from 200 to 300 in 4

dimensions, the false rejection rates of the three permutation-based methods decrease

while those of the three cross-validation-based methods increase.

When there is actually no cluster structure in the data set, regardless of the test

statistic used in hypothesis tests, both variable shuffling permutation-based methods

have a similar Type I error rate but neither is great. These methods are slightly liberal

and they become more so when the data dimension increases. On the other hand,

except for the minCV method, cross-validation-based methods did not perform well
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in the 4 dimensions case but improved in 8 dimensions, especially CV2SE with the

error rate of only 0.029. When the number of observations increase, more information

related to the lack of cluster structure becomes available and it may help lower the

Type I error rate of the hypothesis tests.

2.5.2 Study 2: Accuracy in Choosing the Number of Clusters

When there is actual underlying cluster structure in the data, the ability to

choose the “correct” number of clusters is important. In order to see how the

different criteria perform in choosing number of clusters for different data generating

mechanisms of data, we set up a simulation study including two scenarios with varying

dimensions, partly inspired by simulations studies in Milligan and Cooper (1985) and

Tibshirani et al. (2001).

1. Scenario 1: A random 4-cluster model in Q = 4 dimensions is generated from

normal distributions. First, four values are sampled from a N(0, 52) distribution,

then a multivariate normal distribution in four dimensions at means created and

the correlation matrix of I4 is used to generate the observations. Each cluster

has 50 observations, making the total size of n = 200 for a simulated data

set. In each data set, the distance between any pairs of clusters, defined as

the Euclidean distance between the two closest observations from two clusters,

similar to the “single linkage” in hierarchical clustering, is at least 2 units.

2. Scenario 2: By adding another variable with values generated from the

standard normal distribution as a noise variable to the previous data set, we

create another scenario for the criteria to choose the number of clusters. All

the variables are standardized to avoid any variable dominating the distance

between observations. Because of the additional noise variable, the four clusters
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in these data sets are no longer clearly defined or well separated, creating a more

challenging scenario for all the methods.

For each scenario, 500 data sets are generated. The methods of choosing the number

of clusters mentioned in Sections 2.3 and 2.4 including average silhouette width (AW),

CH’s pseudo-F , three cross-validation-based criteria (minCV, CV1SE, and CV2SE),

permutation hypothesis tests with pseudo-F and cluster shuffling, and permutation

hypothesis test with variable shuffling (using AW and pseudo-F test statistics). Each

method is applied to the cluster results created by monothetic clustering with the

minimum and maximum numbers of clusters, K, from 1 and 10, respectively. The

threshold α for permutation-based hypothesis testing methods is set as 0.05, and the

p-value is calculated based on the null distribution from 1,000 permutations. The M -

fold cross-validation was run with M = 10 to find the CVK and SE of each clustering

result K, then the three criteria (minCV, CV1SE, and CV2SE) are applied to pick

the number of clusters. The AW and CH’s pseudo-F were run using the cluster

package (Maechler et al., 2018). The hypothesis test methods are implemented in

our monoClust package with permutations done by the vegan (Oksanen et al., 2018)

and permute (Simpson, 2016) packages.

The results of the simulation study with the number of cases that each method

chose in each simulation scenario are summarized in Table 2.2 and Figures 2.6 and 2.7.

In both scenarios, the minCV often favored the largest number of clusters considered.

Ten clusters were picked 93.4% of the time in Scenario 1 and 96.8% in Scenario 2.

This result suggests that the CVK keeps decreasing when the number of clusters K

increases. Unlike classification and regression trees where a response variable is used

to assess the prediction errors, clustering re-uses the dissimilarity measures among

the splitting variables to do that, so it does not seem to provide much penalty for

over-fitting and hence is not suitable as a criterion for choosing the number of clusters.
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Figure 2.6: Simulation scenario 1 result. The frequency of choosing the number of
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In Scenario 1, AW and CH’s pseudo-F (CH) performed very well. They picked

the correct number of clusters most the time (99.6% for AW and 88.2% for CH).

The CV-based criteria performed better when the standard error of the minimum

error estimate is included to help detect the “elbow” decrease of the CVK when

K increases, with CV2SE performing better than CV1SE. The rate of correct

identification of four clusters in Scenario 1 is 10.6% for CV1SE and 39.8% for CV2SE.

Some mistakes in Scenario 1 might be due to the variability in dividing the data into

10-fold validation and training data sets. In a particular application, the CV selection

process could be repeated and a consensus of results selected which would decrease

the variability due to random variation in validation-split membership.

Permutation-based methods have a high rate of selecting the true number of data

generating clusters in Scenario 1 and the variable shuffling methods performed slightly

better than the cluster shuffling method (91.4% and 91.8% versus 86.8% for cluster

shuffling). In this scenario, we again see that using either the AW or CH’s F statistic

in the permutation test does not create a substantial difference in the cluster results.

They are very close to each other with CH’s F only 0.4% points higher in the selecting

four clusters than AW. The cluster shuffling method is also more liberal than variable

shuffling methods, with the proportion of five cluster results at 6.8% compared to only

2% in the variable shuffling methods. This result is consistent with the simulation

study on clusterability where the null hypothesis rejection rate of cluster shuffling is

substantially higher than the other methods. This is due to the clusters created at

each step by monothetic clustering already being the best possible in terms of inertia,

and although the splitting variable is excluded in the test statistic calculations, any

potential correlations between the splitting variable and other variables might have

an effect in making the p-value smaller. The variable shuffling approach essentially

creates a new data set in each permutation and repeats the optimization so it does
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not have this problem and hence is more precise in choosing the number of clusters.

In Scenario 2, it is obvious that the addition of the noise variable makes

the underlying data generating clusters less separated, leading to more frequent

identification of smaller numbers of clusters by all of the examined methods. The

original AW and CH showed their resistance to noise and still pick the correct number

of clusters most of the times (50.6% for AW and 42.8% for CH). Compared to the

original AW and CH, the permutation-based methods are more sensitive to noise. In

most cases, they supported choosing three clusters. It is also important to note that

the variable shuffling method using AW as a statistic did not perform any splits for

24.2% of the cases, and is consistent with how the original AW performed with 41.8%

three cluster results compared to only 22.8% three cluster results in the original CH.

This suggests that there are situations where CH’s F can outperform AW and that

it is a better test statistic for the variable shuffling method.

2.5.3 Study 3: Hybrid Approach

In the previous sections, the original AW and CH’s pseudo-F have been shown

to perform very well in choosing the true number of clusters of simulated data

sets. However, both of them cannot pick the one cluster solution. Meanwhile, the

hypothesis testing approach (specifically, variable shuffling methods with CH’s F as

the test statistic) has a Type I error rate close to the nominal level but does not

perform as well as AW or CH’s pseudo-F when there is cluster structure in the data.

Therefore, we suggest a hybrid technique where the variable shuffling hypothesis

testing with CH’s F statistic is used at the first split to test if the data set should

have at least two clusters. If the test returns sufficient evidence for a split, the original

CH’s F is used to evaluate the number of clusters. This provides consistency of the

statistic used (CH’s F ) but two ways that it is used.
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In order to evaluate the improvement of the suggested hybrid approach, we set

up another simulation study. This study has two groups of data sets with different

numbers of true clusters. The first group includes 500 data sets with the size of

200 × 4, generated from a multivariate uniform distribution so that all observations

belong to only one true cluster (similar to the study in Section 2.5.1). The second

group includes another 500 data sets with the size of 200× 4, generated by the same

process as the study on the accuracy in Section 2.5 but with only two true clusters.

The original CH’s pseudo-F , the permutation-based variable shuffling with pseudo-F

as the statistic, and the hybrid of these two are performed on these data sets. The

summary of the cluster results chosen by the methods and the proportions of correct

choice by each method is displayed in Table 2.3.

The hybrid method inherits the performance of the permutation test for the

group of one true cluster data sets. This is the main benefit of the hybrid method

over the original CH’s pseudo-F which cannot choose one cluster. For the group of

two true cluster data sets, the hybrid method inherits the benefits of the original

CH’s pseudo-F , with some loss due to the Type II errors of the permutation test at

the first stage.

2.6 Remarks and Conclusions

Cluster analysis is a method to detect underlying structure when no information

about that structure may be known. Therefore, choosing a reasonable number of

clusters assists greatly in understanding and interpreting the characteristics of a data

set. Monothetic clustering, with its ability to create binary splitting rules based on one

variable at a time, has an advantage in interpretability over other clustering methods,

but like all clustering methods, the number of clusters used impacts interpretations.

Its similarity to CART also creates interest in exploring methods such as M -fold
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cross-validation and hypothesis tests at each binary split for selecting the number of

clusters.

Several simulation studies were set up to evaluate various criteria. CH’s pseudo-

F and AW, the two methods that are commonly used and have been shown to be

effective in some data structures, also performed very well in monothetic clustering.

When the cluster structure is well-defined and is normally distributed around the

cluster means, these two methods picked the correct number of clusters most of the

time, with AW slightly better than CH’s F . Permutation-based hypothesis tests at

each node, especially the pair of variable shuffling approaches, did not perform as well

as AW and CH’s F in picking the correct results in the simulation study with four

true cluster data sets. However, they really shined when no cluster structure exists

in the data set. The hypothesis tests are able to correctly choose the one cluster

result in the simulation study with the false rejection rate only a bit higher than the

nominal significance level α.

Based on these simulation results, we suggested a hybrid approach to sequentially

apply the permutation test at the first split and then apply the original CH’s F in

further splits. This hybrid method shows its potential in improving the ability to

choose the correct number of clusters when the data sets are on the edge of having one

or two clusters. This approach could even have a higher rate of picking a reasonable

number of structures when the number of variables is high (making the permutation

based test less liberal at the first split) and the cluster structure is well-defined and/or

well-separated (making CH’s F criterion more effective).

Cross-validation-based approaches inspired from CART did not work effectively

in our simulation study with monothetic clustering. The fact that CVK keeps

decreasing when the number of clusters, K, increases (at least until 10 clusters)

makes it difficult to detect the “elbow” position in the CV plot. The cluster shuffling
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approach seems to be overly liberal and tends to choose a higher number of clusters

than correct even with the Bonferroni’s corrected p-values. Shuffling observations

between two candidate clusters is not sufficient to break the cluster separation created

by the split for the best inertia of monothetic clustering and thus does not create a

good null distribution.

There is potential to further explore the problem of choosing the number of

clusters in monothetic clustering. Although the suggested permutation-based variable

shuffling approach is competitive with the commonly used original AW and CH’s F ,

the permutation null hypothesis could be better formulated so the calculated p-value

of the hypothesis tests can be interpreted in terms of the clustering problems. Because

there is no “best” criterion for all clustering problems, other simulation studies on data

sets with different cluster structures (such as elongated-shaped clusters, or clusters

defined by splitting variables) to examine scenarios where the proposed criteria may

perform better than the original AW and CH’s F . All of the suggested criteria in

this chapter have been implemented in the monoClust package in R (see Chapter 5

for more details).
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Table 2.2: The proportions of cluster results chosen by methods of choosing number
of clusters.

Number of clusters chosen

Method 1 2 3 4 5 6 7 8 9 10

Scenario 1

AW 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

CH 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.11 0.00 0.00

CV1SE 0.00 0.00 0.00 0.11 0.08 0.14 0.28 0.38 0.02 0.00

CV2SE 0.00 0.00 0.00 0.40 0.12 0.19 0.22 0.07 0.00 0.00

minCV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.93

PCSa 0.00 0.00 0.06 0.87 0.07 0.00 0.00 0.00 0.00 0.00

PVS-AWb 0.00 0.00 0.06 0.91 0.02 0.00 0.00 0.00 0.00 0.00

PVS-Fc 0.00 0.00 0.06 0.92 0.02 0.00 0.00 0.00 0.00 0.00

Scenario 2

AW 0.00 0.00 0.42 0.51 0.07 0.00 0.00 0.00 0.00 0.00

CH 0.00 0.00 0.23 0.43 0.00 0.00 0.01 0.31 0.02 0.00

CV1SE 0.00 0.00 0.00 0.00 0.00 0.03 0.26 0.65 0.06 0.00

CV2SE 0.00 0.00 0.00 0.03 0.10 0.26 0.44 0.17 0.00 0.00

minCV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.97

PCSa 0.00 0.07 0.90 0.03 0.00 0.00 0.00 0.00 0.00 0.00

PVS-AWb 0.24 0.03 0.72 0.01 0.00 0.00 0.00 0.00 0.00 0.00

PVS-Fc 0.00 0.08 0.91 0.01 0.00 0.00 0.00 0.00 0.00 0.00

a Permutation Cluster Shuffle
b Permutation Variable Shuffle w/ AW
c Permutation Variable Shuffle w/ F
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Table 2.3: The proportions of correctly picking true number of clusters for original
CH’s F, variable shuffling with F as test statistic, and the hybrid of the two.

One true cluster Two true clusters

Clustering method 1 > 1 Rate 1 2 > 2 Rate

CH’s F 0 500 0.00 0 500 0 1.00

PVS-Fa 462 38 0.92 25 455 20 0.91

Hybrid 462 38 0.92 25 475 0 0.95

a Permutation Variable Shuffle w/ F
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Abstract: Monothetic clustering is a clustering technique that has advantages in

interpretability and prediction compared to other clustering techniques. It is based

on recursive bipartitions of a data set by choosing splitting rules on the variables,

one at a time. Circular variables, the type of variables whose values are defined

within a range where the upper bound coincides with the lower bound (e.g., directional

variables, time of day, etc.), must be treated differently from conventional quantitative

variables. In this paper, we suggest a clustering procedure for a data set that contains

circular variables, starting from visualization, to calculating an appropriate distance

matrix, to proposing a clock’s hour and minute hand-type partitioning that can be

used in monothetic clustering. We apply the proposed method to a data set on air

particle count measured in Antarctica to illustrate the utility of the method. Using data

measured every 15 minutes, the particle counts, wind speed, and wind direction are

used to create meaningful rules to partition the multivariate data set. By doing that,

we can identify groups of wind conditions with shared patterns in sediment transport

in the Taylor Valley in Antarctica.

3.1 Introduction

In many applications, a variable can be measured in angles, indicating the

directions of an object or event. Examples could be the time of day, aspect of the

slope in mountainous terrain, direction of motion, or, here, wind directions in a study

interested in counting the number of particles carried in the air in Antarctica. Such

variables are referred to as circular variables and are measured either in degrees

or radians relative to a pre-chosen 0 degree position and direction of rotation. For

circular variables, the highest and lowest values are the same value, but this is not

true for typical quantitative variables.

The analysis of data sets including circular variables requires different sets of



66

statistical methods from conventional “linear” quantitative variables because of the

unique characteristics of circular variables. There are books dedicated to this topic

(for example, Fisher, 1993; Jammalamadaka and SenGupta, 2001; Pewsey et al.,

2013) that develop parametric models and analytic tools for circular variables. They

address statistical techniques focused on univariate visualization and modeling with

circular variables but do not mention the topic of multivariate data analysis involving

circular variables, such as the multivariate visualization and clustering that are

discussed here.

Cluster analysis (or clustering) attempts to group observations into groups, or

clusters, so that the multivariate observations within a cluster are similar to each

other but different from those in other clusters (Everitt and Hothorn, 2011, Chapter

6). Let yiq be the ith observation (i = 1, . . . , n, the number of observations or

sample size) on variable q (q = 1, . . . , Q, the number of response variables) which

can be conventional quantitative, categorical, or circular variables in a data set.

Clustering algorithms then attempt to partition the n observations into mutually

exclusive clusters C1, C2, . . . , CK in Ω where K is the number of clusters and Ω is the

entire set of observations, so that the observations within a cluster are “close” to each

other and “far away” from those in other clusters.

Commonly used clustering methods such as k-means or hierarchical clustering

with Ward’s method belong to a group of methods called polythetic clustering

(MacNaughton-Smith et al., 1964) that use combined information of variables to

partition data. Clusters created are similar “on average” but may share no common

characteristics. In contrast, monothetic cluster analysis (Chavent, 1998; Piccarreta

and Billari, 2007; Sneath and Sokal, 1973) is a class of clustering algorithms

that provides clusters with shared characteristics using a hierarchical, recursive

partitioning of multivariate responses based on binary decision rules that are built
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from individual response variables. By construction, members of the same clusters

will share common characteristics such as the same category of a categorical response

or in the same interval of a quantitative variable.

Inspired by classification and regression trees (Breiman et al., 1984), the

monothetic clustering algorithm of Chavent (1998) searches for splits from each

response variable that provide the best split of the multivariate responses in terms of

a global criterion called inertia. It then recursively applies the same algorithm to each

sub-partition, recording splitting rules to define the tree. The result of the algorithm

is a set of hierarchical binary rules for determining cluster membership. Therefore

the resulting hierarchy can be read and displayed as a decision tree. The decision

tree defines the minimum set of shared characteristics.

While Chavent (1998) used classic data sets, ruspini (Ruspini, 1970) and iris

(Fisher, 1936), to demonstrate monothetic clustering algorithm, Chavent et al.

(2007) compared the monothetic clustering to k-means and Ward’s method by both

simulation and six applied data sets (three data sets with numerical and three data

sets with categorical variables) from the UCI Machine Learning repository (Dua and

Graff, 2019). They found that monothetic clustering performed better than k-means

and Ward’s methods when the number of clusters is small. Also, for numerical data

sets, the larger the data set is, the better result mononethic clustering has. Piccarreta

and Billari (2007) have also used the same monothetic divisive clustering idea to group

women based on their life course states (marriage, child-bearing, and having a job),

creating groups of life course trajectories based on the combination of work and family

orientation. By doing that, they are able to interpret the resulting clusters using the

participants’ life course states due to the rules defining those clusters.

To do a cluster analysis, one has to decide how to measure the distance or

dissimilarity between data points. While there are many distance or dissimilarity
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metrics for conventional linear, categorical, and mixed variables (Everitt et al., 2011;

James et al., 2013), Euclidean distance is the most common choice:

deuc(yi,yj) =

√∑
q

(yiq − yjq)2. (3.1)

It satisfies all distance metric properties, including:

1. Non-negativity: d(y1, y2) ≥ 0,

2. Identity of indiscernibles: d(y1, y2) = 0 ⇔ y1 = y2,

3. Symmetry: d(y1, y2) = d(y2, y1), and

4. Triangle inequality: d(y1, y3) ≤ d(y1, y2) + d(y2, y3).

If a distance measure satisfies these properties, it is considered a distance metric

(Arkhangel’skii and Pontryagin, 1990).

For our application, it is important that the multivariate distance needs to work

for data sets with both conventional and circular variables. Lund (1999), while

examining least squares regression for a model involving circular response and/or

predictors, suggested a distance measure between two circular observations, y1 and

y2, by applying a trigonometric cosine transformation of the difference in their angles

(in radians or degrees) around the circle as

dlund(y1, y2) =
1

2
(1− cos(y1 − y2)) . (3.2)

This dissimilarity measure satisfies all of the distance metric properties, making it a

true distance metric. In a related paper, Lund (2002) proposed that when a circular

variable q is used as a response variable in a regression tree problem setting, the

impurity measure (target function) of a tree node is the mean distance using similar
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dissimilarity from all observations yij to its circular mean direction of observations in

that node, y∗·j,

R(t) =
1

nt

∑[
1− cos(yij − y∗·j)

]
.

An alternative metric that maintains all four properties of a distance metric is

proposed below.

The Parallel coordinates plot (PCP) is a means to display multi-dimensional data

where Q variables are represented by Q lines, placed equidistant and perpendicular to

the traditional x-axis (hence the name parallel coordinates). A multivariate data point

yi (1 ×Q) that has the coordinates (yi1, yi2, . . . , yiQ), which is a point in Euclidean

Q-dimensional space, is a polygonal line whose q-th vertex is at the yiq value on the q-

axis for q = 1, 2, . . . , Q (Inselberg and Dimsdale, 1987). Because points in Euclidean

space can be displayed in PCPs as line segments, the linear dependencies between

variables can be detected in PCPs. Mostly parallel lines in PCP are evidence for

a positive linear relationship between neighboring variables, mostly intersecting or

crossing lines are evidence for a negative linear relationship, and other patterns may

discerned by tracking combinations of results across the Q variables (see Figure 3.1 for

a visual explanation). Another useful characteristic of PCPs as a companion to cluster

analysis is their ability to display and explore the identified sub-groups. Finally, the

convergence of lines to discrete values of a (discrete or categorical) variable is visual

evidence of sub-groups in the data set with common characteristics (Härdle and Simar,

2015, Chapter 1).

We add options to work with circular data as well as a method for visualizing

cluster solutions with circular variables and using monothetic clustering with circular

variable(s) in the following sections. These methods are described and illustrated

with an application to a data set of particle counts in the air in Antarctica originally
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Figure 3.1: The points in Euclidean coordinates (left) and their representations in
Parallel coordinates plots (right). The variables in PCPs are scaled to have the same
length with the minimum and maximum values shown.

analyzed in Šabacká et al. (2012).

3.2 Visualization of Circular Variables

Circular variables are usually displayed on circles, either with the data points

plotted on the circle, or by displaying the angles in the circle. Many popular plots in

exploratory data analysis such as the dot-plot, histogram, stem and leaf, and density

plot have circular versions. A unique plot for circular data that is often used to

examine the distribution of a circular variable is the rose diagram, which was used as
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early as 1858 to depict the number of deaths caused by contagious diseases, wounds,

and other reasons for the British Army in hospitals, by months of the years 1855-1856

(Fisher, 1993). The author used a rose diagram with different colors for the causes

to visualize the importance of sanitation in hospitals across the year (the months

were treated as circular). The rose diagram is very similar to a circular version of a

histogram but the bars are narrower toward the center of the circle to form wedges

that correspond to the frequency of responses in that bin of angles, thus creating an

overall symmetric shape for the plot. Figure 3.2 is an example of a combination of

a rose diagram, a circular dot-plot, and a circular density plot on a circle for wind

direction data measured in the Bonney Reigel location in the McMurdo Dry Valleys

in the Antarctica (more details in Section 3.4.1). In these plots, 0 and 360 degrees

correspond to the winds coming from the north and clockwise rotation relates to

increasing degrees (from the east is 90 degrees). One can see that the rose diagram

has similar information to the circular dot-plot and density plot, showing that the

recorded wind directions mostly came from the angles close to 280 and 100 degrees,

which generally corresponds to the orientation of the valley in which the sensor was

placed. There are also some winds that come from 200 degrees flowing from the peak

to the side of the mountain (see the map in Figure 3.7 for context of the site).

When clustering a data set that has at least one circular variable in it, visualizing

the cluster results to detect the underlying characteristics of the clusters is important.

A rose diagram with wedges (or stacked wedges if observations from multiple clusters

happen to be in the same wedge) colored by cluster membership can visualize the

cluster solution on the circular variable but fails to show the results on other variables

and is difficult to envision a linked multivariate graph as we will demonstrate below.

Scatterplots with circular variables end up with close observations far apart for

observations near 0/360o, so are of limited ability with circular data.
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Figure 3.2: A circular display of the distribution of the wind directions measured at
the Bonney Riegel location in the McMurdo Dry Valleys in the Antarctica from July
7 to 14, 2008. They were recorded every 4 seconds and were averaged at 15 minute
intervals. The plot includes rose diagram (bars), dot-plot (dots around circle), and
non-parametric density plot (red line outside or on circle).

Because PCPs are useful in describing clusters in a data set with numerous

variables, by displaying each observation uniquely and with variables on separate

axes, it has the potential to be a good tool to show the circular variables along with

other conventional variables in a data set. There are at least three ways to consider

integrating a circular variable into a PCP. First, the circular variable can be displayed

as a conventional linear variable with the values range from 0 to 360 degrees. This

approach has a serious flaw in that the distances between values on the circle are not

maintained correctly, especially between values around 0 and 360 degrees, which in

fact, coincide.

The second way to plot a circular variable q in a PCP is to exploit the

transformation of polar coordinates to rectangular coordinates. Let yiq be a value

of variable q for observation i, measured in an angle unit (degrees or radians).
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Its polar coordinate on a unit circle is (1, yiq) and its corresponding rectangular

coordinate is (1× sin(yiq), 1× cos(yiq)). The two variables sin(yiq) and cos(yiq) are no

longer circular variables (there is neither coincidence between 0 degrees (0 radians)

and 360 degrees (2π radians) nor the need to choose a “positive” direction for the

variables’ values), but they are dependent on each other by the unit circle constraint,

sin2(yiq)+cos2(yiq) = 1. Consequently, a PCP with Q+1 vertical axes can be drawn to

visualize multivariate data with a circular variable as in Figure 3.3 that shows the PCP

of the monothetic clustering of the Antarctica data set discussed previously. The wind

direction variable is transformed into sin(WDIR) and cos(WDIR), shown together

with two conventional variables, whether the wind has particles or not (has.sensit as a

binary variable) and the wind speed (WS as a quantitative variable). We can see that

the lines have dependencies at their extremes between sin(WDIR) and cos(WDIR),

creating hyperbolae at the top and the bottom of the area between the two axes. The

constraint of lying on the unit circle for these two variables combined compromises the

easy interpretation and use of these variables in a PCP. A PCP display of increasing

values of variables in the bottom-up manner from the smallest value (−1) to the

largest value (1) negatively affects the presentation of angular values in the sine and

cosine of the angular variables. A “full circle” of sine and cosine passes the values

from −1 to 1 twice, making the lines frequently overlapped on sine and cosine axes.

It is difficult to distinguish different pairs in the densely intertwined lines connecting

between sine and cosine. It is also difficult to extract the original angles from the

plot of their sine/cosine pairs.

The third option builds on the idea in Will (2016) who proposed an adaption of

PCP to include circular variables by depicting them with a pseudo three-dimensional

circular aspect. In particular, circular variables are drawn as ellipses on their own

axes within the PCP, as shown in Figure 3.4. Ellipses give readers a 3-D feel of
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Figure 3.3: PCP with the circular variable (WDIR) replaced by its trigonometric
transformations using sine and cosine for Antarctica data set from July 7 to 14, 2008.
Lines are drawn in colors corresponding to the clusters found by monothetic clustering
with four cluster solution.

circular variables and all points on a circle can be plotted on an ellipse correctly.

However, the lines on the left and right sides of the ellipse can still overlap, especially

when they connect to similar values on the adjacent axes (variables). We expand this

idea by implementing the ability to rotate for the ellipses in our software package.

Using ellipses with the ability to rotate can help distinguish observations, potential

clusters, and the geographical directions (when needed). A careful choice of rotation

and order of variables neighboring the circular variable on PCPs can help alleviate

this overlapping.
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Figure 3.4: PCP with circular variable (WDIR) is depicted as an ellipse for particle
count for Antarctica data set from July 7 to 14, 2008. The geographical direction is
noted and the ellipse is rotated to facilitate understanding of clusters. Clusters in the
plot are based on monothetic cluster analysis discussed later.

3.3 Monothetic Clustering with Circular Variables

In monothetic clustering, the within cluster inertia, I(Ck), of a cluster Ck is a

criterion used for deciding on partitions of the data by measuring the total variability

around the cluster centroid. In the case of Euclidean distance, the inertia for cluster

Ck would be

I(Ck) =
∑
i∈Ck

Q∑
q=1

(yiq − y·q)
2, (3.3)
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where y·q is the mean of all observations yiq in variable q. Let s(Ck) be a binary split

dividing a cluster Ck into two clusters CkL and CkR. The decrease in inertia is

∆(s, Ck) = I(Ck)− I(CkL)− I(CkR). (3.4)

The objective of the algorithm when applying a splitting rule s to cluster Ck is to

maximize the difference in inertia between Ck and the new sub-partition CkL and

CkR,

s∗(Ck) = argmax
s

∆(s, Ck), (3.5)

which is then recursively applied to each sub-partition.

James et al. (2013) and others have shown that the sum of Euclidean distances

for all observations within a cluster and variation around the means within a cluster

are proportional, so the within cluster inertia can be equivalently calculated from the

dissimilarity matrix as

I(Ck) =
1

nk

∑
(i,j)∈Ck,i>j

d2euc(yi,yj), (3.6)

where nk is the cardinality (size) of Ck. This result is used to justify the application

of many distance-based methods to non-Euclidean dissimilarities (Anderson, 2001)

used to calculate d(yi,yj)’s.

One (dis)similarity measure for mixed data types is Gower’s distance (Everitt

et al., 2011, Chapter 3). Gower (1971) proposed a similarity measure between

observations from various types of variables: quantitative, categorical, and binary.

It can be used in Equation 3.6 when converted to a dissimilarity (by subtracting

the similarity measure from 1). The general Gower’s dissimilarity between two
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observations in a data set with Q variables is

dgow(yi,yj) =

∑Q
q=1 w(yiq, yjq)dgow(yiq, yjq)∑Q

q=1w(yiq, yjq)
,

where dgow(yiq, yjq) is the Gower’s dissimilarity between observations yiq and yjq with

regard to the variable q and w(yiq, yjq) is the weight coefficient. Gower’s distance can

accommodate some missing values, with w(yiq, yjq) set to 0 if the value is missing for

either or both of the observations and w(yiq, yjq) is set to 1 if both are available. This

drops the comparison between two observations on that variable and re-weights the

resulting dissimilarity. Gower’s distance formula provides distances, d(yiq, yjq) and

dgow(yi,yj), between 0 and 1.

Gower’s distance can incorporate categorical variables where d(yiq, yjq) is 0 if the

two observations belong to the same category of q and 1 otherwise. If q is a linear

quantitative variable,

d(yiq, yjq) =
|yiq − yjq|

maxi,j |yiq − yjq|

is a scaled Manhattan (city block) distance, which is 0 when yiq and yjq are the same

and 1 for the maximum difference.

We suggest the dissimilarity measure for a circular variable,

d(yiq, yjq) =
180− |180− |yiq − yjq||

180
.

The formula was modified from Jammalamadaka and SenGupta (2001) to provide

distances based on the shortest distance around the circle, in relative degrees (or

radians if suitably modified from 180 to π in the above formula), bounded in the

[0, 1] interval. We propose its use over Lund’s suggested distance because a) it also

satisfies all of the properties of a distance metric, b) it retains some properties of
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Figure 3.5: The Lund’s and Gower’s inspired distances between two values (in degrees)
of a circular variable.

Euclidean distances (Pavoine et al., 2009) and can be used in Gower’s dissimilarity

with other variables, and c) if two pairs of observations have equal distance around the

circle, they should be considered equally “far apart” both visually and conceptually.

This is useful for understanding and interpreting the results of monothetic clustering

where splits are made at raw values of variables. The visual comparisons between the

preferred absolute distance and Lund’s distance for circular variables are plotted in

Figure 3.5.

Lund (2002) also discussed circular variables in the context of a regression tree

where they were used as response as well as explanatory variables. He suggested that

when a circular predictor is considered for a split, it is different from the conventional

linear variable in that two values α1 and α2 are necessary to form two non-overlapping

arcs. Figure 3.6 explains how two values are needed to make the first binary split but

only one value to make the subsequent one. Moreover, all pairs of (α1, α2) need to be

examined to determine which pair optimizes the target function. We adopt this idea



79

α1

α3
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Figure 3.6: An example of binary splits of a circular variable. Two points (at α1

and α2) are necessary to split a circle into two non-overlapping arcs. The subsequent
binary split needs only one more point (α3) to split observations between (clockwise)
α1 and α2.

into monothetic clustering and let the algorithm search for all possible pairs of arcs

by first keeping the first cut fixed and rotating the second cut, similar to the idea of

the hour and minute hands of a clock. If that circular variable is considered again

further down the tree, its arc can be treated as a linear variable and the best split is

determined according to that.

3.4 Application of Monothetic Clustering to Antarctic Particle Counts Data

3.4.1 Antarctic Particle Counts Data

The motivating data set for these methods is a part of a study on microorganisms

carried in strong föhn winds at the Taylor Valley, an ice free area in the Antarctic

continent (Michaud et al., 2012; Šabacká et al., 2012). Föhn winds are defined to

be dry warm winds that flow from the top to the bottom of mountain ranges during

the “flow over” effect (Elvidge et al., 2016). Šabacká et al. (2012) were interested in
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exploring relationships between wind behavior and sediment transport. To study

this, sensit H11B acoustic wind mass erosion particle counters were deployed in

five locations within the Taylor Valley: Bonney Riegel (BR), Bonney (BON), Hoare

(HOR), FRX (Fryxell), and Lake Fryxell (F6) (map of these locations is in Figure

3.7). The BR location is in the Upper Valley area which was found to have higher

particle flux than mid and lower valley areas so it would have more non-zero particle

observations, making it more interesting for our purposes here. We analyze data

from a particle counter at BR that was mounted on a meteorological station tripod

at around 20 cm above the ground surface. The detector sampled for 1 minute every

15 minutes during the study to save power. Wind direction and wind speed data

were obtained from the meteorological station. Wind direction was recorded every

30 seconds and wind speeds every 4 seconds at 1.15 meters above the ground surface.

The recorded wind directions and speeds were averaged at 15 minute intervals. For

wind direction, as discussed previously, winds from the north are defined as 0/360◦

and from the east as 90◦. Although the authors examined the relationship between

pairs of recorded variables, no analysis was done that explored their multivariate

relationship and patterns. In this study, we apply cluster analysis to this data set to

explore the common patterns in BR and try to detect groups of observations related

to föhn winds along the valley.

Although the amount of collected data is large, only 2.39% of all particle counter

measurements were non-zero. Therefore, for the purpose of this study, we only

examine the data during August 4–8, 2007 and July 7–14, 2008 at the BR site

to illustrate the methods. Those are the time spans when the sensors somewhat

frequently recorded non-zero particle counts in the winter time (13.71% for the 2007

period and 10.85% for the 2008 period). Moreover, due to strong periodic föhn winds

in the area, the highest particle flux can sometimes surge to a very high value (≈7000
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Figure 3.7: Map of the sensors in Taylor Valley, Antarctica. The site of interest,
Bonney Riegel, is the circle with BR abbreviation.

particles per minute) although counts are usually much less than 500 particles per

minute. This makes the particle count variable extremely right-skewed in this time

frame. It strongly affected the distance measures between observations in any cluster

analysis when the counts were considered in the Gower’s distance. To overcome this

problem, we transformed this variable into a binary one with existence/non-existence

of particles for each measurement. This shifts the interpretation to focus on detection

of any feature related to the existence (or lack there of) of aeolian flux as opposed to

amount of particles being transported.

The wind direction variable is displayed in rose diagrams of the frequency of

recorded wind directions in the two time spans in Figure 3.8. In both of them, the

wind is mainly flowing in the East-West direction, in the lee of the Taylor Valley

(Figure 3.7) with the West to East direction (from the inland to the sea) happening

more frequently than the opposite due to the föhn wind direction in winter. A small

difference in the typical directions of the wind between the two time periods can

be attributed to the position of the BR location in the valley and a switch in wind
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(b) July 7–14, 2008

Figure 3.8: Rose diagrams showing the distribution of particle existence recorded by
wind directions in two time periods at BR location in Taylor Valley. North to South
winds are at 0/360◦ and East to West winds are at 90◦. The angles indicate the
directions “from” which the winds flowed.

patterns to have some winds that go across the valley connecting ice free areas on

two sides of a glacier.

3.4.2 Results

The monothetic clustering algorithm was applied to two previously described

subsets of the data in BR using wind speed (WS), wind direction (WDIR), and

particle existence (has.sensit) variables. Because Gower’s distance put equal weights

on all the variables, we did not need to scale the variables before applying the

algorithm. A permutation-based test for the presence of a cluster structure was done

(see Chapter 2 for more details on this procedure). After getting strong evidence



83

that there is some cluster structure in both of the 2007 and 2008 data sets (p-value

< 0.001), we applied monothetic clustering algorithm to decide the clusters in the

data. To keep the interpretation simple as a demonstration example, the number of

clusters is chosen to be 4 and 6 for each data set and their results are compared.

The summary of the splitting rules for the 2007 data with four clusters is in

Table 3.1 and graphically in Figure 3.10b. All of the observations having low wind

speed (WS < 4.85 m/s) belong to a cluster (Cluster ID 2) which includes n = 277 15-

minute intervals. The data points having stronger wind speed (WS ≥ 4.85 m/s) are

further split into 2 smaller clusters depending on whether the particles were recorded

(Cluster ID 7) or not. Another partition was made separating the observations with

very strong wind (WS ≥ 16.45 m/s, Cluster ID 13) and the rest (Cluster ID 12) given

that they all did not contain particles (or the particles were too small to be recorded

by the sensit sensor).

When the additional two splits are further made to create a six cluster solution,

the wind direction variable is chosen by the algorithm to make both splits (Table

3.2). The splitting rule at the wind direction essentially split the observations into

Easterly or Westerly winds. The cut occurs into a low wind speed cluster (Cluster

ID 2 into Cluster IDs 4 and 5) and a high wind speed with particles recorded group

(Cluster ID 7 into Cluster IDs 14 and 15).

The reason why wind direction was not introduced earlier in the monothetic

clustering process can be explained by looking at the PCPs with the cluster medoids

highlighted in Figures 3.10b and 3.10d. Despite wind direction not showing up in

the splitting tree for the four cluster solution, the cluster members are mostly close

together in the WDIR variable. This indicates a possible strong relationship between

the wind speed (the variable at the first split) and wind direction where the wind

tended to be much stronger in one direction compared to the other. Moreover, we
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Figure 3.9: Scatterplot of wind direction and wind speed with the particle pres-
ence/absence indicated by color in August 4–8, 2007 data. Dashed lines are the splits
on WS depicted in the splitting rule tree in Figure 3.10.

can easily see that winds with particles all belong to a cluster although the split

related to the has.sensit variable (whether there is particle in the wind) only happens

at a later partition, indicating that particles were only detected when the wind was

strong enough (> 4.85 m/s). The particles present in low wind speeds may have

been too small in size and/or velocity to create enough energy to trigger the sensor

since it is force-based. The has.sensit and WS variables in the PCP clearly show that

the characteristics of the first four created clusters can be based solely on these two

variables. Partitioning the winds into more or less East and West directions creates

two more clusters in the group that has particles and a group of low wind speed

observations.
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Figure 3.10: Monothetic clustering results of particle count data from August 4–8,
2007.
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Table 3.1: Explanation of the four cluster solution in August 4–8, 2007. Results for the cluster Medoid (M), means (m),
and proportion of observations with particles (p(Particles)) are presented.

Cluster ID n Splitting Rule Particle M p(Particles) WS M WS m WDIR M

2 277 WS < 4.85 0 0 1.7 2.0 131

12 197 has.sensit = 0 & WS

∈ [4.85, 16.45)

0 0 9.3 9.8 238

13 106 has.sensit = 0 & WS

≥ 16.45

0 0 22.9 22.8 251

7 91 has.sensit = 1 & WS

≥ 4.85

1 1 12.2 12.2 235
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Table 3.2: Explanation of the six cluster solution in August 4–8, 2007. Results for the cluster Medoid (M), means (m),
and propotion of observations with particles (p(Particles)) are presented.

Cluster ID n Splitting Rule Particle M p(Particles) WS M WS m WDIR M

4 101 WS < 4.85 & WDIR

∈ (165, 327.55)

0 0.01 2.0 2.0 196

5 176 WS < 4.85 & WDIR

∈ (327.55, 0, 165)

0 0.00 1.9 2.0 100

12 197 has.sensit = 0 & WS

∈ [4.85, 16.45)

0 0.00 9.3 9.8 238

13 106 has.sensit = 0 & WS

≥ 16.45

0 0.00 22.9 22.8 251

14 80 has.sensit = 1 &

WDIR ∈ (165,

338.25)

1 1.00 12.8 12.7 236

15 11 has.sensit = 1 &

WDIR ∈ (338.25, 0,

165)

1 1.00 7.6 8.6 55
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In the 2008 data subset, according to the decision tree and splitting rules (Table

3.3), the algorithm picked wind direction for the first split (at 25.8 and 229.9 degrees)

to create the two clusters, one for winds coming mostly from the west, and another

for winds coming mostly from the east. In part of the wind recordings coming mostly

from the west, having particles or not is the criterion to further partition the cluster

into Cluster ID 6 (no particles) and Cluster ID 7 (has particles). The winds coming

generally from the east are divided by the speed of them. Fast winds (WS ≥ 6.08)

go into Cluster 5 and slow winds (WS < 6.08) go into Cluster ID 4. If we go further

into a six cluster solution, the additional two splits are both made in the winds

coming from the east side of the valley. In the slower wind speed cluster (Cluster ID

4), wind direction is used to cut the wind observations between the east and south

directions. In the faster wind speed cluster (Cluster ID 5), the existence of particles

is the splitting criterion.

Visual inspections of Figures 3.12b and 3.12d assist us to have a deeper

understanding of the clusters for the 2008 data. First of all, the first split on the

wind direction implies that the distance between observations is largely influenced by

wind directions while WS and (maybe) has.sensit variables were now more similar on

both directions and were not separated enough to be the first choice, as happened in

the 2007 data. Also, it’s interesting to see that most of the winds that have particles

belong to the winds coming from the west (purple group) and were split to create

two smaller clusters inside the west half of the winds. For the winds from the east,

because the number of winds with recorded particles is small, WDIR did not become

splitting criterion until after it was further split by the wind speed for the low wind

group. Visually, very slow winds mostly came from the south (red group). Winds

from the west were among the fastest in speed and also contain most of the particles.
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Figure 3.11: Scatterplot of wind direction and wind speed with the particle
presence/absence indicated by color in August 4–8, 2007 data. Dashed lines are
the splits on WS depicted in the splitting rule tree in Figure 3.12
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Figure 3.12: Plots for monothetic clustering results of particle counts data from July
7–14, 2008.
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Table 3.3: Explanation of the four cluster solution in July 7–14, 2008. Results for the cluster Medoid (M), means (m),
and proportion of observations with particles (p(Particles)) are presented.

Cluster ID n Splitting Rule Particle M p(Particles) WS M WS m WDIR M

4 273 WDIR ∈ (25.8, 229.9) &

WS < 6.0755

0 0.00 1.9 2.1 128

5 86 WDIR ∈ (25.8, 229.9) &

WS ≥ 6.0755

0 0.06 13.1 12.5 93

6 246 WDIR ∈ (229.9, 0, 25.8) &

has.sensit = 0

0 0.00 16.6 15.9 277

7 68 WDIR ∈ (229.9, 0, 25.8) &

has.sensit = 1

1 1.00 21.1 20.7 284
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Table 3.4: Explanation of the six cluster solution in July 7–14, 2008. Results for the cluster Medoid (M), means (m), and
proportion of observations with particles (p(Particles)) are presented.

Cluster ID n Splitting Rule Particle M p(Particles) WS M WS m WDIR M

8 167 WDIR ∈ (25.8, 137.35)

& WS < 6.0755

0 0 1.9 2.1 108

9 106 WDIR ∈ (137.35, 229.9)

& WS < 6.0755

0 0 1.6 2.0 164

10 81 WDIR ∈ (25.8, 229.9) &

WS ≥ 6.0755 &

has.sensit = 0

0 0 12.8 12.2 94

11 5 WDIR ∈ (25.8, 229.9) &

WS ≥ 6.0755 &

has.sensit = 1

1 1 17.2 16.2 109

6 246 WDIR ∈ (229.9, 0, 25.8)

& has.sensit = 0

0 0 16.6 15.9 277

7 68 WDIR ∈ (229.9, 0, 25.8)

& has.sensit = 1

1 1 21.1 20.7 284
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3.5 Discussions

Data sets with circular variables have interesting directional information that

are useful in many applications. Conceptually, monothetic clustering only needs an

extra cut at the circular variable to separate two arcs compared to conventional

quantitative variables. This unsupervised method was able to detect interesting

underlying structure in the data. Monothetic clustering, specifically, with its ability to

create a decision tree showing the shared characteristics of the data points in a cluster,

can show the relationships among examined variables. Also, the ability to work on

mixed variables including circular variables and categorical variables enhances the

flexibility of applications of monothetic clustering while preserving the interpretability

of the clusters without compromising the natural characteristics of a circular variable.

Visualizations of cluster results are important to assist in interpretation and

exploration of characteristics of the clusters. PCPs showed their flexibility in plotting

many variables concurrently and keeping the relative position of values in clusters.

Displaying circular variables as ellipses in PCPs retains most of the features of the

variables and does not create strange properties as happened in the trigonometric

transformations or treating them “linearly”. The ability to rotate the values on

the ellipse is an improvement to the original version of PCPs and gives researchers

flexibility to reduce the overlapping of observations’ segments. This idea can be

extended to other types of variables such as categorical variables where categories

can be sorted to achieve the same effect. As an extension of the PCPs with circular

variables, a 3-D version of the plot, where users can interactively rotate the ellipses,

change the order of variables, and move the whole plots to have various perspectives

would be much more useful and should be considered in the future. However,

R (R Core Team, 2019), the language currently used for the implementation of
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monothetic clustering and visualization, is still somewhat limited in 3-D visualization

to realize that idea. The flattened 3-D presentations employed here retain the abstract

visualization of a circle with an ellipse shape and helps separate lines coming from

different angles, but may require users’ involvement to make some rotations to be

able to clearly show some observations.

The clustering of the Antarctic particle count data showed that the monothetic

divisive method can provide interesting results based on the shared characteristics

of wind clusters. The results not only confirm the relationships between pairs of

variables found in the original paper, but go beyond by exploring the multivariate

relationships between wind speed, wind direction, and the existence of particles.

We can assess many characteristics of the winds in the McMurdo Dry Valleys by

looking at the decision tree of the resulting clusters. Specifically, the WDIR values

used in the decision trees reflect the bimodal nature of the winds (down-valley föhn

winds and up-valley sea breezes), with the presence of particles and large wind speeds

characteristics of some clusters showing that the particles were associated with strong

winds. Also, rose plots and PCPs of the cluster solutions visualize the relationships

between variables, reinforcing the knowledge that stronger winds are associated with

winds coming from the west rather than coming from the east. This means that the

föhn winds are stronger than the sea breezes in the examined time frame (July and

August which are in the winter in Antarctica).

There is room to extend the monothetic clustering on circular data developed

here. Other distance metrics for circular variables can be considered in the MonoClust

function (see Chapter 5 for details) and it may be of interest to explore and compare

these results to each other. Currently, the algorithm searches all pairs of arcs in clock’s

hour and minute hands to select the pair that has the largest improvement and this

is not computationally effective. Moreover, until circular variables are used in a split
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and the arcs can be regarded as conventional variables further down the splitting tree,

the “clocking” method needs to be done in every split, which makes the algorithm

slower. It may be possible to improve this by using other search algorithms that can

stratify the values and avoid getting stuck at local optima. Additionally, the results

of best arc searches can be stored and used later when the circular variables become

candidates in later splits. This work is left for future research and explorations.
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Abstract: The Arctic sea ice extent and area have been recorded since November

1978 until today by the National Snow and Ice Data Center and are available to

the public as nearly daily data. There are studies considering the data set as either

time series data or uncorrelated measurements of each day of the year. In this

research, we complement that view by considering the ice extent data as functional

data with functions estimated for each year and exploring cluster analysis of the

yearly functions. Two modifications of monothetic clustering, a type of clustering

that creates clusters that share common characteristics, are proposed. One uses daily

estimates to cluster the curves and another divides the functional data into subregions

and uses the information in those subregions to partition the data set. The proposed

clustering techniques can also limit their searching variables/subregions so they are

able to classify the curves based on the results from just a portion of the curve, say

the first few months of the year. To illustrate the methods, one random year in each

decade is withheld to use as a test data set for the clustering results created by the

other years to assess the classification performance of the methods.

4.1 Introduction

Measurements y taken over some ordered index t such as time, frequency, or

space and are thought of as curves or functions of the index t are called functional data,

y(t) (Ramsay and Silverman, 2005). Functional data have, possibly, a high frequency

of observations over the index t and are assumed to be generated by a smooth

underlying process. Some examples of functional data include the growth curves

for girls in the Berkeley Growth Study (Tuddenham and Snyder, 1954), hydraulic

gradients in wetlands (Greenwood et al., 2011), or ice extent area over time in the

Arctic Sea (Fetterer et al., 2018). The last example is the motivational data set for

this study and takes a new approach with these data.
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Clustering can be useful for functional data to find groups of curves sharing

common characteristics and to find representative curves corresponding to different

modes of variation in the data. Early applications of clustering functional data

considered the functions at arbitrary, or originally observed, discrete values of the

argument t, which does not fully capitalize on the functional nature of the data. More

recently, functional data clustering has had more attention and various approaches

to clustering functional data have been proposed (Hitchcock and Greenwood, 2015).

Functional data are usually represented as a combination of basis functions, such

as splines, Fourier basis, or Wavelets, and their estimated basis coefficients. Tarpey

and Kinateder (2003) used k-means (MacQueen, 1967) on these basis representations

which narrow downs to clustering the estimated coefficients when the splines used

are orthogonal. In the same paper, they also showed two interesting results. One

is if the variability of shapes of curves is of interest, the clustering algorithm can be

performed on the first derivative of the functions to effectively remove the variability of

the means of the functions. Besides, they proved that clustering the basis coefficients

is correct only if the chosen basis functions are orthogonal over the interval T . Other

researchers have attempted to adapt multivariate clustering methods to functional

data. Distance-based clustering techniques such as Ward’s hierarchical method and

k-means have been used on dissimilarity matrices from pairs of functions. Tarpey

(2007) used L2 distance between functions, yi(t) and yj(t), with t is the index within

a fixed interval T , defined as:

d(yi, yj) =

√∫
T

[yi(t)yj(t)]2dt (4.1)

as a distance measure between functions and their cluster mean in the k-means

clustering framework. He showed that using different basis functions (hence different
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linear transformations) to represent functions can result in very different cluster

results. Therefore, this approach is more effective when some linear transformation

is performed on the curves to minimize the within-cluster variance and maximize

the between-cluster variance. Suarez and Ghosal (2016) suggested calculating

dissimilarity measurement based on the average number of shared detail coefficients

in the Wavelet basis representation of the functions. This approach involves using

Dirichlet process prior distributions to the detail coefficients and estimating them by

the Monte Carlo Markov Chain (MCMC) method. Model-based clustering (Banfield

and Raftery, 1993) is also used in functional data clustering. James and Sugar

(2003) further parameterized the function’s basis coefficients to form a random effects

model to cluster sparsely sampled functional data in a model-based manner. Other

functional data clustering approaches involve projecting sparsely measured functional

data into a reduced-dimensional subspace by applying functional principal component

analysis (FPCA) and applying clustering techniques on the FPCA scores (Zajacova

et al., 2015) or using rank-based correlation as the dissimilarity measure for functional

data (Heckman and Zamar, 2000). An extensive overview of various functional data

clustering research can be found in Hitchcock and Greenwood (2015).

The National Snow & Ice Data Center has been collecting daily Arctic sea ice

extent since October 1978 to present (Fetterer et al., 2018). The data are publicly

available (https://nsidc.org/data/G02135/versions/3) and have been analyzed

in many places. Most have observed a decrease in the ice extent in Arctic and then

have tried try to find evidence of a relationship of this phenomenon to various factors,

such as polar winds (Serreze et al., 2003) and greenhouse gas (Serreze et al., 2007).

Other researchers used just a portion of these data, for example, using the sea ice

extent in the month of March from 1982–2007 to explore the relationship between

the mean ice extent cover and mean ice thickness in spring over the years (Maslanik

https://nsidc.org/data/G02135/versions/3
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et al., 2007). They concluded that the loss of older Arctic ice continued with its lowest

point in the summer of 2007 (the most recent year in their study). Our research has

not shown any studies that have considered the ice extent as functional data or daily

values, or attempted to apply cluster analysis methods to detect underlying patterns

of the yearly ice cover and how those may have changed over time.

In this study, we apply monothetic clustering and a similar clustering method

that utilizes the combined information of variables in intervals of the functional data

called Partitioning Using Local Subregions (PULS) on the Arctic sea ice extent data to

show that cluster analysis can give interesting and similar conclusions as other studies

and goes beyond what other studies provided by giving us the ability to characterize

the similarities and differences of the yearly ice patterns from 1978 to 2018 based on

days or months information.

4.2 Arctic Sea Ice Extent as Functional Data

The Arctic, the region around the north pole, is geographically different from the

Antarctic mentioned in Chapter 3 in that it is an ocean surrounded by the continents,

instead of a continent itself (Figure 4.1). Therefore, the sea ice area in the Arctic

is the subject of much research involving how changes in sea ice may be affected by

climate factors such as greenhouse gases, surface oscillations, and seasons (Maslanik

et al., 2007; Serreze et al., 2003; Serreze et al., 2007).

The National Snow & Ice Data Center (NSIDC) recorded the daily ice extent by

adding up the areas of satellite data cells that are ice-covered, defined by nominally

25 km × 25 km grid cells having greater than 15 percent ice concentration. There

have been several instruments used to get the satellite passive microwave brightness

temperatures for the ice extent data over the course of the study. From October

26th, 1978 to August 20th, 1987, the data were collected every other day using the
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Figure 4.1: Arctic ice from satellite on December 25, 2018. The yellow line is the
median ice edge from 1981–2010. Imagery from the NASA MODIS instrument,
courtesy NASA NSIDC DAAC.
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Nimbus-7 SMMR instrument. After that, a series of SSM/I and then SSMIS were

used and upgraded regularly and the measurements were changed to being available

daily. There are no data from December 3rd, 1987 to January 13th, 1988 due to

satellite problems (Fetterer et al., 2018). The observation times in the data over the

years are shown in Figure 4.2. The ice extent data fit the characteristics of functional

data in which the ice extent is a function of days of years as they are intensively

sampled and appear to be relatively smooth over the argument (here, day of year,

Figure 4.3).

To apply cluster analysis to this data set, we removed the years that had missing

measurements in many consecutive days, namely, 1978 (data were not available until

October) and in 1987 and 1988 (because of the satellite problems). We also randomly

withheld one year in each decade for validation purposes. They are 1982, 1990, 2006,

and 2018. However, a part of the data from those years was used in the smoothing

process of other years (to be explained in the next paragraphs).

To use discretely measured observations, yi1, yi2, . . . , yin, for day 1 to estimate

day n in year i to a functional datum, f(t), computable for any value t in 1 to 366, a

smoothing process needs to be performed. In order to do that, a basis function system

is first defined as a linear combination of basis functions, ϕk(t), which are used to

estimate a smoothed version of the functional datum,

f̂(t) =
K∑
k=1

ĉkϕk(t), (4.2)

where ϕk(t) are known functions that are mathematically independent of each other

and K needs to be large enough so that the set of the basis functions with their

coefficients, ĉk, can adequately approximate the true function, f(t). Commonly used

basis functions for ϕk(t) include Fourier series, Wavelets, or a spline basis system.
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Figure 4.2: Time of measurements of Arctic sea ice extent over the years. From
October 1978 to August 1987, the measurements were taken every other day. After
that, they were measured daily. There was a gap at the end of 1987 due to satellite
errors. The most recent data point in this plot is on December 31, 2018.

A spline basis system splits the index into intervals and in each interval, a linear

combination of polynomials is used to represent the data in that interval. Moreover,

the functions are defined so that the derivatives of the functions are continuous at

the boundaries of the intervals (called knots). One of the most popular spline basis

systems is the set of so-called B-splines developed by De Boor (1972). A B-spline basis

system is determined by the order m of the polynomials used and the knot sequence

τ which determines transition points for bases (both number and location). One of

the biggest advantages of the B-spline system over others is that it is computationally

efficient and readily available in statistical software, such as R (R Core Team, 2019).

More details of B-splines can be found in Ramsay and Silverman (Chapter 3, 2005).

For the Arctic ice extent data, despite working with years as the functional

observations, continuity between the last day of one year and the first day of next

year should be maintained. Therefore, we attach previous year’s December at the
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Figure 4.3: The Arctic sea ice extent from 1979 to 2018. Each year is a curve
connecting available ice extents.

beginning and next year’s January at the end of each year, padding it with extra

observations, then estimate functional data using each year with extended months.

Only f(t) from January 1 (day = 1) to December 31 (day = 366) are used in analyses.

To ensure the continuity of at least two derivatives of the functions, a B-spline basis

system Bk(t, τ) with the order of m = 4 (or the degree of 3, which is a cubic spline)

was created (an excerpt of the B-spline bases on the first 10 days of a year is depicted

in Figure 4.4). The smoothed function for a single year, f̂(t), in Eq. 4.2 is formed by

a linear combination of the B-spline basis functions and their coefficients as

f̂(t) =
m+L−1∑
k=1

ĉkBk(t, τ),

with L− 1 equal to the number of knots and t defining the locations of those knots.
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To estimate the coefficients ck for each basis function, on the one hand, we want

to make sure that the estimated curve is a good fit to the data by reducing the residual

sum of squares,
∑T

t=1[yit − f̂i(t)]
2 for the i-th functional observation. On the other

hand, fitting the original points too well makes the curves overly “wiggly”, contradicts

the purpose of smoothing, and includes the noise in the estimated function. Therefore,

penalized sum of squared errors, PENSSEλ(f̂i(t)|y), is used to estimate the function

with a control for the roughness of the estimated functions, f̂(t). It is written as

PENSSEλ(f̂i(t)|y) =
∑

(yit − f̂(t))2 + λ× PEN2(f̂),

where PEN2(f̂) is a measure of function’s roughness, which here relates to the second

derivative, D2f̂i(t), of the estimated function

PEN2(f̂i) =

∫
[D2f̂i(s)]

2ds,

and the smoothing parameter, λ, determines the weight placed on smoothness of the

curve. When λ is zero, there is no penalty for the roughness, thus using ordinary

least squares. As λ increases, PENSSEλ(f̂i) considers the smoothness of f̂i more.

The smoothing parameter λ can be selected using cross-validation by withholding a

part of the data as a validation sample and estimating the model with the rest of the

data, called the training sample. This procedure is repeated and the resulting error

of sum of squares is calculated for each value of λ. The value that yields its minimum

is chosen. It is more common to use generalized cross-validation (GCV, Craven and

Wahba, 1978) to select smoothing parameters in FDA because it can be calculated

directly from the residuals of the original model and it has been found to be more

reliable than regular cross-validation (Ramsay and Silverman, 2005). GCV is also

often utilized in Generalized Additive Models (Wood, 2006). The GCV criterion has
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Figure 4.4: The basis functions of the order four spline and knots at every day
(vertical lines) used to smooth the Arctic ice extent data, showing the first 10 days
of the year (after attaching Dec of last year and Jan of next year, making 425 days
for this example year). Because of that “padding”, there is no boundary behavior at
the edges of functions.

the formula

GCVg =

∑T
t=1(yit − ŷit)

2

[1−
∑

Att/n]2
, (4.3)

where Att are the diagonal values of the hat matrix A that can be used to obtain

ŷ = Ay and incorporates both the basis functions and the smoothing penalty.

In the Arctic sea ice extent data, GCV optimization is used to estimate λ for

each extended year. years 1982, 1990, 2006, and 2018 for validation purposes. The

smoothed ice extent data can be seen in Figure 4.5 and a comparison between two raw

yearly observations and smoothed curves can be seen in Figures 4.6 and 4.7. They

show minimal impacts of the smoothing process in estimating the functional from the

original discretely observed ice extent values.
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Figure 4.5: Smoothed functional data for Arctic Sea Ice extent from 1979 to 2017
(excluding 1978, 1987-88 because of missing data, and 1982, 1990, 2006, and 2018 for
validation purposes).

4.3 Clustering Ice Extent Data: Monothetic Clustering & Partitioning Using Local

Subregions (PULS)

Monothetic cluster analysis, as proposed in Chavent (1998), is a clustering

algorithm designed to optimally partition a data set using recursive binary partitions

to optimize the inertia change at each split. In multivariate (non-functional) data

with discretely observed yiq with q = 1, . . . , Q variables, the inertia for a cluster is

defined as the total variability around the cluster centroid. In the case of the L2-norm,

the squared Euclidean distance is used as the inertia for cluster k, I(Ck), defined as

I(Ck) =
∑
i∈Ck

Q∑
q=1

(yiq − y·q)
2, (4.4)
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where y·q is the mean of all observations yiq in variable q. The objective of the

monothetic algorithm when splitting cluster Ck is to maximize the difference, or

change, in inertia between Ck and the new sub-partitions CkL and CkR,

argmax(I(Ck)− I(CkL)− I(CkR)), (4.5)

and the same method is then recursively applied to each sub-partition.

Because the inertia calculation involves Euclidean distance between discretely

observed (in time) observations, it still uses the Arctic ice extent data in its discrete

form (numerical extent on each day, yiq) instead of explicitly using its functional

form. However, as shown above, the data were recorded at different frequencies

over the years (every other day before 1987 and daily after that) and the number

of observations is not the same in every year (some years have 365 days while

others have 366 days). Although monothetic clustering does not work directly on the

functional form of the Arctic ice extent data, transforming the data into its functional

representations and then exploiting the properties of those continuous functions to

discretize the values to every day of a year can help overcome the problem with

different sampling rates in the data set. Moreover, Hitchcock et al. (2007) showed

via simulations that pre-smoothed functional data are often clustered more correctly

using PAM and Ward’s method than the original discretely observed points, so it is

possible that the same process could help monothetic clustering as well. Specifically,

after estimating smoothing using penalized B-splines as described in the previous

section, the resulting functions can be used to interpolate the missing measurements

before 1987. All functional data are evaluated for days i = 1, . . . , n, where n = 366

days in each year to make the data balanced across the years. After 1987, all of

the measurements can be predicted from the functional data to potentially reduce
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Figure 4.6: Comparison between discrete observations over time and smoothed curves
for years 1980 and 2010. The smoothed data are less wiggly. Year 1980 was originally
measured less frequently than the later years (every other day), thus the smoothing
is slightly more pronounced.

measurement errors slightly and still retain the original dimensions of the data set

(366 observations per year). Figure 4.7 shows the smoothing results for January

1980 and 2010. We can see that the solid lines (functional data) are smoother than

the dotted lines (raw data) but retain the overall original shape and the missing

observations every other day for years before 1987 are reasonably interpolated, with

similar patterns observed throughout the data set.

The application of monothetic clustering to functional data is not without

drawbacks. First of all, it does not utilize the functional properties besides smoothing

and imputation to obtain the discretely observed data. Also, 366 days in a year are

366 variables that need to be explored for the best split at each partitioning step,



111

14

14

14

15

16

0 10 20 30

Day

A
rc

tic
 Ic

e 
E

xt
en

t (
m

ils
 o

f s
q 

km
2)

Year 1980 2010 Smoothness Smoothed Unsmoothed

Figure 4.7: Comparison between discrete observations over time and smoothed curves
for January in 1980 and 2010. By considering this short time window of 31 days,
differences between raw observations and smoothed functional can be observed,
especially for 1980 when measurements were taken every other day.

which slows the algorithm down, exposing a computational challenge in monothetic

clustering with very wide data. Last, but not least, in curves, it is expected that the

neighboring time points (days, or more generally, variables) are not very different

from each other and may provide the same or similar split information. When the

algorithm encounters more than one candidate splitting variable resulting in the same

sub-partition structure, the algorithm must arbitrarily pick one variable (currently,

the algorithm is set to pick the earliest date/first column in that group of candidates),

ignoring all other candidates. This is unfortunate for interpretation of clusters since

a variety of days can all imply the same groups but we would only know of one day

determining the cluster splitting rule and not know that similar differences existed
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across many different days.

4.3.1 Partitioning Using Local Subregions

In some functional data applications, there is pre-existing knowledge of regions

of interest. It could be intervals of time that are known to be very different or

define important features of typical curves, or, more generally, sets of variables that

most clearly define common groups. For example, for functional data estimated from

spectral responses, the different frequency bands of the electromagnetic spectrum

(visible vs. red edge vs. infrared) have been shown to be discriminative by

Vsevolozhskaya et al. (2014). This method is somewhat similar to sparse clustering

in terms of using several variables to group the observations (Witten and Tibshirani,

2010) when the number of variables is much larger than the number of observations.

However, the basic difference is that this method uses pre-existing knowledge to

choose the subregions as splitting candidates while sparse clustering uses unsupervised

methods to update the weight parameters to remove variables from the dissimilarity

matrix deemed to be unimportant or not showing clear cluster structure. Often,

researchers can identify the regions of interest in functional data prior to the analysis.

However, in time series data like the Arctic ice extent data, where there are no specific

intervals of time known a priori to define differences in each year’s behavior, we can

define subregions as a large number of equal sized intervals that are mutually exclusive

and exhaustive. This approach was also discussed in Vsevolozhskaya et al. (2014).

Here, months of years where the lengths are similar and have practical meaning for

later interpretation are used to facilitate interpretation of the results.

After defining the mutually exclusive R subregions [a1, b1], [a2, b2], . . . , [aR, bR] of
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interest, the L2 distance between all pairs of functions yi(t) and yj(t),

dR(yi, yj) =

√∫ br

ar

[yi(t)yj(t)]2dt,

is calculated to obtain a dissimilarity matrix for each of the R subregions. Adapting

the idea of monothetic clustering, each subregion is separately considered as a splitting

candidate for the next 2-group partitioning, using any commonly used clustering

technique such as k-means (MacQueen, 1967), Ward’s agglomerative hierarchical

method (Ward, 1963), monothetic clustering, or partitioning around medoids (PAM,

Kaufman and Rousseeuw, 1990). PAM is a clustering technique that picks an existing

observation (curve) in a cluster as its representative, called medoid, instead of using an

artificially constructed centroid as in the k-means technique so can be less impacted

by outlying observations.

Inertia (Eq. 4.4) is again used as the global criterion. Among the R candidates

(one from each subregion), the split having the largest decrease in inertia is chosen

as the best split (Eq. 4.5). The algorithm is then recursively applied to the resulting

sub-partitions until a specified number of partitions is reached or a stopping rule is

met (see Chapter 2 for more details).

This algorithm (which we name PULS for Partitioning Using Local Subregions)

overcomes some disadvantages of monothetic clustering. It better utilizes functional

data properties to find the dissimilarity matrix and uses the combined information

from pre-existing knowledge of “important” subregions or levels of aggregation in

the functional data when considering the next partitioning. It explores fewer

possible partitions and aggregates more information in each split considered, possibly

decreasing the rate of tied splits and possible “false” or spurious splits.
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4.3.2 Constrained Version of Monothetic Clustering and PULS

In a data set, not all variables are created equal. Some variables are easier or

cheaper to measure than others. For example, a data set on human vital information

may include body fat percentage, height, and weight. Height and weight are much

easier to obtain accurate measurements for than body fat percentage. If the data

can be partitioned using only these easy-to-measure variables and are comparable

to the results made by using all variables, it can help reduce effort and cost in

the future studies. Other potential applications include clustering snow and site

characteristics including snow density, where rules based on GIS derivable variables

including aspect are used to partition the measured areas (such as for data like that

collected in Wetlaufer et al., 2016), or the prediction of eBay auctions’ final prices

can be constrained to use information at the beginning or at the end of the auction

to form clusters (Wang et al., 2008). Another application is for this ice extent data

set, where information from some months or seasonal times of the year can be used

to reasonably partition the curves. A potential benefit of that constraint is when ice

extent just from the beginning of a year could be used to predict the cluster that

year will fall into. Generally, using only portions of functional data to cluster curves

may be of most interest with time series versions of functional data to provide early

predictions of group membership for new functions that were not used to develop the

clusters.

Both monothetic clustering and PULS algorithms implemented in the mono-

Clust and PULS R packages have options to limit the splitting candidates to a subset

of variables (in case of monothetic) or subregions (in case of PULS). Besides the

benefits of reducing effort and cost in future studies, the constrained versions of the

algorithms also speed up the running time, making the cluster estimation faster and

more efficient.
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4.4 Results

In this study, we are seeking for years that have similar patterns and use

the splitting rules of monothetic clustering and PULS techniques to uncover the

characteristics that are shared (both timing and patterns) within clusters and

differences between clusters. Full calendar years are used as observations; years that

have missing data for a continuous length of time, including 1976 (when data were

first recorded in October), 1985, 1986 (there are missing data points at the end of

1985 to the beginning of 1986 because of satellite problems), and 2019 (data are not

complete at the most recent data update), are removed from the data set. The B-

spline basis system with cubic polynomials (order 4) is used to represent the Arctic

ice extent data as functional data and data are padded at the beginning and end of

years to reduce edge effects in estimating the functional data.

After obtaining a functional representation of the ice extent as a function of

day of year, in order to apply monothetic clustering, individual missing measurement

days before 1987 and day 366 are interpolated (so every year was considered as a

leap year with 29 days in February) to create a new data set with smooth, discretely

observed sea ice extent measurements for these years. Furthermore, to demonstrate

the potential for cluster prediction using monothetic clustering, data from one year in

each decade is randomly withheld from applying monothetic clustering, together with

the most recent full year 2018, to be withheld from the functional data estimation.

Those withheld years are 1982, 1990, 2006, and 2018. This leaves n = 37 years for

clustering and 4 for “validation”.

The splitting tree and visualization of the curves are depicted in Figure 4.8.

The first split is picked at Day 1 of a year. If the ice extent on Day 1 of that year

is greater than 13.37 millions of squared kilometers, it belongs to the right branch,
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otherwise it is in the left branch. Years with lower ice extent in Day 1 will be further

split based on their Day 190 (6th of July) extent values higher or lower than 8.67

millions of squared kilometers. Years at the right branch are split based on Day 186

(2nd of July) at 10.56 millions of squared kilometers. The monothetic algorithm gave

warnings at every splitting node that there are more than one splitting candidate at

all three nodes on the tree, so Day 1, 186, and 190 are chosen because they all are the

earliest day in the list of equally “best” candidates and those candidates are usually

several days in row. So it is more appropriate to summarize the rules as in the legends

of Figure 4.8b using the months instead of the exact days in the splitting tree.

The PULS algorithm works directly on the functional form of the ice extent

data. Ward’s hierarchical method and PAM were used as the underlying clustering

techniques at the subregion. In these data, they both produced the same results.

The subregions where the partitioning occurred at every step are plotted in Figure

4.9a together with the highlighted months (Figure 4.9b). The ice extent data in

July and August are the source of partitioning. The first split occurs in July and

so is the second clustering for years with low extent. For the years with high July

extent (right branch of the tree), the next split happens in August, creating two

clusters with 13 years and 11 years. Because the underlying clustering technique at

the subregion (month) is not monothetic clustering, the splitting tree is not as helpful

as the monothetic clustering result in Figure 4.8a. A full functional curves plot with

colored cluster members in Figure 4.9b is necessary to understand the characteristics

of the resulting clusters.

Table 4.1 lists years in each cluster of two clustering techniques with the medoid

years, which can be considered as the representative year of that cluster, in bold.

There are several observations can be made in this result. The four clusters are

very similar between the two techniques, especially noting that the last two clusters
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(a) Splitting rule tree at days of years, n is cluster size, M is the cluster medoid (observation’s
row index).
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(b) Ice extent as curves with clusters with cluster medoids highlighted and the positions of
splits.

Figure 4.8: Four cluster solution using monothetic clustering on Arctic ice extent
data for years 1979–1986, 1989–2017 (excluding years 1982, 1990, 2006, and 2018 for
prediction purposes).
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(a) Splitting rule tree at splitted subregions (months), n is the cluster size, M is the cluster
medoid (observation’s row index).

Jul Aug

6

10

14

1 31 59 90 120 151 181 212 243 273 304 334 365

Day

Ar
ct

ic
 Ic

e 
Ex

te
nt

 (m
ils

 o
f s

q 
km

2)

(b) Ice extent as curves with clusters with cluster medoids highlighted. The splitting months
are shaded.

Figure 4.9: Four cluster solution using PULS on Arctic ice extent data for years
1979–1986, 1989–2017 (excluding years 1982, 1990, 2006, and 2018 for prediction
purposes).
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are identical. Years 1985 and 1993 belong to cluster 1 in monothetic clustering but

to cluster 2 in PULS. Those are the only differences between the two techniques.

Consequently, the medoid years are different in clusters 1 and 2 between PULS and

monothetic clustering. Because PULS does not create clear splitting rules, we base

the interpretation of clusters on monothetic splitting rules. While PULS uses July

and August as the splitting subregions, monothetic clustering uses the first day of

January for the very first split. However, as mentioned above, the 1st of January

is only one among many equally best splitting candidates, and although not shown

here, that list includes many days in July and August. Therefore, the two techniques

agreed on the partitioning rules and the resulting clusters.

The peak months in winter and summer define the cluster a year belongs to,

especially summer time. We can also observe in Figures 4.8b and 4.9b that summer

months are when the ice extents are the most different among years. From the top to

the bottom of Table 4.1, the ice extent gets lower reflected by the cluster’s medoids.

There is also a trend to have neighboring years grouped into similar clusters. The

pattern in the corresponding clusters indicates that the more recent a year is, the less

ice extent it has. This observation agrees with many recent studies where the overall

trend of ice extent is decreasing on average over recent time (Maslanik et al., 2007).

We have seen that PULS used July and August as the splitting subregions, so

we ran monothetic clustering and PULS again on the same data but this time limited

the splitting candidates to only July, August, and September (the summer months in

the Arctic). Although not shown here, the cluster results are identical. This solidifies

our belief that using those summer months only should be adequate to detect the

differences among years and predict the pattern of a new year based solely on these

months.

Lastly, using the splitting rules of monothetic clustering, previously withheld
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Table 4.1: Years in clusters. The years in bold are the medoid of their cluster. Note
that years 1987, 1988, and 2018 were not accounted for because of missing data. Years
1982, 1990, 2006, and 2018 were withheld as testing data.

Name PULS MonoClust

1979–1981, 1983–1984, 1979–1981, 1983–1986, 1989,
High Jan, High Jul

1986, 1989, 1992, 1994, 1996 1992–1994, 1996

1985, 1991, 1993, 1995, 1991, 1995,
High Jan, Low Jul

1997–2004 1997–2000–2004

Low Jan, High Jul 2005, 2008–2010, 2013, 2014 2005, 2008–2010, 2013, 2014

Low Jan, Low Jul 2007, 2011, 2012, 2015–2017 2007, 2011, 2012, 2015–2017

years 1982, 1990, 2006, and 2018 are assigned into the clusters by looking at the days

1, 186, and 210 of those years (in case of 1982, day 1 data were missing so day 2 was

used instead). The cluster prediction is given in Table 4.2. Year 1982 belongs to the

cluster with highest ice extents (high in January, high in July), year 1990 belongs

to the second highest ice extent cluster (high in January, low in July), 2006 belongs

to the second lowest cluster (low in January. high in July) and 2018 belongs to the

lowest ice extent cluster (low in January, low in July). The 4 withheld years in 4

decades belonging to 4 different clusters are consistent with the decreasing trend over

time of the ice extent in the Arctic area.

4.4.1 Simulation Study

We also set up a simulation study to compare the performance of monothetic

clustering and PULS with commonly used clustering techniques where the obser-

vations are functional curves and the groups are only distinct from each other in a
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Table 4.2: Prediction of withheld years based on the monothetic splitting tree. Day
1 in 1982 was missing so Day 2 was used instead.

Year Observed Extent Cluster

1982 Day2 = 14.479; Day186 = 11.344; Day210 = 9.22 High Jan, High Jul

1990 Day1 = 14.319; Day186 = 10.328; Day210 = 7.891 High Jan, Low Jul

2006 Day1 = 13.16; Day186 = 9.218; Day210 = 7.516 Low Jan, High Jul

2018 Day1 = 12.491; Day186 = 9.346; Day210 = 6.815 Low Jan, Low Jan

small subregion of the data. Five clustering techniques include PAM, Ward’s method,

monothetic clustering, and two versions of PULS, one with PAM and the other with

Ward’s method as the underlying clustering algorithms.

We generated observations from four true functional curves with the index range

from 0 to 100. They were designed to be identical except for the 50–70 interval of the

index “time”. The data sets were then estimated from the functions to a fine grid at

each 0.5 unit of “time”. Ten different sets of random noise following a multivariate

independent normal distribution are added to the data set to create a total of 40

observations (discretized curves) from four true clusters. Then a smoothing process,

similar to what has been done to the Arctic ice extent data, is done, using smoothing

cubic B-splines to achieve 40 smoothed functional curves with known true cluster

membership (Figure 4.10). The estimated functional curves are also discretized at

every “time” unit from 1 to 100 for non-functional clustering methods. There are 1000

such data sets simulated. The five clustering techniques are applied to the simulated

data sets using the Euclidean distance metric and its functional adaption in Eq. 4.1,

producing four clusters using each method. The true cluster memberships are then

used to compare with the cluster results of the five methods to the truth (corrected
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Figure 4.10: A smoothed simulated functional data set with four true clusters, colors
based on true clusters.

Rand index) and in terms of variation explained (pseudo-R2).

The Rand index (Rand, 1971) is a simple measure to compare two different

cluster solutions. It counts the number of pairs of observations that either appear

together or are separate in two clustering solutions (number of agreements), divided

by the possible number of pairs from the data set. Therefore, a higher Rand index

indicates a better agreement between two cluster solutions and 1 implies identical

solutions. Hubert and Arabic (1985) argued that the original Rand index does not

account for “the agreement by chance”, which means that there is no common baseline

for the “worst case” and hence it is difficult to say which cluster result is better than

others based solely on the Rand index. They suggest an adjusted version of the index

to correct that problem by subtracting both the numerator and denominator by the

expected number of pairs in which the objects are placed in the same clusters in two
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Figure 4.11: Adjusted Rand index of the five clustering methods with the mean indices
in red.

clustering results, thus ensuring that the adjusted Rand index is bound between 0

and 1. The adjusted Rand indices of the five clustering techniques on 1000 simulated

functional data sets are depicted in Figure 4.11. We can see that two versions of

PULS and monothetic clustering perform better than PAM and are competitive with

Ward’s method. Also, Ward’s method works well in this simulation, both in PULS

and by itself.

We also evaluate the variation around the cluster mean of the generated data to

see how well the clustering techniques do in this simulation study. The proportion

of inertia (Eq. 4.4) explained in each cluster is an adequate measure of the variation

around the cluster mean to compare the clustering techniques (Chavent et al., 2007).

Because the interpretation of this measure is similar to the explained variance, R2,

in regression models, we call this measure pseudo-R2 for short. This criterion has

been subject to some recent criticisms based on the potential to be inflated by scaling

or projecting the data (Loperfido and Tarpey, 2018). Even with its potential issues
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Figure 4.12: Pseudo-R2 of Clustering Methods. The y-axis limit is scaled to range
from the minimum and maximum values of pseudo-R2.

from the transformations of data, it provides for interesting comparisons of different

methods on the same distance matrix. The pseudo-R2 for the five clustering methods

on 1000 simulated sets of curves are shown in Figure 4.12. All five techniques seem to

have competitive pseudo-R2’s in this simulation study. They all explain a moderate

amount of variation around cluster means (55% to 65%) and are consistent partly

because of the constant chosen standard deviation of the random noises. Although it

appears there are some differences between methods based on the pseudo-R2 criterion,

with monothetic technique performed slightly better than others, the variations are

high compared to the difference in mean pseudo-R2 between techniques. Therefore,

there is limited evidence of differences in terms of pseudo-R2 criterion across the

methods considered.

PULS had slightly lower levels of performance here but improved on the

PAM algorithm and did not work much worse than Ward’s method. Surprisingly,

monothetic clustering of discretely evaluated functional data provided the best results.
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4.5 Conclusions and Extensions

Cluster analysis is often used when researchers want to figure out the underlying

structure of data where little or no knowledge of that structure or expectation of

the structure to be validated exists. Using an appropriate clustering technique can

result in many interesting insights to the data, as we have seen in the application

to the Arctic sea ice extent data. Monothetic clustering has an advantage over

other clustering algorithms in producing a set of splitting rules so the similarities and

differences among clusters can be easily interpreted based on the defined splits. In

particular, whether a year has low or high ice extent in January and July determined

which cluster the year belonged to. Furthermore, it has potential to reduce the cost

and effort by realizing which variables are influencing the separation of clusters so

further work can focus on those variables specifically. The fact that the monothetic

clustering constrained to only split using the summer months produced the same

results when considering all days in a year for partitioning gives us the ability to

predict the group a year should falls into by only examining the ice extent data in

those summer months.

As no clustering technique fits all applications, monothetic clustering is not

without its drawbacks. Functional data, as is the Arctic ice extent time series

data, are considered as true continuous functions over an interval of an index (e.g.,

time, space, wavelength, or any other similar variables). Applying monothetic

clustering, which requires discretely observed values over the index, to a function-

based data set theoretically creates a problem of picking the variables to split when

the difference in values between any two adjacent variables are very minor, especially

when the functions are smooth across the measured index. That is the motivation

for designing PULS, a new clustering technique inspired by monothetic clustering
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but based on splits defined in subregions of the index. PULS utilizes the properties

of a functional data set, such as integrating the differences between all the values

between two functions to calculate the L2 distance matrix, gathering similar variables

into “subregions” and exploiting the combined information to create partitions.

From the simulation study, the choice of underlying clustering algorithm in PULS

obviously affects its performance. Therefore, it is important to carefully consider the

underlying technique suitable for a specific application. Also from the simulation

study, monothetic clustering surprisingly provided good clustering performance in a

situation that PULS should be more appropriate. Other simulation studies using

more sparse discrete points to form the functional data may be better cases to show

the ability of PULS to correctly identify clusters compared to monothetic clustering

applied to discretized versions of functional data or the difference may just be in the

interpretations of the clusters created by the two methods.

Cluster analysis of the Arctic ice extent over the years where data are available

conforms with the conclusions of other research that, overall, the ice in the North

Pole is decreasing in its extent (area). Other variables related to the Arctic ice such

as the thickness of the ice could also be considered in the cluster analysis to give us

another perspective on the changes of the ice in the area. We also learned that the ice

extent information in summer months was associated with how that year’s trajectory

would look. Because other factors were not considered in this study, we do not have

other information to explain the trend in trajectories over time and there are other

factors that may explain the complex changes of the ice extent patterns over time.

Other research could explore inference techniques based on functional linear models

to test for trends over time on the functional data we have generated (Ramsay and

Silverman, 2005).

Also, deciding the adequate number of groups in the clustering of ice extent data
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should be examined further. In Chapter 2, we suggested some methods to address

this issue in monothetic clustering. Last but not least, R packages (R Core Team,

2019) for monothetic clustering and PULS were developed to facilitate their further

applications and visualizations in the future. A overview of those packages is in

Chapter 5.
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Abstract: Monothetic clustering is a clustering technique that has advantages in

interpretability and prediction compared to other clustering techniques. It is based on

recursive bipartitions of a data set by choosing the splitting rules using the variables,

one at a time. Similar to other clustering techniques, monothetic clustering faces the

problem of deciding the number of clusters. Permutation and cross-validation, two

techniques that have been used in regression and classification tree-based methods, are

adapted to use on monothetic clustering results to assist in this decision. Monothetic

clustering, with modifications, has the potential to work on special types of variables,

one of them involves data sets with circular variables. The unique characteristics of

these variables pose challenges in performing the partitioning as well as visualization

of the results. Measurements yi that are taken over some ordered index t such as

time, frequency, or space, but in principal, can be obtained as often as desired,

are considered as functional data, y(t). Functional data can also be partitioned by

monothetic clustering if the functional data are evaluated on a common discrete set

of times, frequencies, etc. Partitioning Using Local Subregions (PULS) is inspired

by monothetic cluster analysis but is designed to better cluster functional data by

defining splits using subregions, one at a time, in defining the recursive bipartitions.

These two clustering techniques as well as visualizations and auxiliary functions to

help researchers in making decisions related to clustering as implemented in the R

packages monoClust and PULS are discussed.

5.1 Introduction

Cluster analysis (or clustering) attempts to group observations into clusters so

that the observations within a cluster are similar to each other while different from

those in other clusters. It is often used when dealing with the question of discovering

structure in data where no known group labels exist or when there might be some
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question about whether the data contain groups that correspond to a measured

grouping variable. Therefore, cluster analysis is considered a type of unsupervised

learning. It is used in many fields including statistics, machine learning, and image

analysis, to name just a few. For a general introduction to cluster analysis, see Everitt

and Hothorn (2011, Chapter 6).

Commonly used clustering methods are k-means (MacQueen, 1967) and Ward’s

hierarchical clustering (Murtagh and Legendre, 2014; Ward, 1963), which are both

implemented in functions kmeans and hclust, respectively, in the stats package

in R (R Core Team, 2019). They belong to a group of methods called polythetic

clustering (MacNaughton-Smith et al., 1964) which use combined information of

variables to partition data and generate groups of observations that are similar on

average. Monothetic cluster analysis (Chavent, 1998; Piccarreta and Billari, 2007;

Sneath and Sokal, 1973), on the other hand, is a clustering algorithm that provides a

hierarchical, recursive partitioning of multivariate responses based on binary decision

rules that are built from individual response variables. It creates clusters that contain

shared characteristics that are defined by these rules.

Given a clustering algorithm, the cluster analysis is heavily influenced by the

choice of K, the number of clusters. If K is too small, it puts “different” observations

together. On the other hand, if K is too large, the algorithm might split observations

into different clusters that share many characteristics or are similar. Therefore,

picking a sufficient, or “correct”, K is critical for any clustering algorithm. A survey

of some techniques for estimating the number of clusters has been done by Milligan

and Cooper (1985). The R package NbClust (Charrad et al., 2014) is dedicated to

implementations of those techniques. However, none of them were designed to work

with monothetic clustering or take advantage of its unique characteristics, where

binary splits generate rules for predicting new observations and each split is essentially
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a decision about whether to continue growing the tree or not. In Chapter 2, we

examined M -fold cross-validation (a brief introduction can be seen in Hastie et al.,

2016) and permutation-based hypothesis test at each split similar to those in Hothorn

et al. (2006). These are two techniques that have been shown to work well in the

classification and regression tree setting and we have adapted them to work with

monothetic clustering.

Clustering data sets including circular variables, a type of variables measured in

angles indicating the directions of an object or event (Fisher, 1993; Jammalamadaka

and SenGupta, 2001) requires a different sets of statistical methods from conventional

“linear” quantitative variables. An implementation of monothetic clustering modified

to work on circular variables is discussed here. To assist in visualizing the

resulting clusters and interpreting the shared features of clusters, a visualization

of the results based on parallel coordinates plots (Inselberg and Dimsdale, 1987)

are also implemented in the monoClust package. The package has been applied

to the particle counts in föhn winds in Antarctica (wind.sensit.bin.2007 and

wind.sensit.bin.2008 data sets from Šabacká et al., 2012) and the Arctic sea ice

extent data (Arctic_seaice for data until December 31st, 2018 from Fetterer et al.,

2018).

In an application of clustering to Arctic sea ice extent data comprising

daily measurements from 1978 to present (Fetterer et al., 2018), we faced a

challenge choosing one splitting variable among multiple equally qualified variables

in monothetic clustering when applied to functional data. This happens because

there are very similar observations in small intervals of time when the observations

are smooth curves. A new clustering algorithm called Partitioning Using Local

Subregions (PULS) that provides a method of clustering functional data using

subregion information (described in detail in Chapter 4) is implemented in the R
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package PULS. It is designed to complement the fda and fda.usc packages (Febrero-

Bande and Fuente, 2012; Ramsay et al., 2018) in clustering functional data objects.

5.2 Monothetic Clustering

Let yiq be the ith observation (i = 1, . . . , n, the number of observations or sample

size) on variable q (q = 1, . . . , Q, the number of response variables) in a data set. In

cluster analysis, Q variables are considered “response” variables and the interest is in

exploring potential groups in these responses. Occasionally other information in the

data set is withheld from clustering to be able to understand clusters found based on

the Q variables used in clustering. Clustering algorithms then attempt to partition

the n observations into mutually exclusive clusters C1, C2, . . . , CK in Ω where K is

the number of clusters, so that the observations within a cluster are “close” to each

other and “far away” from those in other clusters.

Inspired by regression trees (Breiman et al., 1984) and the rpart package

(Therneau and Atkinson, 2018), the monothetic clustering algorithm searches for

splits from each response variable that provide the best split of the multivariate

responses in terms of a global criterion called inertia. To run successfully on a

data set, the MonoClust function of the monoClust package only has one required

argument, which is the data set name in the toclust option. By default, MonoClust

will be performed by first calculating the squared Euclidean distance matrix between

observations. The calculation of the distance matrix is very important to the

algorithm because inertia, a within-cluster measure of variability when Euclidean

distance is used, is calculated by

I(Ck) =
∑
i∈Ck

d2euc(yi, yCk
), (5.1)
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where yCk
is the mean of all observations in cluster Ck. This formula has been

proved to be equivalent to the scaled sum of squared Euclidean distances among all

observations in a cluster (James et al., 2013, p 388),

I(Ck) =
1

nk

∑
(i,j)∈Ck,i>j

d2euc(yi,yj).

A binary split, s(Ck), on a cluster Ck divides its observations into two smaller

clusters CkL and CkR. The inertia decrease between before and after the partition is

defined as

∆(s, Ck) = I(Ck)− I(CkL)− I(CkR),

and the best split, s∗(Ck), is the split that maximizes this decrease in inertia,

s∗(Ck) = argmax
s

∆(s, Ck).

The same algorithm is then recursively applied to each sub-partition, recording

splitting rules on its way until it reaches the stopping criteria, which can be set

in MonoClust by at least one of these arguments:

• nclusters: the pre-defined number of resulting clusters;

• minsplit: the minimum number of observations that must exist in a node in

order for a split to be attempted (default is 5);

• minbucket: the minimum number of observations allowed in a terminal leaf

(default is minsplit/3).

The options minsplit and minbucket were adapted from rpart. The monothetic

clustering algorithm is outlined in more detail in Algorithm 5.1.
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As a very simple example, monothetic clustering of the ruspini data set (Ruspini,

1970) available in the cluster package (Maechler et al., 2018) with 4 clusters can be

performed as follows:

library(monoClust)

ruspini4c <- MonoClust(cluster::ruspini, nclusters = 4)

ruspini4c

n= 75

Node, N, Within Cluster Deviance, Proportion Deviance Explained,

* denotes terminal node

1) root 75 240000 0

2) y < 91 35 43000 0.63

4) x < 47 20 3700 0.16 *

5) x >= 47 15 1500 0.16 *

3) y >= 91 40 46000 0.63

6) x < 68.5 23 3200 0.16 *

7) x >= 68.5 17 4600 0.16 *

The output (print.MonoClust) lists each split on one line together with the

splitting rule as well as its inertia and is displayed with the hierarchical structure so

the parent–child relationships between nodes can be easily seen. This function defines

a MonoClust object to store the cluster solution with some useful components:

• frame: a partitioning tracking table in the form of a data.frame, similar to

rpart’s object;

• Membership: a vector of numerical cluster identification (incremented by new

nodes) that observations belong to; and
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y < 91

x < 47 x < 68.5

y >= 91

x >= 47 x >= 68.5

  n=20
  M=10

  n=15
  M=70

  n=23
  M=32

  n=17
  M=52

Figure 5.1: Binary partitioning tree with three splits, four clusters for ruspini data.

• medoids: the observation indices that are considered as representatives for the

clusters (Kaufman and Rousseeuw, 1990), estimated as the observations that

have minimum total distance to all observations in their clusters.

Another visualization of the clustering results is the splitting rule tree created by the

plot.MonoClust function of the MonoClust object (Figure 5.1).

plot(ruspini4c)

The initial development of MonoClust was based on rpart. It borrows the

contents of rpart in many places: arguments, text output, tree output, and the

MonoClust object structure. However, we made many modifications to refine and
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enhance the structure to implement the various methods described in Chapters 2 and

3. We describe the modifications in the following sections.

5.2.1 Testing at Each Split to Decide the Number of Clusters

Deciding on the number of clusters to report and interpret is an important

part of cluster analysis. Among many metrics mentioned in Milligan and Cooper

(1985) and Hardy (1996), Caliński and Harabasz (CH)’s pseudo-F (Caliński and

Harabasz, 1974) is among the metrics that have typically good or even the best

performance in the Milligan and Cooper (1985)’s simulation studies on selecting

the optimal number of clusters. Additionally, average silhouette width (AW), a

measure of how “comfortable” observations are in their clusters they reside in, has

also been suggested to select an appropriate number of clusters (Rousseeuw, 1987).

One limitation of both criteria is that they are unable to select a single cluster solution

because their formula require at least two clusters to calculate the criteria. We have

proposed (in Chapter 2) two methods that can assist select the number of clusters

in monothetic clustering. One is inspired by regression tree methods for pruning

regression and classification trees, which is an adaption of M -fold cross-validation

technique. Another one is inspired by conditional inference trees (Hothorn et al.,

2006). It is a formal hypothesis test at a split to determine if it should be performed

using two different test statistics. Finally, we suggested a hybrid method that uses

the hypothesis test with CH’s F statistic at the first split and then uses the original

CH’s F for the further splits if the test suggests that there should be at least two

clusters.

The M -fold cross-validation randomly partitions data into M subsets with equal

(or close to equal) sizes. M − 1 subsets are used as the training data set to create a

tree with a desired number of leaves and the other subset is used as validation data
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set to evaluate the predictive performance of the trained tree. The process repeats

for each subset as the validating set (m = 1, . . . ,M) and the mean squared difference,

MSEm =
1

nm

Q∑
q=1

∑
i∈m

d2euc(yiq, ŷ(−i)q),

is calculated, where ŷ(−i)q is the cluster mean on the variable q of the cluster created

by the training data where the observed value, yiq, of the validation data set will

fall into, and d2euc(yiq, ŷ(−i)q) is the squared Euclidean distance (dissimilarity) between

two observations at variable q. This process is repeated for the M subsets of the data

set and the average of these test errors is the cross-validation-based estimate of the

mean squared error of predicting a new observation,

CVK = MSE =
1

M

M∑
m=1

MSEm.

The purpose of the cross-validation is to find a cluster solution that achieves the

“best” prediction error for new observations. There are several ways one can decide

from the output of MonoClust. A naive approach is to pick the solution that has

the smallest CVK (minCV rule). However, in many cases, it can result in a very

high number of clusters if the error rate keeps decreasing even though there is often

a small change after a few large drops. To avoid this problem, Breiman et al. (1984)

suggested picking the solution that is simplest within 1 or 2 standard errors (SE)

from the minimum error estimate (CV1SE or CV2SE rules), with the standard error

is defined as

SE(MSE) =

√√√√ 1

M

M∑
m=1

(MSEm −MSE).

The function cv.test with the data set and two arguments minnodes and maxnodes
defining the range of nodes to test on will apply MonoClust and calculate both MSE



139

(which is named MSE in the output) and its standard error (named Std. Dev. as
used in rpart package).

cp.table <- cv.test(ruspini, minnodes = 1, maxnodes = 10)

cp.table

MSE Std. Dev.

1 25263 6567

2 9942 2607

3 7770 2821

4 1811 1438

5 1666 1429

6 1606 1270

7 1510 1255

8 1479 1263

9 1424 1274

10 1362 1285

A plot with error bars for one standard error, similar to Figure 5.2, can be made from

the output table using standard plotting functions to assist in assessing these results.

Another approach involves doing a formal hypothesis test at each split on the

tree and using the p-values to decide on how many clusters should be used. This

approach has been used in the context of conditional inference trees by Hothorn et al.

(2006) although with a different test statistic and purpose. In that situation the test

is used to test a null hypothesis of independence between the response and a selected

predictor. For cluster analysis, at any cluster (or leaf on the decision tree), whether

it will be partitioned or not is the result of a hypothesis test in which the pair of

hypotheses can be abstractly stated as

H0 : The two new clusters are identical to each other, and

HA : The two new clusters are different from each other.
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Figure 5.2: The choice of clusters for Ruspini data made by 10-fold CV where minCV
selects 10 clusters and 1SE selects 4. The error bars are the MSE ± 1SE and the
choice of 4 clusters, the simplest solution within 1 standard error of the minimum
error estimate (the dashed lines coincide with the bar at 10 clusters) is highlighted
with a ×.

To allow applications with any dissimilarity measure, a nonparametric method

based on permutation is used. Anderson (2001) developed a multivariate nonparamet-

ric testing approach called perMANOVA that involves calculating the pseudo-F -ratio

directly from any symmetric distance or dissimilarity matrix where the sum of squares

are, in turn, calculated from the dissimilarities. The p-value can then be calculated by

tracking the pseudo-F across permutations and comparing the results to the observed

result and is available in the vegan package (Oksanen et al., 2019) in R. In Chapter

2, we considered two approaches for generating the permutation distribution under

the previous null:

1. Shuffle the observations between two proposed clusters. The pseudo-F ’s

calculated from the shuffles create the reference distribution to find the p-value.

Because the splitting variable that was chosen is already the best in terms of

reduction of inertia, that variable is withheld from the distance matrix used
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in the permutation test. This method can be done with method = 1 (default

value) in the perm.test function.

2. Shuffle the values of the splitting variables while keeping other variables fixed

to create a new data set, then the average silhouette width (Kaufman and

Rousseeuw, 1990) is used as the measure of separation between the two new

clusters and is calculated to create the reference distribution. Specifying method

= 2 in perm.test will run this method.

3. Similar to the previous method but pseudo-F (as in the first approach) is used

as the test statistic instead of the average silhouette width. This approach

corresponds to method = 3.

Applying the perm.test function to a MonoClust object will add permutation-based

p-values to the output of both print and plot. Users can specify the number of

permutations with the rep = argument. An example of applying the cluster shuffling

approach to the ruspini data set follows and the tree output is in Figure 5.3. Note that

the Bonferroni-adjusted p-values are used to account for the multiple hypothesis tests

required when going deeper into the tree. The number of tests for the adjustment is

based on the number of tests previously performed to get to a candidate split and

the maximum value of a p-value is always 1. A similar adjustment has been used

in conditional inference trees and was also implemented in its accompanied party

package (Hothorn et al., 2006).

ruspini6c <- MonoClust(ruspini, nclusters = 6)

ruspini6c.pvalue <- perm.test(ruspini6c, data = ruspini, method = 1, rep = 1000)

plot(ruspini6c.pvalue, branch = 1, uniform = TRUE)



142

y < 91

x < 47 x < 68.5

x < 45 x < 85.5

p = 0.001

p = 0.003 p = 0.002

p = 0.76 p = 0.02

y >= 91

x >= 47 x >= 68.5

x >= 45 x >= 85.5

  n=20
  M=10

  n=15
  M=70

  n=13
  M=27

  n=10
  M=38

  n=4
  M=47

  n=13
  M=52

Figure 5.3: Binary partitioning tree with five splits, six clusters, but one split should
be pruned based on its p-value of 0.8.

5.2.2 Clustering on Circular Data

In many applications, a variable can be measured in angles, indicating the

directions of an object or event. Examples could be the times of day, aspects of

the slope in mountainous terrain, directions of motion, or wind directions. Such

variables are referred to as circular variables and are measured either in degrees or

radians relative to a pre-chosen 0 degree position and meaning of a rotation direction.

There are books dedicated to this topic (for example, Fisher, 1993; Jammalamadaka

and SenGupta, 2001) that develop parametric models and analytic tools for circular

variables. Here we demonstrate multivariate data analysis involving circular variables,

such as visualization and clustering, as discussed in Chapter 3.

Cluster analysis depends on the choice of distance or dissimilarity between

multivariate data points. A (dis)similarity measure that often comes up in the

literature when dealing with mixed data types is Gower’s distance (Gower, 1971).

It is a similarity measure among observations from various types of variables, such
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as quantitative, categorical, and binary, can be a reasonable alternative to Eq. 5.1

when working with “mixed” data.

Generally, the Gower’s dissimilarity in a simple form (without weights) for a

data set with Q variables is

dgow(yi,yj) =
1

Q

Q∑
q=1

dgow(yiq, yjq).

If q is a linear quantitative variable,

d(yiq, yjq) =
|yiq − yjq|

maxi,j |yiq − yjq|
.

It can also incorporate categorical variables, with d(yiq, yjq) equals to 0 if the two

observations belong to the same category of q and 1 otherwise. Details and examples

can be seen in Everitt et al. (2011, Chapter 3). We extend the dissimilarity measure

for a circular variable as

d(yiq, yjq) =
180− |180− |yiq − yjq||

180
,

where α and β are the angles in degree. If radians are used, the constant 180 degrees

will be replaced by π. This distance can be mixed with other Gower’s distances both

for monothetic clustering and in other distance-based clustering algorithms.

We demonstrated an application of monothetic clustering to a data set from

Šabacká et al. (2012). This data set is a part of a study on microorganisms carried

in föhn winds at the Taylor Valley, an ice free area in the Antarctic continent.

The examined subset of the data is during July 7–14, 2008, at the Bonney Riegel

location with three variables: the existence of particles measured in 1 minute every

15 minutes (binary variable of presence or absence), average wind speed (m/s), and
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Circ root
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Figure 5.4: Splitting rule for the four-cluster solution. The color at the node can be
set by cols argument. They match the ones in Figure 5.5.

wind direction (degrees) recorded at a nearby meteorological station every 15 minutes.

Wind direction is a circular variable in which winds blowing from the north to the

south were chosen to be 0/360 degrees and winds blowing from the east to the west

were chosen to be 90 degrees. MonoClust works on circular data by indicating the

index or name of the circular variable (if there is more than one circular variable, a

vector of them can be transferred) in the cir.var argument.

sensit042008 <- MonoClust(wind.subset.bin.2008, nclusters = 4, cir.var = 3)

To perform monothetic clustering, a variable must generate a binary split.

Because of special circular characteristics, a circle needs two cuts to create two



145

separate arcs instead of one cut-point as in conventional linear variables. Therefore,

the algorithm to search for the best split in a circular variable is actually done in

two folds; first by fixing one cut value and then searching for the second cut. This

process is repeated by changing the first cut until all possible pairs of cuts have been

examined and the best two cuts are then picked based on the inertia. The splitting

rule tree is also updated to add the second split value on the corner of the tree. After

the first split on a circular variable, the arcs can be considered as two conventional

quantitative variables and can be split further with only a single cut-point. Figure

5.4 shows the resulting four clusters created by applying monothetic clustering on the

Antarctic data.

When clustering a data set that has at least one circular variable in it,

visualizing the cluster results to detect the underlying characteristics of the clusters

is very crucial. Scatterplots are not very helpful for circular data because of the

characteristics of those variables. Dimension reduction can be performed using

techniques like multi-dimensional scaling (Chapter 14, Hastie et al., 2016) or more

recent techniques such as t-SNE (Maaten and Hinton, 2008), but the details of the

original variables are lost in these projections. Parallel Coordinates Plots (PCPs,

Inselberg and Dimsdale, 1987), which can display the original values of all of the

multivariate data by putting them on equally spaced vertical x-axes, are a good choice

due to its simplicity and its capability to retain the proximity of the data points

(Härdle and Simar, 2015, Chapter 1). A modified PCP, inspired by Will (2016),

is also implemented in monoClust using ggplot2 (Wickham, 2016). The circular

variable is displayed as an ellipse with the options to rotate and/or change the order

of appearance of variables to help facilitate the detection of underlying properties of

the clusters. Figure 5.5 is the PCP of the Antarctic data with the cluster memberships

colored and matched to the tree in Figure 5.4 with the following code. There are other
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Figure 5.5: PCP with the circular variable (WDIR) depicted as an ellipse. The
geographical direction is noted and the ellipse is rotated to facilitate understanding
of clusters.

display options that can be modified such as the transparency of lines, whether the

circular variable is in degrees or radians, etc. (see the function documentation for

details).

pcp.gg(data = wind.sensit.bin.2008, circ.var = "WDIR",

order.appeaer = c("WDIR", "has.sensit", "WS"),

cluster.sol = sol42008,

cols = c("#e41a1c", "#377eb8", "#4daf4a", "#984ea3"),

shift = pi/4+0.6)
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5.3 Partitioning Using Local Subregions (PULS)

Measurements y taken over some ordered index such as time, frequency, or space

and thought of as curves or functions of the index t and/or other predictors are called

functional data and denoted as y(t) (Ramsay and Silverman, 2005). Functional data

have, possibly, a high frequency of observations over the index t and are assumed

to be generated by a smooth underlying process. Some examples of data that can

be treated as functional include the growth curves for girls in the Berkeley Growth

Study (Tuddenham and Snyder, 1954), hydraulic gradients in wetlands (Greenwood

et al., 2011), or daily ice extent over years in the Arctic Sea (Fetterer et al., 2018).

Clustering can be useful for functional data to find groups of curves sharing common

characteristics and to find representative curves corresponding to different modes of

variation in the data.

Functional clustering requires (1) construction of a functional data object and

(2) application of a clustering algorithm either to the functional data directly or to

a distance matrix calculated from the functional data. In R, Ramsay et al. (2018)

created a package named fda to do the former task and function metric.lp in fda.usc

(Febrero-Bande and Fuente, 2012) is designed to find the L2 distance matrix for

functional data in the latter approach. The code for creating an fda object is shown

in the Appendix because they are not the focus of this paper.

In some functional data applications, there is pre-existing knowledge of regions

of interest such as intervals of time where the curves are expected to be very different

from each other. Partitioning using local subregions (PULS) is a clustering technique

designed to explore subregions of functional data for information to split the curves

into clusters. After defining the subregions [a1, b1], [a2, b2], . . . , [aR, bR], the Euclidean

(L2) distance is calculated between functions yi(t) and yj(t) (Febrero-Bande and
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Fuente, 2012) using the function metric.lp in fda.usc to provide

dR(yi, yj) =

√∫ br

ar

[yi(t)yj(t)]2dt

and obtain a dissimilarity matrix for each subregion, r = 1, . . . , R. Adapting the idea

of the monothetic clustering algorithm, each subregion is separately considered as a

splitting candidate for the next 2-group partitioning, using commonly used clustering

techniques such as k-means (MacQueen, 1967), Ward’s method (Ward, 1963), or

partitioning around medoids (PAM, Kaufman and Rousseeuw, 1990). An inertia-like

criterion is again used as the global criterion for selecting each split. Among the

K candidate splits, one from each subregion, the one having the largest decrease in

inertia will be chosen as the best split. The algorithm is then recursively applied

to the resulting sub-partitions until a specified number of partitions is reached or a

stopping rule is met. Pseudocode for this algorithm is in Algorithm 5.2.

The PULS algorithm was inspired by monothetic clustering and shares many

features such as inertia as the global criterion, a recursive bi-partitioning method, and

the same stopping rules. However, the idea and applications of PULS are different

enough to store in a separate R package, which we named PULS. Indeed, PULS

borrows many private functions from monoClust such as the splitting rule tree,

recursively checking for the best splitting subregion, tree-based displays of results,

etc. An example of a usage of the main function of the package, PULS, to the Arctic

ice extent data with subregions defined by months follows.

library(PULS)

Jan <- c(1, 31); Feb <- c(31,59); Mar <- c(59,90); Apr <- c(90,120);

May <- c(120,151); Jun <- c(151,181); Jul <- c(181,212); Aug <- c(212,243);
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Figure 5.6: Four cluster result of PULS on Arctic ice extent data for years 1979–1986,
1989–2013.

Sep <- c(243,273); Oct <- c(273,304); Nov <- c(304,334); Dec <- c(334,365)

intervals <- rbind(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

PULS4.pam <- PULS(toclust.fd=yfd.train$fd, intervals=intervals, nclusters=4,

method = "pam")

plot(PULS4.pam)

Instead of having data set name as a required argument in monoClust, the

required arguments in PULS are an fda object created by applying the smooth.basis

function (see Appendix for the codes) and the list in a data.frame of specified

intervals for the subregions of t. Other arguments in PULS function include:
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• method: the clustering method used to partition the subregions. It can be

chosen between "pam" (for PAM method) and "ward" (for Ward’s method).

• distmethod: the method for calculating the distance matrix. It can be either

"usc" for the metric.lp in fda.usc package (default) or "manual" for using the

inner product of a very fine grid of values between two functions.

• labels: the name of entities

• nclusters: the desired number of clusters in the results

• minbucket and minsplit: the minimum number of observations that must

exist in a node in order for a split to be attempted and the minimum number

of observations allowed in a terminal leaf, respectively.

5.4 Constrained Versions of the Two Clustering Techniques

In a data set, not all variables are created equal. Some variables are easier or

cheaper to measure than others. For example, a data set on human vital information

may include body fat percentage, height, and weight. Height and weight are much

easier to obtain accurate measurements for than body fat percentage. If the data

can be partitioned using only these easy-to-measure variables and the results are

comparable to using all variables, it can help reduce effort and cost in the future

studies where new subjects could be placed in clusters using easy or cheap to measure

variables only.

Both monothetic clustering and the PULS algorithm implemented in the

monoClust and PULS packages have options to limit the splitting candidates to

a subset of variables (in case of monothetic) or subregions (in case of PULS) by

specifying the argument variables =. The following code limits the subset of
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splitting variables only to summer months (August and September) of the Arctic

ice extent data. Besides the benefits of reducing effort and cost in future studies, the

constrained versions of the algorithms also speed up the running time, making the

cluster estimation faster.

In monoClust and PULS, the constrained sets of splitting candidates can be set

in variables and spliton arguments, respectively. The example code below runs

MonoClust and PULS allowing only partitions based on a subset of days from day 181

to 273 (or July to September in the case of PULS).

constrained.mono <- MonoClust(arctic, nclusters=4, variables = 181:273)

constrained.PULS <- PULS(yfd.train$fd, intervals = intervals, nclusters=4,

spliton = 7:9, method = "pam")

5.5 Conclusions

While exploring various problems related to monothetic clustering, we created

and expanded the monoClust package to facilitate our study. It not only applies the

monothetic clustering, a clustering technique that has interpretation advantages, to

various kinds of data such as data with functional or circular variables, but also allows

visualizing the cluster results to further enhance the interpretation of the results. It

also has functionality to help users choose a reasonable number of clusters with cross-

validation and permutation-based methods. Furthermore, PULS can be considered

as a sister project of monothetic clustering using many core functions of monoClust

but modified to work on functional data and data with pre-defined local subregions.

They complement each other to explore interesting and useful applications for these

techniques.
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There is always room for improvements of both packages. Currently, efficiently

accounting for data with many-category categorical variables and mixes of these with

other variables are being considered. However, sorting and searching for the best

splits in categorical variables are still non-trivial problems. The run time could also

be improved by optimizing the search algorithms such as utilizing a local maximum

search, both in “linear” and circular versions, such as using the monkey search (Chen

et al., 2014) or using random walks (Russell et al., 2010).

Further documents, script files, and test versions of these packages are avail-

able at https://github.com/vinhtantran/monoClust and https://github.com/

vinhtantran/PULS.

https://github.com/vinhtantran/monoClust
https://github.com/vinhtantran/PULS
https://github.com/vinhtantran/PULS
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Appendix to Chapter Five: Creating an FDA Object in R

library(fda)

# Step 1: using GCV to select the optimal lambda for each curve (year)

NORDER <- 4

gcv <- function(lambda, lapse, i) {

ydata <- lapse %>%

filter(Year == i) %>%

select(yday, Extent)

splinebasis <- create.bspline.basis(rangeval = c(min(ydata$yday),

max(ydata$yday)),

breaks = ydata$yday,

norder = NORDER)

fdParobj <- fdPar(fdobj = splinebasis,

Lfdobj = 2,

lambda = lambda)

ice.fd.obj <- smooth.basis(argvals = ydata$yday,

y = ydata$Extent,

fdParobj = fdParobj)

return(ice.fd.obj$gcv)

}

year.lst <- unique(north.extra[["Year"]])

lambda.lst <- vector("list", length(year.lst))

for (i in seq_along(year.lst)) {

upper <- 1

lambda <- optim(par=0.2, gcv, lower = 0.001,

upper = upper, lapse = north.extra, i = year.lst[i])
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print(upper)

while (lambda$par == upper) {

upper <- upper + 5

lambda <- optim(par=0.2, gcv, lower = lambda$par,

upper = upper, lapse = north.extra, i = year.lst[i])

print(upper)

}

lambda.lst[[i]] <- lambda$par

}

lambda.lst <- unlist(lambda.lst)

# Step 2: creating the B-spline basis based on the found lambda values, and

# create an FDA object from the basis functions, then predict the missing values

# based on the functional data. This step is neccessary for applying monothetic

# clustering.

NORDER <- 4

year.lst <- unique(north2017.extra[["Year"]])

predicted.mat <- matrix(NA, 37, 366)

for (i in 1:length(year.lst)) {

ydata <- north2017.extra %>%

filter(Year == year.lst[i]) %>%

dplyr::select(yday, Extent)

splinebasis <- create.bspline.basis(rangeval = c(min(ydata$yday),

max(ydata$yday)),

breaks = ydata$yday,

norder = NORDER)
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fdParobj <- fdPar(fdobj = splinebasis,

Lfdobj = 2,

lambda = lambda.lst[i])

icefd <- smooth.basis(argvals = ydata$yday,

y = ydata$Extent,

fdParobj = fdParobj)$fd

predicted.mat[i,] <- predict(icefd, newdata = 1:366)

}

# Step 3: Re-create the FDA object with no lambda any more. This step is not

# really neccessary if applying PULS.

y<-t(predicted.mat)

splinebasis <- create.bspline.basis(rangeval=c(1, 366),

nbasis=NBASIS,norder=NORDER)

fdParobj<-fdPar(fdobj=splinebasis,Lfdobj=2,lambda=.000001)

yfd.full<-smooth.basis(argvals=1:366, y=y, fdParobj=fdParobj)

plot(yfd.full)

yfd.train<-smooth.basis(argvals=1:366,

y=t(predicted.mat[1:(nrow(predicted.mat)-3), ]),

fdParobj=fdParobj)
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Algorithm 5.1: Monothetic clustering
function FINDSPLIT(data):

for all variable in the data set do

Sort the data set by the variable in increasing order

for all value in the variable do

Bi-partition the data set at the value

Calculate the inertia of newly created clusters I(gL) and I(gR)

Calculate the decrease in inertia I(g)− I(gL)− I(gR)

end for

Store the value that maximizes the change in inertia

end for

Choose the variable that creates the maximum change in inertia

function PARTITION:

Start with one cluster of all observations

repeat

for all cluster k do

FINDSPLIT(k)

end for

Bi-partition the data set at the best split

until the number of desired clusters has been reached OR the minimum cluster

size has been reached
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Algorithm 5.2: Partitioning using local subregions
function FINDSPLIT(data):

for all subregion do

Bi-partition the data set by a clustering method

Calculate the inertia of newly created clusters I(gL) and I(gR)

Calculate the decrease in inertia I(g)− I(gL)− I(gR)

end for

Pick the subregion whose split creates the maximum change in inertia

function PARTITION:

Create Subregions, start with one cluster of all observations

repeat

for all cluster k do

FINDSPLIT(k)

Bi-partition the data set at the best split

end for

until the number of desired clusters has been reached OR the minimum cluster

size has been reached
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CHAPTER SIX

CONCLUSIONS AND POSSIBLE EXTENSIONS

Cluster analysis is a widely used method to detect underlying structure when

no information about that structure may be known. In this dissertation, we focus

on monothetic clustering, a type of clustering technique in which the data are bi-

partitioned at the values of the variables, one at a time. Therefore, the clusters would

share the same characteristics, such as the same interval of a quantitative variable,

the same category of a categorical variable, or the same directions of a directional

variable. This feature of monothetic clustering gives the users the ability to interpret

the clusters and predict the cluster a new observation would fall into. Selecting

the number of clusters is a necessary step that any researcher using cluster analysis

for optimization problems must do. Besides subjective methods such as picking the

number of clusters that gives a desired result, looking for a sudden change in the

plot of a clustering criterion against the number of clusters, or choosing the structure

where there is clear separation in a dimension-reduced scatterplot (by using multi-

dimensional scaling or principal component analysis), several objective methods are

available to try to pick a reasonable number of clusters. Based on the features of

the monothetic clustering algorithm suggested by Chavent (1998) and its tree of

partitioning rules, we attempted to introduce criteria to automate the process of

picking a reasonable number of groups in monothetic clustering. They are a cross-

validated criterion inspired by CART (Breiman et al., 1984) and a permutation-based

hypothesis test at each candidate split at tree nodes developed in the context of

conditional inference trees (Hothorn et al., 2006). Various modifications, as well

as novel suggestions to adapt these criteria to monothetic clustering, have been
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examined.

Via simulation studies, we found that the average silhouette width (AW) and

Caliński and Harabasz (CH)’s pseudo-F , classic measures of fitness of clustering, are

very good at detecting the true number of clusters of simulated data when using

monothetic clustering when clear cluster structure is present. But these methods

could not segregate between one and two cluster solutions. Meanwhile, the hypothesis

test with the null distribution created from AW or CH’s F by permuting the splitting

variable and re-optimizing the shuffled data using the same variable was shown to

be liberal and tends to choose a larger number of clusters than the truth. But the

false null hypothesis rejection rate in the case of one true cluster was only slightly

larger than the chosen significance value. Based on that result, we suggested a

hybrid approach where a variable shuffling hypothesis test is used first to decide

the clusterability of the data set. If there is evidence of more than one cluster, then

we suggest using CH’s pseudo-F to pick the number of clusters. We believe that

this hybrid approach can be extended to other sequentially-defined (hierarchical)

clustering algorithms. Specifically, shuffling values within the variables can break

the correlation structure between variables and then re-clustering could be used to

make the null distribution to test whether the first split (or last split) in divisive

(agglomerative) clustering should be performed or not. After that, any standard

criterion can be used to decide further splits/fuses if the testing method continues to

be liberal in these applications.

The monothetic clustering algorithm explored here works with data with mixed

categorical and quantitative variables (Chavent et al., 2007). In this dissertation, we

explored the applications of monothetic clustering to other types of data, including

data with circular variables and functional data. We extended Gower’s dissimilarity

measure and the splitting algorithm to work with circular variables. Thanks to the
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alternative formula to calculate the cluster inertia using any dissimilarity matrix

(Equation 3.6), the monothetic clustering algorithm can work on versions of Gower’s

dissimilarity measure for mixed data types including a distance between angles in

circular variables. We applied the method to data recording the particle counts

carried by winds at the Taylor Valley in the Antarctic continent and the average

speed and direction of the winds at 15-minute intervals during August 4–8, 2007

and July 7–14, 2008 at the Bonney Riegel location. In that data set, wind direction

is a circular variable. Based on the resulting tree of partitioning rules, we could

determine the separation of winds’ features when a variable is used to partition the

data and the association between different winds’ variables when they together define

the characteristics of a cluster. Specifically, winds were split into the down-valley

föhn wind and the up-valley sea breezes. Most of the winds that fall into strong wind

clusters flow in the föhn wind direction and most of the winds that fall into slow wind

clusters flow in the opposite direction. Apart from the order of the splitting variables

in the tree that can show the most influential variables on separating the data, further

interpretations are not possible without the use of other visualizations associated

with the clustering. Rose plots and a modified version of parallel coordinates plots

to include a circular variable have been shown to be an effective way to visualize

the cluster results. With some tweaks to the order of the variables and the rotation

of the circles (shown as ellipses in the plot) implemented in the pcp.gg function in

the monoClust R package (R Core Team, 2019), underlying features in the data,

including the clusters, can be explored.

Another application of monothetic clustering is to functional data. Functional

data analysis involves various techniques applied to data where measurements were

taken over some ordered index such as time or space and are thought of as functions

of that index. Like other types of data, finding structure in functional data using
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cluster analysis has been the interest of many researchers. An example data set

of the daily ice extent area in the Arctic, which is freely available online (Fetterer

et al., 2018), was examined to demonstrate the clustering of functional data. In the

context of a functional data set, the ice extents in each year were used to estimate

a smooth curve. There is a curve for daily ice extent across each year and each

is a functional observation in the data set; day is the index of the functions. To

apply monothetic clustering to functional data, the functional data are used in its

discretized form where the functions, after being smoothed, are interpolated at a

high resolution grid of values of the index, here day. This technique worked but

suffered from the problem of deciding the cutoff values among many values that

have the same amount of maximum decrease in inertia, which happened frequently

because of the smooth nature of the functions. It also did not utilize the estimated

functional data in their actual functional forms. Another partitioning algorithm

called partitioning using local subregions (PULS), which was originally introduced

by Dr. Mark Greenwood, was implemented to run on this data set. This clustering

algorithm exploits the previous knowledge of information-shared subregions (sets of

variables, or days in a month in the motivating data set) and considers all curves as

continuous functions in the subregion to calculate the functional L2 distance matrix

among them. A clustering technique that uses a distance matrix as the input, such

as Ward’s method or partitioning around methods (PAM), is used to bi-partition the

subregion. A global criterion like the cluster inertia used in monothetic clustering

is used to decide which subregion would create the optimal split. This algorithm

directly uses estimated functions to calculate the distance matrix. By using the

combined information of curve segments in a subregion, it reduces the problem of

having to choose among many equally optimal partitions. In the simulation study set

up to evaluate the performance of the clustering algorithms on functional data where
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the true separation was designed to happen in a specific subregion, all the tested

methods are very competitive. Monothetic clustering on the discretized functional

data stood out with the highest adjusted Rand index and pseudo-R2 criteria. PULS

using Ward’s method performed slightly better than using AW and was comparable

to the original Ward’s method.

Functional data usually have the number of variables (indices) much larger than

the number of observations (functions). When used discretely, as in the way we used

it to apply monothetic clustering, functional data have n ≪ Q. Sparse clustering

(Witten and Tibshirani, 2010) is a clustering method where a subset of features are

used to show the most clear structure. It can be extended to functional data to

potentially reduce the number of discrete points on the index to only those that are

related to clearly defined clusters. Sparse clustering has two algorithm versions that

are slightly different depending on whether the input of a clustering algorithm is the

raw data set (as in k-means) or a dissimilarity matrix (as in hierarchical clustering).

Essentially, the sparse clustering is an iterative process where a clustering technique

is applied on weighted variables (or weighted distances in a dissimilarity matrix) with

a fixed weight, then the resulting clustering structure is fixed to optimize the weights

on the individual variables, where some can get zero weight. Extending the ideas of

sparse clustering into functional data could be done discretely using weights at each

value of the index going into the functional dissimilarity matrix or by estimating a

weight function similar to the one used in Greenwood (2004) that could smoothly up

or down-weight areas of the functional data. Sparse clustering ideas could also be

applied to monothetic clustering in general or in the application to functional data

as the weight function could be used to change the relative weights of components

going into the dissimilarity matrix.

PULS could be helpful in other types of biological data sets such as grouping
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protein concentrations in multiple sclerosis (MS) patients and healthy subjects based

on the biomarkers, grouped by the cellular origin and known function of individual

components (Barbour et al., 2017). The clustering of this data set may shed light on

what groups of biomarkers are associated with the separation of healthy subjects and

MS patients.

We could also revisit the data sets explored in the previous chapters in a different

way. An interesting example would be the clustering of daily Arctic ice extent data.

We have assessed the functional nature of the nearly continuous ice extent in the

area but we have not tackled on the periodic nature of days/years besides using that

information to make sure the smoothed curves are uninterrupted at the December

31 and January 1 cut points. Days of year can be considered circular; days can

be displayed on a circle with day 365/366 and day 1 adjacent. By doing that, the

resulting clusters would better reflect the time intervals they contain when using

monothetic clustering. The ice extent data can be displayed as one curve spiraling

around the circle and the cluster structure can be spotted without discontinuity

artificially imposed beginning and end of years (Figure 6.1).

The ability to constrain the set of candidate splitting variables of the monothetic

and PULS algorithms implemented in the monoClust and PULS packages has

potential to assist researchers in realizing the importance of a subset of the measured

variables in segregating the data portions with shared characteristics. A cluster result

of a clustering method constrained on a set of easy-to-measure variables, if it is very

similar to that of the unconstrained clustering method, will help the researchers focus

on those easy-to-measure variables in the future studies on similar goals to reduce the

effort and cost spent to collect the data.

To test the methods and evaluate the methods used in this dissertation, we

developed and maintained two R packages hosted at Github. When implementing the
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Figure 6.1: The Arctic ice extent data displayed as one curve spiraling around a
yearly circle. The colors are clusters resulting from four cluster solution in PULS (in
Chapter 4).

monothetic clustering algorithm proposed by Chavent (1998), we had to make many

design and implementation choices in R to make the algorithms work efficiently. Most

of the computational challenge in monothetic clustering is to find the optimal split

across all variables. The current version of the algorithm exhaustively searches for

all possible splits within a variable, then repeats the process for all variables to pick

a split that is guaranteed to be globally optimal. The running time was acceptable

(on our personal computer) running on reasonable sized data sets (such as the ice

extent data set with n = 40×Q = 365) but would take 10 minutes to run just on a

subset of the overall wind particle counts data (n = 679 × Q = 3 with one circular

variable). This problem is multiplied when simulation studies are considered. The

speed of the search process also can be improved by using other heuristic optimal

search algorithms instead of the current brute force approach. However we would

need to consider that the optimization function might be multimodal and the search

domain consists of discrete values. Figure 6.2 shows these characteristics by plotting
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Figure 6.2: Decrease in inertia for each cutoff value in variable x in ruspini. There
are three modes in the plot with two local maxima and one global maximum.

the decrease in inertia vs. cut points in the x variable of the example ruspini data.

Therefore, the potential search algorithms should be able to handle this non-linear

problem and be able to avoid locally optimal values. Some candidate algorithms

that have been proposed are the monkey search (Chen et al., 2014), hill climbing

hybrid with random walks, or simulated annealing (both are mentioned in Russell

et al., 2010). However, using heuristic searches does not guarantee that the optimal

split will be found, and the results are not stable because of the randomness in their

algorithms. That is the reason why we still preferred the exhaustive search in this

dissertation to assess the performance of the clustering techniques. However, for data

with large n (such as ice extent data) or Q (like functional data), the speed of a

heuristic algorithm can overshadow the accuracy.
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