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ABSTRACT

In computational biology, duplications and deletions in genome rearrangements are
important to understand an evolutionary process. In cancer genomics research, intra-tumor
genetic heterogeneity is one of the central problems. Gene duplications and deletions are
observed occurring rapidly in cancer during tumour formation. Hence, they are recognized
as critical mutations of cancer evolution. Understanding these mutations are important to
understand the origins of cancer cell diversity which could help with cancer prognostics as
well as drug resistance explanation.

In this dissertation, first, we prove that the tandem duplication distance problem is NP-
complete, even if |Σ| ≥ 4, settling a 16-year old open problem. And we obtain some positive
results by showing that if one of the input sequences, S, is exemplar, then one can decide if
S can be transformed into T using at most k tandem duplications in time 2O(k2) + poly(n).
Motivated by computing duplication patterns in sequences, a new fundamental problem
called the longest letter-duplicated subsequence (LLDS) is investigated. We investigate
several variants of this problem.

Due to fast mutations in cancer, genome rearrangements on copy number profiles
are used more often than genome themselves. We explore the Minimum Copy Number
Generation problem. We prove that it is NP-hard to even obtain a constant factor
approximation. We also show that the corresponding parameterized version is W [1]-hard.
These either improve the previous hardness result or solve an open problem. And we then
give a polynomial algorithm for the Copy Number Profile Conforming problem.

Finally, we investigate the pattern matching with 1-reversal distance problem. With
the known results on Longest Common Extension queries, one can design an O(n+m) time
algorithm for this problem. However, we find empirically that this algorithm is very slow
for small m. We then design an algorithm based on the Karp-Rabin fingerprints which runs
in an expected O(nm) time. The algorithms are implemented and tested on real bacterial
sequence dataset. The empirical results shows that the shorter the pattern length is (i.e.,
when m < 200), the more substrings with 1-reversal distance the bacterial sequences have.
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

During a biological evolution, genome rearrangements could occur in genomes in the

form of duplications, deletions, insertions and reversals, which change the content of a genome

or the order of the genes on a genome. In 1930s, Dobzhansky and Sturtevant [30] discovered

17 inversions/reversals between the arrangements of two Drosophila species. Also, it is

well known that human and mice share very much the same genes, but the gene orders

are different. With the advent of genome sequencing, genome analysis based on genome

rearrangements has been done in various areas. For example, genome analysis researches

have been done for the evolution of mitochondrial genomes of plants [9, 76, 77], fungi [16] and

animals [45, 81]; chloroplast genomes [47, 56, 70]; genomes of lambdoid bacteriophages [19]

and small viruses [48, 58]; and mammalian chromosomes [71, 72, 95].

It is now widely accepted that cancers arise from an accumulation of mutation events,

where duplication is an important mutation event of evolution. There are two kinds of

duplications: arbitrary segmental duplications (i.e., select a segment and paste it somewhere

else) and tandem duplications (which is in the form of AXB → AXXB, where X is any

segment of the input sequence). It is known that the former duplications occur frequently in

cancer genomes [26, 73, 88]. On the other hand, frequent tandem duplication and deletion

events are observed occurring rapidly, which play an important role in tumour evolution

and progression in many cancers. In fact, as early as in 1980, Szostak and Wu provided

evidence that gene duplication is the main driving force behind evolution, and the majority



2

of duplications are tandem [89]. Tandem duplications are known to occur either at small scale

at the nucleotide level, or at large scale at the genome level [20, 21, 22, 67, 88]. For instance,

it is known that Huntington’s disease is associated with the duplication of 3 nucleotides

CAG [74], whereas, at the genome level, tandem duplications are known to involve multiple

genes during cancer progression [75]. Furthermore, gene duplication is believed to be the

main driving force behind evolution, and the majority of duplications affecting organisms

are believed to be of the tandem type. As a result, around 3% of the human genome are

formed of tandem repeats [89].

Independently, tandem duplications were also studied as early as in 1984 in copying

systems [33]; as well as in formal languages [14, 29, 91]. In 2004, Leupold et al. posed a

fundamental question regarding tandem duplications: what is the complexity to compute the

tandem duplication distance between two sequences A and B (i.e., the minimum number of

tandem duplications to convert A to B). In Chapter 2, this important fundamental question,

the tandem duplication distance problem, is studied.

The newly tandem duplicated genes could have the same function as the original genes.

However, it is also possible that these copied genes evolves with a new function by other

mutation events, such as deletions [36]. The deletions could break the continuous tandem

duplicated genes into several pieces. Identifying these functional genes could potentially help

to understand the genome evolution and function. Motivated by the above applications,

new problems related to duplications are proposed and studied in Chapter 3. Given a

sequence S of length n, a letter-duplicated subsequence (LDS) of S is a subsequence of S in

the form xd11 x
d2
2 · · ·x

dk
k with xi ∈ Σ, where xj 6= xj+1 and di ≥ 2 for all i in [k] and j in [k−1]

(Each xdii is called an LD-block). Naturally, the problem of computing the longest letter-

duplicated subsequence (LLDS) of S can be defined, and a simple linear time algorithm can

be obtained. We then study important variants around the fundamental LLDS problems,

focusing on the constrained and weighted cases. In [85], S. Schrinner et al. studied another



3

variant of the LLDS problem, which has application in genome assembly.

It is known for some types of cancers, such as high-grade serous ovarian cancer

(HGSOC), that heterogeneity is mainly acquired through genome rearrangements and

endoreduplications, the replication of the genome without the usual mitosis reproduction

cycle. These result in aberrant copy number profiles (CNPs), nonnegative integer vectors

representing the numbers of genes occurring in a genome [73]. As we know, in the late stage

of certain types of cancer, the genomes are progressing rapidly by segmental duplications

and deletions, and hence obtaining the exact sequences of genome rearrangements become

difficult. Instead, the number of copies of important segments can be predicted from

expression analysis and carries important biological information. Therefore, significant

research has recently been devoted to the analysis of genomic data represented as CNP’s.

To understand how cancer progresses, an evolutionary tree is certainly desirable, and

inferring such a tree based on these genomic data becomes a new problem. In [86], Schwarz

et al. proposed a way to construct a phylogenetic tree directly from integer copy number

profiles, the underlying problem being to convert a CNP into another one using the minimum

number of duplication/deletions [87]. This was recently followed with several other distance

measures between CNPs that can be used to reconstruct cancer phylogenies [28, 35, 82, 93,

94]. In [34], a more complex distance computation was used as a subroutine to compute an

ancestor profile given a set of k profiles. The problem was shown to be NP-hard, though an

ILP formulation was given. In fact, Chowdhury et al. considered copy number changes at

different levels, from single gene, single chromosome to whole genome, to enhance the tumor

phylogeny reconstruction [24]. In [79], another fundamental problem was proposed. The

motivation is that in the early stages of cancer, when large number of endoreduplications

are still rare, genome sequencing is still possible. However, in the later stage we might only

be able to obtain cancer genomic data in the form of CNPs. This leads to the problem

of comparing a sequenced genome with a genome with only copy-number information. In
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Chapter 4, we investigate the Minimum Copy Number Generation (MCNG) problem, which

was posed by Qingge et al. in 2018 [79].

Pattern matching is a very practical operation to identify some subsequences. In many

applications like biology and communications, the occurrence of a copy of the pattern could

be slightly altered by letter mutation and corruption. Therefore, the problem of pattern

matching with k mismatches has been investigated rigorously as well. The most widely-used

distance measure for the pattern matching with k mismatches problem is the Hamming

distance. However, the genome rearrangement distance is more meaningful for genome

sequences. As we know, the reversals are common operations on genomes. Computing

the reversal distance between two unsigned genomes, possibly with letter/gene duplications,

is NP-hard [25]. Motivated by the above applications, in Chapter 5, we consider the pattern

matching problem under 1-reversal distance, where we want to list all substrings of input

sequence which have a reversal distance at most 1 to the given pattern.

1.2 The Related Genome Rearrangement Events

In this section, we first describe the duplications, tandem duplications and deletions on

a sequence and on a copy number profile.

1.2.1 Genome Rearrangements on a Sequence

We now describe several related rearrangement events on a sequence. A genome G is a

string, i.e. a sequence of characters, all of which belong to some alphabet Σ. Given a genome

S = s1, s2, . . . sn, a reversal takes a substring S ′ = sisi+1 . . . sj and reverses the order of all

characters of S ′. A duplication is to copy a substring S ′ = sisi+1 . . . sj and insert it before

some letter sk with k ≤ i or after some letter sk with k ≥ j. If S ′ is inserted right before si

or right after sj, the duplication is tandem duplication. A deletion is to delete S ′ from

S. An example for all these rearrangement operations are shown in Table 1.1.
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Source Target Operations

〈a, c, g, c, t, a, g〉 〈a, c, g, c, t, a, g, c, t, g〉 duplication: (3, 5, 6)

〈a, c, g, c, t, a, g〉 〈a, c, g, c, t, g, c, t, a, g〉 tandem duplication: (3, 5)

〈a, c, g, c, t, a, g〉 〈a, c, t, c, g, a, g〉 reversal: (3, 5)

〈a, c, g, c, t, a, g〉 〈a, c, a, g〉 deletion: (3, 5)

Table 1.1: An example of duplication, tandem duplication, reversal and deletion events on
a sequence.

Copy Number Profile (Source) Copy Number Profile (Target) Operations

〈2, 3, 1, 2, 2, 1〉 〈2, 4, 2, 3, 3, 1〉 duplication: 〈3, 1, 2, 2〉

〈2, 3, 2, 4, 2, 1〉 〈2, 2, 1, 3, 1, 1〉 deletion: 〈3, 2, 4, 2〉

Table 1.2: An example for duplication and deletion events on a CNP

1.2.2 Duplication and Deletion on a Copy Number Profile

In [86], the evolution process was modeled as the genome rearrangements on a copy

number profiles. A Copy Number Profile (or CNP) on Σ is a vector ~c = 〈c1, . . . , c|Σ|〉 that

associates each character si of the alphabet with a non-negative integer ci ∈ N. Given

a copy number profile C = 〈c1, c2, . . . , ct〉, a duplication is to change a substring of C,

〈ci, ci+1 . . . cj〉, into 〈c′i, c′i+1, c
′
j〉, such that c′l = cl+1 if cl > 0, for l = i . . . j, but if cl = 0, then

c′ = 0. A deletion changes a substring of C, 〈ci, ci+1 . . . cj〉, into 〈max{ci − 1, 0},max{ci+1 −

1, 0},max{cj − 1, 0}〉. An example is shown in Table 1.2.
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CHAPTER TWO

THE TANDEM DUPLICATION DISTANCE PROBLEM

2.1 Introduction

Tandem duplications have received significant attention in the last decades, both in

practice and theory. The combinatorial aspects of tandem duplications have been studied

extensively by computational biologists [13, 40, 43, 64, 83], one question of interest being to

reconstruct the evolution of a cluster of tandem repeats by duplications that could have given

rise to the observed sequences. In parallel, various formal language communities [29, 69, 91]

have investigated the expressive power of tandem duplications on strings.

From the latter perspective, a natural question arises: given a string S, what is the

language that can be obtained starting from S and applying (any number of) tandem

duplications, i.e., rules of the form AXB → AXXB, where X can be any substring of S?

This question was first asked in 1984 in the context of so-called copying systems [33].

Combined with results from [14], it was shown that this language is regular if S is on a

binary alphabet, but not regular for larger alphabets. These results were rediscovered 15

years later in [29, 91]. In [69], it was shown that the membership, inclusion, and regularity

testing problems on the language defined by S can all be decided in linear time (still on binary

alphabets). In [51, 68, 69], similar problems are also considered on non-binary alphabets,

when the length |X| of duplicated strings is bounded by a constant. More recently, Cho

et al. [23] introduced a tandem duplication system where the depth of a character, i.e., the

number of “generations” it took to generate it, is considered. In [37, 52], the authors studied

the expressive power of tandem duplications, a notion based on the subsequences that can

be obtained from various types of copying mechanisms.

More directly related to our work, Alon et al. [2] recently investigated the minimum
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number of duplications required to transform a string S into another string T . We call this

number the Tandem Duplication (TD) distance. More specifically, the authors showed

that on binary strings, the maximum TD distance between a square-free string S and a

string T of length n is Θ(n). They also mentioned the unsolved algorithmic problem of

computing the TD distance between S and T . In fact, in 2004 this question was posed

in [69] (pp. 306, Open Problem 3) by Leupold et al. and has remained open ever since. We

settle this open problem in this chapter first for an unbounded alphabet, then we extend the

proof to a finite alphabet of size 4. Our technique is different from that used in [2], which

only works for binary strings.

On the other hand, the TD distance is one of the many ways of comparing two

genomes represented as strings in computational biology, other notable examples include

breakpoint [44] and transpositions distance, the latter having recently been shown NP-hard

in a celebrated paper of Bulteau et al. [17]. The TD distance has itself received special

attention recently, owing to its role in cancer evolution [79].

2.2 Preliminaries

Let [n] denote the set of integers {1, 2, . . . , n}. Unless stated otherwise, all the strings

in this chapter are on an alphabet denoted as Σ. If S1 and S1 are two strings, we usually

denote their concatenation by S1S2. For a string S over an alphabet Σ, we write Σ(S) for

the subset of characters of Σ that have at least one occurrence in S. A string S is called

exemplar if |S| = |Σ(S)|, i.e., each character presented in S occurs exactly once. A substring

of S is a contiguous sequence of characters within S. A prefix (resp., suffix) is a substring

that occurs at the beginning (resp., end) of S. A subsequence of S is a string that can be

obtained by successively deleting characters from S.

A tandem duplication (TD) is an operation on string S that copies a substring X of

S and inserts the copy after the occurrence of X in S. In other word, a TD transforms
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S = AXB into AXXB, where A, X and B are strings. Given another string T , we write

S ⇒ T if there exist strings A,B,X such that S = AXB and T = AXXB. More generally,

we write S ⇒k T if there exist S1, . . . Sk−1 such that S ⇒ S1 ⇒ . . . ⇒ Sk−1 ⇒ T . We also

write S ⇒∗ T if there exist some k such that S ⇒k T .

Definition 1. The TD distance distTD(S, T ) between two strings S and T is the minimum

value of k satisfying S ⇒k T . If S ⇒∗ T does not hold, then distTD(S, T ) =∞.

We use the term distance here to refer to the number of TD operations from a string S to

another string T , but one may note that TD is not a metric in the formal sense. In particular,

distTD is not symmetric since duplications can only increase the length of a string.

A square string is a string of the form XX, i.e., a concatenation of two identical

substrings. Given a string S, a contraction is the reverse of a tandem duplication. That

is, it takes a square string XX contained in S and deletes one of the two copies of X. We

write T � S if there exist strings A,B,X such that T = AXXB and S = AXB. We also

define T �k S and T �∗ S for contractions analogously as for TDs (note that T �k S

if and only if S ⇒k T and T �∗ S if and only if S ⇒∗ T ). When there is no possible

confusion, we sometimes write T � S instead T �∗ S.

We have the following problem.

Definition 2. The k-Tandem Duplication (k-TD) problem:

Input: two strings S and T over the same alphabet Σ and an integer k.

Question: Is distTD(S, T ) ≤ k ?

In the Exemplar-k-TD variant of this problem, S is required to be exemplar. In either

variant, we may call S the source string and T the target string. We will often use the fact

that S and T form a YES instance if and only if T can be transformed into S by a sequence

of at most k contractions. See Table. 2.1 for a simple example.
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Sequence Operations

T = 〈a, c, g, g, a, c, g〉 contraction on 〈g, g〉

T ′ = 〈a, c, g, a, c, g〉 contraction on 〈a, c, g, a, c, g〉

S = 〈a, c, g〉

Table 2.1: An example for transforming sequence T to S by two contractions.

We recall that although we study the minimization problem here, it is unknown whether

the question S ⇒∗ T can be decided in polynomial time. Nonetheless, our NP-hardness

reduction applies to ‘promise’ instances in which S ⇒∗ T always holds.

2.3 The Cost-Effective Subgraph Problem

To facilitate the presentation of our hardness proof, we first make an intermediate

reduction using the cost-effective subgraph problem, which we then reduce to the promise

version of the exemplar-k-TD problem.

Suppose we are given a graph G = (V,E) and an integer cost c ∈ N>0. For a subset

X ⊆ V , let E(X) = {uv ∈ E : u, v ∈ X} denote the edges inside of X. The cost of X is

defined as

cost(X) = c · (|E(G)| − |E(X)|) + |X| · |E(X)|.

The formal definition of the cost-effective subgraph problem is defined as follows:

Definition 3. The cost-effective subgraph problem: Given a graph G and an integer cost c,

the question asks for a subset X of minimum cost.

In the decision version of the problem, we are given an integer r and we want to know

if there is a subset X whose cost is at most r. Observe that X = ∅ or X = V are possible

solutions.
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The idea is that each edge “outside” of X costs c and each edge “inside” costs |X|.

Therefore, we pay for each edge not included in X, but if X gets too large, we pay more for

edges in X. We must therefore find a balance between the size of X and its number of edges.

The connection with the TD problem can be roughly described as follows: in our reduction,

we have many substrings that need to be deleted through contractions. We have to choose

an initial set of contractions X and then, each substring have two ways to be contracted:

one way required c contractions, and the other requires |X|.

An obvious feasible solution for a Cost-Effective Subgraph is to take X = ∅, which is

of cost c|E(G)|. Another formulation of the problem could be whether there is a subset X

of cost at most c|E(G)| − p, where p can be seen as a “profit” to maximize. Treating c and

p as parameters, we show the NP-hardness and W[1]-hardness in parameters c + p of the

Cost-Effective Subgraph problem (we do not study the parameter r). Our reduction to

the TD problem does not preserve W[1]-hardness and we only use the NP-hardness, but the

W[1]-hardness might be of independent interest.

Before proceeding, we briefly argue the relevance of parameter c in the W[1]-hardness.

If c is a fixed constant, then we may assume that any solution X satisfies |X| ≤ c. This is

because if |X| > c, every edge included in X costs more than c and putting X = ∅ yields a

lower cost. Thus for fixed c, it suffices to brute-force every subset X of size at most c and

we get a nO(c) time algorithm. Our W[1]-hardness shows that it is difficult to remove this

exponential dependence between n and c.

Theorem 1. The Cost-Effective Subgraph problem is NP-hard and W[1]-hard for parameter

c+ p.

Proof. We reduce from CLIQUE. In this classic problem, we are given a graph G and an

integer k, and must decide whether G contains a clique of size at least k, where a clique is

a set of vertices in which every pair shares an edge. This problem is NP-hard [54] and also
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W[1]-hard in parameter k [31]. We will assume that k is even (which does not alter either

hardness results).

Let (G, k) be a CLIQUE instance, letting n := |V (G)| and m := |E(G)|. The graph

in our Cost-Effective Subgraph instance is also G. We set the cost c = 3k/2, which is an

integer since k is even, and set

r := c

(
m−

(
k

2

))
+ k

(
k

2

)
= cm+

(
k

2

)
(k − c) = cm− k

2

(
k

2

)

we ask whether G admits a subgraph X satisfying cost(X) ≤ r. We show that (G, k) is a

YES instance to CLIQUE if and only if G contains a set X ⊆ V (G) of cost at most r. This

will prove both NP-hardness and W[1]-hardness in c+ p (noting that here p = k/2
(
k
2

)
).

The forward direction is easy to see. If G is a YES instance, it has a clique X of size

exactly k. Since |E(X)| =
(
k
2

)
, the cost of X is precisely r.

Let us consider the converse direction. Assume that (G, k) is a NO instance of CLIQUE.

Let X ⊆ V (G) be any subset of vertices. We will show that cost(X) > r. There are 3 cases

to consider depending on |X|.

Case 1: |X| = k. Since G is a NO instance, X is not a clique and thus |E(X)| =
(
k
2

)
−h, where

h > 0. We have that cost(X) = c(m−
(
k
2

)
+h)+k(

(
k
2

)
−h) = cm+

(
k
2

)
(k−c)+h(c−k) =

r + h(c− k). Since c > k and h > 0, the cost of X is strictly greater than r.

Case 2: |X| = k + l for some l > 0. Denote |E(X)| =
(
k+l

2

)
− h, where h ≥ 0 (actually, h > 0

but we do not bother). The cost of X is

cost(X) = c

(
m−

(
k + l

2

)
+ h

)
+ (k + l)

((
k + l

2

)
− h
)

= cm+

(
k + l

2

)
(k + l − c) + h(c− k − l)

= cm+

(
k + l

2

)
(l − k/2) + h(k/2− l)
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Consider the difference

cost(X)− r =

(
k + l

2

)
(l − k/2)− (−k/2)

(
k

2

)
+ h(k/2− l)

=
3kl2

4
− kl

4
+
l3

2
− l2

2
+ h(k/2− l)

If k/2−l ≥ 0, then the difference is clearly above 0 regardless of h, and then cost(X) > r

as desired. Thus we may assume that k/2 − l < 0. In this case, we may assume that

h =
(
k+l

2

)
, as this minimizes cost(X). But in this case,

cost(X) = cm+

(
k + l

2

)
(l − k/2) +

(
k + l

2

)
(k/2− l) = cm > r,

which concludes this case.

Case 3: |X| = k − l, with l > 0. If k = l, then X = ∅ and cost(X) = cm > r. So we assume

k > l. Put |E(X)| =
(
k−l

2

)
− h, where h ≥ 0. We have

cost(X) = c

(
m−

(
k − l

2

)
+ h

)
+ (k − l)

((
k − l

2

)
− h
)

= cm+

(
k − l

2

)
(k − l − c) + h(c− k + l)

= cm+

(
k − l

2

)
(−k/2− l) + h(k/2 + l)

The difference with this cost and r is

cost(X)− r =

(
k − l

2

)
(−k/2− l)− (−k/2)

(
k

2

)
+ h(k/2 + l)

=
3kl2

4
+
kl

4
− l3

2
− l2

2
+ h(k/2 + l)

>
1

4
(3l3 + l2)− 1

2
(l3 + l2) ≥ 0
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v1 v2

v3v4

v5
Figure 2.1: A clique instance (G, k), where k = 4.

the latter since k > l ≥ 1. Again, it follows that cost(X) > r.

An example. In Figure 2.1, we are given a graph G = {v1, v2, v3, v4, v5} and an integer

k = 4 for the clique problem. For the cost-effective subgraph problem, the c = 3k/2 = 6.

The cost of set X = {v1, v2, v3, v4} which is a clique in G is computed as follows:

cost(X) = c(9− 6) + 4 · 6 = 18 + 24 = 42.

And the cost of another set X̄ = {v1, v2, v3, v5} which is not a clique in G is calculated as

follows:

cost(X̄) = c(9− 5) + 4 · 5 = 24 + 20 = 44.

In the above example, we show that the clique set achieves the lowest cost value.
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2.4 The Tandem Duplication Distance Problem

2.4.1 NP-hardness of Exemplar-k-TD

In this subsection, we show the reduction form the Cost-Effective Subgraph problem in

detail. Since the reduction is somewhat technical, we provide an overview of the techniques

that we use. Let (G, c, r) be a Cost-Effective Subgraph instance where c is the cost and r

the optimization value, and with vertices V (G) = {v1, . . . , vn}. We construct strings S and

T and argue on the number of contractions to go from T to S. We would like our source

string to be S = x1x2 . . . xn, where each xi is a distinct character that corresponds to vertex

vi. Let S ′ be obtained by doubling every xi, i.e., S ′ = x1x1x2x2 . . . xnxn. Our goal is to put

T = S ′E1E2 . . . Em, where each Ei is a substring gadget corresponding to edge ei ∈ E(G) that

we must remove to go from T to S. Assuming that there is a sequence of contractions that

transforms T into S, we make it so that we first want to contract some, but not necessarily

all, of the doubled xi’s of S ′, resulting in another string S ′′. Let t be the number of xi’s

contracted from S ′ to S ′′. For instance, we could have S ′′ = x1x1x2x3x3x4x5x5, where only

x2 and x4 we contracted, and thus t = 2. The idea is that these contracted xi’s correspond

to the vertices of a cost-effective subgraph. After T is transformed to S ′′E1 . . . Em, we then

force each Ei to use S ′′ to contract it. For m = 3, a contraction sequence that we would like

to enforce would take the form

S ′E1E2E3 � S ′′E1E2E3 � S ′′E2E3 � S ′′E3 � S ′′ � S,

where we underline the substring affected by contractions at each step. We make it so that

when contracting S ′′EiEi+1 . . . Em into S ′′Ei+1 . . . Em, we have two options. Suppose that

vj, vk are the endpoints of edge ei. If, in S ′′, we had chosen to contract xj and xk, we can

contract Ei using a sequence of t moves. Otherwise, we must contract Ei using another more
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costly sequence of c moves. The total cost to eliminate the Ei gadgets is c(m−e)+ te, where

e is the number of edges that can be contracted using the first choice, i.e., for which both

endpoints were chosen in S ′′.

Unfortunately, constructing S ′ and the Ei’s to implement the above idea is not

straightforward. The main difficulty lies in forcing an optimal solution to behave as we

describe, i.e., enforcing going from S ′ to S ′′ first, enforcing the Ei’s to use S ′′, and enforcing

the two options to contract Ei with the desired costs. In particular, we must replace the xi’s

by carefully constructed substring Xi. We must also repeat the sequence of Ei’s a certain

number p times. We now proceed with the technical details.

Theorem 2. The Exemplar-k-TD problem is NP-complete, even if for the given string S

and T , S ⇒∗ T is guaranteed to hold.

Proof. To see that the problem is in NP, note that distTD(S, T ) ≤ |T | since each contraction

from T to S removes a character. Thus a sequence of contractions can serve as a certificate,

has polynomial size and is easy to verify.

For hardness, we reduce from the Cost-Effective Subgraph problem. Let (G, c, r) be

an instance of Cost-Effective Subgraph problem, letting n := |V (G)| and m := |E(G)|.

Here c is the “outsider edge” cost and we ask whether there is subset X ⊆ V (G) such that

c(m− |E(X)|) + |X||E(X)| ≤ r. We denote V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}.

The ordering of vertices and edges is arbitrary but remains fixed for the remainder of the

proof. For convenience, we allow the edge indices to loop through 1 to m, and so we put

ei = ei+lm for any integer l ≥ 0. Thus we may sometimes refer to an edge ek with an index

k > m, meaning that ek is actually the edge e((k−1) mod m)+1.

The construction. Let us first make an observation. If we take an exemplar string X =

x1 . . . xl (i.e., a string in which no character occurs twice), we can double its characters

and obtain a string X ′ = x1x1 . . . xlxl. The length of X ′ is only twice that of X and
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distTD(X,X ′) = l, i.e., going from X ′ to X requires l contractions. We will sometimes

describe pairs of strings X and X ′ at distance l without explicitly describing X and X ′, but

the reader can assume that X starts as an exemplar string of length l and we obtain X ′ by

doubling each character, as above.

Now we show how to construct S and T . First let d = m + 1 and p = m(n + m)10.

The exact values of d and p are not crucial and will only refer to them when needed: for

the most part, it is enough to think of d and p are simply “larger enough”. Note however

that p is a multiple of m. For later reference, the value of k we will use in the reduction is

k = p/mḋ(r + nm) + 4cdn.

Instead of doubling xi’s as in the intuition paragraph above, we will duplicate some

characters d times. Moreover, we can’t create a string T that behaves exactly as described

above, but we will show that we can append p copies of carefully crafted substring to obtain

the desired result. We need d and p to be high enough so that “enough” copies behave as

we desire.

For each i ∈ [n], define an exemplar string Xi of length d. Moreover, create enough

characters so that no two Xi strings contain a character in common. Let Xd
i be a string

satisfying distTD(Xi, X
d
i ) = d.

Then for each j ∈ {0, 1, . . . , 2p}, define an exemplar string Bj. Ensure that no Bj

contains a character from an Xi string, and no two Bj’s contain a common character. The

Bj strings can consist of a single character, with the exception of B0 and B1 which are

special. We assume that for B0 and B1, we have strings B∗0 and B∗1 such that

distTD(B0, B
∗
0) = dc+ 2d− 2

distTD(B1, B
∗
1) = dn+ 2d− 1

Again, this can be done using the doubling trick on exemplar strings. The Bj’s are the
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building blocks of larger strings. For each q ∈ [2p], define

Bq = BqBq1 . . . B2B1B0 B0
q = BqBq1 . . . B2B1B

∗
0

B1
q = BqBq1 . . . B2B

∗
1B0 B01

q = BqBq1 . . . B2B
∗
1B
∗
0

These strings are used as “blocks” and prevent certain contractions from happening. Note

that B0
q and B1

q can be turned into Bq using dc + 2d − 2 contractions and dn + 2d − 1

contractions, respectively. Moreover, B01
q can be turned into B0

q using dn+2d−1 contractions

and into B1
q using dc+ 2d− 2 contractions.

Also define the strings

X = X1X2 . . . Xn X d = Xd
1X

d
2 . . . X

d
n

and for edge eq = vivj with q ∈ [p] whose endpoints are vi and vj, define

Xeq = Xd
1 . . . X

d
i−1X

d
iX

d
i+1 . . . X

d
j−1X

d
jX

d
j+1 . . . X

d
n

Thus in Xeq , all Xk substrings are turned into Xd
k , except Xi and Xj.

Finally, define a new additional character ∆, which will be used to separate some of

the components of our strings. We can now define S and T . We have

S = B2pX∆ = B2pB2p−1 . . . B2B1B0X1X2 . . . Xn∆

It follows from the definitions of B2p, X and ∆ that S is exemplar. Now for i ∈ [p], define

Ei := B01
i Xei∆B1

2pX∆
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which we will call the edge gadget. Define T as

T = B0
2pX d∆B1

2pX∆E1E2 . . . Ep

= B0
2pX d∆B1

2pX∆[B01
1 Xe1∆B1

2pX∆][B01
2 Xe2∆B1

2pX∆] . . . [B01
p Xep∆B1

2pX∆]

We add brackets for clarity only - they indicate the distinct Ei substrings, but the brackets

are not actual characters of T . The idea is that T starts with S ′ = B0
2pX d∆, a modified S in

which B2p becomes B0
2p and the Xi substrings are turned into Xd

i . This X d substring serves

as choice of vertices in our cost-effective subgraph problem. Each edge ei has a “gadget

substring” Ei = B01
i Xei∆B1

2pX∆. Since p is a multiple of m, the sequence of edge gadgets

E1E2 . . . Em is repeated p/m times. Our goal to go from T to S is to get rid of all these edge

gadgets by contractions. Note that because a Ei gadget starts with B01
i and the gadget Ei+1

starts with B01
i+1, the substring Ei+1 has a character that the substring Ei does not have.

The hardness proof. We now show that G admits a subset of vertices W of cost at most

r if and only if T can be contracted to S using at most p/m · d(r + nm) + 4cdn contraction

operations. We include the forward direction, which is the most instructive, in the main

text.

(⇒) Suppose that G has a subgraph W of cost at most r. Thus c(m − |E(W )|) +

|W ||E(W )| ≤ r. To go from T to S, first consider an edge ei that does not have both

endpoints in W . We show how to get rid of the gadget substring Ei for ei using dn + dc

contraction. Note that T contains the substring B1
2pX∆Ei = B1

2pX∆[B01
i Xei∆B1

2pX∆], where

brackets surround the Ei occurrence that we want to remove (note that here for i > 1, the

prefix B1
2PX∆ is the suffix of the previous Ei−1 gadget, and for i = 1, it is the suffix of

the starting block of T ). We can first contract B01
i to B1

i using dc + 2d − 2 contractions,

then contract Xei to X using d(n− 2) contractions. The result is the B1
2pX∆[B1

iX∆B1
2pX∆]
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substring, which becomes B1
2pX∆ using two contractions (see below). This sum to dc+ 2d−

2 + dn − 2d + 2 = dc + dn operations. More visually, the sequence of contractions works

as follows (as before, brackets indicate the Ei substring and what remains of it, and the

underlines are there to emphasize the substrings that participate in the contractions(s)):

B1
2pX∆[B01

i Xei∆B1
2pX∆]

�B1
2pX∆[B1

iXei∆B1
2pX∆] (dc+ 2d− 2 contractions)

�B1
2pX∆[B1

iX∆B1
2pX∆] (d(n− 2) contractions)

=B2pB2p−1 . . . Bi+1B
1
iX∆[B1

iX∆B1
2pX∆]

�B2pB2p−1 . . . Bi+1B
1
iX∆[B1

2pX∆] (1 contraction)

=B1
2pX∆[B1

2pX∆]

�B1
2pX∆ (1 contraction)

This sequence of dn + dc contractions effectively removes the Ei substring gadget. Observe

that after applying this sequence, it is still true that every remaining Ej gadget substring is

preceded by B1
2pX∆. We may therefore repeatedly apply this contraction sequence to every

ei not contained in W (including those ei gadgets for which i > m). This procedure is thus

applied to p/m · (m− |E(W )|) gadgets. We assume that we have done so, and that every ei

for which the Ei gadget substring remains is in W . Call the resulting string T ′.

Now, let XW be the substring obtained from X d by contracting, for each vi ∈ W , the

string Xd
i to Xi. We assume that we have contracted the X d substring of T ′ to XW , which

uses d|W | contractions (note that there is only one occurrence of X d in T ′, namely right

before the first ∆). Call T ′′ the resulting string. At this point, for every Ei substring gadget

that remains, where Ei corresponds to edge ei = vjvk, XW contains the substrings Xj and

Xk (instead of Xd
j and Xd

k ).
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Let i be the smallest integer for which the ei substring gadget Ei is still in T ′. This is

the leftmost edge gadget still in T ′′, meaning that T ′′ has the prefix

B0
2pXW∆B1

2pX∆[B01
i Xei∆B1

2pX∆]

where brackets indicate the Ei substring. To remove Ei, first contract B01
i to B0

i , and contract

Xei to XW (This is possible since ei ⊆ W ). The result is B0
2pXW∆B1

2pX∆[B0
iXW∆B1

2pX∆].

One more contraction gets rid of the second half. This requires dn+2d−1+d(|W |−2)+1 =

dn + d|W | contractions. This procedure is applied to p/m · |E(W )| gadgets. To recap, the

contraction sequence for Ei does as follows:

B0
2pXW∆B1

2pX∆[B01
i Xei∆B1

2pX∆]

�B0
2pXW∆B1

2pX∆[B0
iXei∆B1

2pX∆] (dn+ 2d− 1 contractions)

�B0
2pXW∆B1

2pX∆[B0
iXW∆B1

2pX∆] (d(|W | − 2) contractions)

�B0
2pXW∆B1

2pX∆ (1 contraction)

After we repeat this for every Ei, all that remains is the string B0
2pXW∆B1

2pX∆. We contract

XW to X using d(n − |W |) contractions (in total, going from X d to X required dn moves).

Then contract B0
2p and B1

2p to B2p using dc+2d−2+dn+2d−1 = d(c+n+4)−3 contractions.

one more contraction of the second half of the string yields S. The summary of the number
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of contractions made is

p

m
· (m− |E(W )|) · (dc+ dn) +

p

m
· |E(W )| · (dn+ d|W |) + dn+ d(c+ n+ 4)− 3

≤ p

m
· (m− |E(W )|) · (dc+ dn) +

p

m
· |E(W )| · (dn+ d|W |) + 4cdn

=
p

m
· d · (c+ n)(m− |E(W )|) +

p

m
· d · (n+ |W |)|E(W )|+ 4cdn

=
p

m
· d · [c(m− |E(W )|) + |W ||E(W )|+ nm] + 4cdn

≤ p

m
· d(r + nm) + 4cdn

as desired.

(⇐) This direction of the proof is proved by several separate claims. The challenging

part is to show that each Ei substring must get removed separately in this sequence, and

that “most” of them incur a cost of either dn+ dt− 2 or dn+ dc− 2 for some t (this “most”

is the reason that we need a large p).

Suppose that T can be turned into S using α contractions, where α ≤ p/m ·d(r+nm)+

4cdn. Let C1, . . . , Cα be a corresponding sequence of contractions. Here, each Ci contraction

is given by a pair of positions ranging over both copies of the contracted substring. The

idea is to show that, for some integer t, many of the Ei substrings are removed after t of

the Xd
i substrings from Xd have been contracted to Xi. This set of t Xi’s corresponds to

the vertices of a cost-effective subgraph. The main components of the proof are to show

that each Ei must be removed, no two Ei’s are affected by the same contraction, and most

(though perhaps not all) Ei require either dn+ dt or dc+ dn− 1 contractions.

Denote T (l) as the string obtained from T after applying the first l contractions

C1, . . . , Cl in the sequence, with T (0) = T and T (α) = S. A block of T (l) is a substring P

of T (l) whose last character is ∆, that has only one occurrence of ∆ and that is a maximal

string with this property (hence in T (l), the first character of P is either preceded by ∆ or
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is the start of T (l)). For instance, each Ei substring is made of 2 blocks.

We need a (conceptual) mapping from the character of T (l) to choose of T . We

assume that each character of T is distinguishable, i.e., each character has a unique identifier

associated to it (we do not define it explicitly, but for instance each character can be labeled

by its position in T ). When contracting a substring DD from T (l) to T (l+1), we assume that

the characters of the second half are deleted. That is, if T (l) = LDDR and T (l+1) = LDR,

only the characters from the first, leftmost D substring remain. Therefore when going from

T (l) to T (l + 1), some characters might change position but they keep the same identifier.

Thus each character of T (l) corresponds to a distinct character in T , namely the one with

the same identifier. When we say that a character x from T (l) belongs to a substring P of

T , we mean that x corresponds to a character of P in T under this mapping.

For a substring P of T , we say that P is removed in T (l) if T (l) has no characters that

belong to P . We say that P is removed if there is some T (l), with 1 ≤ l ≤ α, in which P is

removed.

Claim 1. Each Ei substring must be removed in T (α).

Proof. Consider the first, leftmost block B0
2pX d∆ of T , and recall that all of its characters are

distinct. Observe that for any T (l) and any symbol s ∈ Σ, T (l) has an occurrence of s that

belongs to this block (as there is no way to completely remove all occurrences of a symbol

from the first block B0
2pX d∆, by our way of deleting the rightmost copy in contractions).

Since Σ(Ei) ⊆ Σ(B0
2pX d∆), this means that if Ei is not removed, the last string T (α) in the

sequence has at least two occurrences of some character in Σ. Because S is exemplar, this

contradicts that T (α) = S.

Notice that in T , Ei = B01
i Xei∆B1

2pX∆ has two blocks. We write E ′ = B01
i Xei∆ to

denote the first block of Ei. We let E ′i(l) be the substring of T (l) formed by all the characters

that belong to E ′i, noting that E ′i(l) is possibly the empty string or a subsequence of E ′i. For
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a ∈ {0, 1, 01}, a block BX∆ is called a BaX∆-block if BX∆ is a subsequence of BaiX d∆ and

Σ(BX∆) = Σ(BaiX d∆). In other words, BX∆ has all the symbols that occur in BaiX d∆

in the same order, although the number of occurrences of a symbol might differ. A string

obtained by concatenating an arbitrary number of B1
2pX∆-blocks is called a B1

2pX∆-cluster,

which could possibly be the empty string. Using notation borrowed from regular languages,

we write (B1
2pX∆)∗ to denote a B1

2pX∆-cluster.

Claim 2. For any l, T (l) has the form

BX∆(B1
2pX∆)∗E ′i1(l)(B

1
2pX∆)∗E ′i2(l)(B

1
2pX∆)∗ . . . E ′ih(l)(B1

2pX∆)∗,

where

- BX∆ is a B0
2pX∆-block

- 1 ≤ i1 < i2 < . . . < ih ≤ p

- each (B1
2pX∆)∗ is a B1

2pX∆-cluster, and

- for each j ∈ {i1, . . . , ih}, E ′j(l) is a B01
j X∆-block.

Proof. Notice that the statement is true for l = 0, since T has the required form. Assume

the claim is false and let l be the smallest integer for which T (l) is a counter-example to the

claim. Thus we may assume that T (l− 1) has the same form as in the claim statement. Let

D be the string that was contracted from T (l− 1) to T (l), so that T (l− 1) contained DD as

a substring, and the second D substring gets removed from T (l − 1). We shall refer to the

first D as the left D and the second as the right D. If D does not contain a ∆ character, then

DD is entirely contained in a single block. Contracting DD cannot remove all occurrences of

a symbol nor change their order, and thus the above form must be preserved (every BaiX∆-

block will remain a BaiX∆-block). Assume instead that the last character of D is ∆. Then
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DD = D′∆D′∆ for some string D′, and removing the second D′∆ half only removes entire

blocks of T (l − 1). As this block cannot be BX∆ and since each E ′ij(l − 1) is itself a block,

this preserves the form of the claim.

Therefore, we may assume that the last character of D is not ∆, but that D has at

least one ∆ character. Observe that no character from the BX∆-block can get removed by

such a contraction, since the left half of DD is kept. It follows that the first condition of the

claim is preserved after contracting DD. It is easy to see that the second condition is also

preserved. For the other two conditions, we have four cases to consider depending on where

the right half of DD, i.e., the removed substring, is located in T (l − 1).

1. The leftmost character removed belongs to a E ′j(l − 1) substring of T (l − 1). In this

case, because D contains a ∆, the right half of DD must contain the ∆ of E ′j(l − 1).

Let b be the first character of E ′j(l−1), which is the first character of B01
j since E ′j(l−1)

is a B01
j X∆-block, by assumption. We treat b as a uniquely identifiable character in

T (l− 1). Note that this b is preceded by ∆ in T (l− 1). There are two subcases: either

this b is the leftmost removed character or not. In the first case, D = bD′ for some

D′, which we illustrate as follows (we add brackets around the two copies of D, and

underline the removed half):

T (l − 1) = T ′[bD′][bD′]T ′′,

for some strings T ′ and T ′′. Here the second b is the one from E ′j(l − 1). Since it is

preceded by ∆ in T (l − 1), this implies that D′ (and thus D) ends with a ∆. But

we are assuming that D does not end with ∆. Therefore we know that b is not the

leftmost character removed from T (l − 1).

It follows that the b character belongs to the left half ofDD. This case can be illustrated
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as follows:

T (l − 1) = T ′[D′bD′′][D′bD′′]T ′′

where D = D′bD′′ for some strings D′ and D′′. Here, the first b is the first character

from E ′j(l − 1). We can argue that D′ is not empty: if D′ is empty, then D′′ contains

∆ because we are assuming that D contains ∆. But the first b illustrated above is in

E ′j(l− 1), and this implies that the left D′bD′′ ends after E ′j(l− 1), contradicting that

the leftmost deleted character is inside E ′j(l − 1).

Since D′ is not empty, it follows that D must contain ∆b as a substring. But there is

only one occurrence of ∆b in T (l − 1), as E ′j(l − 1) is the only block that starts with

b. Therefore, T (l − 1) cannot contain DD as a substring, a contradiction.

2. The rightmost character removed is in some E ′j(l − 1) substring. Again, if we put b

as the first character of E ′j(l − 1), this means that the removed D contains ∆b as a

substring (if not, D cannot contain a ∆), which has only one occurrence. We get the

same contradiction.

3. The leftmost and rightmost characters that get removed belong to distinct (B1
2pX∆)-

clusters, implying the existence of at least one E ′j(l − 1) in between. The same type

of ∆b substring argument applies, since the removed D contains the first character of

E ′j(l − 1) and its preceding ∆.

4. The leftmost and rightmost characters that get removed belong to the same (B1
2pX∆)-

cluster. In this case, it is not hard to verify that the result is yet another (B1
2pX∆)-

cluster, which preserves the desired form.

The cases above cover every possibility: we have covered the cases where the removed

substring begins or ends in a E ′j(l − 1), and the cases where both its extremities end in
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a cluster. This proves the claim.

We will say that a contraction Cl affects E ′i(l) if at least one character of E ′i(l) is in

the substring corresponding to Cl. Recall that Cl spans over both copies of the contracted

substring, and so E ′i(l) could be affected by Cl even if none of its characters gets removed.

Claim 3. For any l, the contraction Cl from T (l) to T (l + 1) does not affect two distinct

E ′i(l) and E ′j(l) substrings of T (l).

Proof. Suppose the claim is false, and let T (l)[a1..a2] be the substring of T (l) affected by the

contraction, where T (l)[a1..a2] = DD for some string D. Assume that T (l)[a1..a2] contains

characters from both E ′i(l) and E ′j(l), where i < j. Let bi, bj be the first characters of

E ′i(l) and E ′j(l), respectively, which are the first character of B01
i and B01

j by Claim 2. Then

T (l)[a1..a2] must contain the substring ∆bj, since E ′j(l) occurs later than E ′i(l) in T (l). Since

∆bj occurs only once in T (l) as argued in the previous claim, ∆bj cannot be a substring of

D. This is only possible if D starts with bj (and consequently ends with ∆). Now, since E ′i(l)

does not contain bj, T (l)[a1..a2] cannot start with a suffix of E ′i(l). Yet some characters of

E ′i(l) are in T [a1..a2], implying that the substring ∆bi is in T (l). Again, this substring occurs

only once in T (l), and thus D must start with bi and end with ∆. But this is impossible

since bi 6= bj.

Notice that T has one occurrence of the X d = Xd
1 . . . X

d
n substring. We will therefore

refer to the X d substring of T without ambiguity. For i ∈ [n], we let Xi(l) denote the

substring of T (l) formed by all the characters that belong to the Xd
i substring of X d. We

will say that Xi is activated in T (l) if Xi(l) = Xi. Intuitively speaking, Xi is activated in

T (l) if it has undergone d contractions to turn it from Xd
i into Xi.

Claim 4. Let i ∈ [p], and suppose that E ′i is not removed in T (l− 1) but is removed in T (l).

Let t be the number of Xi’s that were activated in T (l− 1). Suppose that vi1 and vi2 are the
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two endpoints of edge ei.

Then the number of contractions that have affected E ′i is at least dc + dn− 1 if Xi1 or

Xi2 is not activated in T (l− 1), or at least min{dt+ dn, dc+ dn− 1} if Xi1 and Xi2 are both

activated in T (l − 1).

Proof. By Claim 2, in T (l − 1), E ′i(l − 1) belongs to a B01
i X∆-block. As E ′i(l − 1) gets

removed completely after the l-th contraction of some substring DD, it follows that D must

contain a substring that is equal to E ′i(l − 1). The second D of the DD square certainly

contains the E ′i(l− 1) substring that gets removed, but consider the copy of E ′i(l− 1) in the

first D of the DD square. That is, we can represent the contraction as

T ′[D1Ê
′
i(l − 1)D2][D1E

′
i(l − 1)D2]T ′′

where D = D1E
′
i(l − 1)D2 and Ê ′i(l − 1) is a substring equal to E ′i(l − 1). Since E ′i(l − 1)

is a block, this Ê ′i(l − 1) copy is a substring of a (possibly larger) block. By Claim 3, there

are only two such possible blocks: either it is BX∆, which is the B0
2pX∆-block at the start

of T (l− 1), or it is a B1
2pX∆-block from a cluster preceding E ′i(l− 1). We analyze these two

cases, which will prove the two cases of the claim.

Suppose that Ê ′i(l − 1) is located in the first block BX∆ of T (l − 1). Note that since

Xei contains Xi1 and Xi2 in their contracted form (as supposed to Xd
i1

or Xd
i2

), Xi1 and Xi2

must be activated in T (l− 1) for the DD contraction to be possible. Moreover for E ′i(l− 1)

to be equal to a substring of BX∆, every other Xj with j 6= i1, i2 that is activated must be

contracted in E ′i(l−1) (i.e., E ′i contains Xd
j , but must contain Xj in E ′i(l−1)). This requires

at least d(t − 2) contractions. Moreover, B contains the B1 substring, whereas E ′i contains

B∗1 . There must have been at least dn+2d−1 affecting the B01
i substring of E ′i. Counting the

contraction removing E ′i(l−1), this implies the existence of d(t−2)+dn+2d−1+1 = dn+dt

contractions affecting E ′i.
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If instead Ê ′i(l − 1) was located in a B1
2pX∆-block, call this block P , then it suffices to

note that P contains B0 as a substring whereas E ′i contains B∗0 . Counting the contraction

that removes E ′i(l − 1), it follows that at least dc + 2d − 1 contractions must have affected

E ′i.

The above shows that there are two types of contractions that can remove E ′i from

T (l). Either it uses the BX∆ substring at the start of T (l − 1), or it uses a block from a

B1
2pX∆-cluster. We will call the E ′i’s that get removed in the first manner Type 1, and those

that get removed in the second manner Type 2.

We would like to show that every Type 1 E ′j gets removed with the same set of activated

Xi’s, but it might not be the case. Rather, our next goal is to show that “many” E ′j’s of Type

1 use the same activated Xi’s. For k ∈ [p], denote by act(E ′k) the set of activated Xi’s when

E ′k gets removed (i.e., when E ′k is not removed from T (l− 1) but is removed from T (l)). Let

us partition [p] into intervals of integers Pa = [1 +am..m+am], where a ∈ {0, . . . , p/m−1}.

We say that interval Pa is homogeneous if, for each i, j ∈ Pa such that E ′i and E ′j are of Type

1, act(E ′i) = act(E ′j). In other words, Pa is homogeneous if all the Type 1 E ′i substrings

corresponding to those in Pa are removed with the same set of activated Xi’s.

Claim 5. There are at least p/m− 2n homogeneous intervals.

Proof. Observe that once an Xi is activated, it remains so for the rest of the contraction

sequence. Since there are n of the Xi’s, there are only n + 1 possible values for act(E ′k)

(counting the case when none of them are activated). There are p/m intervals, and it follows

that at most n+ 1 ≤ 2n of them are not homogeneous.

We can now go on with the final elements of the proof. Define cost(E ′i) as the number

of contractions that affect E ′i. Let Pa1 , . . . , Pah be the set of homogeneous intervals, h ≥

p/m − 2n. Choose the Pa interval among those whose sum of corresponding E ′i costs is
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minimized - in other words choose Pa such that

∑
a∈Pa

cost(E ′i) = min
j∈[h]

∑
i∈Paj

cost(E ′i)

By Claim 3, no two E ′i’s share their cost, and by the minimality of Pa the total number

of contractions is at least

(
p

m
− 2n)

∑
i∈Pa

cost(E ′i)

We will only bother with these contractions and we make no assumption on the non-

homogeneous intervals. Assume that there is at least one i ∈ Pa such that E ′i is of Type 1.

Then by Claim 4, cost(E ′i) is either at least min{dc+dn−1, dt+dn} where t = |act(E ′i)|, or

cost(E ′i) is at least dc+ dn− 1. If dt+ dn ≥ dc+ dn− 1, we may assume that E ′i is of Type

2 since removing E ′i using Type 2 contractions will not increase its cost. We will therefore

assume that if there is at least one E ′i of Type 1 in Pa. then dt+ dn < dc+ dn− 1 and thus

cost(E ′i) ≥ dt+ dn.

Now, choose any i in Pa such that E ′i is of Type 1, and let W be the set of vertices of

G corresponding to those in act(E ′i). That is, vj ∈ W if and only if Xj is activated when E ′i

gets removed. If there does not exist and E ′i of Type 1 to choose, then define W = ∅. Denote

|W | = t and |E(W )| = s. We claim that W is subgraph of G satisfying c(m− s) + ts ≤ r.

Assume c(m − s) + ts > r (otherwise, we are done). As we are dealing with integers,

this means c(m − s) + ts ≥ r + 1. We will derive a contradiction on the assumed number

of contractions. For any E ′i where i ∈ Pa, by Claim 4, either ei is not in W and cost(E ′i) ≥

dc+ dn− 1, or ei is in W and cost(E ′i) ≥ dt+ dn. Note that we needed to choose Pa to be

homogeneous to guarantee that every Type 1 E ′i uses the same value of t in the cost dt+dn.
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It follows that the total number of contractions is at least

(
p

m
− 2n)

∑
i∈Pa

cost(E ′i)

≥(
p

m
− 2n)[(m− s)(dc+ dn− 1) + s(dt+ dn)]

=(
p

m
− 2n)[d((c+ n)(m− s) + s(t+ n))−m+ s]

=(
p

m
− 2n)[d(c(m− s) + st) + d(nm− ns+ ns)−m+ s]

=(
p

m
− 2n) · d · [c(m− s) + st+ nm] + (

p

m
− 2n)(s−m)

≥(
p

m
− 2n) · d · [r + 1 + nm] + (

p

m
− 2n)(s−m)

=(
p

m
− 2n) · d · [r + nm] + (

p

m
− 2n)(d+ s−m)

=
p

m
· d(r + nm)− 2dn(r + nm) + (

p

m
− 2n)(d+ s−m)

Now if d and p are large enough, the above is strictly greater p/m · d(r + nm) + 4cdn,

leading to a contradiction. Our chosen values d = m + 1 and p = (n + m)10 easily verify

this. We have therefore shown that W has the desired cost. This concludes the proof.

An example. In Figure 2.2, we show a graph G with W = {v2, v3, v4}. The sequence T

containing E1 and E2 is as follows. We set d = 4 (certainly it can be larger, e.g., 9), X =

X1X2X3X4X5X6, where Xi = xi1xi2xi3xi4. And we set X4
i = xi1xi1xi2xi2xi3xi3xi4xi4 and

X 4 = X4
1X

4
2X

4
3X

4
4X

4
5X

4
6 . For ei = (vj, vk), Xei = X4

1 · · ·X4
j−1XjX

4
j+1 · · ·X4

k−1XkX
4
k+1 · · ·X4

n.
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v1 v2

v3

v4

v5

v6

e1e2

Figure 2.2: A graph G with W = {v2, v3, v4}. In the constructed gadgets, we only show
those for e1 = (v5, v6) and e2 = (v3, v4). For clarity, we assume d = 4.

T =B2pB2p−1 · · ·B2B1B
∗
0X

4
1X

4
2X

4
3X

4
4X

4
5X

4
6 ∆ //B0

2pX d∆

B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆ //B1

2pX∆

B∗1B
∗
0X

4
1X

4
2X

4
3X

4
4X5X6∆ //B01

1 Xe1∆

B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆ //B1

2pX∆

B2B
∗
1B
∗
0X

4
1X

4
2X3X4X

4
5X

4
6 ∆ //B01

2 Xe2∆

B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆ //B1

2pX∆

· · · · · · omitted.
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In the forward direction, as e1 /∈ E(W ), E1 is contracted as follows:

B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆[B∗1B

∗
0X

4
1X

4
2X

4
3X

4
4X5X6∆B1

2pX∆]

⇒B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆[B∗1B0X

4
1X

4
2X

4
3X

4
4X5X6∆B1

2pX∆]

⇒B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆[B∗1B0X1X2X3X4X5X6∆B1

2pX∆]

⇒B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆[B1

2pX∆]

⇒B2pB2p−1 · · ·B2B
∗
1B0X1X2X3X4X5X6∆

=B1
2pX∆
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Similarly, as e2 ∈ E(W ), E2 is contracted as follow.

B0
2pX

4
1X

4
2X

4
3X

4
4X

4
5X

4
6 ∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B2B

∗
1B
∗
0X

4
1X

4
2X3X4X

4
5X

4
6 ∆B1

2pX∆]

=B0
2pX 4∆B1

2pX∆[B01
2 Xe2∆B1

2pX∆]

→B0
2pX

4
1X2X3X4X

4
5X

4
6 ∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B2B

∗
1B
∗
0X

4
1X

4
2X3X4X

4
5X

4
6 ∆B1

2pX∆]

=B0
2pXW∆B1

2pX∆[B01
2 Xe2∆B1

2pX∆]

→B0
2pX

4
1X2X3X4X

4
5X

4
6 ∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B2B1B

∗
0X

4
1X

4
2X3X4X

4
5X

4
6 ∆B1

2pX∆]

=B0
2pXW∆B1

2pX∆[B0
2Xe2∆B1

2pX∆]

→B0
2pX

4
1X2X3X4X

4
5X

4
6 ∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B2B1B

∗
0X

4
1X2X3X4X

4
5X

4
6 ∆B1

2pX∆]

=B0
2pXW∆B1

2pX∆[B0
2BW∆B1

2pX∆]

→B2pB2p−1 · · ·B2B1B
∗
0X

4
1X2X3X4X

4
5X

4
6 ∆ ·B2pB2p−1 · · ·B2B

∗
1B0X1X2X3X4X5X6∆

=B0
2pXW∆B1

2pX∆

→· · · contract other Ei in E(W )

→B2pB2p−1 · · ·B2B1B
∗
0X1X2X3X4X5X6∆ ·B2pB2p−1 · · ·B2B

∗
1B0X1X2X3X4X5X6∆

=B0
2pX∆B1

2pX∆

=S.

Note that in the reverse direction, we do not necessarily know the optimal way to

contract Ek (e.g., when Ek is not in a homogeneous interval). For instance, the optimal
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solution could contract E1 as follows:

B0
2pX

4
1X

4
2X

4
3X

4
4X

4
5X

4
6 ∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B∗1B

∗
0X

4
1X

4
2X

4
3X

4
4X5X6∆B1

2pX∆]

=B0
2pX 4∆B1

2pX∆[B01
1 Xe1∆B1

2pX∆]

→B0
2pX

4
1X

4
2X

4
3X

4
4X

4
5X

4
6 ∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B1B

∗
0X

4
1X

4
2X

4
3X

4
4X5X6∆B1

2pX∆]

=B0
2pX 4∆B1

2pX∆[B0
1Xe1∆B1

2pX∆]

→B0
2pX

4
1X

4
2X

4
3X

4
4X5X6∆B2pB2p−1 · · ·B2B

∗
1B0X∆[B1B

∗
0X

4
1X

4
2X

4
3X

4
4X5X6∆B1

2pX∆]

=B0
2pXe1∆B1

2pX∆[B0
1Xe1∆B1

2pX∆]

→B0
2pX

4
1X

4
2X

4
3X

4
4X5X6∆B2pB2p−1 · · ·B2B

∗
1B0X1X2X3X4X5X6∆

=B0
2pXe1∆B1

2pX∆

Of course, in this way the X d after B0
2p will lose contents (i.e., some Xd

i will be contracted

into Xi). However, the above contractions can only last in at most n homogeneous intervals.

In the next subsection, we show that the hardness result holds even when the alphabet

is of size four (fitting that the DNA and RNA sequences are over the set of nucleotides

{A,C,G,T} and {A,C,G,U}, respectively).

2.4.2 NP-hardness with Alphabet of Size Four

We reduce the minimum tandem duplication problem on arbitrary alphabet to the

minimum tandem duplication problem on alphabets of size four. We show that we can

encode each character into a string on alphabet of size four and preserve the hardness.

The main difficulty is to show that no contraction occurs inside the encoded strings, which

requires a specific form of square-free strings.

Lemma 1. Let m be an integer. Then there exists an algorithm that takes time polynomial

in m that outputs pairs of square-free strings (A1, B1), . . . , (Am, Bm) over alphabet {a, b, c}

such that for each i ∈ {1, . . . ,m}:
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1. 100i− 3 ≤ |Ai| ≤ 100i and |Bi| = 1000m− |Ai|;

2. Ai[1] = a

3. Bi[1] = b and Bi[|Bi|] = b.

Proof. In [66] , Leech describes the following process to generate an infinite square-free string.

Define w0 = a, and for j > 0, recursively obtain wj from wj−1 by replacing each character

with a specified substring of length 13 (see paper for details). Each wj is square-free, and

for our purposes we may apply this process and stop when the condition |wj| > 2000m is

met for the first time (note that this takes polynomial time).

Assume that the first a occurrence of wj is at position p, and for k ≥ 1, define A(k) =

wj[p..p+ k− 1]. Thus each A(k) starts with a and has length k (and we will choose a subset

of these to prove the lemma).

Similarly, assume that the first b of wj is at position q, and for each k ≥ 1, define

B′ = wj[q..q + k − 1]. Let r ≥ q + k − 1 be the first position at or after q + k − 1 such that

wj[r] = b. Define B(k) = wj[q..r]. Note that r ≤ q + k + 2, as otherwise wj[q − 1..q + k + 2]

would be a binary string of length 4 and would therefore contain a square. It follows that

k ≤ |B(k)| ≤ k + 3. Moreover, each B(k) starts and ends with a b.

To conclude the lemma, for each i ∈ {1, . . . ,m}, put Bi = B(1000m − 100i) and

Ai = A(1000m − |Bi|). We have 1000m − 100i ≤ Bi ≤ 1000m − 100i + 3, and, since

|Ai| = 1000m− |Bi|, we have 100i− 3 ≤ |Ai| ≤ 100i. The other conditions of lemma follow

from our construction.

We can now proceed to our reduction.

Theorem 3. The TD problem is NP-hard for any |Σ| ≥ 4, where Σ is the alphabet of the

input strings.
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Proof. Our reduction is from the TD problem with unbounded alphabet size, which is NP-

hard owing to Theorem 2. We show that TD problem is NP-hard when |Σ| = 4, which

clearly implies hardness for any |Σ| ≥ 4 since one can add a new dummy character at the

end of S and T if |Σ| is smaller than the desired value. Let (S, T, k) be an instance of the

TD problem, and let Σ = {s1, . . . , sm} be the alphabet of S and T with m = |Σ|.

Let (A1, B1), . . . , (Am, Bm) be pairs of ternary square-free strings that satisfy the

conditions of Lemma 10, i.e., each |Ai| is between 100i − 3 and 100i, |Bi| = 1000m − |Ai|,

with Ai starting with a, and Bi starting and ending with b. By the lemma, these can be

obtained in polynomial time. Assume that the alphabet of the Ai and Bi strings is {a, b, c},

and let x be another symbol.

We encode each symbol si ∈ Σ on alphabet {a, b, c, x, } be defining

h(si) = xcxAixBi

Note that each h(si) string has the same length 1000m + 4. Also note that each Ai has a

distinct length, and thus that each Bi also has a distinct length. This implies that each Ai

is matched with a distinct Bi determined by its length (and vice-versa). Moreover, since Ai

and Bi are square-free, we can argue that h(si) is also square-free. Indeed, no square can

start at the first x of h(si) since xc only occurs once in h(si); no square can start at the

second character c since the only possible occurrence of cs is at the end of Aix, and Ai has

lengths at least 97; no square can start at the second x since xa occurs only once. Therefore,

a square would need to start in Ai and contain the x after it, which is not possible since

there is only one such x.

We then encode S and T into S ′ and T ′, respectively, by replacing each character with
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their encoding. That is, put

S ′ = h(S[1])h(S[2]) . . . h(S[|S|]) T ′ = h(T [1])h(T [2]) . . . h(T [|T |])

Observe that in both strings, all occurrences of xcxa mark the start of an encoded symbols

(since allAi strings start with a), and occurrences of xbmark a separation point between some

Ai and Bi. In what follows, we say that a string Y encodes X if Y = h(X[1]) . . . h(X[|X|]).

We show that T can be transformed into S using k contractions if and only if T ′ can

be turned into S ′ using k contractions.

(⇒) Assume that T can be transformed into S using k contractions. Let T =

T0, T1, . . . , Tk = S be the sequence of strings encountered during these contractions. We

define a sequence of contractions from T ′ to S ′ in which T ′ = T ′0, T
′
1, . . . , T

′
k = S ′ are the

substrings encountered during this sequence, such that each T ′i encodes Ti. This is true when

i = 0. Assume inductively that T ′i−1 encodes Ti−1, and that the i-th contraction affects some

substring RR of Ti−1 i.e., Ti−1 = ARRB � ARB. Then T ′i−1 = A′R′R′B′, where A′ encodes

A, R′ encodes R and B′ encodes B. We can apply A′R′R′B′ � A′R′B′ and obtain T ′i that

encodes Ti. It follows that T ′k = S ′, as desired.

(⇐) Assume that there is a sequence of k contractions D′1, . . . , D
′
k transforming T ′ into

S ′ (assume that the D′i’s contain the start and end index of the contraction). Let T ′i be

the string obtained after applying the i-th contraction in this sequence, with T ′0 = T ′. We

construct a sequence of contractions D1, . . . , Dk transforming T into S. To achieve this, we

construct the Di contractions by maintaining the following invariant: by defining Ti as the

string obtained after applying D1, . . . , Di on T , then T ′i encodes Ti.

This is true for i = 0 since T ′0 = T ′ encodes T0 = T . Now assume inductively that T ′i−1

is obtained by encoding each character of Ti−1.

Assume that D′i contracts a string RR of T ′i−1. Since T ′i−1 is a concatenation of h(sj)
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strings, the first character of the RR substring must be in some h(sj) substring of T ′i−1. We

consider four possible cases.

Case 1.The first character of RR is in the xcs substring at the start of h(sj) = xcxAjxBj.

Thus we may write xcx = C1C2 such that C2 is a prefix of RR (note that C1 is possibly

empty, but not C2). It is easy to check R must contains at least a prefix of Aj. This implies

that R contains xa as a substring. i.e., R = C2aY for some Y .

The contraction T ′i−1 � T ′i has the form

T ′i−1 = PC1[C2aY ][C2aY ]Q� PC1[C2aY ]Q = T ′i

for some strings P,Q. Because C2a contains xa, it must mark the start of an encoding,

meaning that Y has C1 as a suffix. Writing Y = Y ′C1, we get

T ′i−1 = PC1[C2aY
′C1][C2aY

′C1]Q� PC1[C2aY
′C1]Q = T ′i

We can replace D′i with the following contraction:

T ′i−1 = P [C1C2aY
′][C1C2aY

′]C1Q� P [C1C2aY
′]C1Q = T ′i

Notice that P encodes some prefix P̂ of Ti−1 (P is possibly empty). The C1C2aY
′

substring that follows also encodes some substring Y of Ti−1 and, since all encodings have

the same length, the second C1C2aY
′ copy that follows encodes the same substring Ŷ . This

implies that Q, if not empty, starts with xcx and encodes a suffix Q̂ of Ti−1. Therefore,

Ti−1 = P̂ Ŷ Ŷ Q̂, and it becomes easy to see that if Di contracts Ŷ Ŷ , T ′i encodes Ti.

Case 2. The first character of RR is in the Aj substring of h(sj). Write Aj = A1
jA

2
j such

that A2
j is a prefix of RR. Because Aj is square-free, RR cannot be entirely contained in Aj.

Thus R contains the x after Aj. This x cannot be the last character of R, as otherwise RR
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would be fully contained in h(sj) since |Bj| > |Aj|, which is again not possible since h(sj) is

square-free. Thus the first occurrence of x in R is followed by b, implying that the second R

copy must start in the Al portion of some h(sl) encoding (since this is the only way to have

xb as a substring before xa or xc).

Hence, we may assume that R = A2
jxBjxY for some non-empty Y . The contraction

has the form

PxcxA1
j [A

2
jxBjxY ][A2

jxBjxY ]Q� PxcxA1
j [A

2
jxBjxY ]Q

for some strings P and Q. Since each Bj is associated with a unique Aj, Y must have xcxA1
j

as a suffix. We may write Y = Y ′xcxA1
j and

T ′i−1 = PxcxA1
j [A

2
jxBjxY

′xcxA1
j ][A

2
jxBjxY

′xcxA1
j ]Q� PxcxA1

j [A
2
jxBjxY

′xcxA1
j ]Q = T ′i

It becomes easy to see that D′i can be replaced by the contraction

T ′i−1 = P [xcxA1
jA

2
jxBjxY

′][xcxA1
jA

2
jxBjxY

′]xcxA1
jQ� P [xcxA1

jA
2
jxBjxY

′]xcxA1
jQ = T ′i

and we can apply Case 1.

Case 3. The first character of RR is the x occurrence in h(xj) between Aj and Bj. Thus R

starts with xb, implying that the second R copy also starts with the x occurrence between

some Al and Bl. The contraction T ′i−1 � T ′i has the form

T ′i−1 = PxcxAj[xBjxY ][xBjxY ]Q� PxcxAj[xBjxY ]Q = T ′i

for some strings P, Y,Q. Because Bj is associated only with Aj in the encodings, we may
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write Y = Y ′xcxAj. We get

T ′i−1 = PxcxAj[xBjxY
′xcxAj][xBjxY

′xcxAj]Q� PxcxAj[xBjxY
′xcxAj]Q = T ′i

We can replace D′i with an alternate contraction as follows:

T ′i−1 = P [xcxAjxBjxY
′][xcxAjxBjxY

′]xcxAjQ� P [xcxAjxBjxY
′]xcxAjQ = T ′i

and, once again, we can apply Case 1.

Case 4. The first character of RR is in the Bj substring of h(sj). Write Bj = B1
jB

2
j such

that B2
j is a prefix of R. We argue that the first R copy cannot be entirely in B2

j . Otherwise,

the second R copy would contain characters outside of B2
j since Bj is square-free. That is,

the second R copy would contain an x but not the first, which is impossible.

Thus the first R copy contains the x after B2
j . We cannot have R = B2

jx. Indeed, B2
jx is

followed by cx, and because R = B2
jx, the only possible contraction is RR = B2

jxcx = cxcx.

This is not possible, since B2
j ends with a b.

Therefore, R contains the x after B2
j , and also the c after it. The only occurrences of

xc are at the start of encodings, so the contraction has the form

T ′i−1 = P [B2
jxcY ][B2

jxcY ]Q� P [B2
jxcY ]Q = T ′i

Now, the second R copy starts with a suffix of some Bl, and it happens that Bj and Bl have

the same suffix B2
j . We can write Bl = B1

l B
2
j such that Y has AlxB

1
l as a suffix. Write

Y = Y ′AlxB
1
l so that

T ′i−1 = P [B2
jxcY

′AlxB
1
l ][B

2
jxcY

′AlxB
1
l ]Q� P [B2

jxcY
′AlxB

1
l ]Q = T ′i
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Recall that Al is uniquely matched with Bl = B1
l B

2
j in the encodings, so Q must have B2

j as

a prefix. Write Q = B2
jQ
′ so that

T ′i−1 = P [B2
jxcY

′AlxB
1
l ][B

2
jxcY

′AlxB
1
l ]B

2
jQ
′ � P [B2

jxcY
′AlxB

1
l ]B

2
jQ
′ = T ′i

We can replace this contraction with

T ′i−1 = PB2
j [xcY

′AlxB
1
l B

2
j ][xcY

′AlxB
1
l B

2
j ]Q

′ � PB2
j [xcY

′AlxB
1
l B

2
j ]Q

′ = T ′i

We can once again apply Case 1.

We have thus shown how to construct a sequence of contractions that transforms T

into a string Tk such that T ′k encodes Tk. Since T ′k encodes S ′, it follows that Tk = S, which

concludes the proof.

2.5 An FPT Algorithm for the Exemplar Problem

Let us recall that in the Exemplar-k-TD problem, we receive a string S in which every

character is different, a string T , and an integer k. We want to know whether S can be

transformed into T using at most k TDs. In this section, we show that Exemplar-k-TD can

be solved in time 2O(k2) + poly(n) by obtaining a kernel of size O(k2k) (here n is the length

of T ).

We first note that there is a very simple, brute-force algorithm to solve the k-TD

problem, which is the variant of the TD problem with parameter k, the number of TDs

to turn S into T (including Exemplar-k-TD as a particular case). This only established

membership in the XP class, but it is useful to evaluate the complexity of our kernelization

later on.

Proposition 1. The k-TD problem can be solved in time O(n2k), where n is the size of the
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target string.

Proof. Let (S, T ) be a given instance of k-TD. Consider the branching algorithm that,

starting from T , tries to contract every substring of from XX in T and recurses on each

resulting substring, decrementing k by 1 each time (the branching stops when S is obtained

or when k reaches 0 without attaining S). We obtain a search tree of depth at most k and

degree at most n2, and thus it has O(n2k) nodes. Visiting the internal nodes of this search

tree only requires enumerating O(n2) substrings, which form the set of children of the node.

Hence, there is no added computation cost to consider when visiting a node.

From now on, we assume that we have an Exemplar-k-TD instance (S, T ), and so

that S is exemplar.

Let x and y be two consecutive characters in S (i.e., xy is a substring of S). We say that

xy is (S, T )-stable if in T , every occurrence of x in T is followed by y and every occurrence

of y is preceded by x. An (S, T )-stable substring X = x1 . . . xl, where l ≥ 2, is a substring

of S such that xixi+1 is (S, T )-stable for every i ∈ [l − 1]. We also define a string with a

single character xi to be a (S, T )-stable substring (provided xi appears in S and T ). If any

substring of S that strictly contains X is not an (S, T )-stable substring, then X is called a

maximal (S, T )-stable substring. Note that these definitions are independent of S and T ,

and so the same definitions apply for (S, T )-stability, for any strings X and Y .

We show that every maximal (S, T )-stable substring can be replaced by a single

character, and that if T can be obtained from S using at most k tandem duplications,

then this leaves strings of bounded size.

We first show that, roughly speaking, stability is maintained by all tandem duplications

when going from S to T .

Lemma 2. Suppose that distTD(S, T ) = k and let X be an (S, T )-stable substring. Let

S = S0, S1, . . . , Sk = T be any minimum sequence of strings transforming S to T by tandem
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duplications. Then X is (S, Si)-stable for every i ∈ [k].

Proof. Assume the lemma is false, and let Si be the first of S1, . . . , Sk that does not verify the

statement. Then there are two characters x, y belonging to X such that xy is (S, T )-stable,

but xy is not (S, Si)-stable.

We claim that, under our assumption, xy is not (S, Sj)-stable for any j ∈ {1, . . . , k}.

As this includes Sk = T , this will contradict that xy is (S, T )-stable. We do this by induction

— as a base case, xy is not (S, Si)-stable so this is true for j = i. Assume that xy is not

(S, Sj−1)-stable, where i < j ≤ k. Let D be the duplication transforming Sj−1 to Sj (here

D = (a, b) contains the start and end positions of the substring of Sj−1 to duplicate).

suppose first that xy is not (S, Sj−1)-stable because Sj−1 has an occurrence of x that is

not followed by y. Thus Sj−1 has an occurrence of x, say at position px, followed by z 6= y.

If we assume that xy is (S, Sj)-stable, then a y character must have appeared after this x

from Sj−1 to Sj. Changing the character next to this x is only possible if the last character

duplicated by D is the x at position px and the first character of D is a y. In other words,

denoting Sj−1 = A1yA2xzA3 for appropriate A1, A2, A3 substrings, the D duplication must

do the following

A1yA2xzA3 ⇒ A1yA2xyA2xzA3

as otherwise, the character next to the above occurrence of x will remain z. But then, there

is still an occurrence of x followed by z, and it follows that xy cannot be (S, Sj)-stable.

So suppose instead that xy is not (S, Sj−1)-stable because Sj−1 has an occurrence of

y preceded by z 6= x. Assume the character preceding this y has changed in Sj and has

become x. But one can verify that this is impossible. For completeness, we present each

possible case: either D includes both z and y, includes one of them or none. These cases

are represented below, and each one of them leads to an occurrence of y still preceded by z
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(the left-hand side represents Sj−1 and the right-hand side represents Sj, and the Ai’s are

the relevant substrings in each case):

Include both: A1A2zyA3A4 ⇒ A1A2zyA3A2zyA3A4

Include z only: A1A2zyA3 ⇒ A1A2zA2zyA3

Include y only: A1zyA2A3 ⇒ A1zyA2yA2A3

Include none: A1A2zyA3 ⇒ A1A2A2zyA3 or A1zyA2A3 ⇒ A1zyA2A2A3

We have therefore shown that xy cannot be (S, Sj)-stable, and therefore not (S, T )-

stable, which concludes the proof.

Let S ′ be a substring obtained from S by tandem duplications, and let X := S ′[a..b] be

the substring of S ′ at position from a to b. Suppose that we apply a duplication D = (c, d),

which copies the substring S ′[c..d]. Then we say that D cuts X if one of the following holds:

- a < c ≤ b and b < d, in which case we say that D cuts X to the right;

- c < a and a ≤ d < b, in which case we say that D cuts X to the left;

- (a, b) 6= (c, d) and a ≤ c < d ≤ b, in which case D cuts X inside;

In other words, if we write X = X1X2 and S ′ = UV X1X2WY , cutting to the right

takes the form UV X1X2WY ⇒ UBX1X2WX2WY . Cutting to the left takes the from

UV X1X2WY ⇒ UV X1V X1X2WY . Rewriting X = X1X2X3 and S ′ = UX1X2X3V , cutting

inside takes the form UX1X2X3V ⇒ UX1X2X2X3V . Note that if D does not cut any

occurrence of a maximal (S, S ′)-stable substring X and S ′′ is obtained by applying D on S ′,

then X is (S, S ′′)-stable.

The next lemma shows that we can assume that maximal stable substrings never get

cut, and thus always get duplicated together. The idea is that any duplication that cuts an

Xj can be replaced by an equivalent duplication that doesn’t.
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Lemma 3. Suppose that distTD(S, T ) = k, and let X1, . . . , Xl be the set of maximal

(S, T )-stable substrings. Then there exists a sequence of tandem duplications D1, . . . , Dk

transforming S into T such that no occurrence of an Xj gets cut by a Di.

In other word, for all i ∈ [k] and all j ∈ [l], Di does not cut any occurrence of Xj in

the string obtained by applying D1, . . . Di−1 to S.

Proof. Let D∗1, . . . , D
∗
k be a sequence of tandem duplications transforming S into T , and for

i ∈ [k], let Si be the string obtained by applying the first i duplications. Put S0 := S. We

show that any Si, i ∈ [k], can be obtained from Si−1 by a duplication Di that does not cut

any Xj occurrence in Sj−1, j ∈ [l]. This proves the lemma, since D1, . . . , Dk will form the

desired sequence of duplications.

Fix i ∈ [k], and assume that D∗i cuts some of the Xj’s. We note that since S is exemplar,

the Xj’s have pairwise distinct characters. Hence D∗i can cut at most two occurrences of a

maximal (S, Si)-stable substrings, at most one to the left and at most one to the right (if an

Xj is cut inside, only one string can get cut). Also, by Lemma 1, we know that every Xj

substring is (S, Si)-stable. We have four cases to consider:

- D∗i cuts some Xj inside. Write Xj = X1
jX

2
jX

3
j , where at least one of X1

j or X2
j is

non-empty, and Si−1 = AX1
jX

2
jX

3
jB. This results in

Si−1 = AX1
jX

2
jX

3
jB ⇒ AX1

jX
2
jX

2
jX

3
jB = Si

Since characters from X1
j , X2

j and X3
j are pairwise disjoint, Xj cannot be (S, Si)-stable,

a contradiction of Lemma 1.

- D∗i cuts some Xj to the right, but no other string to the left. Then we may write Xj

and Si−1, respectively, as Xj = X1
jX

2
j and Si−1 = AX1

jX
2
jBC such that D copies the
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substring X2
jB. This gives

Si−1 = AX1
jX

2
jBC ⇒ AX1

jX
2
jBX

2
jBC = Si

But by Lemma 1, Xj is (S, Si)-stable. Since Si has BX2
j as a substring, this must mean

that B = B̂X1
j for some substring B̂ (note that we use the fact that X2

j has distinct

characters, and thus that the occurrence of X1
j must be entirely in B). Therefore

Si−1 = AX1
jX

2
j B̂X

1
jC. Since Xj is also (S, Si−1)-stable, this in turn implies that

C = X2
j Ĉ for some substring Ĉ, and in fact we get

Si−1 = AX1
jX

2
j B̂X

1
jX

2
j Ĉ ⇒ AX1

jX
2
j B̂X

1
jX

2
j B̂X

1
jX

2
j Ĉ = Si

We can replace D∗i by a duplication that copies X1
jX

2
j B̂, i.e.,

Si−1 = AX1
jX

2
j B̂X

1
jX

2
j Ĉ ⇒ AX1

jX
2
j B̂X

1
jX

2
j B̂X

1
jX

2
j Ĉ = Si

Since this duplication starts with Xj and copies itself right before another occurrence

of Xj, it is clear that it does not cut any maximal (S, T )-stable substring, as desired.

- D∗i cuts some Xj to the left, but cuts no string to the right. Then we may write

Si−1 = ABX1
jX

2
jC ⇒ ABX1

jBX
1
jX

2
jC = Si

Similarly as in the previous case, since Xj is (S, Si)-stable, we must have B = X2
j B̂.

We are led to deduce that A = ÂX1
j . Therefore we have

Si−1 = ÂX1
jX

2
j B̂X

1
jX

2
jC ⇒ ÂX1

jX
2
j B̂X

1
jX

2
j B̂X

1
jX

2
jC = Si
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As before, we could instead duplicate the substring X1
jX

2
j B̂ occuring right after Â.

- D∗i cuts some Xj to the left and some Xh to the right. Note that Xj = Xh is possible,

which we will in fact show to hold. We may write Xj = X1
jX

2
j and Xh = X1

hX
2
h such

that we get

Si−1 = AX1
jX

2
jBX

1
hX

2
hC ⇒ AX1

jX
2
jBX

1
hX

2
jBX

1
hX

2
hC = Si

Now, Xj is (S, Si)-stable and Si contains X1
hX

2
j as a substring. It follows that the

last character of X1
h must be the last character of X1

j (applying the (S,Xj)-stability

argument on the X1
hX

2
j substring). In other word, Xh and Xj have a character in

common. Since S is exemplar, the set of maximal (S, T )-stable strings X1, . . . , Xl have

pairwise disjoint sets of characters and partition S into substrings. We deduce that

Xj = Xh, as we predicted.

We now want to show that X1
h = X1

j . Note that both X1
j and X1

h are prefixes of Xj

(for X1
h, this is because Xh = Xj). Moreover, as argued the last character of X1

h is

also the last character of X1
j . These two observations establish that X1

h = X1
j (and

therefore X2
h = X2

j ). This allows us to rewrite Si and Si+1 as

Si−1 = AX1
jX

2
jBX

1
jX

2
jC ⇒ AX1

jX
2
jBX

1
jX

2
jBX

1
jX

2
jC = Si

It becomes clear that we can duplicate the X1
jX

2
jB substring after A in Si−1 to obtain

Si. This duplication does not cut any maximal (S, T )-stable substring.

We have thus shown that if D∗i cuts some occurrence of one or more of the Xj’s then

D∗i can be replaced by a duplication Di that yields the same string Si as D∗i . The only case

remaining is when D∗i does not cut any Xj. In that case, we set Di = D∗i . This shows that

we can find the claimed sequence D1, . . . , Dk in which no Xj ever gets cut.



48

The above implies that we may replace each maximal (S, T )-stable substring X of S

and T by a single character, since we may assume that characters of X are always duplicated

together (assuming, of course, that S is exemplar). It only remains to show that the resulting

strings are small enough. The proof of the following lemma has a very simple intuition.

First, S has exactly 1 maximal (S, S)-stable substring. Each time we apply a duplication, we

“break” at most 2 stable substrings, which creates 2 new ones. So if we apply k duplications,

there are at most 2k + 1 such substrings in the end.

Lemma 4. If distTD(S, T ) ≤ k, then there are at most 2k + 1 maximal (S, T )-stable

substrings.

Proof. Let S = S0, S1, . . . , Sk = T be any minimum sequence of strings transforming S

to T by tandem duplications. We show by induction that, for each i ∈ {0, 1, . . . , k}, the

number of maximal (S, Si)-stable substrings is at most 2i + 1. For i = 0, there is only

one maximal (S, S)-stable substring, namely S itself. Now assume that there are at most

2(i− 1) + 1 = 2i− 1 maximal (S, Si−1)-stable substrings. Let X = {X1, . . . , Xl} be the set

of these substrings, l ≤ 2i− 1. We then know that Si−1 can be written as a concatenation of

Xj’s from X (with possible repetitions). The duplication D transforming Si−1 to Si copies

some of these Xj’s entirely, except at most two Xj’s at the ends which it may copy partially

(i.e., D cuts at most two substrings from X ). In other words, the substring duplicated

by D can be written as X2
jXa1Xa2 . . . XarX

1
h, where Xj = X1

jX
2
j and Xh = X1

hX
2
h from

some j, h ∈ [l] (and Xa1 , . . . , Xar ∈ X ). Going further, Si−1 and Si can be written, using

appropriate substrings A,B,C that are concatenation of elements of X , as

Si−1 = AX1
jX

2
jBX

1
hX

2
hC ⇒ AX1

jX
2
jBX

1
hX

2
jBX

1
hX

2
hC = Si

Now, any Xr ∈ X \ {Xj, Xh} is (S, Si)-stable. Moreover, X1
j , X2

j , X1
h and X2

h are also

(S, Si)-stable. This shows that the number of maximal (S, Si)-stable substrings is at most
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2i− 1− 2 + 4 = 2i+ 1, as desired.

We can now transform an instance (S, T ) of Exemplar-k-TD to a kernel, an equivalent

instance (S ′, T ′) of size depending only on k.

Theorem 4. An instance (S, T ) of Exemplar-k-TD admits a kernel (S ′, T ′) in which

|S ′| ≤ 2k + 1 and |T ′| ≤ (2k + 1)2k.

Proof. Let S ′, T ′ be obtained from an instance (S, T ) by replacing each maximal (S, T )-

stable substring by a distinct character. We first prove that (S ′, T ′) is indeed a kernel by

establishing its equivalence with (S, T ). Clearly if (S ′, T ′) can be solved using at most k

duplications, then the same applies to (S, T ). By Lemma 2, the converse also holds: if (S, T )

can be solved with at most k duplications, we may assume that these duplications never cut

a maximal (S, T )-stable substring, and so these duplications can be applies on (S ′, T ′).

Then by Lemma 3, we know that S ′ has at most 2k+1 characters. If distTD(S ′, T ′) ≤ k,

then each duplication can at most double the size of the previous string. Therefore, T ′ must

have size at most (2k + 1)2k.

The kernelization can be performed in polynomial time, as one only needs to identify

maximal (S, T )-stable substrings and contract them (we do not bother with the exact

complexity for now). Running the brute-force algorithm from Proposition 1 yields the

following.

Corollary 1. The exemplar k-tandem duplication problem can be solved in time O(((2k +

1)2k)2k + poly(n)) = 2O(k2) + poly(n), where n is the size of the input.

2.6 Conclusion

In this chapter, we solve the k-Tandem Duplication problem posed by Leupold et al.

in 2004 and show that computing the TD distance from a string S to a string T is NP-hard.
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We show that this result holds even if S is exemplar, i.e., if each character of S is distinct.

Exemplar string are commonly studied in computational biology [80], since they represent

genomes that existed prior to duplication events. We note that simply deciding if S can

be transformed into T by a sequence of TDs still has unknown complexity. In our case, we

show that the hardness of minimizing TDs holds on instances in which such a sequence is

guaranteed to exist.

As demonstrated by the transpositions distance in [17], obtaining NP-hardness results

for string distances can sometimes be an involving task. Our hardness reduction is also quite

technical, and one of the tools we develop for it is a new problem we call the Cost-Effective

Subgraph. In this problem, we are given a graph G = (V,E) with a cost c, and we must

choose a subset X of V . Each edge with both endpoints in X has a cost of |X|, every other

edge costs c, and the goal is to find a subset X of minimum cost. We show that this problem

is W[1]-hard for parameter p + c, where p is the cost that we can save below the upper

bound c|E(G)|3. The problem enforces optimizing the tradeoff between covering many edges

versus having a large subset of high cost, which might be applicable to other problems. In

our case, it captures the main difficulty in computing TD distances. Then, we proved this

problem is still NP-hard, even if |Σ| ≥ 4 by encoding each letter in the unbounded alphabet

with a square-free string over a new alphabet of size 4. Finally, we obtain positive results

by showing that if S is exemplar, then one can decide if S can transformed into T using at

most k duplications in time 2O(k2) + poly(n). The result is obtained through an exponential

size kernel.

2.6.1 Note

The results in this chapter have been first presented at STACS 2020 [61], and then as

a journal paper in SIAM Journal on Discrete Mathematics [62].
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CHAPTER THREE

THE LONGEST LETTER-DUPLICATED SUBSEQUENCE PROBLEM

3.1 Introduction

Given a sequence S of length n, a letter-duplicated subsequence (LDS) of S is a

subsequence of S in the form xd11 x
d2
2 · · ·x

dk
k with xi ∈ Σ, where xj 6= xj+1 and di ≥ 2

for all i in [k] and j in [k − 1]. (Each xdii is called an LD-block.) Naturally, the problem

of computing the longest letter-duplicated subsequence (LLDS) of S can be defined, and a

simple linear time algorithm can be obtained.

In this chapter, we focus on important variants around the fundamental LLDS problem,

focusing on the constrained and weighted cases. The constraint is to demand that all letters

in Σ appear in a resulting LDS, which simulates that in a genome with duplicated genes,

how to compute the maximum duplicated pattern while including all the genes. Then we

have two problems: feasibility testing (FT for short, which decides whether an LDS of S

containing all letters in Σ exists) and the problem of maximizing the length of a resulting

LDS where all letters in the alphabet appear, which we call LLDS+. It turns out that

the status of these two problems change quite a bit when d, the maximum number a letter

can appear in S, varies. We denote the corresponding problems as FT (d) and LLDS+(d)

respectively. Let |S| = n, we summarize our main results in this paper as follows:

1. We show that when d ≥ 6, both FT (d) and (the decision version of) LLDS+(d)

are NP-complete, which implies that LLDS+(d) does not have a polynomial-time

approximation algorithm when d ≥ 6.

2. We show that when d = 3, FT (d) is decidable in O(n2) time, which implies that

LLDS+(3) admits a factor-1.5 approximation. With an increasing running time, we
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could improve the factor to 1.5−O( 1
n
).

3. When a weight of an LD-block is any positive function (i.e., it does not even have

to grow with its length), we present a non-trivial O(n2) time dynamic programming

algorithm for this Weighted-LDS problem.

In the literature, the only known related work is to compute the longest square

subsequence of an input sequence S, for which Kosowski gave an O(n2) time algorithm

[59]. In this chapter, we briefly mention two extra variations of the LLDS problem, where in

the solution, i.e., a subsequence of S in the form of xd11 x
d2
2 · · ·x

dk
k , each xi is either a substring

or a subsequence of S. Then, what Kosowski considered is the more restricted version of the

latter, i.e., xd11 x
d1
2 , with x1 = x2 and d1 = d2.

3.2 Preliminaries

Let N be the set of natural numbers. For q ∈ N, we use [q] to represent the set

{1, 2, ..., q}. Throughout this chapter, a sequence S is over a finite alphabet Σ. We use S[i]

to denote the i-th letter in S and S[i..j] to denote the substring of S starting and ending with

indices i and j respectively. (Sometimes we also use (S[i], S[j]) as an interval representing

the substring S[i..j].) With the standard run-length representation, S can be represented

as ya11 y
a2
2 · · · y

aq
q , with yi ∈ Σ, yj 6= yj+1 and aj ≥ 1, for i ∈ [q], j ∈ [q − 1]. If a letter a

appears multiple times in S, we could use a(i) to denote the i-th copy of it (reading from left

to right). Finally, a subsequence of S is a string obtained by deleting a set of letters from S.

3.3 The LLDS Problem

A subsequence S ′ of S is a letter-duplicated subsequence (LDS) of S if it is in the form

of xd11 x
d2
2 · · ·x

dk
k , with xi ∈ Σ, xj 6= xj+1 and di ≥ 2, for i ∈ [k], j ∈ [k − 1]. We call each xdii

in S ′ a letter-duplicated block (LD-block, for short). For instance, let S = abcacabcb, then
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S1 = aaabb, S2 = ccbb and S3 = ccc are all letter-duplicated subsequences of S, where aaa and

bb in S1, cc and bb in S2, and ccc in S3 all form the corresponding LD-blocks. Certainly, we

are interested in the longest ones — which gives us the longest letter-duplicated subsequence

(LLDS) problem.

As a warm-up, we solve this problem by dynamic programming. We first have the

following observation.

Observation 1. Suppose that there is an optimal LLDS solution for a given sequence S of

length n, in the form of xd11 x
d2
2 . . . xdkk . Then it is possible to decompose it into a generalized

LD-subsequence ye11 y
e2
2 . . . y

ep
p , where

• 2 ≤ ei ≤ 3, for i ∈ [p],

• p ≥ k,

• yj does not have to be different from yj+1, for j ∈ [p− 1].

The proof is straightforward: For any natural number ` ≥ 2, we can decompose it as

` = `1 + `2 + . . . + `z ≥ 2, such that 2 ≤ `j ≤ 3 for 1 ≤ j ≤ z. Consequently, for every

di > 3, we could decompose it into a sum of 2’s and 3’s. Then, clearly, given a generalized

LD-subsequence, we could easily obtain the corresponding LD-subsequence by combining

yeii y
ei+1

i+1 when yi = yi+1.

We now design a dynamic programming algorithm for LLDS. Let L(i) be the length of
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the optimal LLDS solution for S[1..i]. The recurrence for L(i) is as follows.

L(0) = 0,

L(1) = 0,

L(i) = max


L(i− x− 1) + 2 x = min{x|S[i− x] = S[i]}, x ∈ (0, i− 1]

L(i− x) + 1 x = min{x|S[i− x] = S[i]}, x ∈ (0, i− 1]

L(i− 1) otherwise.

Note that the step involving L(i − x) + 1 is essentially a way to handle a generalized LD-

subsequence of length 3 (by keeping S[i− x] for the next level computation) and cannot be

omitted following the above observation. For instance, if S = dabcdd then without that step

we would miss the optimal solution ddd.

The value of the optimal LLDS solution for S can be found in L(n). For the running

time, for each S[x] we just need to scan S to find the closest S[i] such that S[x] = S[i]. With

this information, the table L can be filled in linear time. With a simple augmentation, the

actual sequence corresponding to L(n) can also be found in linear time. Hence LLDS can

be solved in O(n) time.

3.4 The LLDS+ Problem

In this section, we focus on the following variations of the LLDS problem.

Definition 4. Constrained Longest Letter-Duplicated Subsequence

(LLDS+ for short)

Input: A sequence S with length n over an alphabet Σ and an integer `.

Question: Does S contain a letter-duplicated subsequence S ′ with length at least ` such

that all letters in Σ appear in S ′?



55

Definition 5. Feasibility Testing (FT for short)

Input: A sequence S with length n over an alphabet Σ.

Question: Does S contain a letter-duplicated subsequence S ′′ such that all letters in Σ

appear in S ′′?

For LLDS+ we are really interested in the optimization version, i.e., to maximize `.

Note that, though looking similar, FT and the decision version of LLDS+ are different: if

there is no feasible solution for FT, certainly there is no solution for LLDS+; but even if

there is a feasible solution for FT, computing an optimal solution for LLDS+ could still be

non-trivial.

Finally, let d be the maximum number of times a letter in Σ appears in S. Then,

we can represent the corresponding versions for LLDS+ and FT as LLDS+(d) and FT (d)

respectively.

It turns out that (the decision version of) LLDS+(d) and FT (d) are both NP-complete

when d ≥ 6, while when d = 3 the status varies: FT (3) can be decided in O(n2) time, which

immediately implies that LLDS+(3) has a factor-1.5 approximation. (If we are willing to

increase the running time, still polynomial but higher than O(n2), with a simple twist we

could improve the approximation factor for LLDS+(3) to 1.5−O( 1
n
).) We present the details

in the next subsection. In Section 3.5, we consider an extra version of LLDS, Weighted-LDS,

where the weight of an LD-block is an arbitrary positive function.

3.4.1 Hardness for LLDS+(d) and FT(d) when d ≥ 6

We first try to prove the NP-completeness of the (decision version of) LLDS+(d), when

d ≥ 6. In fact, we need a very special version of SAT, which is possibly the simplest version

of SAT remaining NP-complete.

Given a 3SAT formula φ, which is a conjunction of m disjunctive clauses (over n variable

xi’s), each clause Fj containing exactly 3 literals (i.e., in the form of xi or x̄i), the problem
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is to find whether there is a satisfiable truth assignment for φ.

Definition 6. (≤ 2, 1,≤ 3)-SAT: this is a special case of SAT where each variable xi appears

at most twice and x̄i appears exactly once in φ; moreover, each clause contains either two or

three literals (which is called 2-clause and 3-clause henceforth).

Lemma 5. (≤ 2, 1,≤ 3)-SAT is NP-complete.

Proof. We modify the proof by Tovey [90]. Given a 3-SAT formula φ, without loss of

generality, assume that each variable xi and its complement x̄i appears in (different clauses

of) φ. We convert φ to φ′ in the form of (≤ 2, 1 ≤ 3)-SAT as follows.

- if both xi and x̄i appears once in φ, do nothing.

- if xi appears twice and x̄i appears once in φ, do nothing.

- if x̄i appears twice and xi appears once in φ, replace x̄i with a new variable z and

replace xi by z̄.

- Otherwise, if the total number of literals of xi (i.e., xi and x̄i) is k ≥ 4 then introduce

k variables yi,1, yi,2, · · · , yi,k replacing the k literals of xi respectively. Moreover, let

zi,j be yi,j if the j-th literal of xi is xi and let zi,j be ȳi,j if the j-th literal of xi is x̄i.

Finally, add k 2-clauses as (zi,j ∨ z̄i,j+1) for j = 1..k − 1 and (zi,k ∨ z̄i,1). (Note that it

always holds that z̄ = z.)

Following [90], when k ≥ 4, the 2-clauses added will force all zi,j’s to have all True values

or all False values. (The only difference between our construction and Tovey’s is that

all literals appearing at least 4 times in the original clauses in φ are replaced by positive

variables in the form of yi,j’s; the negated literal ȳi,j could only occur in the newly created

2-clauses — exactly once for each yi,j. On the other hand, each yi,j occur twice — once in

the original 3-clauses of φ and once in the newly created 2-clauses.) It is obvious to see that
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φ is satisfiable if and only if φ′ is satisfiable. The transformation obviously takes O(|φ|) time.

Hence the lemma is proven.

We comment that (≤ 2, 1 ≤ 3)-SAT, while seemingly similar to SAT3W (each clause

has at most 3 literals and each clause has at most one negated variable [84]), is in fact

different from it. (Following the Dichotomy Theorem for SAT by Schaefer [84], SAT3W is in

P.) The difference is that in φ′ we could even have a clause containing 3 negated variables.

Now let φ be an instance of (≤ 2, 1,≤ 3)-SAT where either xi and x̄i appears once

in φ (we call such an xi a (1,1)-variable), or xi appears twice and x̄i appears once in φ

(we call such an xi a (2,1)-variable), for i = 1..n. Without loss of generality, we assume

φ = F1 ∧ F2 ∧ · · · ∧ Fm and there are n variables x1, x2, · · · , xn; moreover, we assume that

Fj cannot contain xi and x̄i at the same time. Given Fj we say FjFj forms a 2-duplicated

clause-string.

Given a (2,1)-sequence T = ACABCB over {A,B,C}, where A,B and C all appear

twice, it is easy to verify that the maximal LD-subsequences of T are AABB or CC.

Similarly, given a (1,1)-sequence T = ACCA over {A,C}, where A and C both appear

twice, it is easy to see that the maximal (longest) LD-subsequences of T are AA or CC.

For each (1,1)-variable xi, i.e., xi and x̄i appears once in φ, say xi in Fj and x̄i in Fk,

we define Li as a (1,1)-sequence: FjFkFkFj. For each (2,1)-variable xi, i.e., xi appears twice

and x̄i appears once in φ, say xi in Fj and Fk, and x̄i in F`, we define Li as a (2,1)-sequence:

FjF`FjFkF`Fk.

Now we proceed to construct the sequence S from an (≤ 2, 1,≤ 3)-SAT instance φ.

S = g1g1L1g2g2 · · · gigiLi · · · gn−1gn−1Ln−1gngnLngn+1gn+1.

We claim the following: φ is satisfiable if and only if LLDS+ has a solution of length at

least 2(n+ 1) + 4K1 + 2K2 + 2J , where K1, K2 are the number of (2,1)-variables in φ which
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are assigned True and False respectively and J is the number of (1,1)-variables in φ.

Proof. “Only-if part”: Suppose that φ is satisfiable. If a (1,1)-variable xi is assigned True,

to have a solution for LLDS+, in Li we select the 2-duplicated clause-string FjFj; likewise, if

xi is assigned False we select FkFk instead. Similarly, if a (2,1)-variable xi is assigned True,

to have a solution for LLDS+, in Li we select two 2-duplicated clause-strings FjFjFkFk;

likewise, if xi is assigned False we select F`F`. Since gigi only occurs once in S and T ,

we must include them in the solution. Clearly we have a solution for LLDS+ with length

2(n+ 1) + 4K1 + 2K2 + 2J .

“If part”: If LLDS+ has a solution of length at least 2(n + 1) + 4K1 + 2K2 + 2J , by

definition, it must contain all gigi’s. To find the truth assignment, we look at the contents

between gigi and gi+1gi+1 in the solution as well as in S (i.e., Li). If xi is a (1,1)-variable,

Li = FjFkFkFj and in the solution FjFj is kept then we assign xi ← True; otherwise, we

assign xi ← False. If xi is a (2,1)-variable, Li = FjF`FjFkF`Fk and in the solution either

FjFjFkFk, FjFj or FkFk is kept then we assign xi ← True. (When FjFj or FkFk is kept,

then the LLDS+ solution could be longer by augmenting this sub-solution to FjFjFkFk.)

If in the solution F`F` is kept instead then we assign xi ← False. Since all clauses must

appear in a solution of LLDS+, clearly φ is satisfied.

We comment that 2(n+ 1) + 4K1 + 2K2 + 2J = 2(n+ 1) + 2K1 + 2n = 4n+ 2 + 2K1, as

K1 +K2 +J = n. But the former makes our arguments more clear. This reduction obviously

takes O(m+ n) time. Note that each 3-clause Fj appears 6 times in S and each 2-clause F`

appears 4 times in S respectively, while each gk, k ∈ [n + 1], appears twice in S. Since we

could arbitrarily add an LD-block uj, with u 6∈ Σ and j ≥ 6, at the end of S, we have the

following theorem.

Theorem 5. The decision version of LLDS+(d) is NP-complete for d ≥ 6.

We next present an example for this proof.
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Example. Let φ = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨

x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x̄4 ∨ x̄5). Then

S = g1g1F1F2F1F4F2F4 · g2g2F1F2F1F3F2F3 · g3g3F1F3F1F2F3F2

·g4g4F3F5F3F4F5F4 · g5g5F4F5F5F4 · g6g6,

Corresponding to the truth assignment, x1, x4 = True and x2, x3, x5 = False, we have

S ′ = g1g1F1F1F4F4 · g2g2F2F2 · g3g3F3F3 · g4g4F3F3F4F4 · g5g5F5F5 · g6g6,

which is of length 2(5 + 1) + 4×K1 + 2×K2 + 2× 1 = 12 + 4× 2 + 2× 2 + 2 = 26.

The above theorem implies the following corollary.

Corollary 2. FT(d) is NP-complete for d ≥ 6.

Proof. The reduction remains the same. We just need to augment the proof in the reverse

direction. Suppose there is a feasible solution S ′′ for S for the feasibility testing problem.

Again, all gigi’s must be in S ′′. We now look at the contents between gigi and gi+1gi+1 in

S (i.e., Li) and S ′′. Corresponding to Li, if in S ′′ we have an empty string between gigi

and gi+1gi+1, then we can assign xi either as True or False. If Li = FjFkFkFj, i.e., xi is

a (1,1)-variable, and FjFj is kept in S ′′ then we assign xi ← True; otherwise, we assign

xi ← False. If Li = FjF`FjFkF`Fk, i.e., xi is a (2,1)-variable, and either FjFjFkFk, FjFj or

FkFk is kept in S ′′ then we assign xi ← True. If in the solution F`F` is kept instead then we

assign xi ← False. By definition, all clauses must appear in S ′′ (solution of FT), clearly φ is

satisfied. It is clear that FT belongs to NP as a solution can be easily checked in polynomial

time.

The above corollary essentially implies that the optimization version of LLDS+(d),
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d ≥ 6, does not admit any polynomial-time approximation algorithm (regardless of the

approximation factor), since any such approximation would have to return a feasible solution.

A natural direction to approach LLDS+ is to design a bicriteria approximation for LLDS+,

where a factor-(α, β) bicriteria approximation algorithm is a polynomial-time algorithm

which returns a solution of length at least OPT/α and includes at least N/β letters, where

N = |Σ| and OPT is the optimal solution value of LLDS+. We show that obtaining a

bicriteria approximation algorithm for LLDS+ is no easier than approximating LLDS+ itself.

Corollary 3. If LLDS+(d), d ≥ 6, admitted a factor-(α,N1−ε) bicriteria approximation for

any ε < 1, then LLDS+(d), d ≥ 6, would also admit a factor-α approximation, where N is

the alphabet size.

Proof. Suppose that a factor-(α,N1−ε) bicriteria approximation algorithm A exists. We

construct an instance S∗ for LLDS+(6) as follows. (Recall that S is the sequence we

constructed from an (≤ 2, 1 ≤ 3)-SAT instance φ in the proof of Theorem 1.) In

addition to {Fi|i = 1..m} ∪ {gj|j = 1..n + 1} in the alphabet, we use a set of integers

{1, 2, ..., (m+ n+ 1)x − (m+ n+ 1)}, where x is some integer to be determined. Hence,

Σ = {Fi|i = 1..m} ∪ {gj|j = 1..n+ 1} ∪ {1, 2, ..., (m+ n+ 1)x − (m+ n+ 1)}.

We now construct S∗ as

S∗ = 1 · 2 · · · ((m+ n+ 1)x − (m+ n+ 1)) · S · ((m+ n+ 1)x − (m+ n+ 1))

·((m+ n+ 1)x − (m+ n+ 1)− 1) · · · 2 · 1.

Clearly, any bicriteria approximation for S∗ would return an approximate solution for S as

including any number in {1, 2, ..., (m+ n+ 1)x − (m+ n+ 1)} would result in a solution of

size only 2.
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Notice that we have N = m + (n + 1) + (m + n + 1)x − (m + n + 1) = (m + n + 1)x.

In this case, the fraction of letters in Σ that is used to form such an approximate solution

satisfies

m+ (n+ 1)

(m+ n+ 1)x
≤ 1

N1−ε ,

which means it suffices to choose x ≥ d2− εe = 2.

3.4.2 Solving the Feasibility Testing Version for d = 3

For the Feasibility Testing Version, as mentioned earlier, Corollary 2 implies that the

problem is NP-complete when d ≥ 6. We next show that if d = 3, then the problem can be

decided in polynomial time.

Lemma 6. Given a string S over Σ such that each letter in S appears at most 3 times, if

a feasible solution for FT (3) contains a 3-block then there is a feasible solution for FT (3)

which only uses 2-blocks.

Proof. Suppose that S = · · · a(1) · · · a(2) · · · a(3) · · · , and a(1)a(2)a(3) is a 3-block in a feasible

solution for FT (3). (Recall that the superscript only indicates the appearance order of letter

a.) Then we could replace a(1)a(2)a(3) by either a(1)a(2) or a(2)a(3). The resulting solution is

still a feasible solution for FT (3).

Lemma 6 implies that the FT (3) problem can be solved using 2-SAT. For each letter a,

we denote the interval (a(1), a(2)) as a variable va, and we denote (a(2), a(3)) as v̄a. (Clearly

one cannot select a(1)a(2) and a(2)a(3) as 2-blocks at the same time.) Then, if another interval

(b(1), b(2)) overlaps the interval (a(1), a(2)), we have a 2-SAT clause va ∧ vb = (v̄a∨v̄b). Forming

a 2-SAT instance φ” for all such overlapping intervals and it is clear that we can decide

whether φ” is satisfiable in O(n2) time (as we could have O(n2) pairs of overlapping intervals).

Theorem 6. Let S be a string of length n. Whether FT (3) has a solution can be decided in

O(n2) time.
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The theorem immediately implies that LLDS+(3) has a factor-1.5 approximation as

any feasible solution for FT (3) would be a factor-1.5 approximation for LLDS+(3). In the

following, we extend this trivial observation to have a factor-(1.5−O( 1
n
)) approximation for

LLDS+(3).

Corollary 4. Let S be a string of length n such that each letter appears at most 3 times

in S. Then LLDS+(3) admits a polynomial-time approximation algorithm with a factor of

1.5−O( 1
n
) if a feasible solution exists.

Proof. First fix some constant (positive integer) D (D < |Σ|). Then for t = 1 to D, we

enumerate all the sets which contains letters appearing exactly 3 times in S. For a fixed t,

let such a set be Ft = {a1, a2, ..., at}. We put the 3-blocks a
(1)
i a

(2)
i a

(3)
i , i = 1..t, in the solution.

(If two such 3-blocks overlap, then we immediately stop to try a different set F ′t ; and if all

valid sets of size t have been tried, we increment t to t + 1.) The substrings of S, between

a
(1)
i and a

(2)
i , and a

(2)
i and a

(3)
i , will then be deleted. Finally, for the remaining letters we use

2-SAT to test whether all together, with the 3-blocks, they form a feasible solution (note

that a
(1)
i a

(2)
i a

(3)
i will serve as an obstacle and no valid interval for 2-SAT should contain it),

this can be checked in O(n2) time following Theorem 6. Clearly, with this algorithm, either

we compute the optimal solution with at most D 3-blocks, or we obtain an approximate

solution of value 2|Σ|+D. Since OPT is at most 3|Σ|, the approximation factor is

3|Σ|
2|Σ|+D

= 1.5−O(
1

|Σ|
),

which is 1.5 − O( 1
n
), because |Σ| is at least dn/3e. The running time of the algorithm is

O(
(|Σ|
D

)
·O(n2)) = O(nD+2), which is polynomial as long as D is a constant.

In the next section, we show that if the LD-blocks are arbitrarily positively weighted,

then the problem can be solved in O(n2) time. Note that the O(n) time algorithm for the
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LLDS problem assumes that the weight of any LD-block is its length, which has the property

that `(s) = `(s1) + `(s2), where s = s1s2, s1 and s2 are LD-blocks on the same letter x, and

`(s) is the length of s (or the total number of letters of x in s1 and s2).

3.5 The Weighted-LDS Problem

Given the input string S = S[1...n], let wx(`) be the weight of LD-block x`, x ∈ Σ, 2 ≤

` ≤ d, where d is the maximum number of times a letter appears in S. Here, the weight can

be thought of as a positive function of x and ` and it does not even have to be increasing

on `. For example, it could be that w(aaa) = wa(3) = 8, w(aaaa) = wa(4) = 5. Given

wx(`) for all x ∈ Σ and `, we aim to compute the maximum weight letter-duplicated string

(Weighted-LDS) using dynamic programming.

Define T (n) as the value of the optimal solution of S[1...n] which contains the character

S[n]. Define w[i, j] as the maximum weight LD-block S[j]` (` ≥ 2) starting at position i and

ending at position j; if such an LD-block does not exist, then w[i, j] = 0. Notice that S[j]`

does not necessarily have to contain S[i] but it must contain S[j]. We have the following

recurrence relation.

T (0) = 0,

T (i) = max
S[y] 6=S[i]


T (y) + w[y + 1, i] if w[y+1, i]> 0,

0 otherwise.

The final solution value is max
n

T (n). This algorithm clearly takes O(n2) time, assuming

w[i, j] is given. We compute the table w[−,−] next.

1. For each pair of ` (bounded by d, the maximum number of times a letter appears in S)
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and letter x, compute

w′x(`) = max


w′x(`− 1)

wx(`)

with w′x(1) = wx(1). This can be done in O(d|Σ|) = O(n2) time.

2. Compute the number of occurrence of S[j] in the range of [i, j], N [i, j]. Notice that i ≤ j

and for the base case we have S[0] = ∅.

N(0, 0) = 0,

N(0, j) = N(0, k) + 1, k = max


{y|s[y] = s[j], 1 ≤ y < j}

0

and,

N(i, j) =


N(i− 1, j), if s[i− 1] 6= s[j]

N(i− 1, j)− 1, if s[i− 1] = [j].

This step takes O(n2) time.

3. Finally, we compute

w[i, j] =


w′s[j](N(i, j)), if N(i, j) ≥ 2

0, else.
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Table 3.1: Input table for wx(`), with S = ababbaca and d = 4.

x\` 1 2 3 4

a 5 10 20 15

b 4 16 8 3

c 1 3 5 7

Table 3.2: Table w′x(`), with S = ababbaca and d = 4.

x\` 1 2 3 4

a 5 10 20 20

b 4 16 16 16

c 1 3 5 7

This step also takes O(n2) time. We thus have the following theorem.

Theorem 7. Let S be a string of length n over an alphabet Σ and d be the maximum

number of times a letter appears in S. Given the weight function wx(`) for x ∈ Σ and ` ≤ d,

the maximum weight letter-duplicated subsequence (Weighted-LDS) of S can be computed in

O(n2) time.

We can run a simple example as follows. Let S = ababbaca. Suppose the table wx(`) is

given as Table 3.1 At the first step, w′x(`) is the maximum weight of a LD-block made with x

and of length at most `. The corresponding table w′x(`) can be computed as Table 3.2. At the

end of the second step, we have Table 3.3 computed. From Table 3.3, the table w[−,−] can

be easily computed and we omit the details. For instance, w[1,−] = [0, 0, 10, 16, 16, 20, 0, 20].

With that, the optimal solution value can be computed as T (8) = 36, which corresponds to

the optimal solution aabbaa.
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Table 3.3: Part of the table N [i, j], with S = ababbaca and d = 4.

i\j 1 2 3 4 5 6 7 8

8 0 0 0 0 0 0 0 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

3 0 0 1 1 2 2 1 3

2 0 1 1 2 3 2 1 3

1 1 1 2 2 3 3 1 4

Table 3.4: Summary of results on LLDS+ and FT, the ? indicates that the problem is still
open.

d LLDS+(d) FT (d) Approximability of LLDS+(d)

d ≥ 6 NP-hard NP-complete No approximation

d = 3 ? P 1.5-O( 1
n
)

d = 4, 5 ? ? ?

3.6 Conclusion

We consider the constrained longest letter-duplicated subsequence (LLDS+) and the

corresponding feasibility testing (FT) problems , where all letters in the alphabet must occur

in the solutions. We parameterize the problems with d, which is the maximum number of

times a letter appears in the input sequence. For convenience, we summarize the results one

more time in the following table. Obviously, we have many open problems.

We also consider the weighted version (without the ‘full-appearance’ constraint), for

which we give a non-trivial O(n2) time dynamic programming solution.

If we stick with the ‘full-appearance’ constraint, one direction is to consider two

additional variants of the problem where the solutions must be a subsequence of S, in
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the form of xd11 x
d2
2 · · ·x

dk
k with xi being a substring (resp. subsequence) of S with length

at least 2, xj 6= xj+1 and di ≥ 2 for all i in [k] and j in [k − 1]. Intuitively, for many

cases these variants could better capture the duplicated patterns in S. At this point, the

NP-completeness results (similar to Theorem 5 and Corollary 2) would still hold with minor

modifications to the proofs. (This reduction is still from (≤ 2, 1,≤ 3)-SAT and is additionally

based on the following fact: given a (2,1)-sequence T = ABCCAB over {A,B,C}, where

A,B and C all appear twice, the corresponding maximal ‘substring-duplicated-subsequences’

or ‘subsequence-duplicated-subsequences’ of T are ABAB or CC.) But whether these

extensions allow us to design good approximation algorithms needs further study. Note

that, without the ‘full-appearance’ constraint, when xi is a subsequence of S, the problem

is a generalization of Kosowski’s longest square subsequence problem [59] and can certainly

be solved in polynomial time.

3.6.1 Note

The results in this chapter will be presented at CPM 2022 [63].
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CHAPTER FOUR

GENOMIC PROBLEMS INVOLVING COPY NUMBER PROFILES

4.1 Introduction

Given a genome G represented as a string and a copy number profile ~c, the Minimum

Copy Number Generation (MCNG) problem asks for the minimum number of deletions and

duplications needed to transform G into any genome in which each character occurs as

many times as specified by ~c. Qingge et al. [79] proved that the problem is NP-hard

when the duplications are restricted to be tandem and posed several open questions: (1)

Is the problem NP-hard when the duplications are arbitrary and/or deletions are allowed?

(2) Does the problem admit a decent approximation? (3) Is the problem fixed-parameter

tractable (FPT)? In this chapter, we answer all these three open questions. We show that

MCNG is NP-hard to approximate within any constant factor, and that it is W[1]-hard

when parameterized by the solution size. The inapproximability follows from a new general-

purpose lemma on set-cover reductions that require an exact cover in one direction, but not

the other. The W[1]-hardness uses a new set-cover variant in which every optimal solution

is an exact cover. These set-cover extensions can make reductions easier, and may be of

independent interest.

We also consider a new fundamental problem called Copy Number Profile Conforming

(CNPC), which is defined as follows. Given two CNP’s ~c1 and ~c2, compute two

strings/genomes S1 and S2 with cnp(S1) = ~c1 and cnp(S2) = ~c2 such that the distance

between S1 and S2, d(S1, S2), is minimized. The distance d(S1, S2) could be general, which

means it could be any genome rearrangement distance (such as reversal, transposition, and

tandem duplication, etc). We make the first step by showing that if d(S1, S2) is measured

by the breakpoint distance then the problem is polynomially solvable.
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4.2 Preliminaries

A genome G is a string, i.e., a sequence of characters, all of which belong to Σ (the

characters of G can be interpreted as genes or segments - in this chapter we assume the latter,

i.e., Σ is a set of segments). We use genome and string interchangeably in this chapter, when

the context is clear. A substring of G is a sequence of contiguous characters that occur in

G, and a subsequence is a string that can be obtained from G by deleting some characters.

We write G[p] to denote the character at position p of G (the first position being 1), and

we write G[i..j] for the substring of G from position i to j, inclusively. For s ∈ Σ, we write

G− s to denote the subsequence of G obtained by removing all occurrences of s.

We represent an alphabet as an ordered list Σ = (s1, s2, . . . , sm) of distinct characters.

Slightly abusing notation, we may write s ∈ Σ if s is a member of this list. We write ns(G)

to denote the number of occurrences of s ∈ Σ in a genome G. A Copy-Number Profile (or

CNP) on Σ is a vector ~c = 〈c1, . . . , c|Σ|〉 that associates each character si of the alphabet

with a non-negative integer ci ∈ N; formally,

cnp(G) = 〈ns1(G), ns2(G), . . . , nsm(G)〉.

We may write ~c(s) to denote the number associated with s ∈ Σ in ~c. We write ~c − s to

denote the CNP obtained from ~c by setting ~c(s) = 0. As an example, if Σ = (a, b, c) and

G = abbcbbcca, then cnp(G) = 〈2, 4, 3〉 and ~c(a) = 2.

Deletions and duplications on strings

We now describe the two string events of deletion and duplication. Both are illustrated

in Table 4.1

Given a genome G, a deletion on G takes a substring of G and removes it. Deletions

are denote by a pair (i, j) of the positions of the substring to remove. Applying deletion
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Sequence Operations

G1 = abbc · cab · cab del(5, 7)

G2 = a · bbcc · ab dup(2, 5, 6)

G3 = abbcca · bbcc · b

Table 4.1: Three strings (or toy genomes), G1, G2 and G3. From G1 to G2, a deletion
is applied to G1[5..7]. From G2 to G3, a duplication is applied to G2[2..5], with the copy
inserted after position 6.

(i, j) to G transforms G into G[1..i− 1]G[j + 1..n].

A duplication on G takes a substring of G, copies it and inserts the copy anywhere in G,

except inside the copies substring. A duplication is defined by a triple (i, j, p) where G[i..j]

is the string to duplicate and p ∈ {0, 1, . . . , i − 1, j, . . . , n} is the position after which we

insert (inserting after 0 prepends the copied substring to G). Applying duplication (i, j, p)

to G transforms G into G[1..p]G[i..j]G[p+ 1..n].

An event is either a deletion of a duplication. If G is a genome and e is an event, we write

G〈e〉 to denote the genome obtained by applying e on G. Given a sequence E = (e1, . . . , ek)

of events, we define G〈E〉 = G〈e1〉G〈e2〉 . . . G〈ek〉 as the genome obtained by successively

applying the events of E to G. We may also write G〈e1, . . . , ek〉 instead of G〈(e1, . . . , ek)〉.

The most natural application of the above events is to compare genomes.

Definition 7. Let G and G′ be two strings over alphabet Σ. The Genome-to-Genome

distance between G and G′, denoted dGG(G,G′), is the size of the smallest sequence of events

E satisfying G〈E〉 = G′.

Note that dGG has recently been considered in [46]. We also define a distance between

a genome G and a CNP ~c, which is the minimum number of events to apply to G to obtain

a genome with CNP ~c.
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Definition 8. Let G be a genome and ~c be a CNP, both over alphabet Σ. The Genome-to-

CNP distance between G and ~c, denote dGCNP (G,~c), is the size of the smallest sequence of

events E satisfying cnp(G〈E〉) = ~c.

The above definition leads to the following problem, which was first studied in [79].

The Minimum Copy Number Generation (MCNG) problem:

Instance: a genome G and a CNP ~c over alphabet Σ.

Task: compute dGCNP (G,~c).

Qingge et al. proved that the MCNG problem is NP-hard when all the duplications

are restricted to be tandem [79]. In the next section, we prove that this problem is not only

NP-hard, but also NP-hard to approximate within any constant factor.

4.3 Hardness of Approximation for MCNG

In this section, we show that the dGCNP distance is hard to approximate within any

constant factor. This result actually holds if only deletions on G are allowed. This restriction

makes the proof significantly simpler, so we first analyze the deletions-only case. We then

extend this result to deletions and duplications.

Both proofs rely on a reduction from SET-COVER. Recall that in SET-COVER, we are

given a collection of sets S = {S1, S2, . . . , Sn} over universe U = {u1, u2, . . . , um} = ∪Si∈SSi,

and we are asked to find a set cover of S having minimum cardinality (a set cover of S is a

subset S∗ ⊆ S such that ∪S∈S∗S = U). If S ′ is a set cover in which no two sets intersect,

then S ′ is called an exact cover.

There is one interesting feature (or constraint) of our reduction g, which transforms a

SET-COVER instance S into a MCNG instance g(S). A set cover S∗ only works on g(S)

if S∗ is actually an exact cover, and a solution for g(S) can be turned into a set cover for

S∗ that is not necessarily exact. Thus we are unable to reduce directly from either SET-
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COVER nor its exact version. We provide a general-purpose lemma for such situations, and

our reductions serve as an example of its usefulness.

The proof relies on a result on t-SET-COVER, the special case of SET-COVER in

which every given set contains at most t elements. It is known that for any constant t ≥ 3,

the t-SET-COVER problem is hard to approximate within a factor ln t − c ln ln t for some

constant c not depending on t [94].

Lemma 7. Let B be a minimization problem, and let g be a function that transforms any

SET-COVER instance S into a instance g(S) of B in polynomial time. Assume that both

the following statements hold:

– any exact cover S∗ of S of cardinality at most k can be transformed in polynomial time

into a solution of value at most k for g(S);

– any solution of value at most k for g(S) can be transformed in polynomial time into a

set cover of S of cardinality at most k.

Then unless P = NP , there is no constant factor approximation algorithm for B.

Proof. Suppose for contradiction that B admits a factor b approximation for some constant b.

Choose any constant t such that t-SET-COVER is hard to approximate within factor

ln t− c ln ln t, and such that b < ln t − c ln ln t. Note that t might be exponentially larger

that b, but is still a constant.

Now, let S be an instance of t-SET-COVER over the universe U = {u1, . . . , um}.

Consider the intermediate reduction g′ that transforms S into another t-SET-COVER

instance g′(S) = {S ′ ⊆ S : S ∈ S}. Since t is a constant, g(S) has O(|S|) sets and

this can be carried out in polynomial time.

Now define S ′ = g′(S) and consider the instance B = g(S ′) = g(g′(S)). By the

assumptions of the lemma, a solution for B of value k yields a set cover S∗ for S ′. Clearly, S∗
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can be transformed into a set cover for instance S: for each S ′ ∈ S∗, there exists S ∈ S

such that S ′ ⊆ S, so we get a set cover for S by adding this corresponding superset for each

S ∈ S∗. Thus B yields a set cover of S with at most k sets.

In the other direction, consider a set cover S∗ = {S1, . . . , Sk} of S with k sets. This

easily translates into an exact cover of S ′ with k sets by taking the collection

{S1, S2 \ S1, S3 \ (S1 ∪ S2), . . . , Sk \
k−1⋃
i=1

Si}.

By the assumptions of the lemma, this exact cover can then be transformed into a

solution of value at most k for instance B.

Therefore, S has a set cover of cardinality at most k if and only if B has a solution of

value at most k. By this correspondence, a factor b approximation for B would provide a

factor b < ln t− c ln ln t approximation for t-SET-COVER.

4.3.1 Constructing Genomes and CNPs from SET-COVER Instances

All of our hardness results rely on Lemma 7. we need to provide a reduction from

SET-COVER to MCNG and prove that both assumptions of the lemma are satisfied.

This reduction is the same for deletions-only and deletions-and-duplications. Given

S and U , we construct a genome G and a CNP ~c as follows (an example is illustrated in

Figure 4.1). The alphabet is Σ = ΣS ∪ ΣU , where ΣS := {〈βSi
〉 : Si ∈ S} and ΣU := {αui :

ui ∈ U}. Thus, there is one character for each set of S and each element of U . Here, each

〈βSi
〉 is a character that serves as a separator between characters to delete. For a set Si ∈ S,

define the string q(Si) as any string that contains each character of {au : u ∈ Si} exactly

once (in any fixed order, say by their indices). We put

G = 〈βS1〉q(S1)〈βS2〉q(S2) . . . 〈βSn〉q(Sn),
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i.e., G is the concatenation of the strings 〈βSi
q(Si). As for the CNP ~c, put

– ~c(〈βSi
〉) = 1 for each Si ∈ S;

– ~c(αu) = f(u) − 1 for each u ∈ U , where f(u) = |{Si ∈ S : u ∈ Si}| is the number of

sets from S that contain u.

S1 = {1, 2, 3} S2 = {1, 3, 4} S3 = {2, 3, 5}

G = 〈βS1〉α1α2α3〈βS2〉α1α3α4〈βS3〉α2α3α5

~c(α1) = ~c(α2) = 1 ~c(α3) = 2 ~c(α4) = ~c(α5) = 0

Figure 4.1: An example of our construction, with S = {S1, S2, S3} and U = {1, 2, 3, 4, 5}

.

Notice that in G, each 〈βS〉 already has the correct copy-number, whereas each αu needs

exactly one less copy. Our goal is thus to reduce the number of each αu by 1. This concludes

the construction of MCNG instances from SET-COVER instances. We now focus on the

hardness of the deletions-only cases.

4.3.2 Warmup: the Deletions-only Case

Suppose that we are given a set cover instance S and U , and let G and ~c be the genome

and CNP, respectively, as constructed above.

Lemma 8. Given an exact cover S∗ for S of cardinality k, one can obtain a sequence of k

deletions transforming G into a genome with CNP ~c.

Proof. Denote S∗ = {Si1 , . . . Sik}. Consider the sequence of k deletions that deletes the

substrings q(Si1), . . . , q(Sik) (i.e., the sequence first deletes the substring q(Si1), then deletes

q(Si2), and so on until q(Sik) is deleted). Since Si1 , . . . , Sik is an exact cover, this sequence
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removes exactly one copy of each αu ∈ ΣU and does not affect the 〈βS〉 characters. Thus the

k deletions transform G into a genome with the desired CNP ~c.

Lemma 9. Given a sequence of k deletions transforming G into a genome with CNP ~c, one

can obtain a set cover for S of cardinality at most k.

Proof. Suppose that the deletion events E = (e1, . . . , ek) transform G into a genome G∗ with

CNP ~c. Note that no ei deletion is allowed to delete a set-character 〈βSi
〉 ∈ ΣS , as there

is only one occurrence of 〈βSi
〉 in G and ~c(〈βSi

〉) = 1. Thus all deletions remove only αu

characters. In other words, each ej in E either deletes a substring of G between some 〈βSi
〉

and 〈βSi+1
〉 with 1 ≤ i < n, or ej deletes a substring after 〈βSn〉. Moreover, exactly one of

each αu occurrences gets deleted from G.

Call 〈βSi
〉 ∈ ΣS affected if there is some event of E that deletes at least one character

between 〈βSi
〉 and 〈βSi+1

〉 with 1 ≤ i < n, and call 〈βSn〉 affected if some event of E deletes

characters after 〈βSn〉. Let S∗ := {Si ∈ S : 〈βSi
〉is affected}. Then |S∗| ≤ k, since each

deletion affects at most one 〈βSi
〉 and there are k deletion events. Moreover, S∗ must be a

set cover, because each αu ∈ ΣU has at least one occurrence that gets deleted and thus at

least one set containing u that is included in S∗. This concludes the proof.

We have shown that all the assumptions required by Lemma 7 are satisfied. The

inapproximability follows.

Theorem 8. Assuming P 6= NP, there is no polynomial-time constant factor approximation

algorithm for MCNG when only deletions are allowed.

We mention without proof that the reduction can be adaptable to the duplication-only

case, by putting ~c(αu) = f(u) + 1 for each u ∈ U .
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4.3.3 The Real Deal: Deletions and Duplications

We now consider both deletions and duplications. The reduction uses the same

construction as in Subsection 4.3.1. Thus we assume that we have a SET-COVER instance

S over U , and a corresponding instance of MCNG with genome G and CNP ~c. In that case,

we observe that Lemma 8 still holds whether we allow deletion only, or both deletions and

duplications. Thus we only need to show that the second assumption of Lemma 7 holds.

Unfortunately, this is not as simple as in the deletions-only case. The problem is that

duplications may copy αu and 〈βSi
〉 occurrences, and we lose control over what gets deleted,

and over what 〈βSi
〉 each αu corresponds to (in particular, 〈βSi

〉 might now get deleted,

which did not occur in the deletions-only case).

Nevertheless, the analogous result can be shown. That is, using the above reduction, our

goal is to show that, given a sequence of k events (deletions and duplications) transforming

G into a genome with CNP ~c, one can obtain a set cover for S of cardinality at most k.

We need new notation and intermediate results beforehand. Let E = (e1, . . . , ek) be

a sequence of events transforming genome G into another genome G′. We would like to

distinguish each position of G in order to know which specific character of G is at the origin

of a character of G′.

We augment each individual character of G with a unique identifier, which is its position

in G. That is, let G = g1g2 · · · gn, define a new alphabet Σ̂ = (g1
1, g

2
2, · · · , gnn) and define the

genome Ĝ = (g1
1, g

2
2, · · · , gnn). Here, two characters gi and gj may be identical, but gii and

gjj are two distinct characters. We call Σ̂ the augmented alphabet and Ĝ the augmented

genome of G. For instance if G = aabcb and Σ = (a, b, c), then Σ̂ = (a1, a2, b3, c4, b5) and

Ĝ = a1a2b3c4b5.

Since G and Ĝ have the same length, we may apply the sequence E on Ĝ, resulting in

a genome Ĝ′ := Ĝ〈E〉 on alphabet Σ̂. Now Ĝ′ may contain some characters of Σ̂ multiple

times owing to duplications, but if we remove the superscript identifier from the characters
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of Ĝ′, we obtain G′. The idea is that the identifiers on the characters of Ĝ′ tell us precisely

where each character of Ĝ′ “comes from” in Ĝ (and thus G).

Definition 9. Let G and G′ be genomes and let E an event sequence such that G′ = G〈E〉.

Let Ĝ be the augmented genome of G and let Ĝ[i] = gi be the character at position i.

If there is at least one occurrence of gi in Ĝ〈E〉, then position i is called important with

respect to E. Otherwise, position i is called unimportant with respect to E.

Roughly speaking, position i is unimportant if it eventually get deleted, and any

character that was copied from position i from a duplication also gets deleted, as well as a

copy of this copy, and so on - in other words, position i has no “descendant” in G′ when

applying E.

First, we prove a few general properties that are useful. Recall that G− s removes all

occurrences of s from G, and ~c− s puts ~c(s) = 0.

Proposition 2. Let G be a genome over alphabet Σ, let ~c be a CNP and let s ∈ Σ. Then

dGCNP (G− s,~c− s) ≤ dGCNP (G,~c).

The next technical lemma states that if a genome alternates between positions to keep

and positions to delete n times, then we need n events to remove the unimportant ones.

Lemma 10. Let Σ = X∪Y be an alphabet defined by two disjoint sets X = {x1, . . . , xn} and

Y. Let G = Y0x1Y1x2Y2 . . . xnYn be a genome on Σ, where for all i ∈ [n], Yi is a non-empty

string over alphabet Y and Y0 is possibly empty string on alphabet Y . Moreover let ~c be a

CNP such that ~c(xi) = 1 for all xi ∈ X and ~c(y) = 0 for all y ∈ Y . Then dGCNP (G,~c) ≥ n,

with equality when Y0 is empty.

We may now prove the second assumption of Lemma 7.

Lemma 11. Let S be a SET-COVER instance, and let G and ~c be the corresponding MCNG

instance. Given a sequence of k events (deletions and duplications) transforming G into a

genome with CNP ~c. one can obtain a set cover for S of cardinality at most k.
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Proof. Suppose that the events E = (e1, . . . , ek) transform G into a genome G∗ with CNP ~c.

We construct a set cover for S of cardinality k. For a position p with G[p] = αu ∈ ΣU , define

pred(p) as the first ΣS character to the left of position p. To be precise, if p′ is the largest

integer satisfying G[p′] ∈ ΣS and p′ < p, then pred(p) = G[p′]. Note that since G[1] = 〈βS1〉,

pred(p) is well-defined. Notice that by construction, if G[p] = αu and 〈βS〉 = pred(p), then

u ∈ S. The set of pred(p) of unimportant positions p will correspond to our set cover, which

we now prove by separate claims.

Claim 6. For each u ∈ U , there is at least one position p of G such that G[p] = αu and

such that p is unimportant w.r.t. E.

Proof. If we assume this is not the case, then each of the f(u) positions p of G having

G[p] = αu has a descendant in G∗, implying that G∗ has at least f(u) copies of αu and

thereby contradicting that G∗ complies with ~c(αu) = f(u)− 1.

Recall that U = {ui, . . . , um}. Given that the claim holds, let P = {p1, . . . , pm} be any

set of positions of G such that for each i ∈ [m], G[pi] = αui and pi is unimportant w.r.t. E

(choosing arbitrarily if there are multiple choices for pi). Define ΣP = {pred(pi) : pi ∈ P}

and S∗ = {Si ∈ S : 〈βSi
〉 ∈ ΣP}.

Claim 7. S∗ is a set cover.

Proof. For each ui ∈ U , there is an unimportant position pi ∈ P such that G[pi] = αui .

Moreover, pred(pi) is some character 〈βS〉 such that 〈βS〉 ∈ ΣP and such that ui ∈ S. Since

S ∈ S∗, it follows that each ui is covered.

It remains to show that S∗ has at most k sets. Denote P ′ = P ∪ {p : G[p] ∈ ΣP}.

Let G̃ be the subsequence of G obtained by keeping only positions in P ′ (i.e., if we denote

P ′ = {p′1, . . . , p′l} with p′1 < p′2 < . . . < p′l, then G̃ = G[p′1]G[p′2] . . . G[p′l]). furthermore, define

the CNP ~c0 such that ~c0(〈βSi
〉) = 1 for all 〈βSi

〉 ∈ ΣP , ~c0(〈βSi
〉) = 0 for all 〈βSi

〉 ∈ ΣS \ ΣP ,
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and ~c0(αu) = 0 for all αu ∈ ΣU . Note that G̃ has the form 〈βSi1
〉D1〈βSi2

〉D2 . . . 〈βSir
〉Dr for

some r, where the Di’s are substrings over alphabet ΣU . This is form of Lemma 10.

Claim 8. dGCNP (G̃,~c0) ≤ k.

Proof. Let G′ be the genome obtained by replacing every position p of G by some dummy

character λ, except for the positions of P ′ (thus if we remove all the λ occurrences we obtain

G̃). Since G and G′ have the same length, we can apply the E events on G′. Let G′′ := G′〈E〉,

and let l be the number of occurrences of λ in G′′. Recall that p′ contains only positions p

such that G[p] ∈ ΣP , or such that p is unimportant w.r.t. E and G[p] ∈ ΣU . It follows that

if a position q is important w.r.t. E, then G′[q] = ΣP ∪ {λ}. Moreover, for any 〈βS〉 ∈ ΣP ,

G′′ has as many occurrences of 〈βS〉 as in G〈E〉. In other words, G′′ has one occurrence of

each 〈βS〉 ∈ ΣP and the rest is filled with λ.

Let ~c1 be the CNP satisfying ~c(λ) = l, ~c1(〈βSi
〉) = ~c0(〈βSi

〉) = 1 for every 〈βSi
〉 ∈

ΣP , and ~c1(x) = 0 for any other character x. Then clearly, ~c1 = cnp(G′′), which implies

dGCNP (G′,~c1) ≤ k since E transforms G′ to G′′. Moreover by Proposition 2, dGCNP (G′ −

λ,~c1−λ) ≤ dGCNP (G′,~c1) ≤ k. The claim follows from the observation that G̃ = G′−λ and

~c0 = ~c1 − λ.

Observe that G̃ and ~c0 have the required form for Lemma 10 (with |ΣP | important

positions), and so dGCNP (G̃,~c0) ≤ |ΣP |. It follows from Claim 8 that k ≥ dGCNP (G̃,~c0) ≥

|ΣP | = |S∗|. We thus have a set cover S∗ for S of cardinality at most k, completing the

proof.

We arrive to out main inapproximability result, which again follows from Lemma 7.

Theorem 9. Assuming P 6= NP , there is no polynomial-time constant factor approximation

algorithm MCNG.
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In the next section, we prove that the MCNG problem, parameterized by the solution

size, is W[1]-hard. This answers another open question is [79]. We refer readers for more

details on FPT and W [1]-hardness to the book by Downey and Fellows [32].

4.4 W[1]-hardness for MCNG

Since SET-COVER is W[2]-hard, naturally we would like to use the above reduction

to prove the W[2]-hardness of MCNG. However, the fact that we use t-SET-COVER with

constant t in the proof of Lemma 7 is crucial, the t-SET-COVER is in FPT. On the other

hand, the property that is really needed in the instance of this proof, and in our MCNG

reduction, is that we can transform any set cover instance into an exact cover. We capture

this intuition and show that SET-COVER instances that have this property are W[1]-hard

to solve.

An instance of SET-COVER-with-EXACT-COVER, or SET-COVER-EC for short, is

a pair I = (S, k) where k is an integer and S is a collection of sets forming a universe U .

In this problem, we require that S satisfies the property that any set cover for S of size at

most k is also an exact cover. We are asked whether there exists a set cover for S of size at

most k (in which case this set cover is also an exact cover).

Lemma 12. The SET-COVER-EC problem is W[1]-hard for parameter k.

Proof. We show W[1]-hardness using the techniques introduced by Fellows et al. which is

coined as MULTICOLORED-CLIQUE [38]. In the MULTICOLORED-CLIQUE problem,

we are given a graph G, an integer k and a coloring c : V (G)→ [k] such that no two vertices

of the same color share an edge. We are asked whether G contains a clique of k vertices

(noting that such a clique must have a vertex of each color). This problem is W[1]-hard

w.r.t. k.
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Given an instance (G, k, c) of MULTICOLORED-CLIQUE, we construct an instance

I = (S, k′) of SET-COVER-EC. We put k′ = k +
(
k
2

)
. For i ∈ [k], let Vi = {v ∈ V (G) :

c(v) = i} and for each pair i < j ∈ [k], let Eij = {uv ∈ E(G) : u ∈ Vi, v ∈ Vj}. The universe

U of the SET-COVER-EC instance has one element for each color i, one element for each

pair {i, j} of distinct colors, and two elements for each edge, one for each direction of the

edge. That is,

U = [k] ∪
(

[k]

2

)
∪ {(u, v) ∈ V (G)× V (G) : uv ∈ E(G)}

Thus |U | = k +
(

[k]
2

)
+ 2|E(G)|. For two colors i < j ∈ [k], we will denote Uij =

{(u, v), (v, u) : u ∈ Vi, v ∈ Vj, uv ∈ Eij}, i.e., we include in Uij both elements corresponding

to each uv ∈ Eij. Now, for each color class i ∈ [k] and each vertex u ∈ Vi, add to S the set

Su = i ∪ {(u, v) : v ∈ N(u)}

where N(u) is the set of neighbors of u in G. Then for each i < j ∈ [k], and for each

edge uv ∈ Eij, add to S the set

Suv = {{i, j}} ∪ {(x, y) ∈ Uij : x /∈ {u, v}}

The idea is that Suv can cover every element of Uij, except those ordered pairs whose

first element is u or v. Then if we do decide to include Suv in a set cover, it turns out that

we will need to include Su and Sv to cover these missing ordered pairs. See Figure 4.2 for an

example. For instance if we include Su2,v3 in a cover, the uncovered (u2, v3) and (v3, u2) can

be covered with Su2 and Sv3 . We show that G has a multicolored clique of size k if and only

if S admits a set cover of size k′. Note that we have not shown yet that (S, k′) is an instance

of SET-COVER-EC, i.e., that any set cover of size at most k′ is also an exact cover. This
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i

(u1, v1)

(u1, v2)

(u2, v3)

{i, j}

(v1, u1)

(v2, u1)

(v3, u2)

j

Su1

Su2

Su2,v3

Su1,v2

Su1,v1

Sv1

Sv2

Sv3

Figure 4.2: A graphical example of the constructed sets for the Uij elements of a graph (not
shown) with Eij = {u1v1, U1v2, u2v3}, where the ul’s are in Vi and the vl’s in Vj (sets have
a gray background, edges represent containment, the {i, j} lines are dotted only for better
visualization).

will be a later part of the proof.

First suppose that G has a multi-colored clique C = {v1, . . . , vk}, where vi ∈ Vi for each

i ∈ [k]. Consider the collection

S∗ = {Sv1 , . . . , Svk} ∪ {Svivj : vi, vj ∈ C, 1 ≤ i < j ≤ k},

the cardinality of S∗ is k +
(
k
2

)
= k′. Each element i ∈ U ∩ [k] is covered since we include

a set Svi for each color. Each element {i, j} ∈ U ∩
(

[k]
2

)
is covered since we include a set

Svivj for each color pair i, j with i < j. Consider an element (Xi, Xj) ∈ U ∩ (V (G)× V (G)),

where xi ∈ Vi and yi ∈ Vj. Note that either i < j or j < i is possible, and that vivj ∈ E(G).

If xi /∈ {vi, vj}, then Svivj covers (xi, yj). If xi = vi, then Svi covers (xi, vj) and if xi = vj,

then Svj covers (xi, vj). Thus S∗ is a set cover, and is of size at most k′.

For the converse direction, suppose that S∗ is a set cover for S of size at most k′ = k+
(
k
2

)
.
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Note that to cover the elements of U ∩ [k], S∗ must have at least one set Su such that u ∈ Vi

for each color class i ∈ [k]. Moreover, to cover the elements of U ∩
(

[k]
2

)
, S∗ must have at

least one set Suv such that u ∈ Vi, v ∈ Vj for each i, j ∈ [k] pair. We deduce that S∗ has

exactly k +
(
k
2

)
sets. Hence for color i ∈ [k], there is exactly one set Su in S∗ for which

u ∈ Vi, and for each {i, j} pair, there is exactly one Suv set in S∗ for which u ∈ Vi, v ∈ Vj.

We claim that C = {u : Su ∈ S∗} is a multi-colored clique. We already know that C

contains one vertex of each color. Now, suppose that some u, v ∈ C do not share an edge,

where u ∈ Vi, v ∈ Vj and i < j. Let Sxy be the set of S∗ that covers {i, j}, with x ∈ Vi,

y ∈ Vj. Since uv is not an edge but xy is, we know that u 6= x or v 6= y (or both). Moreover,

Sxy does not cover the (x, y) and (y, x) elements of Uij, and we know that at least one of

these is not covered by Su nor Sv (if u 6= x, then none covers (x, y), if v 6= y, then none

covers (y, x)). But (x, y) ∈ Uij, and Su, Sv and Sxy are the only sets of S∗ that have elements

of Uij, contradicting that S∗ is a set cover. This shows that C is a multi-colored clique.

It remains to show that S∗ is an exact cover. Observe that no two distinct Su and Sv

sets in S∗ can intersect because u and v must be of a different color, and no two distinct Suv

and Sxy sets in S∗ can intersect because {u, v} and {x, y} must be from two different color

pairs. Suppose that Su, Sxy ∈ S∗ do intersect, and say that x ∈ Vi, y ∈ Vj and i < j. Then

all elements in Su ∩ Sxy are of the form (u, v) for some v. Choose any such (u, v). If u is of

color i, then u 6= x since otherwise by construction Sxy could not contain (u, v). But when

u 6= x, no set of S∗ covers the element (x, y) (it is not Su nor Sxy, the only two possibilities).

If u is of color j, then u 6= y since again Sxy could not contain (u, v). In this case, no set of

S∗ covers (y, x). We reach a contradiction and deduce that S∗ is an exact cover.

It is now almost immediate that MCNG is W[1]-hard with respect to the natural

parameter, namely the number of events to transform a genome G into a genome with a

given profile ~c.
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Theorem 10. The MCNG problem is W[1]-hard.

We do not know whether SET-COVER-EC or MCNG are also in W[1], i.e., whether

they are W[1]-complete. We have finished presenting the negative results on MCNG. An

immediate question is whether we could obtain positive result on a related problem. In the

next section, we present positive result for an interesting variation of MCNG.

4.5 The Copy Number Profile Conforming Problem

We define the more general Copy Number Profile Conforming (CNPC) problem as

follows:

Definition 10. Give two CNP’s ~c1 = 〈u1, u2, . . . , un〉 and ~c2 = 〈v1, v2, . . . , vn〉, with ui, vi ≥ 0

and ui, vi ∈ N, the CNPC problem asks to compute two strings S1 and S2 with cnp(S1) = ~c1

and cnp(S2) = ~c2 such that the distance between S1 and S2, d(S1, S2), is minimized.

Let
∑

i ui = m1,
∑

i vi = m2, we assume thatm1 andm2 are bounded by a polynomial of

n. (This assumption is needed as the solution of our algorithm could be of size max{m1, n2}.)

We simply say ~c1, ~c2 are polynomially bounded. Note that d(S1, S2) is very general distance

measure, i.e., it could be any genome rearrangement distance (like reversal, transposition,

and tandem duplication, etc, or their combination, e.g. tandem duplication + deletion). In

this section, we use the breakpoint distance and the adjacency number. Our definitions fo

these notions are adapted from Angibard et al. [7] and Jiang et al. [53], which generalize

the corresponding concepts on permutations [92].

Given two sequences A = a1a2 . . . an and B = b1b2 . . . bm, if {ai, ai+1} = {bj, bj+1} we

say that aiai+1 and bjbj+1 are matched to each other (in the graph theory terminology, they

are an edge). Consider a maximum cardinality matching between length 2 substrings of A

and B. A matched pair is called an adjacency, and an unmatched pair is called a breakpoint

in A and B respectively. Then, the multiset of 2-substrings of A (resp. B) that belong
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sequence A = 〈 a c b d c b 〉

2 substrings of A = 〈ac cb bd dc cb 〉

sequence B = 〈 a b c a b c d 〉

2 substrings of B = 〈ab bc ca ab bc cd 〉

matched pairs : (cb↔ bc), (dc↔ cd), (cb↔ bc)

a(A,B) = {bc, bc, cd}

bA(A,B) = {ac, bd}

bB(A,B) = {ab, da, ab, cd}

Figure 4.3: Example for adjacency and breakpoint definitions, with db(A,B) = 2 and
db(B,A) = 4.

to a breakpoint is denoted as bA(A,B) (resp. dB(A,B)) and the corresponding number

is db(A,B) (resp. db(B,A)), and the number of common adjacencies between A and B is

denoted as a(A,B). Note that db(A,B), db(B,A) and a(A,B) do not depend on a particular

choice of maximum matching. We illustrate the above definitions in Fig. 4.3 .

Coming back to our problem, we define d(S1, S2) = db(S1, S2) + db(S2, S1). From the

definitions we have

db(S1, S2) + db(S2, S1) + 2 · a(S1, S2) = (m1 − 1) + (m2 − 1),

or,

db(S1, S2) + db(S2, S1) = m1 +m2 − 2 · a(S1, S2)− 2.
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Hence, the problem is really to maximize a(S1, S2).

Definition 11. Given n-dimensional vectors ~u = 〈u1, u2, . . . , un〉 and ~w = 〈w1, w2, . . . , wn〉,

with ui, wi ≥ 0, and ui, wi ∈ N, we say ~w is a sub-vector of ~u if wi ≤ ui for i = 1, . . . , n,

also denote this relation as ~w ≤ ~u.

Henceforth, we simply call ~u, ~w integer vectors, with the understanding that no item in

a vector is negative.

Definition 12. Given two n-dimensional integer vectors ~u = 〈v1, u2, . . . , un〉 and ~v =

〈v1, v2, . . . , vn〉, we say ~w is a common sub-vector of ~u and ~v if ~w is a sub-vector of ~u and

~w is also a sub-vector of ~v (i.e., ~w ≤ ~u and ~w ≤ ~v). Finally, ~w is the maximum common

sub-vector of ~u and ~v if there is no common sub-vector ~w′ 6= ~w of ~u and ~v which satisfies

~w ≤ ~w′ ≤ ~u or ~w ≤ ~w′ ≤ ~v.

An example is illustrated as follows. We have ~u = 〈3, 2, 1, 0, 5〉, ~v = 〈2, 1, 3, 1, 4〉,

w′ = 〈2, 1, 0, 0, 3〉 and ~w = 〈2, 1, 1, 0, 4〉. Both ~w and ~w′ are common sub-vectors for ~u and

~v, ~w′ is not the maximum common sub-vector of ~u and ~v (since ~w′ ≤ ~w) while ~w is.

Given a CNP ~u = 〈u1, u2, . . . , un〉 and alphabet Σ = (x1, x2, . . . , xn), for i ∈

{1, 2, . . . , n}, we use S(~u) to denote the multiset of letters (genes) corresponding to ~u; more

precisely, ui denotes the number of x’s in S(~u). Similarly, given a multiset of letters Z, we use

s(Z) to denote a string where all the letters in Z appear exactly once (counting multiplicity;

i.e., |Z| = |s(Z)|). s(Z) is similarly defined when Z is a CNP. We present Algorithm 4.1.

Let Σ = {a, b, c, d, e}. Also let ~c1 = {2, 2, 2, 4, 1} and ~c2 = 〈4, 4, 1, 1, 1〉. We walk

through the algorithm using this input as follows.

1. The maximum common sub-vector ~v of ~c1 and ~c2 is ~v = 〈2, 2, 1, 1, 1〉.

2. Compute S(~v) = {a, a, b, b, c, d, e}, S(~c1) = {a, a, b, b, c, c, d, d, d, d, e} and S(~c2) =

{a, a, a, a, b, b, b, b, c, d, e}. Compute X = {c, d, d, d} and Y = {a, a, b, b}.
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3. Identify d and a such that d ∈ S(~v) and a ∈ S(~v), and d ∈ X while a ∈ Y .

4. Compute s(~v) = dabbcea, s1 = dabbcea · d and s2 = a · dabbcea.

5. Insert elements in X − {d} = {c, d, d} arbitrarily at the right end of s1 to obtain S1,

and insert all the elements in Y − {a} = {a, b, b} at the right end of s2 to obtain S2.

6. Return S1 = dabbcea · d · cdd and S2 = a · dabbcea · abb.

Theorem 11. Let ~c1, ~c2 be polynomially bounded. The number of common adjacencies

generated by Algorithm 4.1 is optimal with a value either n∗ or n∗ − 1, where n∗ =
∑n

i=1 vi

with the maximum common sub-vector of ~c1 and ~c2 being ~v = 〈v1, v2, . . . , vn〉.

Proof. First, note that if ~v is a 0-vector (or S(~v) = ∅) then there will not be any adjacency

in S1 and S2. Henceforth we discuss S(~v) 6= ∅.

Notice that a common adjacency between S1 and S2 must come from two letters which

are both in S(~v). That naturally gives us n∗ − 1 adjacencies, where n∗ = |S(~v)|, which can

be done by using the letters in S(~v) to form two arbitrary strings S1 and S2 (for which s(~v)

is a common substring). If {x, y} can be found such that x, y ∈ S(~v) and x 6= y, and one

of them is in X (say x ∈ X), and the other is in Y (say y ∈ Y ), then, obviously we could

obtain s1 = s(~v)◦x and s2 = y ◦s(~v) which are substrings of S1 and S2 respectively. Clearly,

there are n∗ = |S(~v)| adjacencies between s1 and s2 (and also S1 and S2).

To see that this is optimal, first suppose that no {x, y} pair as above can be

found. This can only occur when there are no two components i < j in ~c1 =

〈c1,1, . . . , c1,i, . . . , c1,j, . . . , c1,n〉, ~c2 = 〈c2,1, . . . , c2,i, . . . , c2,j, . . . , c2,n〉, and in the maxi-

mum common sub-vector ~v = 〈v1, . . . , vi, . . . , vj, . . . , vn〉 of ~c1 and ~c2 which satisfy that

min{c1,i, c2,i} = vi 6= 0 and max{c1,i, c2,i} 6= vi, and min{c1,j, c2,j} = vj 6= 0 and

max{c1,j, c2,j} 6= vj. If this condition holds, then all the components i in s(~c1 − ~v) and

s(~c2 − ~v), i.e., c1,i − vi and c2,i − vi, have the property that at least one of the two is zero
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and vi = 0. Therefore, except for the letters corresponding to ~v, no other adjacency can be

formed. As any string with CNP ~v has n∗ characters, at most n∗ − 1 adjacencies can be

formed. If an {x, y} pair can be found, let b ∈ Σ, and let vb be the minimum copy-number of

b in ~c1 or ~c2, i.e., vb = min{c1,b, c2,b}. Assume this minimum occurs in ~c1, w.l.o.g. There can

be at most 2vb adjacencies involving b in ~c1, and thus at most 2vb adjacencies in common

involving vb. Summing over every b ∈ Σ, the sum of common adjacencies, counted for each

character individually, is at most
∑

b∈Σ 2vb = 2n∗. Since each adjacency is counted twice in

this sum, the number of common adjacencies is at most n∗.

Note that if we only want the breakpoint distance between S1 and S2, then the

polynomial boundness condition of ~c1 and ~c2 can be withdrawn as we can decide whether

{x, y} exists by searching directly in the CNPs (vectors).

4.6 Conclusion

In this chapter, we answered two recent open questions regarding the computational

complexity of the Minimum Copy Number Generation problem. Our technique could be

used for other optimization problems where the solution involves Set Cover whose solution

must also be an exact cover. We also present a polynomial time algorithm for the Copy

Number Profile Conforming (CNPC) problem when the distance is the classical breakpoint

distance. The breakpoint distance is static, and we leave open the question for solving or

approximating CNPC with dynamic rearrangement distance such as reversal, duplication +

deletion, etc.

4.6.1 Note

The results in this chapter have been presented at CPM 2020 [60].
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Algorithm 4.1: CNPC algorithm

1: Compute the maximum common sub-vector ~v of ~c1 and ~c2.

2: Given the gene alphabet Σ, compute S(~v), S(~c1) and S(~c2). Let X = S(~c1)− S(~v) and

Y = S(~c2)− S(~v).

3: if S(~v) = ∅, then return two arbitrary strings s(~c1) and s(~c2) as S1 and S2, exit; otherwise,

continue.

4: Find {x, y}, x, y ∈ Σ and x 6= y, such that x ∈ S(~v) and y ∈ S(~v), and exactly one of

x, y is in X (say x ∈ X), and the other is in Y (say y ∈ Y ). If such an {x, y} cannot be

found then return two strings S1 and S2 by concatenating letters in X and Y arbitrarily

at the ends of s(~v) respectively, exit; otherwise, continue.

5: Compute an arbitrary sequence s(~v) with the constraint that the first letter is x and the

last letter is y. Then obtain s1 = s(~v) ◦ x and s2 = y ◦ s(~v) (◦ denotes concatenation).

6: Finally, insert all the elements in X −{x} arbitrarily at the two ends of s1 to obtain S1,

and insert all the elements in Y − {y} arbitrarily at the two ends of s2 to obtain S2.

7: Return S1 and S2.
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CHAPTER FIVE

PATTERN MATCHING UNDER THE 1-REVERSAL DISTANCE

5.1 Introduction

The pattern matching problem is one of the well-studied classical problems in computer

science. Given a text sequence T of length n, a pattern P of length m, the problem is to

compute all substrings in T which are exactly the same as P . Over the last four decades, lots

of algorithms have been developed. The standard text book solution is the Knuth-Morris-

Pratt algorithm [57] which runs in linear time. In many practical cases, the Boyer-Moore

algorithm avoids reading each character of the input text to achieve a sublinear algorithm

[15], hence the algorithm has been implemented in the emacs editor and the Unix system

(even though it runs in O(nm) time in the worst case).

In many applications like biology and communications, the occurrence of a copy of

the pattern in T could be slightly altered, for example, letter mutation and corruption.

Therefore, the problem of pattern matching with k mismatches has been investigated

rigorously as well. The problem is formally defined as follows: Given a text sequence T

of length n, a pattern sequence P of length m, and an integer k, the problem is to find all

substrings in the text sequence with at most k mismatches to the pattern sequence. The most

widely-used measure for the pattern matching with k mismatches problem is the Hamming

distance, which is the number of the locations where two strings have different letters when

aligned together (see Fig. 5.1 for an example). (Note that the case k = 0 is exactly the

pattern matching problem.)

Landau and Vishkin first introduced the k-mismatch pattern matching problem in 1985

[65], and they presented two algorithms running in O(m2 + k2n) and O(k(m logm + n))

respectively. Galil and Giancarlo subsequently improved the bound to O(nk) [39]. Then,
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S1 =A C G C C A T G C

S2 =A G C C G A T T C

Figure 5.1: An example for two strings S1 and S2 with Hamming distance 4.

Abrahamson showed that the problem can be solved in time O(n
√
m logm), where k is

subsumed in the running time [1]. In [6], Amir, Lewenstein and Porat presented an improved

algorithm, which runs in time O(n
√
k log k). There has been a series of research on the

streaming version of the problem, which is not quite related to this paper and is not reviewed

further, but interested readers are referred to [27, 41].

In this chapter, we consider the pattern matching problem under the 1-reversal distance,

where we want to list all substrings of T which has a reversal distance at most 1 to

the pattern P . The major motivation if from computational biology where reversals are

common operations in genome rearrangements. (Computing the reversal distance between

two unsigned genomes, possibly with letter/gene duplications is NP-hard [25]; in fact, the

problem remains NP-hard when the unsigned genomes are permutations [18] and constant-

factor approximations are know for the latter case [10, 41].) To the best of our knowledge,

this problem has never been studied. The closest related works on pattern matching are in

references [4, 5], where Amir et al. studied the Pattern Matching with Swaps problem, where

the problem is to find all swapped versions of the given pattern, where a swap operation

exchanges two neighboring letters and each letter can participate in at most one swap.

Clearly in general a reversal cannot be implemented with these kinds of swaps (unless the

reversal operation is applied on a substring of length 2). On the other hand, we note that

in computational biology, there has been some research on pattern matching with address
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errors (rearrangement distances) [3], though reversal distance was not directly mentioned

in the paper. In fact, using the `1 distance (i.e., the sum of difference of address changes

for all the letters in P and in T ), the algorithm in [3] can only find the shortest reversal of

a segment of P in a potential match in T . In addition, there has been some research on

searching tandem duplications in T [12].

The pattern matching under the 1-reversal distance can be solved in O(n + m) time

using the known Longest Common Extension (LCE) queries. However, with initial empirical

results, it seems that such a solution is very slow when m is small. We then focus on

practical solutions for this problem. We design an expected O(mn) time algorithm using

the Karp-Rabin fingerprints for the pattern matching problem under 1-reversal distance.

We implemented this pattern matching algorithm and applied it to the bacterial E. coli

genome sequences. The empirical findings indicates that for m ∈ [4, 14] there are many more

substrings with 1-reversal distance to the pattern compared with with 0-reversal distance

(i.e., identical with the pattern).

5.2 Preliminaries

In this section, we present the relevant definitions and notions. A (DNA) sequence

is represented by a string over Σ = {A,C,G, T}. Given a string S, we denote by S[i]

the i-th symbol of S. We denote by S[i, j] the substring S[i, j] = sisi+1 . . . sj of string

S = s1s2 . . . sisi+1 . . . sj . . . sn. (Note that if S is actually implemented as an array in C++,

the first index would be 0.)

Longest Common Extension (LCE) queries The longest common extension (LCE)

problem is defined as: Given a string S, for any pair of index (i, j), return the longest

common substring of S starting at position i and j. It has been used to solve various string

problems starting in 1980s, and is a textbook problem [42]. Ilie et al. and Barton et al.
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discussed practical implementation of a solution which uses suffix array, inverse suffix array,

longest common prefix array and range minimum queries [11, 49, 50]. This be the basis of a

solution we compare with.

Karp-Rabin fingerprints In [55], Karp and Rabin introduced the fingerprint method to

represent a string as a number. The fingerprint can be computed in linear time and updated

in constant time. It has been widely used.

The Karp-Rabin fingerprint of a string S = s1s2 · · · sm is defined as

H(S) =
m∑
i=1

sir
i mod p,

where r is randomly chosen from Fp, where Fp = {b | b ≤ p and b is prime}. Given two

strings S1 and S2, if S1 = S2, then obviously we have H(S1) = H(S2). In [78], Benny Porat

and Ely Porat proved the following lemma.

Lemma 13. [78] Given two different strings S1 and S2 of length m ≤ n, and a random r

chosen from Fp where p is a prime number with p ∈ Θ(N4), the probability that H(S1) =

H(S2) is less than 1
n3 .

In [78], n was set to be n < N to make the probability that H(S1) = H(S2) less than

1
n3 . Note that the set Fp can be generated by the sieve algorithm of Atkin and Bernstein,

which runs in O(N/ log logN) time [8]. It is also known in that the Karp-Rabin fingerprint

can be updated in O(1) time, meaning the fingerprint of s2s3...si and s1s2s3...si+1 can both

be computed from the fingerprint of s1s2s3...si in O(1) time. (This can be done as follows:

Let hi = s1r + s2r
2 + · · · + sir

i mod p. Then hi−s1r
r

= s2r
2−1 + s3r

3−1 + · · · + sir
i−1

mod p = s2r+s3r
2+· · ·+siri−1 mod p, which is exactly the fingerprint of s2s3...si. Similarly,

hi+si+1r
i+1 = ((s1r+s2r

2+s3r
3+· · ·+siri)+si+1r

i+1)) mod p, which is exactly s1r+s2r
2+

s3r
3 + · · · + si+1r

i+1 mod p, or the fingerprint of s1s2s3...si+1.) Hence, in our fingerprint
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calculation, once the fingerprint of the first m-substring in the text T is computed in O(m)

time, the subsequent fingerprints, for all the remaining m-substrings, can each be updated

and computed in O(1) times.

We next show that if S = s1s2s3...sm is cut into blocks/segments of length exactly x

(x < m), B1, B2, ..., Bdm/xe, except possibly for the last one, and let h(Bi) = s(i−1)x+1r +

s(i−1)x+2r
2 + · · ·+ s(i−1)x+xr

x mod p. We have the following lemma.

Lemma 14. The fingerprint of S ′ = s2s3...smsm+1 can be obtained h(Bi)’s in O(m/x) time.

Proof. By definition, the fingerprints of the blocks in S is h(B1), h(B2), · · · , h(Bdm/xe. Then

the fingerprint for S ′ is

{h(B1)/r + h(B2)rx−1 + · · ·+ h(Bi)r
(i−1)x−1 + · · ·+ h(Bdm/xe)r

(dm/xe−1)x−1}

+sm+1r
m+1 − s1 mod p,

which takes O(m/x) time.

Reversal operation We give the formal definition and notion for the reversal operation

as follows.

Definition 13. (Reversal Operation) A reversal is an operation that reverses the order of

a substring. More formally, the reversal operation ρ(i, j) transforms the string S to S
′

as

follows:

S = s1 · · · si−1 sisi+1 · · · sj sj+1 . . . sn

S
′
= s1 · · · si−1 sj · · · si+1si sj+1 . . . sn

Note that, given two strings S and T , if a reversal operation ρ(i, j) transforms S to T ,

the front parts and the end parts of S and T are exactly same. In addition, while there may
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be more than one possible reversal operations which can transform S to T , we are interested

an optimal (or minimal) reversal operation which transforms S into T .

Definition 14. (Optimal 1-Reversal Operation) A reversal ρ(i, j) is said to be an optimal

1-reversal operation, if the reversal ρ(i, j) can transform a sequence S to a sequence T , and

there is no other reversal operation ρ(k, `) exists, where i < k or j > `.

From the definition of optimal 1-reversal operations, we have the following lemma.

Lemma 15. Given two sequences S and T , if an optimal 1-reversal operation ρ(i, j) can

transform S to T , then S[i] 6= S[j], S[i] 6= T [i] and S[j] 6= T [j].

Proof. Assume that there exists a reversal operation ρ(k, `) which can transform S to T ,

where we have S[k] = T [k]. By the definition of a reversal operation, S[k] = T [`] and

S[`] = T [k], hence we have S[k] = S[`] = T [k] = T [`]. Then there must exist a reversal

operation ρ(m+1, n−1) which transform S into T . Therefore, if ρ(i, j) is an optimal reversal

operation, then we have S[i] 6= S[j], S[i] 6= T [i] and S[j] 6= T [j].

Definition 15. (Reversal Distance) Given two strings S and T with the same content

(i.e., multiset of letters), the Reversal Distance dR(S, T ) is the minimum number of reversal

operations that transforms S to T .

Then we give the formal definition of the problem we investigate in this chapter as

follows:

Definition 16. The Pattern Matching with 1-reversal Distance problem:

Input: a text sequence T = t1t2 . . . tn of length n and a pattern sequence P = p1p2 . . . pm of

length m over Σ = {A,C,G, T}, where m < n

Question: find all substrings from the text sequence T of length m which have at most

1-reversal distance to the pattern P .
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5.3 The Algorithms

In this section, we present two algorithms, running in O(n + m) and O(mn) time

respectively, for the pattern matching with 1-reversal distance problem. Given a string S,

let S̄ be its reversal.

5.3.1 LCE-based solution

The first algorithm is based on LCE queries. We construct three sequences T1 = P#T ,

T2 = P̄#T̄ and T3 = P#T̄ , where # is a new character, and we build the data structure in

(m+n) time/space for LCE queries using the results in [11]. Suppose a match between P and

a segment of T is between P = P [1..m] and T [k, l] where P̄ [i′, j′] = T [i, j] and k− l+1 = m.

This can be checked as follows: an LCE query of (1,m + 1 + k) in T1, which will return

length `1 (and locate i′ and i when there is a match); an LCE query of (1,m + n − l + 2)

in T2, which will return length `2 (and locate index m− j′ + 1 and m+ n− j + 2, hence j′

and j, when there is a match); and finally we use another LCE query (i′,m+ n− j + 2) in

T3, which will return length `3. Finally, we check whether `1 + `2 + `3 = m, if so, a match

is confirmed. This obviously take O(1) time. Since we have to search all possible n−m+ 1

matches, this search takes O(n−m+ 1) time. Therefore, we have the following theorem.

Theorem 12. Pattern matching under the 1-reversal distance problem can be solved in

O(m+ n) time, where m is the length of the pattern and n is the length of the text.

Obviously, the above result is theoretically optimal. However, based on our empirical

testing, the algorithm is quite slow even for small m. Hence, we are interested in designing a

practical algorithm which is fast for practical datasets. We will make use of the Karp-Rabin

fingerprints in this case.



97

5.3.2 Fingerprint-based solution

Given a text sequence T of length n and a pattern sequence P of length m, we

denote by T k the m-substring of T starting at index k, i.e., T k = T [k, k + m − 1]. In

the preprocessing step, for the fingerprint computation, we convert the sequence over the

original Σ = {A,C,G, T} to the sequence over Σ
′
= {1, 2, 3, 4}. Moreover, we compute Fp as

a set of prime numbers using the prime sieves algorithm by Atkin and Bernstein [8]. Then,

r is randomly chosen from the Fp.

Next, we show how to determine if dR(P, T k) ≤ 1, where k = 0, · · · , n−m− 1. Recall

that, by Lemma 15 if dR(P, T k) = 1 then we must locate the optimal 1-reversal operation

between the pattern P and the substring T k. As our goal is to reduce the running time by

using the Karp-Rabin fingerprint, we preprocess the text T by cutting it into substrings of

length x (note that the last ones might be of lengths strictly less than x). Since in practice

when building the fingerprints for T , we do not know the exact length of m in advance, x and

m might not be exactly the same, even if we prepare the fingerprints for several different x’s

for T . Hence, we use two lists P` and T` to represent these two lists composed of x-substrings

respectively. (Note that the last ones might have a length less than x.)

Then, we compute the corresponding Karp-Rabin fingerprint lists FP and FT for P`

and T` respectively. To find the first index i where T k and P differ, i.e., where T k[i] 6= P [i],

we compare the corresponding pairs of the fingerprint numbers in the two lists FP and FT

sequentially. (Note that this comparison for the fingerprint of T k, FT [T k], might involve a

sliding window computation of the fingerprints which takes O(m/x) time when the previous

ones are given — as shown in Lemma 14.) At any step, if these two numbers are different

(starting with the x-length block containing T k[i]), then by Lemma 13 and 14, with a high

probability (i.e., at least 1− 1
n3 ), we can find the index i from the corresponding sequences

in the two lists P` and T` in O(m/x) time. (If the fingerprints of T k and P are the same, we

will still check if the corresponding two sequences of two lists P` and T`, i.e., P and T k, are
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T` = “3321” “1344” “2314” “4342” “231”

FT = 57 22 31 92 66

T`[3, 13] = “1” “1344” “2314” “43”

FT [3, 13] = 1 22 31 23

T`[T
3] = “1134” “4231” “443”

FT [T 3] = 68 61 22

P` = “1134” “4241” “343”

FP = 68 66 98

Figure 5.2: An example for computing the fingerprint list

the same. If these two corresponding sequences P and TK are different, we can still find the

index i in a brute force way. Note that, from Lemma 13, the probability of such an event

is at most 1
n3 .) An example of this process is shown in Fig. 5.2. In this example, we have

n = 19,m = 11, x = 4, r = 5, and the prime p = 101. The text T = 3321 1344 2314 4342 231

and pattern P = 1134 4241 343. We focus on T 3 = T [3, 13] — here the index of an array

in C++ starts with 0. Note that once FT [T 3] is sequentially computed (by updating the

previous ones), we will find that i should occur in the second block as the fingerprint is 61,

which is different from the corresponding one in P . Then i = 6 is computed by searching

the corresponding substrings in the corresponding blocks of T 3 and P .

We can construct the lists and the corresponding fingerprint lists in reverse order (i.e.,

from right to left) to find the last index j such that T k[j] 6= P [j]. The pseudocode for
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locating i and j is shown in Algorithm 5.2. Note that when we search j all the x-substrings

in T and P do not have to be aligned from right to left.

Next, we need to determine whether T k[i, j] is a reversal of P [i, j]. Recall that S̄ is the

reversal of a given sequence S. For this process, we also compute the fingerprint list F̄P for

the reversed pattern sequence list P̄`.

After the indices i and j have been computed, we first retrieve the part P̄`[i, j] of

the sequence list P̄` for the reversed substring P̄ [i, j]. In addition, we retrieve the partial

lists F̄P [i, j], T`[i, j] and FT [i, j]. Next, if all the fingerprints in F̄P [i, j] and FT [i, j] (i.e.,

FT [T k] after alignment) are the same and all sequences of P̄`[i, j] and T`[i, j] (i.e., T`[T
k]

after alignment) are same, then dr(P, F
k) = 1.

The last step of the algorithm is to update the lists FT and T` for checking the next

substring in T . The pseudocode of the algorithm is shown in Algorithm 5.3. For comparison

purpose, in the algorithm, we count both the substrings with 0-reversal distance (i.e, identical

matchings) and the substrings with-1 reversal distance.

Theorem 13. Assume that Fp is given and r is already randomly selected from Fp, the

pattern matching problem under the 1-reversal distance can be solved in expected O(mn)

time.

Proof. In the preprocessing step of the algorithm, converting the input DNA sequences (text

and pattern) over Σ = {A,C,G, T} to the sequences over Σ′ = {1, 2, 3, 4} can be done in

O(n + m) time. The computation of the fingerprint for P can be done in O(m) time,

regardless of the selection of x.

Following Lemma 14, the computation of the corresponding fingerprint for each of T k

can be done in O(m/x+ x) time — after T 1 is computed in O(m) time. Therefore, in each

iteration, the indices i and j (representing the starting and ending index of a substring in

T where the 1-reversal occurs) can be computed using fingerprints in O(m/x + x) time.
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Algorithm 5.2: The boundary location algorithm

1: function location(FP , FT , P`, T`)

2: i← −1, j ← −1

3: for index1 = 0 to |FP | − 1 do

4: if FP [index1] == FT [index1] then

5: if P`[index1] 6= T`[index1] then

6: for index2 = 0 to |P`[index1]| − 1 do

7: if P`[index1][index2] 6= T`[index1][index2] then

8: i← index1 ∗ |P`[index1]|+ index2;

9: break;

10: end if

11: end for

12: end if

13: else

14: for index2 = 0 to |P`[index1]| − 1 do

15: if P`[index1][index2] 6= T`[index1][index2] then

16: i← index1 ∗ |P`[index1]|+ index2;

17: break;

18: end if

19: end for

20: end if

21: end for
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22: for index1 = |Tl| − 1 to 0 do

23: if FP [index1] == FT [index1] then

24: if P`[index1] 6= T`[index1] then

25: for index2 = |P`[index1]| − 1 to 0 do

26: if P`[index1][index2] 6= T`[index1][index2] then

27: j ← (|P`| − index1) ∗ |P`[index1]|+ index2;

28: break;

29: end if

30: end for

31: end if

32: else

33: for index2 = |P`[index1]| − 1 to 0 do

34: if P`[index1][index2] 6= T`[index1][index2] then

35: j ← (|P`| − index1) ∗ |P`[index1]|+ index2;

36: break;

37: end if

38: end for

39: end if

40: end for

41: end function
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Algorithm 5.3: The 1-reversal checking algorithm

1: function reversal(sequence T of length n, sequence P of length m ,t)

2: T, P ← convert T and P to strings over Σ = {1, 2, 3, 4};

3: Compute Fp using the Atkin-Bernstein algorithm;

4: Randomly select r is from Fp;

5: k ← 0, counter0← 0, counter1← 0;

6: P`, P̄`, T`[T
k]← divide P, P̄ and T k into substring with length d

√
me;

7: FP ← fingerprint computation(P`);

8: F̄P ← fingerprint computation(P̄`);

9: FT [T k]← fingerprint computation(T`[T
k]);

10: while k ≤ n−m− 1 do

11: i, j ← locate(FP , FT , P`, T`);

12: if i, j exists then

13: if F̄P [i, j] == FT [T k][i, j] then

14: if P̄`[i, j] == T`[T
k]l[i, j] then

15: counter1← counter1 + 1;

16: end if

17: end if

18: else

19: counter0← counter0 + 1;

20: end if

21: k ← k + 1;

22: Update FT [T k], T k;

23: end while

24: end function
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Determining whether the reversal parts of two lists in T k and P are equal can be done

in O(m/x + x) time using fingerprints. Since the fingerprint method is a randomized one,

we still need to check whether a target T k matches P letter-wise when H(T k) = H(P )

(following Lemma 13, the probability is at most 1
n3 ). Therefore, the expected running time

of each query step is at most

1×O(m+m/x+ x) +
1

n3
×O(m) = O(m+m/x+ x) = O(m).

Since we have n−m+ 1 number of m-substrings in T , the total expected running time

of the algorithm is (n−m+ 1)×O(m) = O(mn).

We show some empirical results in the next section. It would be interesting to know

the difference when x = m and x =
√
m; certainly whether we have to check T k = P when

H(T k) = H(P ).

5.4 Empirical Results

We implemented this algorithm in C++. The algorithm was run on a laptop with

Dual-Core Intel i5 CPU, 2.6 GHz, 8 GB RAM. We tested our algorithm on the“Escherichia

coli strain: FORC 028 Genome sequencing” (E. coli for short), with length of 5,704,396,

which is downloaded from https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294502.

We first searched for a longest m-substring of E. coli where it matches another substring

with a reversal distance one. Our code runs for more than 10 days and we found the following

substring in E. coli with length 22: TAACACGCTGGCCCTGTACGCG, the start position is 105. The

only match is a substring in E. coli starting at position 825122: TAAC CCCGGTCGCATGTACGCG.

Although we are unable to identify any biological meaning of these two substrings, the search

indicates that m is usually small.

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294502
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Next we make some empirical comparisons. In all the comparisons, we fix N = mn,

hence p ∈ Θ(N). (Note that Lemma 13 needs a much larger p, which is not practical using

our computer.) We mostly focus on comparing the search time on different m (even though

for E. coli m is meaningful only when it is small). For larger m we try to make use of

synthetic data by modifying the E. coli sequence. From now one, we either use a prefix of

the E. coli sequence of length 1M, or a synthetic sequence obtained from this prefix (with

the same length).

5.4.1 With and without letter checking

Given n and m, we cut the first n letters in each of the sequences as the text T and

the first m letters as the pattern P . In the implementation of the algorithm, we count the

substrings with 0-reversal distance and the substrings with 1-reversal distance separately.

The running time of the query algorithm is the average over 10 tries, represented as Time

in Table 5.1.

Since skipping the actual check T k = P when H(T k) = H(P ) might potentially improve

the running time, in Table 5.2, we use the same setting to report the running time as well

as the computed counts: counter0 and counter 1. It can be seen that in Table 5.2, we have

false positive cells (marked red, meaning some string which is different from the pattern but

share the same fingerprint). In other words, while skipping the letter-wise check can slightly

improve the running time, it can occasionally report wrong answers.

The empirical results show that the E. coli sequences contains more substrings with

1-reversal distance than the substrings with 0-reversal distance. The shorter the pattern

length is, the more substrings with 1-reversal distance E. coli has.

5.4.2 Comparison with LCE-based solution

In Table 5.3, we show the running time using the LCE-based solution. (The code was

downloaded from [11].) It can be seen that when m is in the range of [4,13], the fingerprint-
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Table 5.1: The average query time over 10 tries when x = m and when there is a letter-wise
check after the fingerprints are found to be match.. The correct answer was obtained using
a brute-force method for counter1.

|P | |T | counter0 counter1 Time Correct

(milliseconds) answer

4 1000000 2620 18261 1787 18261

5 1000000 482 8578 2012 8578

6 1000000 141 2750 2271 2750

7 1000000 29 801 2483 801

8 1000000 6 261 2664 261

9 1000000 1 89 2871 89

10 1000000 1 42 3148 42

11 1000000 1 16 3375 16

12 1000000 0 4 3659 0

13 1000000 0 1 3784 1

14 1000000 0 0 4074 0

15 1000000 0 0 4329 0

16 1000000 0 0 4510 0



106

Table 5.2: The average query time over 10 tries when x = m and when there is no letter-wise
check after the fingerprints are found to be match. The correct answer was obtained using
a brute-force method for counter1. The underlined (red) cells indicate the appearance of
false-positive cases.

|P | |T | counter0 counter1 Time Correct

(milliseconds) answer

4 1000000 2620 18261 1756 18261

5 1000000 482 8578 1979 8578

6 1000000 141 2750 2203 2750

7 1000000 29 801 2447 801

8 1000000 6 261 2643 261

9 1000000 1 89 2835 89

10 1000000 1.1 42 3092 42

11 1000000 1 16.1 3330 16

12 1000000 0 4 3490 4

13 1000000 0 1.1 3764 1

14 1000000 0 0 4016 0

15 1000000 0 0.1 4269 0

16 1000000 0 0.1 4478 0
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Table 5.3: The query time using the longest common extension algorithm (not counting
preprocessing time). All the settings are the same as in Table 5.1.

|P | |T | LCE time without counting

preprocessing (milliseconds)

4 1000000 58578

5 1000000 57849

6 1000000 55656

7 1000000 55836

8 1000000 52292

9 1000000 54649

10 1000000 55351

11 1000000 55189

12 1000000 54163

13 1000000 55078

14 1000000 54673

15 1000000 53814

16 1000000 53262

based solution is 14-32 times faster than the LCE-based solution.

Since Table 5.1 shows a stable running time pattern, we tried to increase the pattern size

artificially. We randomly generate a pattern of length m, and randomly reverse a segment

of it and paste this on the text T , again randomly. Step by step, 100 such segments were

pasted on T . We then ran the algorithms as in Table 5.1 (i.e., x = m and a letter-wise check

is applied whenever the fingerprints are found to match). The running time is shown in

Table 5.4. It can be seen that only after m > 200 the running times of the fingerprint-based

algorithm are starting to be slower than the LCE-based solution.
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Table 5.4: The running time and correct counts using a simulated dataset with 100 patterns,
x = m and letter-wise checking is applied when the fingerprints match.

|P | |T | counter0 counter1 Time Correct

(milliseconds) answer

50 1000000 0 100 13786 100

100 1000000 0 100 25303 100

150 1000000 0 100 36980 100

200 1000000 0 100 48406 100

250 1000000 0 100 60323 100

300 1000000 0 100 72290 100

350 1000000 0 100 83466 100

400 1000000 0 100 95807 100

500 1000000 0 100 119369 100

600 1000000 0 100 141435 100

700 1000000 0 100 165368 100

800 1000000 0 100 191787 100
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5.4.3 With and without the x-cuts

In our time analysis, x was set as a parameter. It would be interesting to to know

whether choosing a different value of x would make much difference. In Table 5.5 and

Table 5.6, we use x = d
√
me. The other setting of Table 5.5 (resp. Table 5.6) is exactly the

same as in Table 5.1 (resp. Table 5.4). For convenience, we also include the running time

without letter check (when a match in fingerprints is found).

It can be seen that the running time when x-cuts are used, the running time does not

improve until when m reaches about 100, but the improvement is small even when m = 800.

In this case, it takes 191787ms to run for the case without x-cuts in m (or x = m), while it

takes 164061ms with x-cut. Again, using no letter check does not improve much in terms of

running time (nonetheless it could still give false-positive answers). We also note that the

running time with x-cuts might not be stable (e.g., when m = 40, 000), this is possibly due

to that the offsets of cutting are quite different for different values of m.

5.5 Conclusion

In this chapter, we consider the pattern matching under the 1-reversal distance problem.

Given a text T of length n and a pattern P of length m, we design an O(m+n) time algorithm

using LCE and an O(mn) time randomized algorithm using the Karp-Rabin fingerprints.

The algorithms are implemented in C++ and tested on a segment of the ”Escherichia

coli strain: FORC 028 Genome sequencing” of length 1M. The empirical results show the

following: (1) m is only biologically meaningful when it is small (roughly 4-22); in fact, in

this range the shorter the pattern length is, the more substrings with 1-reversal distance to

the pattern; (2) The running time of the LCE solution is stable and is much slower than the

fingerprint algorithm until m reaches roughly 200; when m > 200 the LCE solution starts to

outperform the fingerprint algorithm (this was tested on simulated data obtained from the
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Table 5.5: The average query time over 10 tries, x =
√
m. The pattern and text are the

same as in Table 5.1.

|P | |T | Time with letter check Time without letter check

4 1000000 2364 2343

5 1000000 2947 2937

6 1000000 2940 2934

7 1000000 4584 3986

8 1000000 4053 3988

9 1000000 3705 3693

10 1000000 4846 4728

11 1000000 4613 4580

12 1000000 5046 5008

13 1000000 6081 5956

14 1000000 6159 6138

15 1000000 5813 5766

16 1000000 5532 5436
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Table 5.6: The average query time over 10 tries, x =
√
m. The pattern and text are the

same as in Table 5.4.

|P | |T | Time with letter check Time without letter check

50 1000000 16986 16890

100 1000000 13873 13769

150 1000000 35776 35545

200 1000000 53373 52042

250 1000000 49828 49820

300 1000000 56228 56046

350 1000000 80145 79678

400 1000000 36071 35922

500 1000000 92173 91992

600 1000000 64825 64787

700 1000000 104279 102936

800 1000000 164061 163564
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E. coli segment); (3) The fingerprint algorithm is randomized, so the same fingerprint does

not always imply a match, but our empirical results show that additional letter check (to

confirm a match) does not significantly increase the searching time; (4) Cutting T (and P )

into segments of length roughly
√
m will make the search faster only when m > 100.

An interesting problem is when there are additional errors in a potential match in T

(say Hamming distance k) after the reversal of a segment of the pattern is performed. The

current methods, whether LCE-based or fingerprint-based, do not seem to work directly. We

are currently working along this direction.
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CHAPTER SIX

CONCLUSION AND FUTURE WORK

In this dissertation, we have investigated several fundamental problems and some

applications related to duplications and deletions in genome rearrangements.

The first problem we investigated is the tandem duplication distance problem: what

is the complexity to compute the tandem duplication distance between two sequences A

and B. For proving the hardness result, we first introduced the cost-effective subgraph

problem. We proved that the cost-effective subgraph problem is NP-hard and W [1]-hard for

parameter c+p. Then, we reduced this problem to the promise version of the exemplar-k-TD

problem and proved that the exemplar-k-TD problem is NP-hard. Subsequently, we proved

this problem is still NP-hard, even if |Σ| ≥ 4 by encoding each letter in the unbounded

alphabet with a square-free string over a new alphabet of size 4. Finally, we designed an

FPT algorithm for the exemplar version of this problem. Some open questions were answered

in this work, and still many of them deserve investigation as follows: (1) If |Σ| = 3, is the TD

problem still NP-hard? (2) What is the complexity to decide whether S can be converted

to T only by tandem duplications?

Second, different variants of the longest letter-duplicated subsequence (LLDS) problem

were studied. Given a sequence S of length n, a letter-duplicated subsequence (LDS) of S

is a subsequence of S in form xd11 x
d2
2 · · ·x

dk
k with xi ∈ Σ, where xj 6= xj+1 and di ≥ 2 for

all i in [k] and j in [k − 1] (each xdii is called an LD-block). The natural question is to

compute the longest letter-duplicated subsequence (LLDS). For the LLDS problem without

any constraint, we gave a linear time dynamic programming algorithm. Then, we proved

that a constrained version LLDS problem is NP-hard. In this version, the alphabet Σ is

unbounded, each letter appears in S at least 6 times and all the letters in Σ must appear
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in the solution. We also showed that when each letter appears at most 3 times, then the

problem admits a factor 1.5−O( 1
n
) approximation. Finally, we presented a non-trivial O(n2)

time dynamic programming algorithm for the weighted-LDS problem, where the weight of

each LD-block is any positive function (i.e., it does not even have to grow with its length).

Third, we investigated the minimum copy number generation (MCNG) problem. Given

a genome G represented as a string and a copy number profile ~c, the minimum copy number

generation (MCNG) problem asks for the minimum number of deletions and duplications

needed to transform G into any genome in which each character occurs as many times as

specified by ~c. We showed that MCNG is NP-hard to approximate within any constant

factor, and that it is W[1]-hard when parameterized by the solution size. We also presented

a polynomial time algorithm for the copy number profile conforming (CNPC) problem when

the distance is the classical breakpoint distance.

Finally, we considered the pattern matching under the 1-reversal distance problem.

For this problem, we designed an O(m + n) time algorithm using LCE and an O(mn)

time randomized algorithm using the Karp-Rabin fingerprints. These algorithms were

implemented and tested on a segment of the “Escherichia coli strain: FORC 028 Genome

Sequencing” of length 1M. The empirical results show the following: (1) the shorter the

pattern length is, the more substrings with 1-reversal distance to the pattern; (2) when the

pattern length is short, the LCE solution is much slower than the fingerprint algorithm.

When the pattern length is bigger than 200, the LCE solution starts to outperform the

fingerprint algorithm. A possible direction for future work would be using a different distance,

e.g., transposition, etc.
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