SAFETY EVALUATION OF A MEDIC’S WORK ENVIRONMENT
DURING RURAL EMERGENCY RESPONSE

by

Jessica Anne Mueller

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in

Industrial and Management Engineering

MONTANA STATE UNIVERSITY Bozeman, Montana

April, 2011
APPROVAL

of a thesis submitted by

Jessica Anne Mueller

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to The Graduate School.

Dr. Laura Stanley

Approved for the Department of Industrial and Management Engineering

Dr. Chris Jenkins

Approved for The Graduate School

Dr. Carl A. Fox
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder.

Jessica Anne Mueller
April, 2011
I would love to thank Dr. Laura Stanley for her constant support and encouragement throughout this project. Thanks are also due to Dr. Nic Ward and Dr. Robert Marley for agreeing to be part of my committee, and for their support in this effort. Suzy Lassacher has been incredible for her help in dealing with various IT issues, and keeping everything in an optimistic light. I would like to thank Nels Sanddal for his help with my constant barrage of EMS questions, and Art McKiernan at AMR Bozeman for making his staff and workplace so available to this project. My parents have been a constant source of motivation, and made it entirely possible for me to be here. I would specifically like to thank my incredible brother, Eric Mueller, for his help with programming, and for keeping me grounded throughout my work on this project.
TABLE OF CONTENTS

1. INTRODUCTION .. 1
 Research Objectives and Hypotheses ... 2
 Study Justification ... 10

2. LITERATURE REVIEW .. 11
 Prehospital Emergency Care .. 11
 EMS Care Providers ... 11
 Ambulance Specifications .. 13
 EMS Response .. 15
 Rural Ambulance Crashes .. 17
 Safety Culture in EMS .. 18
 Safety Attitudes Questionnaire .. 20
 Factors Contributing to Care Provider Injury ... 22
 Whole-Body Vibration .. 22
 Ambulance Structure .. 27
 Ambulance Layout .. 27
 Awkward Posture .. 28
 Restraint Compliance .. 29
 Naturalistic Data Collection ... 31
 Data Completion .. 32
 Data Accuracy .. 32

3. METHODS ... 33
 Participants ... 33
 Demographics .. 33
 EMS Care Facility .. 34
 Ambulance .. 34
 IRB Approval .. 37
 Data Collection Tools and Instruments .. 37
 Data Acquisition System ... 37
 Visual Data .. 38
 Vehicle Data .. 39
 Accessory Data ... 40
 Vehicle Instrumentation ... 41
 Patient Care Record Data ... 41
 EMS Survey Data Collection ... 42
 Experimental Variables .. 43
TABLE OF CONTENTS - CONTINUED

Patient Transport State ...43
 Weighted Acceleration ..43
 Maximum Force ..44
 Crest Factors ..44
 Transportation Mode ...44
 Primary Patient Illness ..45
 Medic Response Activity ...45

Procedures..46
 Data Acquisition System ..46
 Patient Care Records ...47
 Call Logs..48
 EMS Safety Culture Surveys ...48
 Focus Groups ...49

Statistical Analysis...49
 Objective 1 – Vibration Assessment ...50
 Hypothesis 1.1 – Whole-Body-Vibration Peak Acceleration51
 Hypothesis 1.2 – Whole-Body-Vibration Crest Factors51
 Hypothesis 1.3 – Whole-Body-Vibration Health Thresholds52
 Hypothesis 1.4 – Whole-Body-Vibration Comfort54
 Hypothesis 1.5 – Whole-Body-Vibration Perception55
 Objective 1: Additional Analyses ..55
 Hypothesis 2.1 – Patient Injury in Emergency Mode56
 Hypothesis 2.2 – Medical Response Activity in Emergency Mode .58
 Objective 2 - Additional Analysis ...58
 Hypothesis 3.1 – Observed Restraint Usage in Rear of Ambulance .59
 Hypothesis 3.2 – Self-Reported Restraint Usage in Rear of Ambulance .60
 Hypothesis 3.3 – Self-Reported Restraint Usage in Front of Ambulance .60
 Hypothesis 4.1 – Safety Culture as a Predictor of Restraint Compliance61
 Hypothesis 4.2 – Focus Group Findings for Low Restraint Compliance62
 Hypothesis 5.1 – Reach Envelopes for Seated Medics62
 Hypothesis 5.2 – REBA Reach Analysis63

4. RESULTS ...64

 Hypothesis 1.1 – Whole-Body-Vibration Peak Acceleration64
 Hypothesis 1.2 – Whole-Body-Vibration Crest Factors65
 Hypothesis 1.3 – Whole-Body-Vibration Health66
 Hypothesis 1.4 – Whole-Body-Vibration Comfort68
TABLE OF CONTENTS - CONTINUED

Hypothesis 1.5 – Whole-Body-Vibration Perception ...70
Objective 1: Additional Analyses ...71
Hypothesis 2.1 – Patient Injury in Emergency Mode ...73
Hypothesis 2.2 – Medical Response Activity in Emergency Mode77
Hypothesis 2.3 – Additional Analysis ..80
Hypothesis 3.1 – Observed Restraint Usage in Rear of Ambulance81
Hypothesis 3.2 – Self-Reported Restraint Usage in Rear of Ambulance85
Hypothesis 3.3 – Self-Reported Restraint Usage in Front of Ambulance86
Hypothesis 4.1 – Safety Culture as a Predictor of Restraint Compliance89
Hypothesis 4.2 – Focus Group Findings for Low Restraint Compliance90
Hypothesis 5.1 – Reach Envelops for Seated Medics91
Hypothesis 5.2 – REBA Reach Analysis ..94

5. DISCUSSION AND CONCLUSIONS ..97

Objective 1.1 – Whole-Body-Vibration Peak Acceleration97
Objective 1.2 – Whole-Body-Vibration Crest Factors ..98
Objective 1.3 – Whole-Body-Vibration Health ..100
Objective 1.4 – Whole-Body-Vibration Comfort ...101
Objective 1.5 – Whole-Body-Vibration Perception ..101
Objective 2.1 – Patient Injury in Emergency Mode101
Objective 2.2 – Medical Response Activity in Emergency Mode102
Objective 2: Additional Exploratory Data Analysis103
Objective 3: Restraint Use Behaviors ...105
Objective 3: Comparing Self-Reported and Observed Restraint Rates107
Objective 4: Safety Culture ...109
Objective 5: Reach Analysis ..112
Future Research Opportunities ..114
Conclusion ..115

REFERENCES CITED ...117

APPENDICES ...123

APPENDIX A: Human Subjects Committee Application and Consent Form124
APPENDIX B: Patient Care Records ...137
APPENDIX C: Verbal Transcript from Focus Group Discussion146
APPENDIX D: SAS Code for Vibration Analysis ..158
APPENDIX E: SAS Code Vibration Output ..179
APPENDIX F: SAS Code for Patient Illness Predictors186
TABLE OF CONTENTS - CONTINUED

APPENDIX G: SAS Code Output for Patient Illness Predictors 192
APPENDIX H: SAS Code for Medical Response Activity Predictors 196
APPENDIX I: SAS Code Output for Medical Response Activity Predictors 198
APPENDIX J: REBA Analysis Worksheets.. 203
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EMT Licensure Categories</td>
<td>12</td>
</tr>
<tr>
<td>2. Level of Service Personnel Requirements – Ground Transport</td>
<td>13</td>
</tr>
<tr>
<td>3. Ambulance Types</td>
<td>15</td>
</tr>
<tr>
<td>4. Urban and Rural Call Times in Montana</td>
<td>15</td>
</tr>
<tr>
<td>5. SAQ Mean Scores in Different Fields</td>
<td>21</td>
</tr>
<tr>
<td>6. Summary of Vibration Acceleration Values from Similar Vehicles</td>
<td>24</td>
</tr>
<tr>
<td>7. Participant Demographic Data</td>
<td>33</td>
</tr>
<tr>
<td>8. Patient Care Record Data Description</td>
<td>41</td>
</tr>
<tr>
<td>9. Patient Care Report Variable Descriptions</td>
<td>56</td>
</tr>
<tr>
<td>10. Descriptive Statistics for Whole-Body Vibration Maximum Forces</td>
<td>64</td>
</tr>
<tr>
<td>11. Mean Peak Acceleration in Ambulance Compared to Similar Vehicles</td>
<td>64</td>
</tr>
<tr>
<td>12. Descriptive Statistics for Whole-Body Vibration Crest Factors</td>
<td>65</td>
</tr>
<tr>
<td>13. Mean Crest Factors in Ambulance Compared to Similar Vehicles</td>
<td>66</td>
</tr>
<tr>
<td>14. Comfort Reactions to WBV Magnitudes (ISO 2361-1 C.2.3)</td>
<td>69</td>
</tr>
<tr>
<td>15. Descriptive Statistics for Whole-Body Vibration VDV</td>
<td>72</td>
</tr>
<tr>
<td>16. Mean VDV in Ambulance Compared to Similar Vehicles</td>
<td>72</td>
</tr>
<tr>
<td>17. Patient Care Report Variable Descriptions</td>
<td>74</td>
</tr>
<tr>
<td>18. Odds Ratio for Patient Illnesses and Emergency Mode</td>
<td>76</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>19. Patient Illnesses Not Analyzed in Model</td>
<td>77</td>
</tr>
<tr>
<td>20. Odds Ratio for Medical Response Activity and Emergency Mode</td>
<td>79</td>
</tr>
<tr>
<td>21. Medic Response Activities Not Analyzed in Model</td>
<td>80</td>
</tr>
<tr>
<td>22. Case Listing of Observations with Restrained Medics</td>
<td>82</td>
</tr>
<tr>
<td>23. Descriptive Statistics for Observed Rear Restraint Rates</td>
<td>83</td>
</tr>
<tr>
<td>24. Descriptive Statistics for Self-Reported Rear Restraint Rates</td>
<td>85</td>
</tr>
<tr>
<td>25. Descriptive Statistics for Self-Reported Front Restraint Rates</td>
<td>87</td>
</tr>
<tr>
<td>26. Regression Model Using SAQ Categories to Predict Restraint Compliance</td>
<td>90</td>
</tr>
<tr>
<td>27. Unique Reaches and Descriptive Characteristics</td>
<td>93</td>
</tr>
<tr>
<td>28. REBA Scoring Risk Level Interpretation</td>
<td>96</td>
</tr>
<tr>
<td>29. REBA Scores for Observed Medic Reaches</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Health Guidance Caution Zones (Source: ISO 2361-1, Figure B.3)</td>
<td>23</td>
</tr>
<tr>
<td>2.</td>
<td>Side View: Driver Side Wall</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>Side View: Passenger Side Wall</td>
<td>35</td>
</tr>
<tr>
<td>4.</td>
<td>View of Front Wall in Rear Ambulance Cabin</td>
<td>36</td>
</tr>
<tr>
<td>5.</td>
<td>Overhead View of Ambulance and DAS Components</td>
<td>37</td>
</tr>
<tr>
<td>6.</td>
<td>Rear-Facing Camera</td>
<td>38</td>
</tr>
<tr>
<td>7.</td>
<td>Recorded Visual Data Format</td>
<td>39</td>
</tr>
<tr>
<td>8.</td>
<td>Medic Bench Accelerometer</td>
<td>40</td>
</tr>
<tr>
<td>9.</td>
<td>Health Guidance Caution Zones</td>
<td>53</td>
</tr>
<tr>
<td>10.</td>
<td>RMS Acceleration and Health Threshold Boxplot</td>
<td>68</td>
</tr>
<tr>
<td>11.</td>
<td>RMS Acceleration and Comfort Threshold Boxplot</td>
<td>70</td>
</tr>
<tr>
<td>12.</td>
<td>Classification Tree for Emergency Transportation Mode</td>
<td>81</td>
</tr>
<tr>
<td>13.</td>
<td>Distribution of Observed Rear Restraint Rates</td>
<td>83</td>
</tr>
<tr>
<td>14.</td>
<td>Distribution of Self-Reported Rear Restraint Rates</td>
<td>86</td>
</tr>
<tr>
<td>15.</td>
<td>Distribution of Self-Reported Front Restraint Rates</td>
<td>87</td>
</tr>
<tr>
<td>16.</td>
<td>Overhead View of Rear Patient Compartment with Reach Envelopes: 5% Female and 95% Male</td>
<td>92</td>
</tr>
<tr>
<td>17.</td>
<td>Reach from Bench Seat to Electrical Panel</td>
<td>95</td>
</tr>
<tr>
<td>18.</td>
<td>Distribution of Reaches, by Risk Level</td>
<td>113</td>
</tr>
</tbody>
</table>
ABSTRACT

The purpose of this study was to gain a better understanding of emergency medical service working conditions, and to develop recommendations to aid in minimizing harmful actions and behaviors inherent in EMS work. The naturalistic data collected in this study allowed researchers to perform analysis in a rural emergency driving environment to identify contributing factors to attending medic behavior, severity of biomechanical forces experienced in the driver and patient compartment, and an evaluation of emergency medical response safety culture. Based upon research findings, the project includes development of a series of environmental, ergonomic, policy, or training recommendations to mitigate circumstances that cause potentially unsafe operations in the driver’s and patient’s compartment of the ambulance. This study used naturalistic data and video, survey responses, focus groups, and agency patient care records to analyze the rural medics’ working environment during emergency patient transportation. Accelerometer data was analyzed for 102 separate emergency transports to provide descriptive statistics relevant to whole-body vibration experienced by the medics during patient care. Five years of patient care records were analyzed to identify specific patient illnesses and medical procedures associated with traveling in emergency response mode. Restraint compliance rates were collected for both self-reported (21.5% restrained) and observed (2.6% restrained) data collection methods. Focus groups identified factors influencing medics’ choice to be unrestrained, characterized by a reduced ability to provide patient care, the belief that restraint devices will cause harm to the medics, and the belief that the restraint devices are ineffective in a crash situation. Finally, reach analysis was conducted to highlight the procedures and equipment retrieval which require the medics to assume positions resulting in awkward and unstable postures during transport. The results of this study will add to the growing body of knowledge surrounding the behaviors of EMS workers in a real work setting, will aid in understanding the complexities of EMS safety culture, and can be applied toward different aspects of EMS work such as driver or medic training.
CHAPTER 1

INTRODUCTION

Every year, approximately 6,500 ambulance collisions occur that injure an estimated ten people per day, and result in two fatalities per week. Injured parties include emergency medical service (EMS) personnel, non-EMS affiliated ambulance occupants, and other persons involved in the incident, such as pedestrians, other vehicle occupants, etc. EMS personnel maintain an occupational fatality rate almost five times higher than the general public, and similar fatality rates to other emergency-response workers. EMS workers have a fatality rate of 12.7 deaths per 100,000 workers overall, over 75% of which are related to transportation [1]. Compared to other emergency services, ambulance occupants are more likely to be injured and killed during transportation (9.6 deaths per 100,000 workers) than occupants of fire (5.7 deaths per 100,000 workers) or police (6.1 deaths per 100,000 workers) service vehicles [1].

The prevalent cause of transportation-related EMS deaths is attributed to the lack of EMS restraint use in the rear patient compartment of the ambulance. Gilad and Byran [2] conducted a brief survey in Israel with EMS workers, and found that only three percent of medics surveyed reported wearing their seatbelts at all times. A survey of approximately 900 EMS workers responded to a survey, and indicated that the lack of seatbelt use was due to inhibited patient care, restricted movement, inconvenience, and lack of efficacy [3]
The naturalistic data collected in this study allowed researchers to perform analysis in a rural emergency driving environment to identify contributing factors to attending medic behavior, severity of biomechanical forces experienced in the driver and patient compartment, and a safety culture evaluation to identify underlying causes for medic behaviors. Based upon research findings, the project included development of a series of environmental, ergonomic, policy, or training recommendations to mitigate circumstances that cause potentially unsafe operations in the patient’s compartment of the ambulance.

This study presents a discussion and literature review of:

- Prehospital emergency care provider environments
- Safety culture involved in emergency medical care
- Rural ambulance crashes
- Emergency medical service worker injury sources and mitigation
- Naturalistic data collection

Research Objectives and Hypotheses

The objective of this project was to observe activities and behaviors exhibited by emergency medical personnel along with the conditions that they are subjected to during emergency vehicle transportations. The naturalistic data collected allowed researchers to perform analysis in a rural emergency driving environment to identify contributing factors to attending medic behavior as well as the severity of biomechanical forces
experienced in the driver and patient compartment. The specific objectives and their hypotheses include:

1. Determine biomechanical forces experienced by medics during transport.

Hypothesis 1.1

Whole-body vibration exposure for prehospital care providers during emergency transportation is significantly higher than the vibration exposure threshold for health designated in ISO 2361-1.

\[H_0: \mu < a_w \frac{m}{s^2} \]

\[H_0: \mu \geq a_w \frac{m}{s^2} \]

Where:

\(\mu \) represents the most severe axis vibration; and

\(a_w \) represents the threshold for health associated with the specific exposure experienced by EMS workers in this ambulance.

Hypothesis 1.2

Whole-body vibration exposure for prehospital care providers during emergency transportation is significantly higher than the vibration exposure threshold for comfort designated in ISO 2361-1 C.2.3.

\[H_0: \mu < 0.315 \frac{m}{s^2} \]

\[H_0: \mu \geq 0.315 \frac{m}{s^2} \]
Where:

μ represents average weighted vibration magnitude.

Hypothesis 1.3

Whole-body vibration exposure for prehospital care providers during emergency transportation is significantly higher than the vibration exposure threshold for perception designated in ISO 2361-1 C.3.

H_0: $\mu < 0.02 \frac{m}{s^2}$

H_0: $\mu \geq 0.02 \frac{m}{s^2}$

Where:

μ represents the most severe axis vibration.

Additionally, crest factors (and vibration dose values, if crest factors are greater than 9), average force values, and peak force values will be presented for the x, y, and z-axes.

2. Identify which factors influence vehicle operators to travel in emergency mode.

Hypothesis 2.1

Patient Care Records (PCRs) analysis identifies significant predictors toward emergency mode travel status by analyzing occurrence of different types of responsive medical care procedures performed by the medic (IV administration, intubation, medicine administration, etc) during transportation.
Model: $y_{ij} = \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ij}$

Where:

y_{ij} represents the i^{th}, j^{th} response variable for emergency mode travel status;

τ_i represents the i^{th} factor of patient care response;

β_j represents the j^{th} factor of patient injury type;

$(\tau\beta)_{ij}$ represents the effect of the interaction between τ_i and β_j;

and

ε_{ij} represents the i^{th}, j^{th} random error component.

H_0: $\tau_1 = \tau_2 = \cdots = \tau_i$

H_1: at least one $\tau_i \neq 0$

Hypothesis 2.2

Patient Care Records (PCRs) analysis identifies significant predictors for different types of patient injury type toward emergency mode travel status.

Model: $y_{ij} = \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ij}$

Where:

y_{ij} represents the i^{th}, j^{th} response variable for emergency mode travel status;

τ_i represents the i^{th} factor of patient care response;

β_j represents the j^{th} factor of patient injury type;
(τβ)_{ij} represents the effect of the interaction between τ_i and β_j;

and

e_{ij} represents the i^{th}, j^{th} random error component.

H_1: \beta_1 = \beta_2 = \cdots = \beta_j

H_1: at least one \beta_j \neq 0

3. Determine the rate of restraint use by emergency medical personnel in various conditions.

Hypothesis 3.1

Observed medic restraint usage while providing patient care in the rear patient compartment of an ambulance on emergency response is significantly lower than 100% compliance.

H_0: \mu = 100 \text{ percent rear compartment restraint compliance}

H_1: \mu < 100 \text{ percent rear compartment restraint compliance}

Where:

\mu represents the average percentage of time medics are restrained in the rear patient compartment, from video data.
Hypothesis 3.2

Self-reported medic restraint usage while providing patient care in the rear patient compartment of an ambulance on emergency response is significantly lower than 100% compliance.

\[H_0: \mu = 100 \text{ percent rear compartment restraint compliance} \]
\[H_1: \mu \leq 100 \text{ percent rear compartment restraint compliance} \]

Where:

\(\mu \) represents the average percentage of time medics are restrained in the rear patient compartment, from self-reported survey data.

Hypothesis 3.3

Self-reported medic restraint usage while providing patient care in the front patient compartment of an ambulance on emergency response is significantly lower than 100% compliance

\[H_0: \mu = 100 \text{ percent front compartment restraint compliance} \]
\[H_1: \mu \leq 100 \text{ percent front compartment restraint compliance} \]

Where:

\(\mu \) represents the average percentage of time medics are restrained in the front driver compartment, from self-reported survey data.

4. Determine significant causes that lead to medics being unrestrained.
Hypothesis 4.1

Safety culture is a contributing factor toward low restraint usage rates by medics, evaluated by comparing SAQ scores for Montana EMS workers.

\[H_0: \mu \geq 75 \text{ SAQ units} \]
\[H_1: \mu < 75 \text{ SAQ units} \]

Where:
\[\mu \] represents the average SAQ score for Montana EMS workers who responded to an online safety culture survey.

Hypothesis 4.2

One contributing factor toward low restraint usage rates by medics is due to poor ambulance layout regarding efficacy of patient care. This information was collected from focus group responses and naturalistic observation.

5. Identify medic activities and any physical hardships imposed by their equipment or procedures.

Hypothesis 5.1

Inside the patient compartment, medic equipment and storage locations for providing patient care from encountered from up to three seated reach origin points to up to nine unique reach termination points (only origin and termination combinations observed in the visual data reduction were evaluated) are located outside maximum reach envelopes for a 95% male restrained medic (a 43.5 in. reach radius).
For each observed origin and termination point combination i:

$H_0: y_i < 43.5 \text{ in}$

$H_1: y_i \geq 43.5 \text{ in}$

Where:

i represents the unique origin and termination points associated with each observed reach; and

y_i represents the distance from the medic’s shoulder to the reach termination point, from a seated and restrained position.

Hypothesis 5.2

While inside the patient compartment, providing patient care, medical procedures carried out by medics necessitate postures which exceed Rapid Entire Body Assessment (REBA) Medium Risk threshold (necessary action level).

For each observed origin and termination point combination i:

$H_0: y_i < 4 \text{ units}$

$H_1: y_i \geq 4 \text{ units}$

Where:

i represents the unique origin and termination points associated with each observed reach; and

y_i represents the i^{th} REBA score for analyzed postures.
Based upon research findings, the project additionally includes a series of environmental, ergonomic, policy, or training recommendations to mitigate circumstances that cause potentially unsafe operations in the driver’s and patient’s compartment of the ambulance.

Study Justification

Emergency medical service workers are a high-risk group, and while some of this risk is inherent in the type of work that they perform, much of it may be avoidable. This study examined medical professionals administering patient care during transportation to highlight and define previously overlooked safety issues in an ambulance. Many EMS workers volunteer their service to their communities, and it is the responsibility of that community to ensure that EMS workers are able to effectively mitigate safety problems. Identification of high-risk elements in an ambulance may lead to behavioral or policy changes prompting a significant reduction in the number and severity of on-the-job injuries to this population.
CHAPTER 2

LITERATURE REVIEW

Prehospital care providers are a unique occupational group. The first section of this literature review will discuss prehospital emergency care, emergency medical service (EMS) care providers, the vehicles used during prehospital care, and the processes involved in emergency medical response. The second section details trends and findings associated with rural ambulance crashes. The third section examines safety culture within EMS groups and a tool used to measure that culture, the safety attitudes questionnaire. The fourth section discusses contributing factors toward care provider injury, focusing on whole-body vibration, ambulance structure, ambulance layout, awkward postures, and care provider restraint compliance. The last section discusses naturalistic data collection, and the advantage of using naturalistic data collection compared to a similar study performed using direct observation.

Prehospital Emergency Care

Prehospital emergency care is the care provided to patients prior to arrival at a hospital, provided in an ambulance by emergency medical service (EMS) care providers.

EMS Care Providers

Through training, EMS providers can acquire different levels of licensure to provide care, detailed in
Table 1. The categories differ in both the training requirements for attainment as well as the level of emergency care the EMT is able to provide. In accordance with Montana law, EMS workers can only use the equipment and skills for which they are licensed.

Table 1. EMT Licensure Categories

<table>
<thead>
<tr>
<th>License</th>
<th>Training Requirements</th>
<th>Duties</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMT-First Responder (EMT-FR)</td>
<td>44 hours</td>
<td>Life-saving medical techniques at the scene of an injury or accident</td>
</tr>
<tr>
<td>EMT-Basic (EMT-B)</td>
<td>160 hours</td>
<td>Life-saving techniques plus ability to safely transport a patient in an ambulance</td>
</tr>
<tr>
<td>EMT-Intermediate (EMT-I)</td>
<td>Basic-level training + 350 hours</td>
<td>Life-saving techniques plus endorsement in other advanced techniques</td>
</tr>
<tr>
<td>EMT-Paramedic (EMT-P)</td>
<td>Basic-level training + 2000-3000 hours</td>
<td>Life-saving techniques plus advanced training to undertake many emergency medical procedures</td>
</tr>
</tbody>
</table>

Source: Board of Medical Examiners, January 2010 [4]

Licensed EMS care providers have staffing requirements to support the level of care they are licensed to provide (ALS, BLS, BLS with ALS capability).
Table 2 shows the personnel requirements involved with the different levels of service in ground transport service providers.

Table 2. Level of Service Personnel Requirements – Ground Transport

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Personnel Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Life Support (BLS) – Ground</td>
<td>2 Certified EMTs, one EMT-B or higher, and one EMT-FR or higher</td>
</tr>
<tr>
<td>Advanced Life Support (ALS) – Ground</td>
<td>2 Certified EMTs, one EMT-FR or higher, and one EMT-P with 24/7 coverage availability</td>
</tr>
<tr>
<td>BLS with ALS Capability</td>
<td>BLS Requirements, with ALS requirements as personnel availability permits</td>
</tr>
</tbody>
</table>

EMS units capable of providing 24/7 ALS capability are located primarily around areas with higher populations in western and southwestern areas of Montana. The EMS coverage provided in the less populated eastern and northern portions of Montana is composed of units providing BLS, BLS with some ALS capability, and non-transporting emergency response units. In addition to EMS transport units, there are 102 licensed EMS groups that are non-transporting units, who will respond to 911 calls and tend to patients on-scene.

Ambulance Specifications

standards which ambulances must meet in order to meet nationally recognized standards for maintenance, construction, and reliability. GSA defines an ambulance as (p1):

“a vehicle for emergency medical care which provides: a driver’s compartment; a patient compartment to accommodate an emergency medical technician (EMT)/paramedic and two liter patients (one patient located on the primary cot and a secondary patient on a folding litter located on the squad bench) so positioned that the primary patient can be given intensive life-support during transit; equipment and supplies for emergency care at the scene as well as transport; two-way radio communication; and, when necessary, equipment for light rescue/extrication procedures. The ambulance shall be designed and constructed to afford safety, comfort, and avoid aggravation of the patient’s injury or illness.”

There are three main types of ambulances, described in Table 3. The ambulance focused on in this thesis is a Type III ambulance, which is further specified to be a (p8)

“Type III … shall be a ‘cutaway’ van with a transferable, modular, ambulance body or unitized cab-body mounted on a chassis.” Type III ambulances equipped for Advanced Life Support (ALS) response have no standard equipment storage locations. GSA instructs that equipment locations should be designated according to importance, with equipment necessary for airway maintenance present near the head of the litter and monitoring equipment, IV supplies, and medications readily available to the EMT. All other supplies need to be fastened to the vehicle or stored in closed compartments to avoid injury from moving equipment in the event of a crash or sudden vehicle movement. The bench seats in an ambulance are equipped with three sets of lap belts, to be used by
the EMT providing care, or as a restraint for a second on-board patient. Side-facing seats in the ambulance are equipped with a lap belt, and all seats have rear padding and a padded area at the head area.

Table 3. Ambulance Types

<table>
<thead>
<tr>
<th>Ambulance Type</th>
<th>Vehicle Description*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Conventional cab-chassis with modular ambulance body</td>
</tr>
<tr>
<td>Type II</td>
<td>Standard van with integral cab-body ambulance</td>
</tr>
<tr>
<td>Type III</td>
<td>Cutaway van, cab-chassis with integrated modular ambulance body</td>
</tr>
</tbody>
</table>

EMS Response

The time from when the EMS group receives a call prompting an emergency trip until the patient is transported to the hospital has several components: EMS preparation time, time spent travelling to the scene, time administering treatment on-scene, and time involved in the subsequent transport to the hospital. An internal audit conducted by the Montana Legislative Audit Division [7] found that these blocks of time are different for rural and urban responses, shown in Table 4.

Table 4. Urban and Rural Call Times in Montana

<table>
<thead>
<tr>
<th>Actions during Time Segments</th>
<th>Time for Rural EMS Calls (min.)</th>
<th>Time for Urban EMS Calls (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS Preparation Time</td>
<td>5:33</td>
<td>1:17</td>
</tr>
<tr>
<td>Time en Route to Scene</td>
<td>8:10</td>
<td>6:30</td>
</tr>
<tr>
<td>Treatment Time On-Scene</td>
<td>15:33</td>
<td>14:56</td>
</tr>
<tr>
<td>Transport to Hospital</td>
<td>28:22</td>
<td>9:19</td>
</tr>
<tr>
<td>Total Incident Time:</td>
<td>57:38</td>
<td>32:05</td>
</tr>
</tbody>
</table>

*Source: Department of Health and Human Services, Board of Medical Examiners, [7]
One metric commonly used to evaluate EMS groups on their quality of provided care is the time from the EMS group receiving a call until arrival on-scene, which includes “EMS Preparation Time” (time to get ready to leave; time between receiving the call for assistance and departing in an ambulance) and “Time en Route to Scene” (time to travel to the scene requesting assistance), from Table 4. A recent criterion that many EMS agencies are being required to meet is to achieve response times of eight minutes or less—a standard developed around a study of cardiac arrest patient outcomes dependent on response time [8]. This eight-minute goal has received mixed responses from subsequent studies. Supporting researchers have recommended that this standard response time be shortened to five minutes to raise survival rates from 8% to 10% [9]. Alternatively, Pons and Markovchick [10] found no difference in survival when comparing a group of nearly 3,500 patients with response times either greater than or less than eight minutes. This encouragement for quick response times may be related to use of lights and sirens when they are not needed. Lacher and Bausher [11] found that EMS workers with lower levels of training were more likely to inappropriately engage EU (operate the ambulance in EU when the patient is stable) than more highly certified and trained paramedic personnel were. Overall, almost 40 percent of ambulance transports demonstrated inappropriate use of lights and sirens [11]. The specific cause for crashes involving ambulances using lights and sirens are unknown, only that there is an association between increased crash rate and lights and sirens.

Once the EMS workers arrive to the injury scene, they provide care for the patient as needed, specific care procedures vary depending on the nature of the injury. The
patient is moved to the emergency vehicle, and additional care is provided during the transport as needed.

Rural Ambulance Crashes

Weiss, Ellis, Ernst, Land, and Garza [12] studied all ambulance crashes reported to the Tennessee State EMS bureau between 1993 and 1997, focusing on urban and rural crashes as characterized by injury, vehicle condition, weather, time of day, and road conditions. The rurality of the crash location was designated by the population of the county containing the crash site, with counties of greater than 250,000 people designated as urban. Although urban areas were characterized by higher crash rates (19 ambulance crashes per million people per year) than rural areas (8 ambulance crashes per million people per year), the study found that rural areas showed significantly more crashes with any type of injury (Rural: 40%, Urban: 24%; p=0.03), and significantly more crashes with severe injury (Rural: 9%, Urban: 0%; p<0.01). Rural areas showed significantly higher rates of the ambulance being damaged, disabled, and towed. Urban areas showed significantly more rear-impact crashes, and rural areas showed significantly more front-impact crashes. Rural ambulances were significantly more likely to crash in areas with high posted speeds than urban ambulances.

Lower populations found in rural areas result in fewer instances of crashes than in urban areas, but rural settings account for a significantly higher percentage of crashes resulting in injury. The injuries sustained in rural collisions are more severe than those sustained in urban areas [12, 13]. Rural collisions are more likely than urban collisions
to involve single vehicles striking a fixed object. In both rural and urban ambulance collisions, data gathered from U.S DOT’s Fatality Analysis Reporting System (FARS) revealed that many EMS drivers involved in fatality collisions were more likely to have had previous crashes.

The majority of incidents resulting in injury occur while the ambulance is in an emergency state and with the injured parties unrestrained prior to the critical event [14, 15]. Ambulances experience most crashes during weekday daylight hours and early evening [16], corresponding to two peak ambulance operational times. Collisions involving ambulances involve more people and injuries among all vehicles involved in the collision than collisions involving non-ambulance vehicles of similar size. However, the number of vehicles involved in the collisions was not found to be significantly different when comparing the two types [17]. Within an ambulance involved in a collision, individuals in the rear of the vehicle show higher fatality and injury rates than those driving and riding in the front [14]. The higher injury and fatality rate in the rear cabin is related to the greater number of people in the rear of the cabin as well as lower rates of restraint use.

Safety Culture in EMS

While prehospital care is known to be hazardous to the care providers, there is also a risk to patients. Safety culture evaluations to date have primarily focused on care providers in hospitals (nurses and surgeons) and have found associations with higher safety culture at an organization and lower employee turnover, lower risk adjusted patient
mortality rates [18], shorter lengths of stay in a hospital, fewer medication errors, lower ventilator associated pneumonia rates, and lower bloodstream infection rates [18]. Patterson et al. [19] expanded the study of safety culture to show that the same safety culture evaluations could be given to prehospital care providers of different training certification levels (EMT-P and EMT-B), although associations between high safety cultures and patient outcome and employee turnover was not studied. A separate study by Chapman et al. [20] using an alternative survey to study job satisfaction found correlations between low job satisfaction and high employee turnover in emergency medical service groups. Turnover has separately been associated with the staffing type of EMS agencies (paid or volunteer groups). Patterson et al. [21] examined employee turnover within EMS groups, and found higher annual turnover rates in EMS groups staffing volunteer personnel.

The concept of safety culture is largely abstract. Several different definitions have been published in the literature; many of those definitions identify safety culture as the idea of a collective set of ideas or beliefs, shared throughout an organization, relative to safety [22]. Until the 1970s and 1980s, human error was largely identified as the cause for many investigated industrial failures. Although human action can be a catalyst for hazardous events, the root causes often multiply over time, are qualitatively diverse, and interact with each other [23]

Evaluating safety culture measures and behaviors began in high-risk fields like aviation and nuclear facilities before it became prevalent in the healthcare industry. Gundermuld [22] promotes the study and evaluation of safety culture to promote
effective risk management and mitigation strategies within organizations. One validated method for evaluating safety culture in healthcare-related fields is the Safety Attitudes Questionnaire (SAQ), which measures worker attitudes about six areas of safety culture: teamwork climate, safety climate, perception of management, job satisfaction, working conditions, and stress recognition [19]. Applied to prehospital emergency care, this shared set of beliefs may influence an organization’s behaviors regarding restraint compliance, patient care, or ambulance operation, which could then be evaluated using the SAQ.

Safety Attitudes Questionnaire

The SAQ is a survey analyzed based on answers using a five-point Likert scale (Disagree Strongly, Disagree Slightly, Neutral, Agree Slightly, and Agree Strongly). Participants use this 5-point scale to state whether or not they agree with an item that indicates positive safety culture at that participant’s workplace. Negatively worded items, like “EMS personnel frequently disregard rules or guidelines,” are scored negatively. The SAQ responses are then adjusted to a numeric scale of 0-100. Scores below 25 indicate disagreement with the safety attitude questionnaire item, scores between 25 and 75 represent neutral responses, and scores greater than 75 represent positive safety culture at each participant’s workplace. Responses from studies in different healthcare environments and jobs are shown in Table 5.
Table 5 SAQ Mean Scores in Different Fields

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Mean scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teamwork Climate</td>
</tr>
<tr>
<td>SAQ: Inpatient Hospital*</td>
<td>64.3</td>
</tr>
<tr>
<td>SAQ: Ambulatory Care*</td>
<td>69.7</td>
</tr>
<tr>
<td>EMS-SAQ: EMT**</td>
<td>73.7</td>
</tr>
<tr>
<td>SAQ: Paramedic**</td>
<td>69.4</td>
</tr>
</tbody>
</table>

Abbreviations: EMS-SAQ, Safety Attitudes Questionnaire; EMS, emergency medical services; EMT, emergency medical technician
*Source: Sexton et al., 2006 [24]
**Source: Patterson, Huang, Fairbanks, & Wang, 2010 [19]

The SAQ evolved from the aviation industry’s Flight Management Attitudes Questionnaire (FMAQ), and the shorter Flight Management Attitudes Short Survey (FMASS). These surveys were used to identify different areas of safety culture in aviation—morale, job satisfaction, safety culture, stress recognition, and human attitudes. Within the aviation industry, Sexton and Klinect [25] observed flights with crews who had participated in the FMASS, and found that flight crews with positive attitudes about safety culture showed better crew performance rates, fewer errors and violations, and corrected from error situations better than crews with negative attitudes about safety culture. Similar beneficial results have been associated with positive SAQ scores in
hospital workers (nurses and surgeons): favorable SAQ scores have been associated with lower employee turnover, lower risk adjusted patient mortality rates [26], shorter lengths of stay in a hospital, fewer medication errors, lower ventilator associated pneumonia rates, and lower bloodstream infection rates [18].

Factors Contributing to Care Provider Injury

In a collision, there are factors present that may influence whether or not the occupants are injured, and the scope of those injuries. Prolonged exposure to vibration, awkward reaches for equipment, medic/patient positioning, abnormal forces on the medics, and restraint usage can all contribute to the medics’ overall physical stress.

Whole-Body Vibration

Prolonged exposure to vibration has a negative effect on humans. Vibration is calculated using root mean squared (R.M.S) values, which take into consideration the duration of vibration exposure as well as frequency of the vibration. Exposure duration will be referenced against Figure 1, shown below, to identify the threshold level of weighted acceleration (a_w) for the calculated exposure length [27]. This threshold level of acceleration has been explored in many types of moving vehicles to quantify the effect of whole-body vibration on vehicle passengers.
Although vibration on EMS workers has not been extensively studied, there have been several studies looking at the effects of vibration on bus and truck drivers who operate vehicles of similar size and handling as EMS workers. Paddan and Griffin [28] found vibration levels between 0.17 and 3.03 m/s² R.M.S. while examining large trucks and vans, while Shenai, Johnson, and Varney [29] found vibration levels of between 2 and 6 m/s² R.M.S. in the rear ambulance cabin. These values are all greater than the equivalent upper-limit of vibration provided by ISO Standard 2361, where an eight-hour exposure would result in a R.M.S value of 0.82 m/s². Table 6 shows a summary of
reported vibration values for several different types of light and heavy vehicles from past literature.

Table 6. Summary of Vibration Acceleration Values from Light and Heavy Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Vertical Acceleration (m/s² r.m.s) median (min, max)</th>
<th>Acceleration for most severe axis (m/s² r.m.s) median (min, max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car*</td>
<td>0.37 (0.25, 0.61)</td>
<td>0.39 (0.26, 0.75)</td>
</tr>
<tr>
<td>Lift Truck*</td>
<td>0.71 (0.47, 0.91)</td>
<td>0.74 (0.53, 1.0)</td>
</tr>
<tr>
<td>Tractor*</td>
<td>0.56 (0.32, 0.80)</td>
<td>0.73 (0.54, 1.0)</td>
</tr>
<tr>
<td>Van*</td>
<td>0.42 (0.34, 0.53)</td>
<td>0.45 (0.36, 0.57)</td>
</tr>
<tr>
<td>Bus*</td>
<td>0.48 (0.34, 0.79)</td>
<td>0.56 (0.38, 0.89)</td>
</tr>
<tr>
<td>Excavator*</td>
<td>0.91 (0.08, 3.27)</td>
<td>0.91 (0.17, 3.03)</td>
</tr>
<tr>
<td>Ambulance**</td>
<td>0.091-0.135 (NR)</td>
<td>NR</td>
</tr>
<tr>
<td>Ambulance***</td>
<td>2.0-6.0 (NR)</td>
<td>NR</td>
</tr>
<tr>
<td>Van (good road)****</td>
<td>4.8 (NR)</td>
<td>4.8 (NR)</td>
</tr>
<tr>
<td>Van (poor road)****</td>
<td>5.1 (NR)</td>
<td>5.1 (NR)</td>
</tr>
<tr>
<td>Van (cobblestone)****</td>
<td>10.3 (NR)</td>
<td>10.3 (NR)</td>
</tr>
</tbody>
</table>

* Source: Paddan & Griffin, 2002 [28]
**Source: Snook, 1972 [30]
***Source: Shenal, Johnson, & Varney, 1981 [29]
****Source: Okunribido, Magnusson, & Pope, 2006 [31]

The effect of whole body vibration (WBV) on the human body has been studied substantially in recent years. While the focus has traditionally revolved around heavy equipment operators (workers with exposure to locomotives, heavy trucks, or farm equipment), there has recently been more research into the magnitude of WBV on humans operating in nontraditional vehicles, like motorcycles [32]. Long-term exposure to WBV has been conclusively linked to lower back pain by a large group of researchers [33, 34]. Vibration magnitude found during emergency prehospital care has not been
extensively studied. Shenai, Johnson, and Varney [29] examined vibration in neonatal land transportation vehicles, finding potentially dangerous acceleration magnitudes applied to infants. Neonatal transportation and vibration mitigation measures were also analyzed by Sherwood, Donze, and Giebe [35], finding reduction in vibration experienced by newborns through several proposed mitigation techniques. Snook [30] focused on the ambulance as a whole, measuring vertical acceleration rates directly over the rear axle while trying to identify vibration exposure to patients. Snook found rates of root mean square acceleration between 0.091 and 0.104g in different load and speed vehicle conditions, and found that the vibration levels to the patient “were shown to be of clinical importance.” The concerns of vibration studies have traditionally been used to evaluate the effects of exposure to patients, due to their diminished physical condition [36, 37]. As a result, the care providers who find themselves repeatedly subjected to these vibration forces have been largely ignored.

A similar vehicle style to ambulances that has been studied to a greater degree is drivers of light trucks and other commercial vehicles. In an 11-year study Boshuizen, Bongers, and Hulshof [38] examined the amount of sick leave due to back injuries in two groups: a group of tractor drivers, and a group not exposed to the ISO 2631 fatigue-decreased WBV limit. They found that tractor drivers had more long-term sick leave due to back disorders than the control group, tended toward being disabled at a younger age than the control group, and also left the company before reaching the end of their working life than the control group.
A review conducted by NIOSH in 1997 found evidence associating awkward work postures with low-back pain, and strong evidence that work-related lifting and WBV was associated with low-back pain, but found inconclusive results when examining neck pain and vibration. NIOSH goes on to suggest that WBV acting in concert with other injury risk factors (prolonged sitting, lifting, and awkward postures) may result in a higher back injury risk than pure WBV in the absence of those risk factors [34]. One population subjected to all of these risk factors includes the EMS workers providing prehospital emergency care during transport. A meta-analysis by Bovenzi and Hulshof [33] showed that occupations with higher WBV exposure are at increased risk for lower back pain, sciatic pain, and herniated lumbar discs, and that lower back pain disorders are associated with driving occupations.

EMS worker exposure to WBV associated with transport in heavy vehicles is limited to the time spent in the vehicle in transit toward a patient in need of care and the subsequent travel toward a treatment center. The length of travel time and frequency of travel does not always occur at predictable intervals. By example, rurality plays a role in travel time: a study by the Department of Public Health and Human Services [7] auditing Montana EMS groups found that average transport time for a rural EMS response to be longer than an urban EMS response (rural: 36.5 minutes; urban: 15.82 minutes). The exposure to WBV during transit is irregular and not constant, so understanding the magnitude of WBV is important due to the presence of additional risk factors that can lead to increased risk of low back injury.
Ambulance Structure

Ambulance structure can have an impact on the severity of injury to the occupants. Vehicles used in EMS are subject to only minimal impact testing: a static load test for the ambulance body structure, and a body door retention component test [6]. Rural collisions tend to involve front-end ambulance impact, and the standards that ambulances are required to meet are unrealistic in recreating actual forces encountered by the vehicles during these types of impacts. Analysis of the three main body types used in the United States show “poor vehicle structural integrity and crashworthiness” [39].

Ambulance Layout

Ambulances have no fully standardized layout. The standards that exist for ambulances in the United States come from Star-of-Life and the Ambulance Manufacturer’s Division (AMD) standards. The National Highway Transportation and Safety Administration (NHTSA) give Star-of-Life certification to ambulances that meet a set of requirements stated in GSA Standard KKK-1822 E [6]. Star-of-Life ambulances layouts have some restrictions: an ambulance must be built so that it can accommodate one EMT and two patients on litters in the rear (with the primary patient in the central litter anchor, and another on a squad bench). Litters must be loaded with the patients head forward in the vehicle, two IV hangars, one at the patient’s head and one near his lower extremities, a CPR seat at the left side of the patient’s body, patient compartment controls located near the seated EMT’s position, a door on the right forward side of the patient compartment, rear doors for patient loading, and a fastener or anchor for the
patient stretcher (GSA KKK-1822 E, 2002). The Ambulance Manufacturer’s Division (AMD) has several standards in effect regarding ambulance manufacture. The standard relevant to ambulance layout is AMD Standard 004: Litter Retention System. This standard requires that all ambulances have a method to fasten the stretcher to the floor in order to avoid patient movement during vehicle crashes or sudden vehicle maneuvers.

Within the rear of the ambulance, poor ergonomic design inhibits consistently safe operation. Patient and medic location relationships lead many medics to sit alongside stretchers, resulting in increased reaching distances to required equipment [40]. Equipment location necessitates movement around the rear of the vehicle during transportation, which contributes to the amount of time medics are unrestrained. The post-production modification procedure and general cab layout also may subject the occupants of the ambulance cab to abnormal biomechanical forces. Boocock et al. [41] found an 18% risk of musculoskeletal injury due to various actions including heavy lifting, a stooped working posture, whole body vibration, and prolonged sedentary work punctuated by intense physical exertion. Few studies have been done to identify activities within a medic’s work environment that promote poor ergonomic behaviors.

Awkward Posture

Awkward postures in EMS are an artifact of the interior ambulance organization and structure. Gilad and Byron [42] found the interior of ALS ambulances to be insufficient to promote safe and adequate patient care. The layout of the preferred EMS worker seats resulted in deep back flexion during treating, and the distance between the
equipment and the EMS worker required the EMT to leave his seat to retrieve supplies, resulting in extreme postures and reaches. Gilad and Byron found that paramedics display several non-neutral back postures, twisted back postures (greater than 20°), and sitting with back flexion between 20° and 45°. In addition to awkward postures, heavy lifting is part of EMS work and can be found in the lifting and moving of the patient from a scene to the ambulance on a stretcher. In a survey administered to over 2000 EMTs in Japan, EMTs reported the top four causes of physical stress to be “Heavy lifting with stretchers,” “Heavy lifting without stretchers,” “Loading ambulance,” and “Unloading ambulance” [43].

One valuable tool for postural analysis is Rapid Entire Body Assessment (REBA) was developed specifically for analyses occurring in dynamic and active fields, such as those in health care or service industries [44]. REBA analysis examines the different segments of the body separately, and considers the effects unstable or rapidly changing postures to present an action level that indicates the level of urgency for intervention [44].

Restraint Compliance

The use of restraints by prehospital care providers is a topic which has been examined in past literature. Restraint usage in EMS has varied widely in reported data. Weiss et. al [12] found over 85% of workers involved in rural and urban ambulance crashes were using restraints, but did not examine restraint rates in the front and rear compartments of the ambulance separately due to a trend of high overall restraint use.
Ray and Kupas [13] examined ambulance crash records reported to the Pennsylvania Department of Transportation between 1997 and 2001 and found passive restraint usage rates between 56.5% (urban) and 71.5% (rural), although their data identifying restraint systems was unknown for a substantial portion of their urban crash data. Restraint data was not reported separately for occupants in the front and rear of the ambulance. Kahn, Pirrallo, and Kuhn [15] found an overall restraint use in ambulance crashes across the US to be 40%, although no differentiation was studied between urban and rural crashes.

Restraint use is typically found to be lower in the rear patient-compartment of the ambulance than the driver compartment due to movement requirements associated with patient care (Weiss et. al, 2001). A study by Larmon, LeGassick, and Shriger [3] found that during emergency runs, the median restraint rate in the front cabin was 100%, and the median restraint usage rate in the patient compartment was 0%. The 900 prehospital emergency care providers that were surveyed submitted reasons for low usage in the rear of the ambulance – inhibited patient care (67.9%), restricted movement (34.7%), inconvenience (15.1%), and lack of effective restraints (5.3%). These low self-reported rear restraint rates have been contrasted against the periods of time in which medics can be restrained, but still do not engage their seatbelts. Hoyt, Stanley, and Sanddal [45] studied procedures involved in emergency care collected from ambulance records, and filmed mockups of the activities which account for 80% of total EMS actions. The mockups were studied, and the percentage of time which the EMS workers in the rear patient compartment could feasibly be restrained was found to be 42% of the time that the medic spends engaged in patient care. This figure does not include the amount of
time the medic spends idle, completing paperwork, or monitoring the patient, all of which can be performed from a restrained position.

Whether or not a medic is restrained significantly affects fatality rate and injury severity. Auerbach, Morris, Phillips, Redlinger, and Vaughn [46] found a restraint use rate of less than 50% for both the medics in the rear cabin as well as the EMS personnel working in the front cab. Restraint usage is typically lower in the rear of the vehicle than the front due to inhibited patient care, restricted movement, inconvenience, and lack of efficacy [12]. Becker et al. [14] found that 71 percent of all reported fatalities within the vehicle occurred to those in the rear of the vehicle, even though only 40 percent of total ambulance occupants in fatal crashes were traveling in the rear patient compartment.

Naturalistic Data Collection

Contributing factors to high transportation injury and fatality rates within the EMS field are not clearly understood. One obstacle to this understanding is the lack of central database detailing information specific to ambulance crashes, occupants, or workers. The data sets that have been gathered from past studies are from several different sources: State EMS bureaus [12], state department of transportation records [13], popular press reports [47] and survey data [19] have been studied—which do not parallel each other in terms of the data variables collected or data record completion.
Data Completion

One disadvantage of past studies is that the studied data typically involves only data associated with critical events—crashes involving injury or fatality. The data recorded on-scene is often incomplete, and difficult to find comparable data sets between different states and ambulance response agencies. Gilad and Byron [42] conducted a study measuring work postures of EMS workers in transport by having data analysts ride along in the ambulance on calls. The analyst recorded observed postures throughout the trip—while this provided useful data, there are limitations associated with direct observation. At times the observers’ viewing angle may have been obstructed, vigilance to detect accurate postures may have been reduced over the 8-hour observation shifts, and detailed analysis of posture duration is not available because the observational data was collected only as frequency count data.

Data Accuracy

Priestman [48] conducted a study interviewing EMS personnel that indicates that the number of injuries received during EMS work may be much larger than reported. The potential discrepancies in reported data and actual events may be due to under-reporting near misses or solely internal reporting of minor vehicle damages [14]. The data in the majority of studies on EMS crash behavior is taken from databases which extract information from official records and crash reports. Because naturalistic data collection collects a constant stream of data, this study will result in a more accurate assessment of medic safety and injury contributors.
CHAPTER 3

METHODS

Participants

Demographics

Research participants were emergency medical personnel working with the American Medical Response (AMR) ambulance service in Bozeman, Montana. Project materials were presented to AMR Bozeman’s staff of 20 medics and compensation of $50 was offered to consenting participants. Ten male and two female participants chose to participate. Detailed participant information is shown in Table 7. Age was not included in the analysis, as a minimum of personally identifying data was requested to try to increase participation among AMR staff.

Table 7. Participant Demographic Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. Medics</th>
<th>Average (years)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EMT Experience (years)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMT-Basic**</td>
<td>5</td>
<td>4.9</td>
<td>3.06</td>
</tr>
<tr>
<td>EMT-Paramedic**</td>
<td>6</td>
<td>7.8</td>
<td>3.59</td>
</tr>
</tbody>
</table>

*Note: One medic joined the project late, and his licensure date is not listed in the MT EMT database, so is not included in the experience database or the licensure type count in Table 7

**EMT-Basic and EMT-Paramedic definitions can be seen in greater detail in Table 1
EMS Care Facility

The emergency medical care provider, AMR, is located in an urban area in Southwest Montana. The group responds to calls involving local emergency care as well as trips involving non-emergency transports to cities in Montana. Bozeman AMR is a paid, advanced life support (ALS) emergency care provider. This facility provides care to a population of almost 100,000 people, and responds to an average of 219 calls per month. The participating medics work in twelve-hour shifts during the day (8:00AM – 8:00PM).

Ambulance

One Type III “Star of Life” ambulance was outfitted with data collection equipment, with a 2002 Ford E350 chassis, and a rear box was manufactured by American Emergency Vehicles in 2002. Figures 2 and 3 show the driver and passenger side views of the ambulance interior, respectively. The driver-side wall is populated with storage spaces, a convertible medic seat, oxygen supply, and electrical controls for climate control, interior lighting, and suction for a vacuum pump. The passenger-side interior contains a bench seat, restraints, and additional storage beneath the bench seat.
Figure 2. Side View: Driver's Side Wall

Figure 3. Side View: Passenger Side Wall
The front wall of the patient compartment houses a rear-facing seat, additional storage, and a one-foot square window that opens for communication between the medics and the driver. Vehicle electrical access is in a panel above the rear-facing seat. The front wall can be seen in Figure 4.

Figure 4. View of Front Wall in Rear Ambulance Cabin
IRB Approval

Institutional Review Board approval was granted for this study, the approved consent form and IRB application materials are shown in Appendix A. All participants signed consent forms prior to all data collection activities.

Data Collection Tools and Instruments

Data Acquisition System

The Data Acquisition System (DAS) used for this study collected visual, vehicle, and accelerometer data during periods when the ambulance is in motion for the duration of the study. The locations of the data collection equipment are shown in Figure 5.

Figure 5. Overhead View of Ambulance and DAS Components

← 20° →
The DAS began collecting data immediately upon starting the vehicle. Data was collected until vehicle shutdown, when the ignition of the ambulance was turned to “OFF.” Equipment installation and maintenance was performed by Transecurity.

Visual Data

The visual data collected was composed of two separate cameras recording events both in and around the ambulance rear cabin. Visual data was collected at 30 Hz, and combined into a dual-pane image with H.264 video compression. The cameras were positioned so that they did not interfere with ambulance duties, as seen above in Figure 5. The cameras were 2” wide and 1.5” tall, mounted with brackets and industrial double-sided tape to ensure no damage to the ambulance box during equipment removal. The cameras used infrared light, so they were able to capture data all lighting conditions. One of the cameras used is shown in Figure 6. All cables were routed under upholstered panels and concealed under cord covers to be as unobtrusive as possible.

![Figure 6. Rear-Facing Camera](image)
To preserve patient confidentiality, the video feed which most commonly feature patients were hidden with static black polygon masks. The polygon mask’s shape and size was edited before recording, but once the video was captured, nothing behind the black mask was able to be recovered. The rear-facing view had a mask which covered the patient stretcher, as well as the entry door. The forward view had a mask covering the stretcher, which hid the patient on the stretcher in both elevated and prone postures. The visual data and masks were arranged on a single screen, segmented by the different fields of view, as shown in Figure 7.

Figure 7. Recorded Visual Data Format

Vehicle Data

The DAS additionally collected streaming data from the onboard vehicle computer. The vehicle data was then synced with the video data. Vehicle data was collected from two areas: connections near the fuse box in the driver compartment and connections above the rear-facing seat in the ambulance compartment.
Accessory Data

Additional data was collected through three accelerometers, a head unit housing several general data collectors integrated with the main DAS unit and synced with all video and vehicle data. Three tri-axial accelerometers were installed in the vehicle; one in the driver’s cab of the ambulance, and two in the ambulance cabin beneath the two most commonly used medic seats. The accelerometers measured vibration and forces that the medics and cab occupants are subjected to throughout ambulance operation. The captured data was stored at a frequency of up to 30 Hz; this was chosen based on data storage constraints and to sync with other streaming DAS data. The medic bench accelerometer is shown in Figure 8 and the accelerometer positions in the ambulance are shown above in Figure 5.

Figure 8. Medic Bench Accelerometer
Vehicle Instrumentation

Transecurity, LLC. was the entity responsible for installation, integration, calibration, and testing of the DAS system. Installation was performed on-site at AMR. Installation and initial testing took approximately two days. The equipment was placed in the ambulance to be as unobtrusive as possible, and hardware was not placed in any positions that impacted the daily operations and needs of the emergency medical personnel.

Patient Care Record Data

Patient Care Records (PCR) records were used to identify patterns in patient injury and medic responses. PCRs were available in a limited form, and censored to preserve patient anonymity. These records were provided by AMR Bozeman, and include all entered data from July 1, 2005 until July 1, 2010, and include all medical response trips taken during this time period. These records detailed 13,253 individual ambulance calls. PCRs were analyzed to find common medical procedures that have high representation in emergency ambulance responses, and were analyzed specifically for the transports observed with the DAS to identify common body postures used in different types of response situations. A blank sample Patient Care Report can be found in Appendix B. The parameters collected from these summaries are shown in Table 8.
Table 8. Patient Care Record Data Description

<table>
<thead>
<tr>
<th>Data Collected</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Mode</td>
<td>Whether or not the trip was an emergency, urgent, or scheduled transport</td>
</tr>
<tr>
<td>Basic Life Support (BLS) Procedures</td>
<td>The BLS medical procedures which the attending EMS workers used during the transport</td>
</tr>
<tr>
<td>Advanced Life Support (ALS) Procedures</td>
<td>The ALS medical procedures which the attending EMS worker used during the transport</td>
</tr>
<tr>
<td>Possible Impacting Factors</td>
<td>Factors which affected the patient’s condition</td>
</tr>
<tr>
<td>Transportation Outcome</td>
<td>Definitive care destination the patient was transported to</td>
</tr>
</tbody>
</table>

EMS Survey Data Collection

A confidential online survey was created and activated that collected SAQ-EMS scores, open-ended answers to questions regarding the EMS agency which employed the participant, their certification level (EMS-First Responder, Basic, Intermediate, or Paramedic), the number of years of experience the participant has spent working as an EMS care provider, the number of years of experience working at their current EMS agency, the number of shifts worked per week, the average shift length, their staffing payment status (paid, volunteer), their self-assessed skill level at EMS work, the percent of time the participant drives an ambulance while working, and the percent of time the participant spends belted while in the front of the ambulance, the rear of the ambulance, and while in a personal vehicle unrelated to work. Survey items unrelated to the SAQ-EMS items were designed to have open-ended responses, and no question was required to be completed in order to submit the survey. SAQ-EMS items on the survey were answered by selecting from one of 5 options for each item (Strongly disagree, slightly
disagree, neutral, slightly agree, strongly agree). The individuals who participated in the EMS survey were licensed EMS workers from multiple agencies across Montana.

Experimental Variables

Variable selection was made based on the variables collected in past literature, and was further influenced by the amount of data reduction which could be performed in the time frame established before the videos were deleted, in accordance with IRB protocol.

Patient Transport State

The EMS agency trip logs were examined to identify portions of trips where a patient was definitively being transported. *Patient transport state* was a binary variable (patient present, patient not present) collected through examination of timestamps where patient transport occurred after arriving on a scene to a location of definitive care (hospital or air transport).

Weighted Acceleration

Force data was collected by accelerometers located near medic seats. This acceleration was then weighted in accordance with ISO standard 2361-1 prior to data analysis (m/s²).
Maximum Force

For each trip examined, the longitudinal data stream for acceleration was analyzed in each axis (X, Y, and Z) to identify the maximum force encountered during transport (m/s2).

Crest Factors

Crest factors are a measure of shock severity in a vibrating system, relative to root mean squared vibration level. Crest factors are the result of a calculation using acceleration data, and are used to describe the relationship between the maximum force and the average vibration exposure over time. This variable is reported for all three axes (X, Y, and Z).

Transportation Mode

Transportation mode was collected from patient care records (PCRs) associated with each medical transport conducted by the EMS group. Transportation Mode is a categorical variable, indicating the emergency status of the ambulance during travel. There are three outcomes for transportation mode: scheduled, urgent, and emergency. A scheduled trip is a non-urgent request for transport, arranged ahead of time. An urgent trip is an immediate request for aid where lights and sirens are not used. Emergency trips are immediate requests for aid where lights and sirens are used. Analysis in this examined transportation mode as a binary variable (emergency | non-emergency), combining scheduled and urgent calls as “non-emergency” trips.
Primary Patient Illness

Patient illness was collected from patient care records (PCRs) associated with each medical transport conducted by the EMS group. *Primary patient illness* is the primary injury that resulted in the need for EMS care or transportation. Each trip is associated with only one primary illness.

Medic Response Activity

Medic response activity was collected from patient care records (PCRs) associated with each medical transport conducted by the EMS group. *Medical Response* includes the activity or set of activities performed by EMS workers either on-scene or in the ambulance during transport. There are 42 separate actions that could have been performed, and each trip is associated with at least one *medical response*.

Several variables were collected during visual data reduction of video collected while the ambulance was in use. The first variable measured was patient care, for aid in identification of behaviors displayed while providing direct patient care as opposed to general postures assumed while idle, cell-phone communication, and discussion with the patient. The second variable collected was restraint state, to identify behaviors performed while restrained and general restraint usage statistics.

Medic working postures were collected from several variables in the visual data: seated or standing posture and trunk angle. These variables were collected to be reflective of literature defining working postures described by Neumann et al. [49] as well as to aid in performing Rapid Entire Body Assessment (REBA) analysis.
The medic behavior within the rear patient compartment was also described by physical location within the ambulance, along with any reaches for equipment or controls performed.

Procedures

Data Acquisition System

The DAS required little additional effort by the EMS workers. Consenting medics were instructed to turn the DAS on when beginning a shift, and off at the end of their shift. The DAS operated in the background, collecting data during all periods when both the DAS and the vehicle ignition were turned on. This process mitigated risk of recording EMS workers who were not actively participating in the project. Data was collected weekly from the ambulance by a researcher, and delivered to a data reduction lab at Western Transportation Institute for analysis. The DAS yielded video data, accelerometer data, and time stamp data for this project. Compensation of $50.00 per medic was offered for three-month periods of participation, with two separate three-month collection periods occurring.

Whole-body vibration data was collected from an accelerometer which was located at the position where the primary attending medic sits. A single DAT file was generated each time the ignition was turned on, however this did not necessarily indicate a patient transport as the ambulance was also driven to alternative locations (to refuel, collect supplies, and for automotive repairs). Between May 5, 2010 and October 18, 2010 there were 744 unique trips. These trips were cross-referenced against AMR’s trip
logs to identify specifically which portion of each of the 744 trips involved a patient transport, and additionally to indicate at what point during the trip the medic would be positioned in the rear with the patient. Each data file was cleaned so it only included data from the time that the ambulance left the scene with a patient until the time that the ambulance arrived at the hospital or other destination location. This process resulted in 102 trips, which consisted solely of data describing vibration during times which an attending medic was known to be in the rear patient compartment with a patient, during a transport. Data manipulation was performed using SAS 9.2. Because two researchers were responsible for visual data reduction, inter-rater reliability statistics were calculated by having both researches score a random 5% of all videos. Results showed consistent scoring across the videos (Rho = 0.98, kappa = 0.69), so further rater training was not needed.

Patient Care Records

American Medical Response (AMR) (Bozeman, MT) assisted with providing data displayed on Patient Care Records. After looking at a blank Patient Care Record (PCR) form, an AMR agency manager was supplied with a list of categories from the form that were of interest to the study of EMS behaviors (date, EMS responsive actions, type of transport, and outcome). As the data was filed with AMR, the researchers contacted the AMR manager for an Excel spreadsheet summarizing this data. This data yielded information regarding patient illnesses, responsive medic activities, and emergency transportation mode for each trip.
Call Logs

Bozeman AMR assisted by providing call logs detailing each call to which they responded. Nearly six months of data were provided, detailing calls from 1 January 2010 until 15 June 2010. Each call had data surrounding the date, which crew attended the call, time of day call was received, time of day team arrived on scene, time of day team left the scene, and the time that the team cleared the hospital. This data was analyzed to identify the average number of calls per day each EMS crew responded to, as well as the average length of time in which the crew was in a moving vehicle.

EMS Safety Culture Surveys

The Critical Illness & Trauma Foundation (CIT) (Bozeman, MT) assisted with providing contacts for survey participation. CIT contacted EMS agency managers at different agencies in Montana who had previously shown interest in university-related projects, and provided those managers with researcher contact information. Upon contact, researchers supplied the managers with an internet link to the web-based survey. Interested agency managers informed their colleagues in alternative agencies within Montana about the survey, and researcher contact information to participate in the survey was also posted in the Montana Emergency Medical Services Association (MEMSA) mailing list. Participating EMS agency managers contacted the project researcher, and were provided access information for the project survey. Compensation of $10.00 was offered to each survey participant for their time completing the survey.
Focus Groups

Focus groups were conducted with EMS professionals working with AMR Bozeman. The participants in the focus group were not restricted to the EMS workers who participated in the ambulance trip data collection effort. Five medics agreed to participate, and answered neutral questions designed to collect information regarding EMS worker expectations for ambulance design changes, hazard perception of different activities in the rear patient compartment, EMS ideology regarding restraint use patterns, contributing factors toward the decision to travel in Emergency Mode, and to observe EMS reactions to different ideas designed to improve safety in the rear patient compartment.

Focus group discussions took one hour. The focus group was led by one moderator, working from a script to ensure identical questions in the event of future focus group with alternative populations. The discussion was recorded by two audio recorders placed around the room where the discussion was held. The verbal transcript is provided in Appendix C.

Statistical Analysis

All data was managed and analyzed using Microsoft Excel, SPSS 18, MINITAB 15, SAS 9.2, and Noldus ObserverXT software. Analysis was conducted on the results of observational video data from inside the rear patient compartment, patient care record data, agency call logs, survey data, and focus groups. All results are reported when significant with an alpha equal to 0.05.
Objective 1 – Vibration Assessment

Vibration data was generated during any time the vehicle was in motion, including time where there is nobody occupying the rear patient compartment. To identify periods of human occupation of the rear compartment, data file time stamps and durations were compared to trip logs associated with patient transports. AMR Bozeman reports the time that the ambulance leaves the scene with a patient, and the time that the ambulance arrives at their destination. The duration and time of day of this trip was compared to the duration and times of the data files. Data files which were identified as containing this “transporting” segment of the ambulance transport were kept for vibration analysis, which reduced the full set of 744 data files to 106 data files. To account for files which include extraneous travel (if the ignition was not turned off between multiple segments of travel), each of the 106 transport files were then manually reduced to include only the portion of the trip from the scene of injury to the hospital, using timestamps. This manual reduction was based on the reported duration and time of day of each transport. The reduction was not based on video comparison, as the video data was not reliably available for comparison due to frozen video due to equipment failure as well as videos which were deleted due to privacy concerns.

The reduced data files resulted in three data streams of force data, for the x-, y-, and z-axes. The acceleration data was converted from g’s to m/s², and then root mean square (RMS) calculations were performed to calculate significant parameters to test against standardized thresholds for health risk, comfort, and perception. All available data for each reduced transport file was included in this analysis, no sampling strategy
was used within the larger data set. SAS code to analyze vibration data can be found in Appendix D, and the complete output tables are provided in Appendix E.

All data which was used to test hypotheses was first tested for normality using an Anderson-Darling test. This test was used because the Anderson-Darling test gives heavier weights to the tails of the distribution, which ensured that the data had no extreme outliers due to malfunctioning data collection equipment. Data which was found to be non-normal was transformed using a Box-Cox transformation followed by a Johnson transformation if no suitable Box-Cox transform existed. The transformed data was again tested for normality with the Anderson Darling test, and then the hypothesis testing was performed using a one-sample t-test to compare means against threshold values specified in each section.

Hypothesis 1.1 – Whole-Body-Vibration Peak Acceleration: The maximum force measured over a period of data collection is referenced to as the peak acceleration. These values are representative of the maximum forces the occupants of the ambulance are subjected to while transporting patients, and are used in conjunction with root mean squared acceleration values to calculate crest factors. Peak acceleration was examined for each axis, for each trip.

Hypothesis 1.2 – Whole-Body-Vibration Crest Factors: Crest factor is a statistic associated with vibration that is used to assess the relationship between the peak acceleration and the root mean squared acceleration. This statistic is used as an identifier for whether or not shock events were present during the period of acceleration data
collection. While not a definitive threshold, ISO standard 2361-1 6.3 recommends that for crest factors greater than 9.0, fourth power vibration dose analysis should be conducted and reported to provide analysis that is more sensitive to multiple shocks. Crest factors were calculated for all three axes for each of the transport observations. Descriptive statistics summarizing crest factors encountered in the transports were reported.

Hypothesis 1.3 – Whole-Body-Vibration Health Thresholds: This analysis explored call data and agency records to find the average exposure duration to the EMS worker while in the rear of the ambulance, providing patient care en route to a target destination until the patient is discharged from the EMS workers’ care. Exposure duration was referenced against Figure 9 (below), from ISO 2361-1 B 3.1 to identify the threshold level of weighted acceleration (a_w) for the calculated exposure length.
The identified weighted acceleration value were compared to the values found using the seat-mounted accelerometers in the ambulance to see if EMS workers were at risk for negative health impacts due to whole-body vibration exposure in the rear patient compartment. Whole-body vibration is associated with increased health risks leading to lower back injury, which is discussed in more detail in the whole-body vibration section of Chapter 2.

To identify the average trip length, six months of call logs from Bozeman AMR were examined, providing trip details from January 2010 until June 2010. These logs listed the time the EMS crew arrived at the scene, the time they left the scene, and the
time they got to the hospital. Total time in a moving vehicle per trip was calculated using the time to travel to the scene plus the time to travel from the scene to the hospital. The real value for time in transit is slightly larger, as these records do not include time to travel from the hospital back to the agency or deployment point. The only records which were analyzed were those with all four fields completed. The average amount of time in travel is reported with an average of 21.09 minutes spent traveling per trip. The same trip logs yielded data about the average number of trips taken per day, which showed an average of 10.66 trips per day. This number was split up between two to three crews consisting of two people. Analysis of the average number of trips taken per day per crew showed that each of the two main EMS crews responded to an average of 4.56 trips per day. At 21.09 minutes of exposure per trip, EMS exposure was calculated to be 96.2 minutes per day.

With this daily exposure, ISO 2361-1 B 3.1 gives us a health caution guidance zone threshold upper and lower limits. At an exposure duration of 96 minutes, vibration exposure below 0.75 m/s² have not been shown to produce measurable health effects, vibration exposure in the health guidance caution zone (between 0.75 and 2.0 m/s²) indicates that caution should be taken, and vibration exposure above the 2.0 m/s² indicates likely health risks. The measured vibration exposure within the ambulance was compared to these thresholds.

Hypothesis 1.4 – Whole-Body-Vibration Comfort: The effects of vibration on human comfort is possible to be evaluated in some environments, but that comfort level
is affected by different factors including the vehicle, activities being performed while subjected to vibration (drinking, reading, and writing), and human “annoyance tolerances.” If a crest factor is above 9, frequency-weighted root mean squared acceleration cannot be used to evaluate human response to vibration because humans discomfort is significantly influenced by peak values. Table 14 shows approximate indications of reactions to different magnitudes of overall vibration values in public transport (ISO 2631-1 C.2.3, 1997).

The weighted vibration magnitude was be calculated for each patient transport data file, averaged across the 106 transport observations where data was collected, and compared against the values in ISO 2631-1 C.2.3 using a test on means.

Hypothesis 1.5 – Whole-Body-Vibration Perception: According to ISO STD 2361.C.3 (p26), 50-percent of alert fit people can detect weighted vibration with a peak magnitude of 0.015 meters per second squared, but this perception may be noticeable for peak magnitudes of between 0.01 to 0.02 meters per second squared for different people. Most severe axis vibration was compared to this threshold using a one-sample t-test.

Objective 1: Additional Analyses: Because some crest factors were calculated that were greater than 9.0, descriptive statistics summarizing vibration dose values were calculated and reported alongside VDV values found for vehicles of similar size and weight from past literature.

Additionally, VDV health guidance caution zones found in ISO standard 2361 were compared to conditions prevalent in the ambulance. The exposure time was
adjusted, and comparisons were made between health guidance caution threshold limits and the VDV values shown in the ambulance.

Hypothesis 2.1 –Patient Injury in Emergency Mode: Data used in this analysis was collected from Patient Care Records provided by Bozeman AMR. A PCR is filled out as part of standard protocol for every patient transport, and details specific information pertaining to patient illness and medic responsive activities while under the care of an EMS worker. The record set used for analysis includes all PCRs submitted by AMR between July 2, 2005 and July 1, 2010. This data set consists of 13,253 individual calls, and the variables, descriptions, and example data entry values from the PCRs are listed below in Table 9.

Table 9. Patient Care Report Variable Descriptions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Example PCR Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Mode: From Scene (Initial)</td>
<td>Whether or not the transportation was previously scheduled, an immediate request but no lights and sirens, or a request with lights and sirens</td>
<td>Scheduled, Urgent (no lights and sirens), Emergency (lights and sirens)</td>
</tr>
<tr>
<td>Transportation Mode: From Scene (Last)</td>
<td>Whether or not the transportation was previously scheduled, an immediate request but no lights and sirens, or a request with lights and sirens</td>
<td>Scheduled, Urgent (no lights and sirens), Emergency (lights and sirens)</td>
</tr>
<tr>
<td>Primary Illness/Symptom</td>
<td>Primary patient injury or illness recorded by EMT</td>
<td>Trauma, pain, seizure, breathing problem, bleeding, etc. (62 unique primary illnesses)</td>
</tr>
<tr>
<td>Administered Care</td>
<td>Specific procedures performed by the EMS worker providing care during the transportation</td>
<td>CPR, 12-lead EKG, Peripheral IV, intubation, bandaging, etc (47 unique procedures)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Whether or not the patient was successfully transported. If patient was not transported, specific reason is detailed.</td>
<td>Transported, Cancelled en route, no treatment required, no patient found, dead on arrival, etc (13 unique outcomes)</td>
</tr>
</tbody>
</table>
Of the 13,253 PCRs provided by, the only records included in this analysis were those with an outcome of “Transported,” which excluded 3,802 records. Excluded patient outcomes include “Patient Refused AMA (2345 records excluded),” “Cancelled FD/PD (702),” “Cancelled ENR (386),” “Dead On Arrival (97),” “No Patient Found (84),” “No Treatment Req’d (53),” “Lift Assist (48),” “Inter-Facility (29),” “Treated and Pronounced (26),” “Police Custody (17),” “Treat/No Trans. (14),” and “Helicopter (1),”

An inflated model was built consisting of all levels of the predictor patient illness, but a definitive model could not be built due to quasi-complete separation of data. Quasi-complete separation of data occurs when any cell in an outcome table has a zero events. By way of example, this was evident in the data for “Nausea.” There were 229 instances where nausea was the primary patient illness, but there were zero instances where nausea was the primary patient illness and the ambulance traveled in emergency transportation mode. All patient illnesses that had zero events in either emergency or non emergency mode were dropped from the model.

The Proc Logistic procedure was applied in SAS to build a binary logistic regression model using the remaining variables. Significant and marginally significant patient illnesses were reported. Patient illnesses which were not evaluated in the regression model due to under-representation of events were analyzed separately to determine if that illness was overrepresented in emergency or nonemergency transports. Because the contingency table cells have both very small (event) and very large (non-event) values, neither Chi-Square nor Fishers’ Exact test was possible, and the percent associated with emergency transportation mode was reported.
Hypothesis 2.2 – Medical Response Activity in Emergency Mode: An inflated model was built consisting of all levels of the predictor medical response, but a definitive model could not be built due to quasi-complete separation of data. All medical responses that had zero events in either emergency or non emergency mode were dropped from the model.

The Proc Logistic procedure was applied in SAS to build a binary logistic regression model using the remaining variables. Significant and marginally significant medical responses were reported. Medic response activities which were not evaluated in the regression model due to under-representation of events were analyzed separately to determine if each response was overrepresented in emergency or nonemergency transports. And the percent association with emergency transportation mode was reported.

Objective 2 - Additional Analysis: Reducing the predictor variables to achieve a data set that is not characterized by separation of data has the unfortunate effect of eliminating what may be some of the more useful predictive measures. For example, behavioral and psychological illnesses are characterized solely by nonemergency transportation mode (229 of 229 transports), but are not analyzed in the logistic regression model due to the absence of events occurring during emergency travel. As part of exploratory data analysis, a classification tree for categorical data was developed in R using transportation mode as a response variable, with patient illness and medical response action as predictor variables.
Hypothesis 3.1 – Observed Restraint Usage in Rear of Ambulance: Video data from the ambulance was collected in the rear patient compartment during emergency response trips. One of the variables that was analyzed was restriction usage, which was reduced as a binary variable (restrained | not restrained) any time that the attending medic was visible on the camera during a transport. In total, 67 unique trips were analyzed. When multiple medics were active in the cabin during a trip, the medics were analyzed separately, yielding an additional 12 observations. The total time belted is reported as a percentage of the total time the medic is present in the video. Because the represented restrained medics are so infrequent, they are presented as a case-by-case basis along with trip duration, total time belted, percent of time belted, and the number of separate belted periods present in each trip. The trip duration indicates the entire period of time in which the medic is visible in the rear patient compartment. Total time belted indicates the total amount of time during which the medic is observed to be belted. The number of belted periods indicates the number of separate periods in which the medic is restrained; a medic who repeatedly engages and disengages his restraint during the ambulance transport will have a higher number of belted periods than a medic who remains belted throughout, or disengages his restraint and does not re-engage it at a later point in the trip. Descriptive statistics and a histogram showing restraint rates were reported. Wilcoxon signed-rank tests were performed, but the power was not large enough to make reliable conclusions. As an alternative method of analysis, the restraint usage data was analyzed as a proportion, testing a one-sided confidence limit against a hypothesized value of 0.0 which represents 0.0% restraint use in the rear of the ambulance. This should be interpreted
such that if the lower limit to the confidence interval includes 0.0, then the proportion will not be significantly different to 0.0% restraint use in the ambulance.

Hypothesis 3.2 – Self-Reported Restraint Usage in Rear of Ambulance: Survey data was collected from Montana EMS workers. One question asked was “When you are in the rear patient cabin, providing patient care, what percentage of the time do you wear a seatbelt?” Participants then provided self-reported restraint usage rates as a numeric response. If the participant provided a definite categorical response (“never” or “always”), the corresponding numeric response was used for data analysis (0 percent or 100 percent). No subjective categorical responses provided by participants (“mostly” or “sometimes”) were used. This question was answered by 191 people, or 95%. To test the hypothesis, a One-Sample Wilcoxon Signed Rank Test was used to compare median values against a null value of 0% restraint use.

Hypothesis 3.3 – Self-Reported Restraint Usage in Front of Ambulance: Survey data was collected from Montana EMS workers. One question asked was “When you are in the front driver cabin, as a driver or passenger, what percentage of the time do you wear a seatbelt?” Participants then provided self-reported restraint usage rates as a numeric response. If the participant provided a definite categorical response (“never” or “always”), the corresponding numeric response was used for data analysis (0 percent or 100 percent). No subjective categorical responses provided by participants (“mostly” or “sometimes”) were used. This question was answered by 196 people (98% response rate) of the 201 total survey participants. Descriptive statistics were reported.
Due to the large number of ties in the data, the Wilcoxon signed-rank test was only able to use 27 of 196 observations. Because standard nonparametric testing methods lost power due to ties, the restraint usage data was analyzed as a proportion, testing against a hypothesized value of 1.0 which represents 100% restraint use in the front of the ambulance. This should be interpreted such that if the upper limit to the confidence interval includes 1.0, then the proportion will not be significantly different to 100% restraint use in the ambulance.

Hypothesis 4.1 – Safety Culture as a Predictor of Restraint Compliance: Survey data provided both restraint and safety culture SAQ scores for each participant. Of the 201 survey participants, 19 completed surveys contained missing values in one or more of the following categories: adjusted SAQ-EMS scores for teamwork climate, job satisfaction, stress recognition, perception of management, working conditions, and self-reported restraint rates in the rear patient compartment. Restraint rate is a self-reported variable regarding the percentage of time the EMT is restrained in the rear of the ambulance, while providing patient care. The SAQ-EMS scores are averages of responses to multiple questions involving each category, adjusted to a scale of 1-100. SAQ-EMS scores higher than 75 indicate agreement with positive attitudes about each category, and high restraint rates indicate that the EMS worker spends a higher percentage of time restrained in the rear of the ambulance. A regression model was built using the SAQ-EMS score categories as predictor variables for the response variable of restraint rate in the rear patient compartment. Significant predictors were reported.
Hypothesis 4.2 – Focus Group Findings for Low Restraint Compliance: Focus groups were conducted on-site at the EMS agency participating in this study, with a group of 5 EMS professionals. The focus groups were used to gather information about the EMS workers’ opinions and behaviors of ambulance working conditions, including questions regarding EMS worker ideology regarding restraint use patterns.

The focus groups were conducted by a moderator working from a script. All discussion was recorded using an audio sound recording device, and was transcribed for analysis. Ideas and opinions exhibited by the medics regarding restraint usage and options were presented, and the complete transcript can be found in Appendix C.

Hypothesis 5.1 – Reach Envelopes for Seated Medics: Inside the patient compartment, medic equipment and storage locations for providing patient care from encountered from up to three seated reach origin points to up to nine unique reach termination points (only origin and termination combinations observed in the visual data reduction were evaluated) are located outside maximum reach envelopes for a 95% male restrained medic (a 43.5 in. reach radius).

Video data from the ambulance was collected in the rear patient compartment during emergency response trips. One of the variables that was analyzed was reaches, which was characterized by the medic’s position at the initiation of the reach, the duration of the reach (seconds), and the termination point of the reach describing what the medic was reaching for. In total, 67 unique trips were analyzed. When multiple medics were active in the cabin during a trip, the medics were analyzed separately,
yielding an additional 12 observations. The number and frequency of unique reaches were observed, reported in Table 22, along with average reach duration and the origin and termination points of each reach. The reach duration indicates the entire period of time in which the medic is visible in the rear patient compartment. Reach duration is the length of time in seconds from the beginning of the reach until the medic resumed a neutral posture, or began a second reach. The reach termination is the location within the ambulance that the medic was reaching for. The total number of reaches is the observed event count for each unique reach.

Hypothesis 5.2 – REBA Reach Analysis: Reach data from video within the ambulance was characterized the medic’s position at the initiation of the reach and the termination point of the reach describing what the medic was reaching for. Each individual reach was analyzed using Rapid Entire Body Assessment (REBA) analysis to assess ergonomic risk during the various reaches. These REBA scores are presented, along with the scoring metrics used to analyze REBA analyses.
CHAPTER 4

RESULTS

Hypothesis 1.1 – Whole-Body-Vibration Peak Acceleration

The values calculated for the ambulance in this study are presented in Table 10, and are compared to peak acceleration values calculated for vehicles of similar size in past literature below in Table 11.

Table 10. Descriptive Statistics for Whole-Body Vibration Maximum Forces

<table>
<thead>
<tr>
<th></th>
<th>X-axis</th>
<th>Y-axis</th>
<th>Z-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.579</td>
<td>3.188</td>
<td>5.621</td>
</tr>
<tr>
<td>Median</td>
<td>4.280</td>
<td>3.029</td>
<td>5.278</td>
</tr>
<tr>
<td>Max</td>
<td>9.086</td>
<td>6.542</td>
<td>11.306</td>
</tr>
<tr>
<td>Min</td>
<td>1.938</td>
<td>1.858</td>
<td>2.942</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.543</td>
<td>0.815</td>
<td>1.445</td>
</tr>
</tbody>
</table>

Table 11. Mean Peak Acceleration in Ambulance Compared to Similar Vehicles

<table>
<thead>
<tr>
<th></th>
<th>X-axis Mean (standard deviation) (m/s²)</th>
<th>Y-axis Mean (standard deviation) (m/s²)</th>
<th>Z-axis Mean (standard deviation) (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulance</td>
<td>4.6 (1.54)</td>
<td>3.2 (0.82)</td>
<td>5.6 (1.45)</td>
</tr>
<tr>
<td>Van (good road)*</td>
<td>2.4 (1.58)</td>
<td>2.3 (1.61)</td>
<td>4.8 (1.28)</td>
</tr>
<tr>
<td>Van (poor road)*</td>
<td>2.2 (0.29)</td>
<td>1.9 (0.40)</td>
<td>5.1 (2.95)</td>
</tr>
<tr>
<td>Van (cobblestone)*</td>
<td>6.7 (0.35)</td>
<td>7.6 (0.78)</td>
<td>10.3 (0.59)</td>
</tr>
<tr>
<td>Ambulance (incubator)**</td>
<td>-</td>
<td>-</td>
<td>5 to 13 (unknown)</td>
</tr>
<tr>
<td>Minibus (asphalt)***</td>
<td>1.168 (NR)</td>
<td>1.107 (NR)</td>
<td>2.733 (NR)</td>
</tr>
</tbody>
</table>
The ambulance was found to have peak acceleration levels slightly higher than vans on non-cobblestone roads, but smaller than those identified as vans on cobblestone and single-decker busses on asphalt.

Hypothesis 1.2 – Whole-Body-Vibration Crest Factors

Crest factors were calculated for all three axes for each of the 106 transport observations. Descriptive statistics summarizing crest factors encountered in the transports are reported in Table 12 below. These values are shown to be lower than CF values reported for vehicles of similar size and weight from past literature, shown below in Table 13.

Table 12. Descriptive Statistics for Whole-Body Vibration Crest Factors

<table>
<thead>
<tr>
<th>Descriptive Statistics for Whole-Body Vibration in Ambulance</th>
<th>(m/s²)</th>
<th>X-axis</th>
<th>Y-axis</th>
<th>Z-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>5.691</td>
<td>4.556</td>
<td>7.921</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>5.214</td>
<td>4.312</td>
<td>7.058</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>12.493</td>
<td>7.058</td>
<td>13.582</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>2.936</td>
<td>2.618</td>
<td>5.047</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.723</td>
<td>1.057</td>
<td>1.796</td>
<td></td>
</tr>
</tbody>
</table>

*Source: Okunribido, Magnusson, & Pope, 2006 [31]
**Shenal, Johnson, & Varney, 1981 [29]
***Okunribido, 2007 [50]
Table 13. Mean Crest Factors in Ambulance Compared to Similar Vehicles

<table>
<thead>
<tr>
<th></th>
<th>X-axis</th>
<th>Y-axis</th>
<th>Z-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (std dev) (m/s²)</td>
<td>Mean (std dev) (m/s²)</td>
<td>Mean (std dev) (m/s²)</td>
</tr>
<tr>
<td>Ambulance</td>
<td>5.7 (1.72)</td>
<td>4.6 (1.06)</td>
<td>7.9 (1.80)</td>
</tr>
<tr>
<td>Van (good road)*</td>
<td>10.4 (6.07)</td>
<td>10.5 (6.28)</td>
<td>15.6 (3.07)</td>
</tr>
<tr>
<td>Van (poor road)*</td>
<td>9.3 (0.60)</td>
<td>8.1 (1.82)</td>
<td>13.7 (4.64)</td>
</tr>
<tr>
<td>Van (cobblestone)*</td>
<td>13.6 (0.17)</td>
<td>17.4 (2.25)</td>
<td>18.1 (0.29)</td>
</tr>
<tr>
<td>Auto (city road)**</td>
<td>NR</td>
<td>NR</td>
<td>4.8 (NR)</td>
</tr>
<tr>
<td>Van (country road)**</td>
<td>NR</td>
<td>NR</td>
<td>5.7 (NR)</td>
</tr>
<tr>
<td>Truck (rough road)**</td>
<td>NR</td>
<td>NR</td>
<td>3.9 (NR)</td>
</tr>
<tr>
<td>Heavy Truck***</td>
<td>NR</td>
<td>NR</td>
<td>7.8 to 18.8 (NR)</td>
</tr>
<tr>
<td>Light Truck***</td>
<td>NR</td>
<td>NR</td>
<td>7.4 to 17.5 (NR)</td>
</tr>
<tr>
<td>Minibus (asphalt)***</td>
<td>7.274 (NR)</td>
<td>7.119 (NR)</td>
<td>11.752 (NR)</td>
</tr>
<tr>
<td>Single Decker Bus (asphalt)****</td>
<td>9.050 (NR)</td>
<td>16.983 (NR)</td>
<td>16.128 (NR)</td>
</tr>
<tr>
<td>Double Decker Bus (asphalt)****</td>
<td>2.499 (NR)</td>
<td>2.499 (NR)</td>
<td>3.887 (NR)</td>
</tr>
</tbody>
</table>

*Source: Okunribido, Magnusson, & Pope, 2006 [31]; **Griffen, 1990 [51]; ***Robinson & Martin, 1997 [52]; ****Okunribido, 2007 [50]

The ambulance crest factors were found to be higher than those found for some automobiles, vans, and trucks, but smaller than the general levels found for heavy trucks, light trucks, minibus, and single-decker buses.

Hypothesis 1.3– Whole-Body-Vibration Health

With this daily exposure, ISO 2361-1 B 3.1 gives us a health caution guidance zone threshold upper and lower limits. At an exposure duration of 96 minutes, vibration exposure below 0.75 m/s² have not been shown to produce measurable health effects,
vibration exposure in the health guidance caution zone (between 0.75 and 2.0 m/s²) indicates that caution should be taken, and vibration exposure above the 2.0 m/s² indicates likely health risks.

\[
H_0: a_w < 2.0 \frac{m}{s^2} \]

\[
H_0: a_w \geq 2.0 \frac{m}{s^2} \]

Where:

\(a_w \) represents the most root mean squared vibration for the most severe axis.

The most severe vibration axis is generally known to be the vertical axis. Of the 106 trips examined, 82 had the vertical axis (the Z-axis) as their most severe vibration axis. \(a_{wz} \) was compared to the lower health guidance caution zone threshold value of 0.75 m/s² using a one sample test on means, and \(a_{wz} \) was found to be significantly lower (\(t = -4.41, p < 0.001 \)).

Because the z-axis was not always the most severe axis, this data was also analyzed looking at the weighted root mean squared acceleration for the most severe axis in every trip. Weighted root mean squared acceleration was not found to be significantly lower than the lower limit for health guidance caution zones, but was significantly lower than the upper limit for the caution zone (\(t = -13.49, p < 0.001 \)). A box plot for the severe axis root mean squared acceleration compared to the thresholds is shown below in .
Hypothesis 1.4 – Whole-Body-Vibration Comfort

The effects of vibration on human comfort is possible to be evaluated in some environments, but that comfort level is affected by different factors including the vehicle, activities being performed while subjected to vibration (drinking, reading, and writing), and human “annoyance tolerances.” If a crest factor (a unit-less measurement) is above 9.0, frequency-weighted root mean squared acceleration cannot be used to evaluate human response to vibration because humans discomfort is significantly influenced by
peak values. Table 14 shows approximate indications of reactions to different magnitudes of overall vibration values in public transport [27].

Table 14. Comfort Reactions to WBV Magnitudes (ISO 2361-1 C.2.3)

<table>
<thead>
<tr>
<th>Weighted Vibration Magnitude</th>
<th>Comfort Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{w_{total}} < 0.315 \frac{m}{s^2}$</td>
<td>Not uncomfortable</td>
</tr>
<tr>
<td>$0.315 \frac{m}{s^2} < a_{w_{total}} < 0.63 \frac{m}{s^2}$</td>
<td>A little uncomfortable</td>
</tr>
<tr>
<td>$0.5 \frac{m}{s^2} < a_{w_{total}} < 1.0 \frac{m}{s^2}$</td>
<td>Fairly uncomfortable</td>
</tr>
<tr>
<td>$0.8 \frac{m}{s^2} < a_{w_{total}} < 1.6 \frac{m}{s^2}$</td>
<td>Uncomfortable</td>
</tr>
<tr>
<td>$1.25 \frac{m}{s^2} < a_{w_{total}} < 2.5 \frac{m}{s^2}$</td>
<td>Very uncomfortable</td>
</tr>
<tr>
<td>$2.0 \frac{m}{s^2} < a_{w_{total}}$</td>
<td>Extremely uncomfortable</td>
</tr>
</tbody>
</table>

The weighted vibration magnitude was calculated for each patient transport data file, averaged across the 106 transport observations where data was collected, and compared against the values in ISO 2631-1 C.2.3 using a test on means with the following hypothesis:

$$H_0: a_w < 0.315 \frac{m}{s^2}$$

$$H_1: a_w \geq 0.315 \frac{m}{s^2}$$

Where:

a_w represents total weighted root mean squared vibration magnitude.

A one-sample t-test found that the weighted RMS vibration magnitude ($\mu=1.3$, $\sigma=0.020$)
was greater than the threshold for “not uncomfortable” (t = 36.93, p<0.001), “a little uncomfortable” (t=27.72, p<0.001), and fairly uncomfortable (t=9.22, p<0.001). The average total weighted RMS vibration was not significantly greater than the thresholds for “very uncomfortable” or “extremely uncomfortable.” A box plot for the severe total mean squared acceleration compared to the comfort thresholds is shown below in Figure 11.

![Boxplot Comparing RMS Acceleration to Comfort Thresholds](image)

Figure 11. RMS Acceleration and Comfort Threshold Boxplot

Hypothesis 1.5 – Whole-Body-Vibration Perception

According to ISO STD 2361.C.3 (p26), 50-percent of alert fit people can detect weighted vibration with a peak magnitude of 0.015 meters per second squared, but this
perception may be noticeable for peak magnitudes of between 0.01 to 0.02 meters per second squared for different people. Most severe axis vibration was compared to this threshold using a one-sample t-test, with the hypothesis shown below:

\[H_0: a_i < 0.02 \frac{m}{s^2} \]

\[H_0: a_i \geq 0.02 \frac{m}{s^2} \]

Where:

\(a_i \) represents the most severe axis vibration.

An Anderson-Darling test showed that \(a_{wz} \) followed a normal distribution (p=0.090), so the z-axis RMS vibration magnitude was compared to the threshold value of 0.02 using a one sample test on means, and was found to be significantly greater than the threshold of 0.02 m/s\(^2\) (t=79.76, p<0.001). Because the z-axis was not always the most severe axis, this data was also analyzed looking at the weighted root mean squared acceleration for the most severe axis in every trip and was then found to be significantly greater than the transformed threshold value for perception (t=50.24, p<0.001).

Objective 1: Additional Analyses

Because some crest factors were calculated that were greater than 9.0, descriptive statistics summarizing vibration dose values are reported below in Table 15. These values are compared to VDV calculated for vehicles of similar size and weight from past literature in Table 16.
Table 15. Descriptive Statistics for Whole-Body Vibration VDV

<table>
<thead>
<tr>
<th></th>
<th>X-axis</th>
<th>Y-axis</th>
<th>Z-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.283</td>
<td>1.060</td>
<td>1.176</td>
</tr>
<tr>
<td>Median</td>
<td>1.270</td>
<td>1.037</td>
<td>1.158</td>
</tr>
<tr>
<td>Max</td>
<td>2.627</td>
<td>2.220</td>
<td>2.070</td>
</tr>
<tr>
<td>Min</td>
<td>0.804</td>
<td>0.643</td>
<td>0.760</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.267</td>
<td>0.230</td>
<td>0.177</td>
</tr>
</tbody>
</table>

Table 16. Mean VDV in Ambulance Compared to Similar Vehicles

<table>
<thead>
<tr>
<th></th>
<th>X-axis (Mean (standard deviation) (m/s^{1.75}))</th>
<th>Y-axis (Mean (standard deviation) (m/s^{1.75})</th>
<th>Z-axis (Mean (standard deviation) (m/s^{1.75}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulance</td>
<td>1.28 (0.267)</td>
<td>1.06 (0.230)</td>
<td>1.18 (0.177)</td>
</tr>
<tr>
<td>Van (good road)*</td>
<td>9.1 (3.55)</td>
<td>8.8 (3.81)</td>
<td>12.0 (1.79)</td>
</tr>
<tr>
<td>Van (poor road)*</td>
<td>8.4 (0.80)</td>
<td>8.0 (0.40)</td>
<td>13.2 (3.01)</td>
</tr>
<tr>
<td>Van (cobblestone)*</td>
<td>21.1 (0.89)</td>
<td>20.9 (1.06)</td>
<td>23.2 (0.85)</td>
</tr>
<tr>
<td>Car**</td>
<td>NR</td>
<td>NR</td>
<td>1.51 (NR)</td>
</tr>
<tr>
<td>Van**</td>
<td>NR</td>
<td>NR</td>
<td>1.76 (NR)</td>
</tr>
<tr>
<td>Bus**</td>
<td>NR</td>
<td>NR</td>
<td>2.17 (NR)</td>
</tr>
<tr>
<td>Minibus (asphalt)***</td>
<td>5.237 (NR)</td>
<td>4.910 (NR)</td>
<td>8.288 (NR)</td>
</tr>
<tr>
<td>Single Decker Bus (asphalt)***</td>
<td>6.721 (NR)</td>
<td>15.862 (NR)</td>
<td>19.233 (NR)</td>
</tr>
<tr>
<td>Double Decker Bus (asphalt)***</td>
<td>6.417 (NR)</td>
<td>6.498 (NR)</td>
<td>4.570 (NR)</td>
</tr>
</tbody>
</table>

*Source: Okunribido, Magnusson, & Pope, 2006
**Paddan & Griffin, 2001 (VDV values reported for most severe axis; axis not specified)
***Okunribido, 2007

ISO standard 2361-1 provides lower and upper bounds for VDV to be between 8.5 m/s^{1.75} and 17.0 m/s^{1.75}. These bounds describe a “health caution zone” which indicates thresholds that are believed to contribute to potential negative health effects.
over time. The described health caution zone is for an exposure of between 4 and 8 hours, which is much longer than the 96.2 minute daily exposure to vibration in the rear patient compartment experienced by medics. ISO 2361-1 B.2 provides an equation which establishes a relationship between different exposure durations, shown below in Equation 1.

\[a_{w1} T_1^{\frac{1}{4}} = a_{w2} T_2^{\frac{1}{4}} \]

Eq. 1

This equation described a health caution zone between 12.7 m/s^{1.75} and 21.4 m/s^{1.75}. Caution is recommended when using this equation to examine vibration exposure in shorter exposure durations than 4 hours due to the lack of study of long-term effects from short-term WBV exposure. However, it is reasonable to assert that the VDV statistics collected from this study are similar to VDV levels for similar-style ambulances operating under heavier call volumes resulting in longer exposure durations. VDV comparisons were made to the health caution zone thresholds and found to be significantly lower than the lower bound of 12.7.

Hypothesis 2.1 – Patient Injury in Emergency Mode

Data used in this analysis was collected from Patient Care Records (PCRs) provided by Bozeman AMR. A PCR is filled out as part of standard protocol for every patient transport, and details specific information pertaining to patient illness and medic responsive activities while under the care of an EMS worker. The record set used for analysis includes all PCRs submitted by AMR between July 2, 2005 and July 1, 2010.
This data set consists of 13,253 individual calls, and the variables, descriptions, and example data entry values from the PCRs are listed below in Table 17.

Of the 13,253 PCRs provided by, the only records included in this analysis were those with an outcome of “Transported,” which excluded 3,802 records. Excluded patient outcomes include “Patient Refused AMA (2345 records excluded),” “Cancelled FD/PD (702),” “Cancelled ENR (386),” “Dead On Arrival (97),” “No Patient Found (84),” “No Treatment Req’d (53),” “Lift Assist (48),” “Inter-Facility (29),” “Treated and Pronounced (26),” “Police Custody (17),” “Treat/No Trans. (14),” and “Helicopter (1),”

Table 17. Patient Care Report Variable Descriptions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Example PCR Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Mode: From Scene (Initial)</td>
<td>Whether or not the transportation was previously scheduled, an immediate request but no lights and sirens, or a request with lights and sirens</td>
<td>Scheduled, Urgent (no lights and sirens), Emergency (lights and sirens)</td>
</tr>
<tr>
<td>Transportation Mode: From Scene (Last)</td>
<td>Whether or not the transportation was previously scheduled, an immediate request but no lights and sirens, or a request with lights and sirens</td>
<td>Scheduled, Urgent (no lights and sirens), Emergency (lights and sirens)</td>
</tr>
<tr>
<td>Primary Illness/Symptom</td>
<td>Primary patient injury or illness recorded by EMT</td>
<td>Trauma, pain, seizure, breathing problem, bleeding, etc. (62 unique primary illnesses)</td>
</tr>
<tr>
<td>Administered Care</td>
<td>Specific procedures performed by the EMS worker providing care during the transportation</td>
<td>CPR, 12-lead EKG, Peripheral IV, intubation, bandaging, etc (47 unique procedures)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Whether or not the patient was successfully transported. If patient was not transported, specific reason is detailed.</td>
<td>Transported, Cancelled en route, no treatment required, no patient found, dead on arrival, etc (13 unique outcomes)</td>
</tr>
</tbody>
</table>
An inflated model was built consisting of all levels of the predictor *patient illness*, but a definitive model could not be built due to quasi-complete separation of data. Quasi-complete separation of data occurs when any cell in an outcome table has a zero events. By way of example, this was evident in the data for “Nausea.” There were 229 instances where nausea was the primary patient illness, but there were zero instances where nausea was the primary *patient illness* and the ambulance traveled in emergency transportation mode. All *patient illnesses* that had zero events in either emergency or non emergency mode were dropped from the model. Dropped *illnesses* include shock (1 observation), behavioral/psychological (229), nausea (126), vertigo (54), fever/flu (44), CP-Musc/Skel (35), epistaxis (20), hypertension (20), dehydration (18), diarrhea (18), swelling (16), hypothermia (14), eye problem (12), malaise (8), environmental injury (4), mass/lesion (3), newborn (3), contagious disease (1), device/equipment (1), drainage/discharge (1), and “not applicable (10).” Shock was only observed during emergency transportation mode, and the remaining *patient illnesses* were observed only during nonemergency transportation mode.

The Proc Logistic procedure was applied in SAS to build a binary logistic regression model using the remaining variables. The SAS code is provided in Appendix E and output showing a complete table of *patient illness* predictors is shown in Appendix F. Significant and marginally significant *patient illnesses* are reported in Table 18. Coefficient estimates should be interpreted such that for a trip with a listed primary patient illness, the difference in log odds for emergency transportation mode is expected to change by the listed coefficient estimate. By way of example, a transport with a
patient whose primary illness is “Airway Obstruction” increases the likelihood of emergency transportation over non-emergency transportation mode by $e^{1.7361}$, or 5.7 times.

Table 18. Odds Ratio for Patient Illnesses and Emergency Mode

<table>
<thead>
<tr>
<th>Patient Illness</th>
<th>Coefficient Estimate</th>
<th>Odds Ratio</th>
<th>95% Wald Lower CI</th>
<th>95% Wald Upper CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway Obstruct</td>
<td>1.7361</td>
<td>5.7</td>
<td>1.1</td>
<td>28.9</td>
<td>0.0368</td>
</tr>
<tr>
<td>Altered LOC</td>
<td>0.8353</td>
<td>2.3</td>
<td>1.1</td>
<td>4.9</td>
<td>0.0280</td>
</tr>
<tr>
<td>Asthma</td>
<td>1.4678</td>
<td>4.3</td>
<td>0.9</td>
<td>21.7</td>
<td>0.0736</td>
</tr>
<tr>
<td>Bleeding</td>
<td>0.8229</td>
<td>2.3</td>
<td>1.0</td>
<td>4.9</td>
<td>0.0376</td>
</tr>
<tr>
<td>Breathing Prob.</td>
<td>5.5696</td>
<td>262.3</td>
<td>100.3</td>
<td>686.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>1.3878</td>
<td>4.0</td>
<td>1.8</td>
<td>8.8</td>
<td>0.0005</td>
</tr>
<tr>
<td>Cardiac Sympt.</td>
<td>1.0661</td>
<td>2.9</td>
<td>1.4</td>
<td>6.1</td>
<td>0.0049</td>
</tr>
<tr>
<td>Chest Pain</td>
<td>2.2216</td>
<td>9.2</td>
<td>2.6</td>
<td>33.2</td>
<td>0.0007</td>
</tr>
<tr>
<td>CHF/PE</td>
<td>1.5930</td>
<td>4.9</td>
<td>1.0</td>
<td>24.8</td>
<td>0.0535</td>
</tr>
<tr>
<td>Fever/Flu</td>
<td>1.1656</td>
<td>3.2</td>
<td>0.9</td>
<td>10.8</td>
<td>0.0606</td>
</tr>
<tr>
<td>Headache</td>
<td>2.2862</td>
<td>9.8</td>
<td>3.5</td>
<td>27.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ingestion</td>
<td>2.2216</td>
<td>9.2</td>
<td>0.9</td>
<td>91.0</td>
<td>0.0572</td>
</tr>
<tr>
<td>Not App.</td>
<td>1.9985</td>
<td>7.4</td>
<td>1.8</td>
<td>30.1</td>
<td>0.0053</td>
</tr>
<tr>
<td>Poison/OD</td>
<td>4.1957</td>
<td>66.4</td>
<td>18.5</td>
<td>238.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Resp. Arrest</td>
<td>1.6883</td>
<td>5.4</td>
<td>2.2</td>
<td>13.5</td>
<td>0.0003</td>
</tr>
<tr>
<td>Resp. Distress</td>
<td>0.7109</td>
<td>2.0</td>
<td>0.9</td>
<td>4.4</td>
<td>0.0722</td>
</tr>
<tr>
<td>Sick Person</td>
<td>1.3413</td>
<td>3.8</td>
<td>1.7</td>
<td>8.8</td>
<td>0.0015</td>
</tr>
<tr>
<td>Terminal Illness</td>
<td>1.0188</td>
<td>2.8</td>
<td>1.4</td>
<td>5.5</td>
<td>0.0039</td>
</tr>
<tr>
<td>Trauma</td>
<td>2.7717</td>
<td>16.0</td>
<td>6.3</td>
<td>40.5</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Patient illnesses which were not evaluated in the regression model due to under-representation of events were analyzed separately to determine if that illness was overrepresented in emergency or nonemergency transports. Because the contingency table cells have both very small (event) and very large (non-event) values, neither Chi-Square nor Fishers’ Exact test was possible, but the percent association is shown below in Table 19.
Table 19. Patient Illnesses Not Analyzed in Model

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Behav/Psych</td>
<td>0</td>
<td>229</td>
<td>0.0</td>
</tr>
<tr>
<td>Contagious Disease</td>
<td>0</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>COPD</td>
<td>1</td>
<td>14</td>
<td>6.7</td>
</tr>
<tr>
<td>CP-Musc./Skel.</td>
<td>0</td>
<td>35</td>
<td>0.0</td>
</tr>
<tr>
<td>Dehydration</td>
<td>0</td>
<td>18</td>
<td>0.0</td>
</tr>
<tr>
<td>Diabetic</td>
<td>5</td>
<td>114</td>
<td>4.2</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0</td>
<td>18</td>
<td>0.0</td>
</tr>
<tr>
<td>DT’s</td>
<td>1</td>
<td>25</td>
<td>3.8</td>
</tr>
<tr>
<td>Envirnmntl Inj.</td>
<td>0</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>0</td>
<td>20</td>
<td>0.0</td>
</tr>
<tr>
<td>Eye Problem</td>
<td>0</td>
<td>12</td>
<td>0.0</td>
</tr>
<tr>
<td>Heart/Cardiac</td>
<td>8</td>
<td>30</td>
<td>21.1</td>
</tr>
<tr>
<td>Hypotension</td>
<td>3</td>
<td>46</td>
<td>6.1</td>
</tr>
<tr>
<td>Inhalation</td>
<td>1</td>
<td>4</td>
<td>20.0</td>
</tr>
<tr>
<td>Malaise</td>
<td>0</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>Mass/Lesion</td>
<td>0</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td>126</td>
<td>0.0</td>
</tr>
<tr>
<td>Newborn</td>
<td>0</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>Seizure</td>
<td>25</td>
<td>453</td>
<td>5.2</td>
</tr>
<tr>
<td>Stroke/CVA</td>
<td>17</td>
<td>164</td>
<td>9.4</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>10</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Hypothesis 2.2 – Medical Response Activity in Emergency Mode

Initially an inflated model was going to be built including both patient illness and medical response activity. However, this violated the assumption that the main factors in the model are independent. It is reasonable to assume that the medical response activity is related to the patient illness, as certain activities are treatments for specific injuries. Consequently, response activities were analyzed in a separate model from patient illnesses to identify any significant relationships between medical response activity and...
emergency transportation mode. These factors are not assumed to be causal, since it is reasonable to assert that the medical response activity does not influence emergency mode. However, it is useful to understand the procedures which are frequently associated with emergency mode to provide a better understanding of the working environment in the rear patient compartment during emergency transportations.

An inflated model was built consisting of all levels of the predictor medical response, but a definitive model could not be built due to quasi-complete separation of data. All medical responses that had zero events in either emergency or non-emergency mode were dropped from the model. Dropped medical responses include OB Delivery (1 observation), psych. assist (20), CPAP (8), cricothyrotomy (1), gastric tube (2), heparin/saline lock (2), and Magill forceps (4). Cricothyrotomy was only observed during emergency transportation mode, and the remaining medical response activities were observed only during nonemergency transportation mode.

The Proc Logistic procedure was applied in SAS to build a binary logistic regression model using the remaining variables. The SAS code for analysis is provided in Appendix G and output showing a complete table of medical response predictors is shown in Appendix H. Significant and marginally significant medical responses are reported in Table 20. Coefficient estimates should be interpreted such that for a trip with a listed medical response activity, the difference in log odds for emergency transportation mode is expected to change by the listed coefficient estimate. By way of example, a transport with a patient whose primary illness is “Airway/Manual” increases the
likelihood of emergency transportation mode over nonemergency transportation mode by $e^{0.7745}$, or 2.2 times.

Table 20. Odds Ratio for Medical Response Activity and Emergency Mode

<table>
<thead>
<tr>
<th>Medic Response Activity</th>
<th>Coefficient Estimate</th>
<th>Odds Ratio</th>
<th>95% Wald Lower CI</th>
<th>95% Wald Upper CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway – Manual</td>
<td>0.7745</td>
<td>2.2</td>
<td>1.0</td>
<td>4.5</td>
<td>0.0371</td>
</tr>
<tr>
<td>Airway – Oral/Nasal</td>
<td>1.2210</td>
<td>3.4</td>
<td>2.0</td>
<td>5.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bandaging/Hemorrhage Control</td>
<td>0.8108</td>
<td>2.3</td>
<td>1.3</td>
<td>3.8</td>
<td>0.0023</td>
</tr>
<tr>
<td>BVM-Assisted Ventilation</td>
<td>1.5421</td>
<td>4.7</td>
<td>2.3</td>
<td>9.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>AED</td>
<td>-1.8085</td>
<td>0.2</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0775</td>
</tr>
<tr>
<td>Extrication</td>
<td>1.4216</td>
<td>4.1</td>
<td>2.2</td>
<td>7.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>Restraints</td>
<td>0.7292</td>
<td>2.1</td>
<td>1.0</td>
<td>4.5</td>
<td>0.0631</td>
</tr>
<tr>
<td>Spinal Precautions</td>
<td>1.0470</td>
<td>2.8</td>
<td>2.1</td>
<td>3.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>Splint-Traction</td>
<td>1.5435</td>
<td>4.7</td>
<td>1.8</td>
<td>12.4</td>
<td>0.0018</td>
</tr>
<tr>
<td>Suction</td>
<td>1.7229</td>
<td>5.6</td>
<td>3.0</td>
<td>10.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>12-Lead EKG</td>
<td>0.2685</td>
<td>1.3</td>
<td>1.0</td>
<td>1.7</td>
<td>0.0658</td>
</tr>
<tr>
<td>Blood Drawn</td>
<td>-0.3083</td>
<td>0.7</td>
<td>0.6</td>
<td>0.9</td>
<td>0.0118</td>
</tr>
<tr>
<td>Cardiac Monitor</td>
<td>0.5270</td>
<td>1.7</td>
<td>1.3</td>
<td>2.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Defibrillation</td>
<td>1.7007</td>
<td>5.5</td>
<td>1.7</td>
<td>17.1</td>
<td>0.0035</td>
</tr>
<tr>
<td>Table 20 Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Tidal CO2</td>
<td>1.1566</td>
<td>3.1</td>
<td>1.4</td>
<td>7.1</td>
<td>0.0049</td>
</tr>
<tr>
<td>Intraosseous</td>
<td>3.0034</td>
<td>20.2</td>
<td>5.5</td>
<td>73.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>IV-Peripheral</td>
<td>1.5337</td>
<td>4.6</td>
<td>3.2</td>
<td>6.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Medication Admin</td>
<td>0.3482</td>
<td>1.4</td>
<td>1.1</td>
<td>1.8</td>
<td>0.0026</td>
</tr>
<tr>
<td>Pacing</td>
<td>2.2199</td>
<td>9.2</td>
<td>2.2</td>
<td>38.2</td>
<td>0.0022</td>
</tr>
<tr>
<td>Rescue Airway</td>
<td>3.0130</td>
<td>20.3</td>
<td>1.5</td>
<td>269.1</td>
<td>0.0222</td>
</tr>
</tbody>
</table>

Medic response activities which were not evaluated in the regression model due to under-representation of events were analyzed separately to determine if each response was overrepresented in emergency or nonemergency transports. Because the contingency table cells have both very small (event) and very large (non-event) values, neither Chi-
Square nor Fishers’ Exact test was possible, but the percent association is shown below in Table 21.

Table 21. Medic Response Activities Not Analyzed in Model

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OB Delivery</td>
<td>0</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Psych. Assist</td>
<td>0</td>
<td>20</td>
<td>0.0</td>
</tr>
<tr>
<td>CPAP</td>
<td>0</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>Cricothyrotomy</td>
<td>1</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>Gastric tube</td>
<td>0</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>Heparin/Saline Lock</td>
<td>0</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>Magill Forceps</td>
<td>0</td>
<td>4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Hypothesis 2.3 – Additional Analysis

Reducing the predictor variables to achieve a data set that is not characterized by separation of data has the unfortunate effect of eliminating what may be some of the more useful predictive measures. For example, behavioral and psychological illnesses are characterized solely by nonemergency transportation mode (229 of 229 transports), but are not analyzed in the logistic regression model due to the absence of events occurring during emergency travel. As part of exploratory data analysis, a classification tree for categorical data was developed in R using transportation mode as a response variable, with patient illness and medical response action as predictor variables. The tree is shown below in Figure 12.
Figure 12. Classification Tree for Emergency Transportation Mode

The tree shows that high probabilities of emergency mode are associated with interactions between the presence of BVM-Assisted Ventilation response and Poison/OD illness, as well as with the presence of Cardiac Arrest illness when BVM-Assisted Ventilation response is absent.

Hypothesis 3.1 – Observed Restraint Usage in Rear of Ambulance

Video data from the ambulance was collected in the rear patient compartment during emergency response trips. One of the variables that was analyzed was restraint usage, which was reduced as a binary variable (restrained | not restrained) any time that the attending medic was visible on the camera during a transport. In total, 79 medics were analyzed from 67 unique trips. When multiple medics were active in the cabin
during a trip, the medics were analyzed separately. The total time belted is reported as a percentage of the total time the medic is present in the video. Of the 79 observed medic trips, three contained medics who at some point were restrained. Because the represented restrained medics are so infrequent, they are presented as a case-by-case basis in Table 22. The trip duration indicates the entire period of time in which the medic is visible in the rear patient compartment. Total time belted indicates the total amount of time during which the medic is observed to be belted. The number of belted periods indicates the number of separate periods in which the medic is restrained; a medic who repeatedly engages and disengages his restraint during the ambulance transport will have a higher number of belted periods than a medic who remains belted throughout, or disengages his restraint and does not re-engage it at a later point in the trip.

Table 22. Case Listing of Observations with Restrained Medics

<table>
<thead>
<tr>
<th>Medic Trip Index</th>
<th>Trip Duration (s)</th>
<th>Total Time Belted</th>
<th>Percent of Time Belted</th>
<th>Number of Belted Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6368.8</td>
<td>4500.8</td>
<td>70.7%</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1244.2</td>
<td>1055.7</td>
<td>84.8%</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>579.6</td>
<td>275.2</td>
<td>47.5%</td>
<td>1</td>
</tr>
<tr>
<td>4-79</td>
<td>Variable</td>
<td>Variable</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

The observed medics in restrained observations 1 and 2 were from the same medic, who was also observed with a 0% restraint rate in 2 additional trips. Trip 3 was from a different medic, who was observed with a 0% restraint rate in 4 additional trips. The remaining 10 medics who are represented in this set were observed in 75 trips with a 0% restraint rate.
The data analysis was performed examining the per-trip observed restraint rate, with each observation being a number representative of the percent of time the medic was observed in a restrained state during each trip. Descriptive statistics and a histogram is shown below in Table 23 and the histogram showing the distribution of observations is shown in Figure 13.

Table 23. Descriptive Statistics for Observed Rear Restraint Rates

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Percent of Time Belted in Rear (n = 79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.6%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>13.36%</td>
</tr>
<tr>
<td>Median</td>
<td>0.0%</td>
</tr>
<tr>
<td>Maximum</td>
<td>84.8%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Figure 13. Distribution of Observed Rear Restraint Rates

Due to the large number of ties in the data, the Wilcoxon signed-rank test was only able to use 3 of 79 observations. This smaller sample showed that the median value
was not dissimilar to the hypothesized median of 0% restraint use in the front (WS=6.0, n=3, p=0.181), however the small sample size cannot be used to reliably compare restraint rates against a hypothesized median value.

Because standard nonparametric testing methods lost power due to ties, the restraint usage data was analyzed as a proportion, testing a one-sided confidence limit against a hypothesized value of 0.0 which represents 0.0% restraint use in the rear of the ambulance.

\[
H_0: p = 0.0 \\
H_1: p > 0.0
\]

\[
\text{Lower CI Limit} = \hat{p} - Z_{\alpha} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
\]

\[
\text{Lower CI Limit} = 0.0380 - 1.65 \sqrt{\frac{0.0380(1 - 0.0380)}{79}} = 0.0165
\]

If the lower limit to the confidence interval includes 0.0, then the proportion will not be significantly different to 0.0% restraint use in the ambulance. Because the lower limit of the confidence interval does not include 0.0, the null hypothesis is rejected, showing that the observed rear restraint usage rate is higher than 0% compliance.

However, reducing the alpha level from 0.05 to 0.03836 would include 0.0 in the lower limit to the confidence interval.
Hypothesis 3.2 – Self-Reported Restraint Usage in Rear of Ambulance

Survey data was collected from Montana EMS workers. One question asked was “When you are in the rear patient cabin, providing patient care, what percentage of the time do you wear a seatbelt?” Participants then provided self-reported restraint usage rates as a numeric response. If the participant provided a definite categorical response (“never” or “always”), the corresponding numeric response was used for data analysis (0 percent or 100 percent). No subjective categorical responses provided by participants (“mostly” or “sometimes”) were used. This question was answered by 191 people, or 95% of the 201 survey participants. Descriptive statistics are shown in Table 24, and the histogram showing the distribution of responses is shown in Figure 14.

Table 24. Descriptive Statistics for Self-Reported Rear Restraint Rates

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Percent of Time Belted in Rear (n = 191)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>21.5%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>27.1</td>
</tr>
<tr>
<td>Median</td>
<td>10.0%</td>
</tr>
<tr>
<td>Maximum</td>
<td>100 %</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0 %</td>
</tr>
</tbody>
</table>
Figure 14. Distribution of Self-Reported Rear Restraint Rates

To test the hypothesis, a One-Sample Wilcoxon Signed Rank Test was used to compare median values against a null value of 0% restraint use, which found that the median value for self-reported rear restraint rate was significantly different than the hypothesized value of 0% (WS=9453, n=137, p=0.000).

Hypothesis 3.3 – Self-Reported Restraint Usage in Front of Ambulance

Survey data was collected from Montana EMS workers. One question asked was “When you are in the front driver cabin, as a driver or passenger, what percentage of the time do you wear a seatbelt?” Participants then provided self-reported restraint usage
rates as a numeric response. If the participant provided a definite categorical response (“never” or “always”), the corresponding numeric response was used for data analysis (0 percent or 100 percent). No subjective categorical responses provided by participants (“mostly” or “sometimes”) were used. This question was answered by 196 people of the 201 total survey participants (98% response rate). Descriptive statistics are shown in Table 25, and the histogram showing the distribution of responses is shown in Figure 15.

Table 25. Descriptive Statistics for Self-Reported Front Restraint Rates

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Percent of Time Belted in Front (n = 191)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>96.8%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>12.1%</td>
</tr>
<tr>
<td>Median</td>
<td>100.0%</td>
</tr>
<tr>
<td>Maximum</td>
<td>100.0%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Figure 15. Distribution of Self-Reported Front Restraint Rates
Due to the large number of ties in the data, the Wilcoxon signed-rank test was only able to use 27 of 196 observations. This smaller sample showed that the median value was not equal to the hypothesized median of 100% restraint use in the front (WS=0.0, n=27, p=0.000), however the small sample size cannot be used to reliably compare restraint rates against a hypothesized median value.

Because standard nonparametric testing methods lost power due to ties, the restraint usage data was analyzed as a proportion, testing against a hypothesized value of 1.0 which represents 100% restraint use in the front of the ambulance.

\[H_0: p = 1.0 \]
\[H_1: p < 1.0 \]

\[Upper CI Limit = \hat{p} + Z_\alpha \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \]

\[Upper CI Limit = 0.8622 + 1.65 \sqrt{\frac{0.8622(1 - 0.8622)}{196}} = 0.9027 \]

If the upper limit to the confidence interval includes 1.0, then the proportion will not be significantly different to 100% restraint use in the ambulance. Because the upper limit of the confidence interval does not include 1.0, the null hypothesis is rejected, showing that the front restraint usage rate is slightly less than 100% compliance.
Hypothesis 4.1 – Safety Culture as a Predictor of Restraint Compliance

Survey data provided both restraint and safety culture SAQ scores for each participant. Of the 201 survey participants, 19 completed surveys contained missing values in one or more of the following categories: adjusted SAQ-EMS scores for teamwork climate, job satisfaction, stress recognition, perception of management, working conditions, and self-reported restraint rates in the rear patient compartment. Restraint rate is a self-reported variable regarding the percentage of time the EMT is restrained in the rear of the ambulance, while providing patient care. The SAQ-EMS scores are averages of responses to multiple questions involving each category, adjusted to a scale of 1-100. SAQ-EMS scores higher than 75 indicate agreement with positive attitudes about each category, and high restraint rates indicate that the EMS worker spends a higher percentage of time restrained in the rear of the ambulance. A regression model was built using the SAQ-EMS score categories as predictor variables for the response variable of restraint rate in the rear patient compartment, with the following hypothesis:

Model: $y_i = \beta_0 + \beta_1 x_1 + \cdots + \beta_j x_j + \epsilon_{ij}$

Where:

y_i represents the i:th response variable for self-reported rear restraint usage

x_i represents the j:th category of SAQ score ($j=1$ to 6);

β_j represents the j:th coefficient for SAQ score category;
\(\epsilon_{ij} \) represents the \(i^{th}, j^{th} \) random error component.

\[
H_1: \beta_1 = \beta_2 = \cdots = \beta_j \\
H_1: \text{at least one } \beta_j \neq 0
\]

The only SAQ-EMS categorical predictor which was significant in this model was Safety Climate (\(t=2.11, p=0.037 \)). The complete table of predictors and coefficients is shown below in Table 26.

Table 26. Regression Model Using SAQ Categories to Predict Restraint Compliance

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>SE Coef</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-2.68</td>
<td>12.09</td>
<td>-0.22</td>
<td>0.825</td>
</tr>
<tr>
<td>Teamwork Climate</td>
<td>-0.32</td>
<td>0.21</td>
<td>-1.56</td>
<td>0.121</td>
</tr>
<tr>
<td>Safety Climate**</td>
<td>0.45</td>
<td>0.21</td>
<td>2.11</td>
<td>0.037</td>
</tr>
<tr>
<td>Job Satisfaction</td>
<td>0.002</td>
<td>0.20</td>
<td>0.01</td>
<td>0.991</td>
</tr>
<tr>
<td>Stress Recognition</td>
<td>0.11</td>
<td>0.10</td>
<td>1.10</td>
<td>0.275</td>
</tr>
<tr>
<td>Perception of Management</td>
<td>-0.012</td>
<td>0.1565</td>
<td>-0.08</td>
<td>0.939</td>
</tr>
<tr>
<td>Working Conditions</td>
<td>0.12</td>
<td>0.17</td>
<td>0.69</td>
<td>0.491</td>
</tr>
</tbody>
</table>

Hypothesis 4.2 – Focus Group Findings for Low Restraint Compliance

Focus groups were asked “What can influence your use of restraint devices?” Answers were varied, and the reasons provided included “The procedures I’m trying to do,” along with a comment addressing the importance of the patient injury severity, “I would say the ideal situation for a seatbelt is a non-emergent, because 75 percent of the time a patient [in a non-emergent call] needs minimal care: check vitals, so it’s not a lot
of moving around.” A third point of view identified in focus group was a more sobering rationale of the inherently poor safety conditions in the rear patient compartment in the event of a crash, “I mean realistically, if we crash, being in the back of the ambulance, we’re going to be dead…And thinking about it that way. I mean, if I’m restrained and I end up paralyzed versus being not restrained and dead, I’d rather be dead, but that’s just me.”

Hypothesis 5.1 – Reach Envelops for Seated Medics

Inside the patient compartment, medic equipment and storage locations for providing patient care were analyzed by examining reaches. Reaches resulted from up to four unique reach origin positions to up to nine unique reach termination points that were observed in the visual data reduction. Figure 16 shows an overhead view of the rear patient compartment, with the reach envelopes for a 5% female and a 95% male care provider sitting in the primary patient care position on the bench. The two concentric circles for each modeled caregiver represent the envelope of convenient reach (inner circle), and the envelope of maximum reach (outer circle).
Video data from the ambulance was collected in the rear patient compartment during emergency response trips. One of the variables that was analyzed was \textit{reaches}, which was characterized by the medic’s position at the initiation of the reach, the duration of the reach (seconds), and the termination point of the reach describing what the medic was reaching for. In total, 67 unique trips were analyzed. When multiple medics were active in the cabin during a trip, the medics were analyzed separately, yielding an additional 12 observations. In the 79 observed medic trips, 111 unique reaches were observed, reported in Table 27. The reach duration indicates the entire period of time in which the
medic is visible in the rear patient compartment. Reach duration is the length of time in seconds from the beginning of the reach until the medic resumed a neutral posture, or began a second reach. The reach termination is the location within the ambulance that the medic was reaching for. The total number of reaches is the observed event count for each unique reach.

From examining reach envelopes, the only reaches within reach envelopes are from the side-facing jump seat to the electrical panel (Reach index 10), side-facing jump seat to the adjacent rear middle storage (4), rear-facing seat to the electrical panel (8), rear-facing seat to blanket and linen storage (12), and the rear-facing seat to the pass-through window.

Table 27. Unique Reaches and Descriptive Characteristics

<table>
<thead>
<tr>
<th>Medic Reach Index</th>
<th>Avg. Reach Duration (s)</th>
<th>Reach Termination</th>
<th>Reach Origin</th>
<th>Number of Reaches Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.32</td>
<td>Rear Top Side Storage</td>
<td>Bench Seat</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6.12</td>
<td>Rear Middle Side Storage</td>
<td>Rear Facing Seat</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>7.46</td>
<td>Rear Middle Side Storage</td>
<td>Floor near Door</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>15.71</td>
<td>Rear Middle Side Storage</td>
<td>Side Jump Seat</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>12.12</td>
<td>Rear Middle Side Storage</td>
<td>Bench Seat</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>10.96</td>
<td>Rear Bottom Side Storage</td>
<td>Floor near Door</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>34.42</td>
<td>Front Side Storage</td>
<td>Rear Facing Seat</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>10.30</td>
<td>Electrical Panel</td>
<td>Rear Facing Seat</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>11.39</td>
<td>Electrical Panel</td>
<td>Floor near Door</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>6.87</td>
<td>Electrical Panel</td>
<td>Side Jump Seat</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 27 Continued

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12.93</td>
<td>Electrical Panel</td>
<td>Bench Seat</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>3.78</td>
<td>Blanket Storage</td>
<td>Rear Facing Seat</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>5.07</td>
<td>Blanket Storage</td>
<td>Floor near Door</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>7.64</td>
<td>Blanket Storage</td>
<td>Side Jump Seat</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>10.49</td>
<td>Blanket Storage</td>
<td>Bench Seat</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>6.03</td>
<td>Monitor on Bench</td>
<td>Rear Facing Seat</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>7.13</td>
<td>Monitor on Bench</td>
<td>Side Jump Seat</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>4.94</td>
<td>O2 Equip on Stretcher</td>
<td>Bench Seat</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>6.45</td>
<td>Pass-thru window</td>
<td>Rear Facing Seat</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>18.67</td>
<td>Pass-thru window</td>
<td>Bench Seat</td>
<td>11</td>
</tr>
</tbody>
</table>

Hypothesis 5.2 – REBA Reach Analysis

Reach data was analyzed for 79 observed medic trips, resulting in the identification of 111 reaches (20 unique reaches). Each reach was characterized by the medic’s position at the initiation of the reach and the termination point of the reach describing what the medic was reaching for. Each individual reach was analyzed using Rapid Entire Body Assessment (REBA) analysis to assess ergonomic risk during the various reaches. These REBA scores are presented, along with the scoring metrics generally used to analyze REBA analyses. REBA analysis was conducted at the midway point of each trip, which consistently was the point of the most severe posture between two neutral postures. For example, Figure 17 shows an EMS worker reaching from a seated position on the bench seat (figure right side) to the electrical panel (figure left). REBA analysis was conducted at the reach termination, as shown below.
Images were not collected from the video recorded during actual EMS patient care transports. This was due to two reasons: 1) IRB restricted the length of time video images were allowed to be kept to one month, and 2) the patient confidentiality masks restricted a full view of the EMS workers’ body positions and postures. Video was taken at focus groups of the medics performing various procedures, and REBA analysis was conducted on screenshots of the appropriate reaches. Any reaches which were not able to be collected from those mockup videos were recreated by the researcher, and the visual material was used for REBA analysis.

The scoring metrics for REBA analysis revolve around the amount of risk due to the body positioning. Scores should be interpreted as shown in below in Table 28.
Table 28. REBA Scoring Risk Level Interpretation

<table>
<thead>
<tr>
<th>REBA Score</th>
<th>Risk Level</th>
<th>Action (including further assessment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Negligible</td>
<td>None necessary</td>
</tr>
<tr>
<td>2-3</td>
<td>Low</td>
<td>May be necessary</td>
</tr>
<tr>
<td>4-7</td>
<td>Medium</td>
<td>Necessary</td>
</tr>
<tr>
<td>8-10</td>
<td>High</td>
<td>Necessary soon</td>
</tr>
<tr>
<td>11-15</td>
<td>Very High</td>
<td>Necessary NOW</td>
</tr>
</tbody>
</table>

The list of reaches and REBA scores is shown below in Table 29, the REBA sheets used to conduct analysis are provided in Appendix I.

Table 29. REBA Scores for Observed Medic Reaches

<table>
<thead>
<tr>
<th>Medic Reach Index</th>
<th>REBA Score</th>
<th>Risk Level</th>
<th>Number of Times Each Reach was Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>High</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>High</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Low</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>High</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Medium</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Negligible</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>High</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>Medium</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>High</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Medium</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>High</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>High</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>High</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>High</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>Low</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>High</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 29 Continued
CHAPTER 5

DISCUSSION AND CONCLUSIONS

Objective 1.1 – Whole-Body-Vibration Peak Acceleration

Maximum forces experienced by the medics during the data collection period were as high as 11.3 m/s² in the vertical direction (z-axis), 9.1 m/s² in the direction of forward travel (x-axis), and 6.5 m/s² laterally (y-axis). Of the three axes, the most severe was generally the vertical axis. The average peak forces that were observed in this study (x=4.6 m/s²; y=3.2 m/s²; z=5.6 m/s²) are comparable to the peak acceleration values reported for vehicles of similar size in past literature.

Severe deceleration for EMS workers in the type III ambulance studied in this paper is currently mitigated by a vertical “net” of nylon webbing designed to stabilize the medic during extreme force events, and to act as a catcher to prevent impact with the forward wall and storage unit in the event the medic is not restrained. Mitigation for lateral forces involves a lap belt restraint and a pad designed to protect the medic’s head from impact with the passenger side rear cabin wall.

While environmental g-force levels do not have standard values known to impact efficacy of care, it is reasonable to assert that forces of this magnitude could substantially affect motor activities if they were being conducted during periods of extreme lateral, forward, or vertical accelerations. These forces affect the efficacy of a seated medic, and would have more severe effect on an EMS worker standing in an awkward posture.
reaching for supplies. A medic unprepared for a severe lateral event may find himself losing balance in the rear patient compartment. In this case, the medic could become a projectile in the rear cabin, and potentially inadvertently injure his patient, or himself.

While a driver may be able to notify the attending EMS care provider about upcoming steering or braking events, it is important to note that the communication between the driver and the attending EMS care provider is highly dependent on the style of ambulance they are working in, as well as ambient noise conditions. Some ambulances (such as the one in this study) have a small pass-through window that can be used for verbal communication between the rear medic and the driver, but the medics noted in focus groups that it can be difficult to get the attending EMS worker’s attention if they are highly involved in their tasks, or if the sirens in the ambulance are activated. In this case, it may be beneficial to have some sort of communication or notification system between the driver and the attending EMS worker that is either audible or visible in the rear patient compartment while they are providing care. This may be in the form of radio communication, or even an advance warning light advising the attending EMS worker of upcoming severe g-forces due to high-speed turns or obstacles in the road, so the EMS worker can temporarily cease activities which could be impacted by severe driving events (IV sticks, intubation).

Objective 1.2 – Whole-Body-Vibration Crest Factors

The crest factors calculated from vibration data indicate that shock events are present during the data collection period. The most severe axis for the vibration was the
vertical axis, which was expected. Severe vertical shocks are unlikely to unbalance the medic, however they could negatively impact delicate patient care activities (IV stick, intubation) if they are unexpected.

The average crest factor in that severe axis was 7.9 (no units), which is below the ISO standard threshold (the standard threshold crest factor is 9.0) which states that there is sufficient vibration exposure greater than the RMS acceleration value to require a different evaluation technique which places more emphasis on shock events. Of the 102 trips, 19 had sufficient shock events to result in a crest factor greater than nine in the vertical axis.

The crest factors reported were similar to the low-end crest factors found in past literature associated with heavy and light trucks, and higher than crest factors found in an automobile traveling on a city road, and trucks traveling on a rough road. Examining reported crest factor values for different vehicles, it appears that the magnitude for crest factors is not consistent based solely on vehicle size. Crest factors reported for a van on good roads in one study (CF = 15.6) [31] are higher than reported values for a van on a country road in a different study (CF = 5.7) [51]. The inconsistency in crest factor values in similar sized vehicles in past publications makes it difficult to define ambulances as similar to some other type of vehicle in this regard. When trying to make comparisons across publications for crest factors, the CF values observed in this study (x=5.7; y=4.6; z=7.9) are lower than those calculated for vehicles of similar size in past literature. It is worth noting that crest factor is a ratio value; lower crest factors do not necessarily
indicate low presence of shock, this may possibly indicate also that the peak acceleration
was high relative to a high R.M.S. acceleration value.

The most severe crest factor values were observed in the vertical axis, which may
be indicative of poor road condition. The types of road travelled by the ambulance in this
coverage area can range from good roads (interstate) to rural roads in extremely poor
condition. Due to video data collection restrictions, environmental video data was not
able to be collected so it is unknown what types of roads were travelled for the trips with
high crest factor values. Another potential factor for the severity of the vertical shocks is
the vehicle condition; the ambulance that was equipped with data collection equipment
was nearly ten years old at the time of this study and so the vehicle suspension may
contribute to these shock events. It should be noted that vehicle condition and age will
affect all vibration characteristics, not just crest factor.

Objective 1.3 – Whole-Body-Vibration Health

The whole body vibration exposure was not significant enough to flag potential
harm to EMS workers through exposure in the rear patient compartment. However, it is
important to note that WBV is believed to exacerbate existing back and neck injuries—
both of which are common to people working in the EMS profession. Literature has been
cited on the musculoskeletal impacts of awkward lifts, which are present mainly outside
of the ambulance as lifting patients onto stretchers, and lifting stretchers into the
ambulance. While the ambient vibration exposure during transport does not appear to
indicate immediate threat to the EMS worker’s health, the effects of WBV have not been
substantially studied for populations already at higher risk of back pain due to injuries from non-WBV related tasks in their work.

Objective 1.4 – Whole-Body-Vibration Comfort

The finding that EMS workers vibration exposure represents a “fairly uncomfortable” level impacts physical administration of care as well as the EMS worker’s mental assessment of the patient. Physically, the vibration can impact the medic’s ability to perform delicate tasks (IV sticks, intubation). Cognitively, the EMS worker is responsible for determining the care procedures to apply by assessing the patient condition, or in filling out paperwork. This may not be a significant issue relative to the physical impact of vibration discomfort. However, the distraction created by vibration may add to the cognitive load already present in the medic’s work environment during patient care.

Objective 1.5 – Whole-Body-Vibration Perception

As expected, the vibration experienced in the rear patient compartment is perceptible.

Objective 2.1 – Patient Injury in Emergency Mode

The identification of patient illnesses that contribute toward the likelihood of emergency mode is helpful in that it provides a list of critical illnesses to groups who may not realize the severity of a patient’s condition. This information is largely already
known or suspected by the EMS community, but this data analysis objectively substantiates that knowledge. While approximately five percent of all responded calls required emergency transportation mode, several illnesses had disproportionately higher percentages of emergency mode: heart and cardiac injuries (21.1% emergency mode), inhalation (20.0), stroke/CVA (9.4%), and calls where the patient’s condition is unknown (9.1%).

This list of illnesses associated with emergency mode transportation could be of use to dispatch personnel, who may be able to identify a particular patient condition during the initial call for assistance. The entire basis for the encouragement of emergency transportation mode revolves around a study which focused on cardiac arrest patients, and their outcomes as a result of transportation time. This list of patient illnesses contains more than cardiac arrest and related symptoms. An interesting future study would be to expand this data to describe significant illnesses associated with emergency response mode in a larger population. The resulting list of patient illnesses could then be examined along with EMS response times and patient outcomes to identify if any difference in patient survivability exists in these illnesses.

Objective 2.2 – Medical Response Activity in Emergency Mode

Medical response activity is not independent of patient illness, that is, we expect specific procedures to be repeated when they treat a certain patient illness. With this in mind, the medical response activities identified in the logistic regression model are supportive of the patient injuries identified in Hypothesis 2.1. One exception found to be
significant toward traveling in non-emergency mode is the activity of drawing blood. One procedure which was conducted only once and that time was conducted in emergency mode, was a Cricothyrotomy, although having occurred only once means it is difficult to make inference about its association with emergency mode.

One application of this knowledge is that the equipment could be placed in a location nearer to the medic’s primary working position. Emergency transportation mode trips may cause additional stress to the EMS worker(s) providing care in the rear, and it could help ease this stress or physical strain from awkward reaches or equipment retrievals to have necessary equipment close at hand for the necessary patient care procedures.

Objective 2: Additional Exploratory Data Analysis

The classification tree for categorical data that was developed in R using transportation mode as a response variable, with patient illness and medical response action as predictor variables shows that high probabilities of emergency mode are associated with interactions between the presence of BVM-Assisted Ventilation response and Poison/OD illness, as well as with the presence of Cardiac Arrest illness when BVM-Assisted Ventilation response is absent. These interactions could be useful to 911 operators in determining the appropriate EMS transportation mode to send toward a scene. A patient requiring breathing assistance due to a poison or overdose condition could be given alternate instructions for medical response modes.
A more realistic application of the findings from this type of decision tree would be for researchers to compare the interactions of the EMS agency studied here with EMS groups in different population and geographical areas. The data used in this analysis required very little effort to collect for analysis, as it is already collected and kept in electronic formats for billing and legal purposes by EMS agencies, nationally. Detailed and specific analyses of the common patient illnesses and responsive actions could show the effects of patient groups with similar characteristics.

Focus groups with the EMS workers from this agency indicated that the ultimate decision to activate emergency mode lies with the attending EMS worker in the rear patient compartment. In addition, the EMS workers indicated that there are other factors that can influence whether or not emergency mode is initiated. Traffic conditions can affect emergency mode; in poor traffic conditions the EMS workers reported that they would sometimes turn on their lights and sirens to bypass traffic, sometimes only for a brief time. Another affecting condition is the weather. Poor weather conditions in Montana can result in icy, snowy, and slick roads. The focus group participants indicated that they will frequently avoid emergency mode in these conditions, as other drivers sometimes maneuver poorly to avoid the ambulance, which can potentially result in crashes on poor roads. However, the attitude regarding when it is safe to use lights and sirens within the focus group of EMS workers may not be referential to the attitudes of more urban EMS groups, or groups in geographically different areas.
Objective 3: Restraint Use Behaviors

With such a low rate of observed restraint usage in the rear patient compartment, it is difficult to definitively comment on reasons the EMS workers actively used restraints. One implication is that since two of the three observed trips were from the same individual, the tendency toward actively using restraints is associated with individual beliefs about safety in the workplace. Casual conversation during the data collection period with the restrained EMS worker revealed that the medic had suffered two concussive head injuries on the job; the focus group participants who rarely used seatbelts conveyed that they had sustained no injuries while in the rear patient compartment. While this discussion point cannot be proven here with any statistical certainty, another study may wish to look into the correlation between observed restraint use patterns (not self reported restraint use) and the number and severity of any injuries sustained in the rear patient compartment.

During focus group discussion, EMS workers were asked “How many separate times would you need to stand and then become reseated before you would stop using your restraint device?” The answer generally agreed upon in that focus group was “once.” The argument for remaining unrestrained being that the inconvenience of being belted far outweighs the benefits associated with re-beltng between reaches or periods of standing to provide care.

One EMS worker’s reason for remaining unbelted was that he felt that the risk associated with crashing while belted was greater than a crash while unrestrained. This
logic revolves around the inherent danger in crashes, and the medic’s belief that if there is going to be a high-speed crash with potential for fatality, he will probably be killed if he is not belted, but may become paralyzed if he is restrained. It is an unfortunate commentary on the level of acceptable risk to the people working in the EMS field who feel they are choosing between paralysis and death when deciding whether or not to engage restraints. While this is a personal choice for the specific medic in question, it highlights the importance of realistic education for the types of ambulance crashes prevalent in different geographical areas.

Another reason for low restraint compliance provided during the focus groups was that it was difficult to provide care, especially in critical emergency situations. With severe patients, there are often multiple care providers in the rear patient compartment. Emergency mode transports are a much rarer occurrence than urgent or scheduled transports (at this agency, 5% of transports were emergency). Keeping in mind the rarity of emergency mode transportations, a comprehensive study of FARS data from 1988 until 1997 found that 72.9% of incapacitating injuries to occupants in the rear of an ambulance occurred during emergency runs [14]. Becker et al.’s study additionally found that 82% of people injured (non-fatally) in the rear patient compartment were not restrained. This indicates that medics are routinely avoiding restraint devices when they are most needed.

The medics tend to sacrifice their own personal level of safety at the expense of rapidly transporting their patients to the hospital. This may be a difficult mindset to overcome, but one point that may influence EMS workers to encourage restraint use is
that an unrestrained medic can cause harm to his patient, in the same way unsecured equipment becomes a projectile.

The restraint patterns self-reported in the front of the ambulance, as a passenger or a driver, were almost uniformly described as “100 percent.” Among the survey participants, matched answers describing each participant’s restraint behavior in the front and the rear of the ambulance were analyzed, yielding very different answers. While the median front restraint rate was 100 percent, the median rear restraint rate was 10%. This suggests that the EMS workers are separating the safety benefits of wearing their seatbelts in the front compartment with those of wearing it in the rear patient compartment.

Another point to raise here is that it is the policy of this specific EMS group to remain belted anytime possible while providing patient care; this policy is clearly not enforced. Policy enforcement will be necessary to adjust any culture of safety at an institution, and would be an excellent first step toward increasing safety within an ambulance group.

Objective 3: Comparing Self-Reported and Observed Restraint Rates

Self-reported restraint usage rates in the ambulances (21% restrained) are much higher than those actually observed (2.6% restrained). The populations being compared are not identical (observed rates coming from one smaller group of ten medics, with self-reported rates coming from 201 medics across Montana). This discrepancy in usage rates (self-reported versus actual) could be due to an association between workplace
safety culture and restraint use patterns. If this is true, it may indicate that although the observed EMS population has a low restraint use pattern, this is not indicative of the restraint use behavior of EMS as a whole.

The more likely scenario is that the self-reported restraint usage rates are simply higher than observed rates for EMS workers. This may be due to the EMS workers’ belief that their survey answers would be reported to their management. Although the surveys were conducted with individual anonymity, the EMS workers were asked to provide the location where they worked. This was in an effort to perform analysis examining comparisons between EMS groups; however, there were no EMS groups with high enough response rates to perform this analysis. The observed EMS group has a policy regarding restraint rates, stating that seatbelts should be engaged whenever possible while providing patient care. Observation shows this policy to be largely ignored, even on many of the longer transports where the medics are not required to be out of their seats for any substantial portion of the trip. The higher self-reported seatbelt usage rates could be due to the medics knowledge of the association between their answers and the EMS agency they work for in an effort to avoid discipline for a behavior largely accepted by the EMS community in practice, if not in policy.

The higher self-reported rates of seatbelt compliance could be due to the “social desirability” of reporting a higher restraint usage pattern. This supports findings from Nelson [53], who found self-reported rates to be higher than observed seatbelt usage percentages in passenger cars. Nelson goes on to suggest that only individuals who answer “always” on a Likert scale should be considered to exhibit the self-reported
pattern on a habitual basis. This pattern has been found in studies of self-reporting behaviors which are not socially desirable – smoking [54] and drunken driving [55] for example. If this is true, then it suggests that the EMS workers are aware that it is more socially accepted to engage in restraints, but still do not use restraints while providing patient care.

Another possible contributor to the difference in self-reported and observed restraint rates could involve a different perceived time frame for the question being asked. While the observed restraint rates involved a smaller number of more immediate trips, the medics may be referring to an entire career of EMS transports in their self-reported data.

Objective 4: Safety Culture

While the EMS-SAQ is a test designed to address safety culture within an organization, a wider application of this test, such as is performed in this paper, can be considered a viable indicator of “perception” of safety culture. By associating an individual’s ideas about safety culture to their self-reported restraint usage patterns, an association within the EMS-SAQ can be established between self-reported seatbelt use in the rear of the ambulance and EMS-SAQ Safety Climate scores. As the participants’ EMS-SAQ score rises, so does their self-reported restraint use rates. While the EMS-SAQ is already a validated testing protocol, this finding adds weight to the Safety Climate category shown to have association with applied safety habits in the rear of the ambulance. Agency managers concerned about their crew’s safety habits may find it
interesting to observe EMS-SAQ scores to identify crew members who may be of
assistance in persuading their peers to adopt a more adhered-to policy for seatbelt use.

Focus groups identified several contributors toward their decision to engage
seatbelts in the rear of the ambulance: 1) equipment locations for particular procedures
requiring movement from a seated position, 2) patient severity demanding extra care or
attention, and 3) belief that being restrained during a crash will inflict injury.

Equipment location in its current state inhibits patient care from a belted, seated
position. While this requires EMS workers to periodically gather equipment and perform
procedures, it is generally punctuated by longer periods of the medics being idle, or
performing tasks while seated (paperwork, phone communication, and verbal interaction
with patient). The reason for the medics’ decision to not engage seatbelts during these
seated periods has not been entirely discerned, although it appears to be largely
inconvenience. When the medics were asked how many times they would be willing to
disengage and then reengage their seatbelts (to reach for equipment, or provide patient
care) before they would simply leave them disengaged, the response was “probably
once.” This attitude demonstrates a prioritization of convenience over safety in regards
to performing job-related duties.

In calls involving highly critical patients, multiple EMS workers are present in the
rear patient compartment to provide care. Critical patients require additional assistance
and additional care, and these requirements will affect the possibility of restraint during
the patient transport. While this may be unavoidable in its present state, it is worth
mentioning that the majority of patient transports are not critical—only five percent of
patient transports from the studied EMS group were critical enough to require lights and sirens. The goal of a program designed to heighten safety within this working environment should consider that EMS workers caring for highly critical patients may lie outside the scope of a policy designed to increase practiced restraint rates. At the same time, the conditions associated with these critical patients may contribute towards an effort on the part of the driver to arrive at the terminal destination more quickly. Driver habits while transporting critical patients should be examined to determine if there is increased likelihood of crash, along with the type of crash (side, front, rear, or angular impact), to understand any interventions that could be examined for these scenarios.

A belief held by multiple EMS workers present during focus groups was that restraint devices would inflict injury. None of the workers had direct experience with anyone whom this had happened to, but it was still a topic of discussion. There is little existing research on any type of injury that could be sustained while wearing a lap belt and seated in a direction parallel with motion. Much research promoting seatbelt use cites studies involving front-seat car passengers, but the primary location for the EMS workers in this study is on the bench seat alongside the passenger, facing a direction orthogonal to motion. A study showing crash injury outcomes for individuals using lap belts and seated in a similar manner could clear misconceptions about potential injury. Another approach could be to relay to the EMS workers the scope of injury that could be sustained by the patient due to an unrestrained EMS worker impacting that patient. EMS care providers seem to accept a high level of personal risk to personal safety in order to
help a patient, and may not have considered that by being unbelted they have become a potential projectile in the rear patient compartment in the event of a crash.

Objective 5: Reach Analysis

The working area inside the rear patient compartment in the ambulance studied for this paper indicates that very little consideration was given to reach feasibility while planning equipment and storage location. The advantages of naturalistic data collection in this case is clear—the researchers were able to collect an accurate and objective picture of EMS worker behavior and patterns in the rear patient compartment. In the case of reaches, the research team was able to positively identify and classify different EMS activities, observing each movement multiple times to collect more data than could be obtained from direct observations.

The range of REBA scores for the observed reaches is large, from between 1 (low risk) to 11 (very high risk level). The lowest risk reaches involved reaching to access materials that were adjacent to the medic’s origin position. For example, a reach from the rear-facing seat towards the electrical panel resulted in a REBA score of 1. Figure 18 shows the frequency of the reach risk levels, using the total observed number of reaches.
Figure 18. Distribution of Reaches, by Risk Level

This figure shows that the risk category of high-risk reaches is over-represented. This is due in part to the poor interior design layout of this ambulance, which is fairly common across Type III ambulances. One potential reason for these high-risk reaches can be attributed to how ambulances are designed as related to layout standards. AMD standard KKK-1822-E requires that many of the frequently accessed equipment be readily available to the medic seated in the “action area,” which is the terminology in federal standards used to designate the seat of primary patient caregiving as the rear-facing seat near the patient’s head. It is unclear why this area was designated the action area, as the medics in this study had an overwhelming preference to sit alongside the patient in the bench seat. During focus groups, EMS workers stated that they preferred
this position generally because it places the medic in a good position to place IV lines, perform activities, and maintain conversation and/or eye contact with the patient. EMS preference to sit alongside the patient has been found in multiple studies (Ferreira & Hignett, 2005; Gilad & Byran, 2007). It is reasonable to suggest that standards which dictate the interior organization of ambulances should be revisited to account for where the EMS workers are actually sitting in an ambulance.

While identifying alternative rear ambulance layouts, the main issues include 1) allowing the EMS worker patient access while comfortably seated; 2) locating equipment and patient care items nearer the actual primary EMS worker; and 3) being cognizant of the paths of cables and cords while that equipment is being relocated. The ultimate goal in this situation should be to increase the time the EMS worker is willing to remain in a seated, belted position—this can be accomplished by revisiting the equipment storage locations. Just as EMS workers evaluate patients to determine the level of importance, EMS equipment should be evaluated to place the most frequently used items closer-at-hand to encourage a safer working environment.

Future Research Opportunities

Future studies may be valuable in looking into the correlation between observed restraint use patterns (not self reported restraint use) and the number and severity of any injuries sustained in the rear patient compartment. The relationship mentioned in this study was not able to be statistically validated, as it was only noted through conversation with a single participant. If this relationship is real, it is possible that this may provide an
avenue for safety training groups to promote safer behaviors through influence from EMS peers.

While the vibration exposure found in this study indicated no overall health risk, it is still largely unknown the level of vibration that will impact the degree of patient care that can be provided. Theoretically, there is some level of ambient vibration at which EMS care providers are not able to perform certain duties, such as establishing successful IV lines while in transport, or completing a patient intubation. This level of vibration would be a valuable tool in determining if any vibration-dampening interventions are needed in EMS.

An additional opportunity involves patient care records. This data is maintained by all EMS groups, since it is used to process billing information. An interesting future study would be to perform survivability testing on the significant illnesses found here to be associated with emergency response mode in a larger population, similar to the tests which have already been conducted on cardiac arrest patients. The resulting list of patient illnesses could then be examined along with EMS response times and patient outcomes to identify if any difference in patient survivability exists in these illnesses.

Conclusion

A safer work environment for EMS professionals is approachable through evaluation of current medic practices and behaviors in the rear patient compartment. A potential source of injury to EMS workers lies in the current safety culture and ideology surrounding safety practices in the rear patient compartment. Although standards are in
place that mandate restraint compliance, these regulations are seldom enforced. In order to adjust human behavior in dealing with restraint systems, buy-in to the concept of an increased culture of safety has to occur at all levels of the organization. Managers, staff, peers all need to understand the risks associated with failure to restrain in the rear, as well as promote safer behavior. A regulation designed to increase safety is of no value if it is not followed, or enforced.

While the culture of safety within rural EMS groups should be evaluated, the physical working environment is also found to be very lacking in basic ergonomic function. Very little equipment is accessible from the primary care provider position, and the patient compartment is arranged in a way that inhibits patient care from a restrained and safe position. There is enormous potential to increase safety through layout redesign or equipment reorganization in ambulances. By analyzing the physical EMS workspace as well as the safety culture inherent in EMS work, this study hopes to highlight areas available to increase the overall safety level for the EMS community, as well as the general public they serve.
REFERENCES CITED

APPENDICES
APPENDIX A

HUMAN SUBJECTS COMMITTEE APPLICATION AND CONSENT FORM
MONTANA STATE UNIVERSITY
Institutional Review Board Application for Review
(revised 07/01/2009)

[Include copies of PI's and Co-PI's "Completion Certificate(s)" as proof that all have received the education and instructions for researchers using human subjects. The preferred instruction and education is that from the National Cancer Institute: http://Cancer.gov - Human Participant Protections Education for Research Teams/cme.cancer.gov/clinicaltrials/learning/humanparticipant-protections.asp

Beginning January 1, 2006, University policy requires that all protocols submitted from individuals NOT employed by Montana State University be charged a $500 review fee per application. Renewals for those proposals will be at no charge.

THIS AREA IS FOR INSTITUTIONAL REVIEW BOARD USE ONLY. DO NOT WRITE IN THIS AREA.
Application Number: Approval Date:
Disapproved: IRB Chair's Signature:

Submit 14 copies of this application (including the signature copy), along with 14 copies of the subject consent form and 14 copies of all other relevant Materials, to Institutional Review Board, 960 Technology Blvd., Room 127, Montana State University, Bozeman, MT 59717-3610. (Please staple, bind or clip together the application form, surveys, etc. as 14 individual packets; one complete packet for each board member.) Submit one copy of grant contract proposal for the office file. For information and assistance, call 994-6783 or contact the Institutional Review Board Chair, Mark Quinn at 994-5721.

PLEASE TYPE YOUR RESPONSES IN BOLD

Date: February 24, 2010

I. Investigators and Associates (list all investigators involved; application will be filed under name of first person listed)

NAME: Laura Stanley TITLE: Assistant Professor
DEPT: MIE PHONE #: 1399
ADDRESS: 302 Roberts Hall
E-MAIL ADDRESS: laura.stanley@ie.montana.edu
DATE TRAINING COMPLETED: on file

NAME: Jessica Mueller TITLE: Graduate Researcher
Do you as PI, any family member or any of the involved researchers or their family members have consulting agreements, management responsibilities or substantial equity (greater than $10,000 in value or greater than 5% total equity) in the sponsor, subcontractor or in the technology, or serve on the Board of the Sponsor? _____ YES ____ NO

If you answered Yes, you will need to contact the Director of the Technology Transfer Office, Dr. Rebecca Mahurin at 406-994-7868.

II. Title of Proposal:
SAFETY EVALUATION OF EMERGENCY MEDICAL SERVICE PERSONNEL DURING TRANSPORT

III. Beginning Date for Use of Human Subjects:
March 3, 2010

IV. Type of Grant and/or Project (if applicable)
Research Grant: X
Contract:
Training Grant:
Classroom Experiments/Projects:
Thesis Project:
Other (Specify):

V. Name of Funding Agency to which Proposal is Being Submitted (if applicable):

VI. Signatures

Submitted by Investigator
Typed Name: Laura Stanley
Signature:
Date: 2/24/10
VII. Summary of Activity. Provide answers to each section and add space as needed. Do not refer to an accompanying grant or contract proposal.

A. RATIONALE AND PURPOSE OF RESEARCH (What question is being asked?)

The goal of this project is to design and evaluate the biomechanical, ergonomic, and safety needs of Emergency Medical Service (EMS) personnel, specifically the medic’s work environment while in transport to and from the hospital. The specific objectives include: 1) identifying and quantifying the biomechanical forces experienced by the medics in their day to day operations, 2) identifying contributing factors to unusual driving events, and 3) identifying the needs of the drivers, medics, and patients so that changes can be recommended to increase safety for all personnel in transport.

B. RESEARCH PROCEDURES INVOLVED. Provide a short description of sequence and methods of procedures that will be performed with human subjects. Include details of painful or uncomfortable procedures, frequency of procedures, time involved, names of psychological tests, questionnaires, restrictions on usual life patterns, and follow up procedures.

This research project includes the study and evaluation of medic behavior involved in day-to-day activities associated with emergency medical service transport of patients to and from the hospital. One ambulance from the Bozeman EMS ambulance group will be outfitted with data collection hardware. The data to be collected in this study include visual and vehicle data. Visual information will be recorded by cameras that collect two views; which represent two different angles of the rear of the ambulance. Vehicle data parameters that will be recorded include speed, acceleration, luminance, GPS location, heading, gear position, and forward radar information. Data will be collected over a 3 month time period (March – May 2010). Data collection hardware will not interfere with operating procedures within the ambulance.

This ambulance will be designated by ambulance staff as a “research vehicle.” Data will only be collected when two conditions are both met:
Condition 1) when the ambulance ignition is in the “on” position, and Condition 2) the data collection hardware power switch is in the “on” position. Crews who consent to participate in this project will be instructed on how to turn the power switch “on” at the beginning of a shift and back to “off” at the end of the shift. Using this method, data can only be generated and collected when it involves consenting medics. The driver and medic personnel of the ambulance will provide consent. As it is being collected, video data will be covered by a static mask over the patient and entry/exit doors to protect patients from being videotaped.

Once data has been collected, it will be transferred to a secure computer in a locked room, with no internet connection. The PI, Laura Stanley, will preview all video before it can be analyzed. Any video that includes photographs of anyone who has not given written consent to being videotaped, e.g., 1) patient companions, 2) any person that is not a consenting medic, or 3) a patient outside of the masked zone will be deleted immediately. Nevertheless, we request that the IRB waive the need for informed consent from anyone who is inadvertently captured in the videotape in accordance with 45 CFR §46.116 (d). The research involves no more than minimal risk to such persons. Because the images of such persons will be immediately and permanently discarded, the waiver will not adversely affect the rights and welfare of such persons. Because it is totally impracticable in emergency situations to get consent, the research could not be conducted without waiving the consent for these persons, and if asked, these persons will be informed about the research.

All EMS personnel inside the ambulance will provide consent to collect video data of the interior of the back of the vehicle. The crews will also be instructed that they can turn off the data collection system at any time if they choose to end participation for any reason.

No data regarding the patient’s identity or condition will be collected.

C. DECEPTION - If any deception (withholding of complete information) is required for the validity of this activity, explain why this is necessary and attach debriefing statement.

No deception will be employed.

D. SUBJECTS

1. Approximate number and ages
How Many Subjects: **8-10**
Age Range of Subjects: **18 to 65 years**
How Many Normal/Control: **Included**
Age Range of Normal/Control: **Included**

2. Criteria for selection:

 Must be employed by the local ambulance group.

3. Criteria for exclusion:

 Drivers not employed by the local ambulance group or drivers not providing consent.

4. Source of Subjects (including patients):

 Subjects will be recruited with the assistance of the Critical Illness and Trauma Foundation (CITF) that represents ambulance fleets, paramedics, and related stakeholders in the Bozeman area.

5. Who will approach subjects and how? Explain steps taken to avoid coercion.

 CITF personnel will provide study information to an interested medic work group.

6. Will subjects receive payments, service without charge, or extra course credit? **Yes** or **No**
 (If yes, what amount and how? Are there other ways to receive similar benefits?)

 Subjects will be offered compensation of $50. To be eligible for the $50 compensation, the subjects must participate over the entire three-month time period. Participants will be paid in the form of cash.

7. Location(s) where procedures will be carried out.

 Recruitment will be conducted within 50 miles of Bozeman, MT; data collection will occur inside the ambulance.

E. RISKS AND BENEFITS (ADVERSE EFFECTS)

1. Describe nature and amount of risk and/or adverse effects (including side effects), substantial stress, discomfort, or invasion of privacy involved.
There is no substantive or increased risk from this study given that subjects will be observed doing their normal job as ambulance drivers and medics. All data collection equipment is mounted such that, to the greatest extent possible, it does not pose a hazard in any foreseeable way. None of the data collection equipment will interfere with any part of the participant’s normal field of view or will impair their ability to perform their duties. The addition of the data collection systems to the vehicle will in no way affect the operating or handling characteristics of the vehicles. All data recorded by the devices will remain confidential and will be protected on secure computers with limited access and secure passwords.

2. Will this study preclude standard procedures (e.g., medical or psychological care, school attendance, etc.)? If yes, explain.

 No.

3. Describe the expected benefits for individual subjects and/or society.

 Examination of contributing factors to rural ambulance collisions and increasing awareness of these factors may improve the future safety of ambulance drivers, medics, and patients.

F. ADVERSE EFFECTS

1. How will possible adverse effects be handled?

 By investigator(s):
 Referred by investigator(s) to appropriate care: Subjects will be referred to their local hospital.

 Other (explain): Note that all subjects are also paramedics and will be able to self-administer care.

2. Are facilities/equipment adequate to handle possible adverse effects? Yes or No
(If no, explain.)

3. Describe arrangements for financial responsibility for any possible adverse effects.

 MSU compensation (explain): None
 Sponsoring agency insurance:
 Subject is responsible: Yes
G. CONFIDENTIALITY OF RESEARCH DATA

1. Will data be coded? **Yes** or **No**

2. Will master code be kept separate from data? **Yes** or **No**

3. Will any other agency have access to identifiable data? **Yes** or **No**
 (If yes, explain.)

 Data access is protected under MSU standard terms and conditions.

4. How will documents, data be stored and protected?

Locked file: The subject identity record, which contains subject name, address, email, and social security number (required for payments) as well as the assigned identity code will be stored in locked file. The identity code will be removed from the subject identity record and the record will be destroyed at the completion of participation. All video data will be deleted permanently immediately following data analysis, or a 30 day window from the point of data collection, whichever comes first. Because of the small amount of data that will be collected as a result of the stated protocol, the 30 day window will provide ample time for data reduction.

Computer with restricted password: Data will be stored on a password protected computer under identity codes.

VIII. Checklist to be completed by Investigator(s)

A. Will any group, agency, or organization be involved? **Yes** or **No**
 (If yes, please confirm that appropriate permissions have been obtained.)

 The *Critical Illness and Trauma Foundation* has agreed to participate in this study.

B. Will materials with potential radiation risk be used (e.g. x-rays, radioisotopes)? **Yes** or **No**

 1. Status of annual review by MSU Radiation Sources Committee (RSC).
 Pending or **Approved**
 (If approved, attach one copy of approval notice.)
2. Title of application submitted to MSU RSC (if different).

C. Will human blood be utilized in your proposal?
 Yes or No
 (If yes, please answer the following)

 1. Will blood be drawn? Yes or No
 (If yes, who will draw the blood and how is the individual qualified to draw blood?
 What procedure will be utilized?)

 2. Will the blood be tested for HIV? Yes or No

 3. What disposition will be made of unused blood?

 4. Has the MSU Occupational Health Officer been contacted? Yes or No

D. Will non-investigational drugs or other substances be used for purposes of the research? Yes or No

E. Will any investigational new drug or other investigational substance be used?
 Yes or No
 [If yes, provide information requested below and one copy of: 1) available toxicity data; 2) reports of animal studies; 3) description of studies done in humans; 4) concise review of the literature prepared by the investigator(s); and 5) the drug protocol.]

F. Will an investigational device be used? Yes or No
 (If yes, provide name, source description of purpose, how used, and status with the U.S. Food and Drug Administration FDA). Include a statement as to whether or not device poses a significant risk. Attach any relevant material.)

G. Will academic records be used? Yes or No

H. Will this research involve the use of:
 Medical, psychiatric and/or psychological records Yes or No
 Health insurance records Yes or No
 Any other records containing information regarding personal health and illness
 Yes or No

 If you answered "Yes" to any of the items under "H.", you must complete the HIPAA worksheet.

I. Will audio-visual or tape recordings or photographs be made? Yes or No
All EMS personnel inside the ambulance will provide consent to collect video data of the interior of the back of the vehicle. Video and vehicle data will only be collected when the medics turn the data collection hardware power switch “on.”

No data regarding the patient’s identity or condition will be collected.

J. Will written consent form(s) be used? **Yes**
 (If no, explain.)

EMS personnel on board the ambulance will provide written consent forms, but patients that are captured on video will be unable to provide consent due to the time-critical and physical limitations present in emergency situations. To protect patients, all video is covered with a mask as it is recorded. This mask, which also covers the entry doors, is a black mask that cannot be removed. Video containing patients and companions that appear outside of the masked region will be deleted upon being previewed by the PI, Laura Stanley. Pictures are attached to show the permanent masking that is employed for this project.

A laminated card (see next page) will be given to medics to provide to patients who express interest or concern about the video data collection.

RESEARCH STUDY - Regarding the Use of In-Cab Cameras

The purpose of this research study entitled, *Safety Evaluation of Emergency Medical Service Personnel During Transport*, is to evaluate the work environment of an ambulance during the transport of patients to and from the hospital. The study is being conducted in collaboration with Montana State University, Critical Illness and Trauma Foundation, and the American Medical Response.

The cameras mounted in the ambulance are collecting images of the Emergency Medical Service personnel ONLY. The method of video ensures that NO images that could identify patients or companions are being used for analysis. And, any images inadvertently collected of patient or companions will be permanently deleted as soon as such inadvertent images are identified.

Questions or complaints about the research should be directed to Dr. Laura Stanley, Western Transportation Institute, Montana State University – Bozeman, MT 59717-4250. Phone: 406-994-1399.
You are welcome to ask any questions about this study and its procedures. Additional questions about human subject research and protection can be answered by the Chairman of the Institutional Review Board, Mark Quinn, at (406) 994-4707.

SUBJECT CONSENT FORM
FOR PARTICIPATION IN HUMAN SUBJECT RESEARCH AT MONTANA STATE UNIVERSITY

SAFETY EVALUATION OF EMERGENCY MEDICAL SERVICES PERSONNEL DURING TRANSPORT

You are being asked to participate in a research study that will evaluate the work environment of an ambulance during the transport of patients to and from the hospital. Your participation is completely voluntary. This study may help us to improve your EMS personnel safety.

Procedures: If you agree to participate in this study, you will participate in a program that uses a data collection system that records vehicle behavior and collects videos of medic behavior in the rear patient compartment of the ambulance. The video system will be recording in the rear cabin any time that both the power switch on the data collection system is “ON” and the ambulance ignition is in the “on” position. When all members of a shift have consented to project participation, you will be asked to turn the data collection system “ON” at the start of your shift and “OFF” again at the end of the shift. No additional work will be required beyond turning the data collection system on and off. The system will then run unobtrusively in the background while you perform your job as normal. Video analysis will look at ergonomic postures, reaches, and body positioning within the ambulance cabin. Vehicle data will be analyzed to examine vibration effects in the ambulance. Patient privacy will be protected by blocking of patient images in all video images; however, a laminated card will also be given to medics to provide to patients or other occupants who express interest or concern about the video data collection. Data collection will occur over a three month time period, from March 3, 2010 to May 31, 2010.

Risks: The risk to you during your day-to-day operations is no more than you would normally experience while driving or working. The data collection equipment is mounted such that it does not pose a hazard in any foreseeable
way and will not interfere with any part of your normal field of view or your ability to perform your work duties.

Benefits: There may be no immediate benefits to you. Future benefits of the research may include better design of advanced safety systems in ambulances, hence reducing the number of fatalities and injuries to EMS personnel.

Compensation: For your participation in this project, we are offering compensation of $50. To be eligible for the $50 compensation, you will need to participate during the entire three month time period, from March 1, 2010 to May 31, 2010.

Participation is voluntary. Study participation is voluntary. Refusal to participate will involve no penalty or loss of benefits to which you are otherwise entitled. Your decision to not participate in this study will not impact your future relationship with Montana State University, Critical Illness and Trauma Foundation, or American Medical Response. If you choose to participate, you are able to withdraw from the study at any time without penalty or loss of benefits to which you are otherwise entitled. During the study, it is acceptable for ambulance personnel to turn off the camera at anytime should you choose to withdraw from the study.

Confidentiality: All data gathered in this research study will be treated with confidentiality. The data recorded will be protected by the researcher team and will not be made public unless required by law. All data will be secured by encryption or password protection in locked environments.

All video data will be kept for a maximum of thirty days for researcher analysis from the time of data collection. After thirty days, video data will be permanently deleted. The data recordings prior to being deleted will only be accessible to the study researchers, not to anyone outside of the research study, e.g. American Medical Response. Your decision to not participate in this study will not impact your future relationship with Montana State University, Critical Illness and Trauma Foundation, or American Medical Response.

Questions:

You are welcome to ask any questions about this study and its procedures prior to consenting to participate by contacting the Principal Investigator, Dr. Laura Stanley, at (406) 994-1399. Additional questions about human subject research
and protection can be answered by the Chairman of the Institutional Review Board at Montana State University, Dr. Mark Quinn, at (406) 994-4707.

__

AUTHORIZATION: I have read the above consent form and it has been explained to me. A copy of this consent form has been given to me. All of my questions have been answered to my satisfaction. I **choose to participate in this research study, and consent to be videotaped.** I understand that I may later withdraw my consent at any time.

Name (Print): ________________________________ Date: __________

Signature: ________________________________

Investigator: ________________________________
APPENDIX B

PATIENT CARE RECORDS
<table>
<thead>
<tr>
<th>Patient Care Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODES</td>
</tr>
<tr>
<td>W/RES</td>
</tr>
<tr>
<td>PR</td>
</tr>
</tbody>
</table>
NOTICE OF PRIVACY PRACTICES
OF AMERICAN MEDICAL RESPONSE

This notice describes how medical information about you may be used and disclosed and how you can get access to this information. Please review it carefully.

Your health information is personal, and we are committed to protecting it. Your health information is also very important to our ability to provide you with quality care, and to comply with certain laws. This Notice applies to all records about care provided to you by American Medical Response. (Your physician may have different policies and a different notice regarding your health information that is created in the physician’s office.)

I. We Are Legally Required to Safeguard Your Protected Health Information.

We are required by law to:

A. maintain the privacy of your health information, also known as “protected health information” or “PHI.”
B. provide you with this Notice, and
C. comply with this Notice.

II. Future Changes to Our Practices and This Notice.

We reserve the right to change our privacy practices and to make any such changes applicable to the PHI we obtained about you previously. If a change in our practices is material, we will revise this Notice to reflect the change. You may obtain a copy of any revised Notice by contacting the Ethics & Compliance Department at 866-825-7234. We will also make any revised Notice available on our website at www.amr.net.

III. How We May Use and Disclose Your Protected Health Information.

The law requires us to have your authorizations for some uses and disclosures. In other circumstances, the law allows us to use or disclose PHI without your authorization. This notice gives examples of each of these circumstances.

A. Uses and Disclosures That Require Us to Give You the Opportunity to Object.

Unless you object, we may provide relevant portions of your PHI to a family member, friend or other person you indicate is involved in your health care or in helping you get payment for your health care. We may use or disclose your PHI to notify your family or personal representative of your location or condition. In an emergency or when you are not capable of giving an agreement or objecting to these disclosures, we will disclose PHI as we determine is in your best interest, but will tell you about it later, after the emergency, and give you the opportunity to object to future disclosures to family and friends. Unless you object, we may also disclose your PHI to persons performing disaster relief activities.

1. Identify Uses and Disclosures That Require Your Authorization.

The law allows us to disclose PHI without your authorization in the following circumstances:

(1) When Required by Law.
(2) For Public Health Activities.
(3) For Reports About Violence of Abuse, Neglect or Domestic Violence.
(4) To Health Oversight Agencies.
(5) For Law Enforcement.
(6) For Law Enforcement.

1. Identify Uses and Disclosures That Require Your Authorization.

(1) To Avert a Serious Threat to Health or Safety.
(2) To Specialized Government Functions.
(3) For Workers’ Compensation or Similar Programs.

IV. Other Uses and Disclosures of Your Protected Health Information.

Other uses and disclosures of your PHI that are not covered by this Notice or the laws that apply to us will be made only with your written authorization. If you give us written authorization for a use or disclosure of your PHI, you may revoke that authorization, in writing, at any time. If you revoke your authorization we will not longer use or disclose your PHI for the purposes specified in the written authorization, except that we are unable to reinstate any disclosures we have already made with your permission. In addition, we can use or disclose your PHI after you have
V. Your Rights Related to Your Protected Health Information.

You have the following rights:

A. The Right to Request Limits on Uses and Disclosures of Your PHI. You have the right to ask us to limit how we use and disclose your PHI. Any such request must be submitted in writing to our Privacy Officer. We are not required to agree to your request. If we do agree, we will put it in writing and will follow the agreement except when you require emergency treatment.

B. The Right to Choose How We Communicate With You. You have the right to ask that we send information to you at a specific address (for example, at work rather than at home) or in a specific manner (for example, by e-mail rather than by regular mail, or voice by telephone). We must agree to your request as long as it would not be disruptive to our operations to do so. You must make such request in writing, addressed to our Privacy Officer.

C. The Right to See and Copy Your PHI. Except for limited circumstances, you may look at and copy your PHI if you ask in writing to do so. Any such request must be submitted to our Patient Billing Service Center, which will respond to your request within 30 days (or 30 days if the extra time is needed). In certain situations we may deny your request, but if we do, we will tell you in writing of the reasons for the denial and explain your rights with regard to having the denial reviewed.

D. The Right to Correct or Update Your PHI. If you believe that the PHI we have about you is inaccurate or incomplete, you may ask us to amend it. Any such request must be made in writing and must be addressed to our Patient Billing Service Center, and must tell us why you think the amendment is appropriate. We will not process your request if it is not in writing or does not tell us why you think the amendment is appropriate. We will act on your request within 60 days or less if your case has been determined to be within the time limit specified by the Health Insurance Portability and Accountability Act (HIPAA). If we are unable to make the amendment within 60 days, we will tell you in writing the reasons for the delay and explain your rights with regard to having the denial reviewed.

We may deny your request if you ask us to amend information that:

1. was not created by us, unless the person who created the information is no longer available to make the amendment;
2. is not part of the PHI we keep about you;
3. would result in a violation of Federal or State privacy laws or regulations;
4. would reveal the identity of another person;
5. is determined by us to be accurate and complete.

If we deny the requested amendment, we will tell you in writing how to submit a statement of disagreement or complaint, or request inclusion of your original request for the amendment to your PHI.

E. The Right to Get a List of the Disclosures We Have Made. You have the right to get a list of disclosures we have made for treatment, payment, and health care operations purposes. These disclosures include your oral communications, written communications, or communications on our website. Your list will include disclosures we have made for treatment, payment, and health care operations purposes. We will provide a list of disclosures within 30 days of your request if it was not made in writing or signed by you. The list we provide will include the dates of disclosures made within the last six years unless you specify a shorter period. The first 30 days of the six-year period will be free. You will be charged our costs for providing any additional list within the 12-month period.

F. The Right to Get a Paper Copy of This Notice. Even if you have agreed to receive the Notice by e-mail, you have the right to request a paper copy of this Notice. You may obtain a paper copy of this Notice by contacting the Office of Compliance at 888-868-7844. The Notice is also available online at www.america.gov.

VI. Complaints.

If you believe your privacy rights have been violated, you may file a complaint with us or with the Secretary of the Federal Department of Health and Human Services. To file a complaint with us, you must submit it in writing and address it to the HIPAA Privacy Officer at AMR 4500 South Yosemite Way, Suite 200, Greenwood Village, CO 80111. We will not penalize you for filing a complaint. You may also contact your Privacy Officer if you have questions or comments about our privacy practices.

Effective Date: April 14, 2003.

Revision Date: January 1, 2004.
PATIENT CARE REPORT

501176150

PATIENT INFORMATION

SEX

<table>
<thead>
<tr>
<th>MALE</th>
<th>FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE OF BIRTH

<table>
<thead>
<tr>
<th>MM/DD/YYYY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SOCIAL SECURITY NUMBER

<table>
<thead>
<tr>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

EMPLOYER

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPLOYER ADDRESS

<table>
<thead>
<tr>
<th>CITY</th>
<th>STATE</th>
<th>ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOME TELEPHONE

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESPONSIBLE PARTY/OWNER OF HOME

<table>
<thead>
<tr>
<th>Name</th>
<th>Relationship</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSURANCE COMPANY

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSURANCE ADDRESS

<table>
<thead>
<tr>
<th>CITY</th>
<th>STATE</th>
<th>ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY INSURANCE COMPANY

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY INSURANCE ADDRESS

<table>
<thead>
<tr>
<th>CITY</th>
<th>STATE</th>
<th>ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TREATMENT

TIME

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PULSE

<table>
<thead>
<tr>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

BLOOD PRESSURE

<table>
<thead>
<tr>
<th>Systolic</th>
<th>Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEMPERATURE

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

WEIGHT

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MEDICATIONS

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALLERGIES

<table>
<thead>
<tr>
<th>Allergen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ATTENDING NURSE/PHARMACY

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INFECTION CONTROL

<table>
<thead>
<tr>
<th>Disease</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSIDERATIONS

<table>
<thead>
<tr>
<th>Consideration</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

DIAGNOSIS

<table>
<thead>
<tr>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

TREATMENT

<table>
<thead>
<tr>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

DISCHARGE

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NURSE SIGNATURE

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>AIRWAY NASAL</td>
<td>DEFIB SUPPLIES</td>
</tr>
<tr>
<td>AIRWAY ORAL</td>
<td>DRESSING MAJOR</td>
</tr>
<tr>
<td>ALS BAG</td>
<td>DRESSING MINOR</td>
</tr>
<tr>
<td>BLOOD DRAW</td>
<td>EKG MONITOR</td>
</tr>
<tr>
<td>BLS BAG</td>
<td>GLUCOMETER</td>
</tr>
<tr>
<td>BURN SHEET</td>
<td>INTUBATION</td>
</tr>
<tr>
<td>COLD/HEAT PACK</td>
<td>IO SUPPLIES</td>
</tr>
<tr>
<td>GROC CHEST SUPPLIES</td>
<td>IRRIGATION FLUID</td>
</tr>
<tr>
<td>ACE INHIBITOR</td>
<td>DIPHENHYDRAMINE</td>
</tr>
<tr>
<td>ADRENOSINE</td>
<td>DOPAMINE</td>
</tr>
<tr>
<td>ALBUTEROL</td>
<td>EPI (1:1000)</td>
</tr>
<tr>
<td>AMIODARONE</td>
<td>EPI (1:10000)</td>
</tr>
<tr>
<td>ASPRIN</td>
<td>ETOCIDATE</td>
</tr>
<tr>
<td>ATROPINE</td>
<td>FENTANYL</td>
</tr>
<tr>
<td>ATROVENT</td>
<td>FURISOEMINE</td>
</tr>
<tr>
<td>CA. CHLORIDE</td>
<td>GLUCAGON</td>
</tr>
<tr>
<td>CA. GLUCONATE</td>
<td>HALOL</td>
</tr>
<tr>
<td>DEAMETHASONE</td>
<td>SPECAL/CHARCOAL</td>
</tr>
<tr>
<td>DEXTROSE 50%</td>
<td>LACTALOL</td>
</tr>
<tr>
<td>DIAZEPAM</td>
<td>LIDOCAINE</td>
</tr>
<tr>
<td>ADDITIONAL ATTENDANT</td>
<td>EQUIPMENT TRANSFER</td>
</tr>
<tr>
<td>BLOOD DRAW CONTACT</td>
<td>FLIGHT CREW RETURN</td>
</tr>
<tr>
<td>EMERGENCY</td>
<td>IV/PUMP MAINTENANCE</td>
</tr>
</tbody>
</table>

PATIENT SIGNATURE

I acknowledge that I am legally responsible for the ambulance services provided to me. I request payment of authorized Medicare benefits and/or other insurance benefits be made on my behalf to AMR for any ambulance services and supplies furnished to me by AMR, whether in the past, now or in the future. I authorize any holder of medical information about me or other relevant documentation about me to release to the Centers for Medicare and Medicaid Services and its agents and contractors, any and all appropriate third party payers and their respective agents and contractors, as well as AMR, any information or documentation in their possession needed to determine these benefits and/or the benefits payable for related services, whether in the past, now, or in the future.

I acknowledge that I have been provided with a copy of AMR’s Notice of Privacy Practices on this date.

Signature of Patient: __________________________ Date: __________

REPRESENTATIVE SIGNATURE

Reason Patient could not Sign:

By signing below, I certify that I am one of the following individuals and that I am authorized to sign on the patient’s behalf (check one):

☐ Patient’s legal guardian (42 C.F.R. §424.36(b)(1))
☐ Relative or other person who receives governmental benefits on the patient’s behalf (42 C.F.R. §424.36(b)(2))
☐ Relative or other person who arranges patient’s treatment or manages the patient’s affairs (42 C.F.R. §424.36(b)(3))

Signature of Representative: __________________________
Printed Name of Representative: __________________________
Date: __________

FACILITY SIGNATURE

Complete this section only if you are unable to obtain the signature of the patient or authorized representative listed above.

Reason Patient could not Sign:

By signing below, I certify that the above-named patient was physically or mentally incapable of signing at the time of transport, and that none of the individuals listed in 42 C.F.R. §424.36(b)(1)-(3) was available or willing to sign the claim on behalf of the beneficiary.

Crew Signature: __________________________ Date: __________

This section is to be completed by a representative of the sending or receiving facility, whenever you are unable to obtain the signature of the patient or an authorized representative. Note: The crew must also complete the "Crew Signature" section above.

Name and Location of facility: __________________________

Signature of Receiving or Sending Facility Representative: __________________________ Date: __________
Printed Name of Receiving or Sending Facility Representative: __________________________ Title: __________________________

AMR is required to obtain this information in order to submit a claim for payment to Medicare or other third party payer. This Signature is not an acceptance of financial responsibility for the patient.
APPENDIX C

VERBAL TRANSCRIPT FROM FOCUS GROUP DISCUSSION
Opening Script

Please think about the last time you were providing emergency care in the rear patient compartment of the ambulance. What types of procedures are most affected by severe braking or steering events?

IV sticks intubation number 1, even just reading EKGs can cause artifacts and you can’t get a clean read on it.

Yeah, same thing as just driving on a bumpy road, you’re not going to be able to read it either.

I’d say IVs and intubation are the most common.

What kind of communication exists between you and the driver to warn of upcoming road conditions?

He yells.. [laughing]

Every once in a while there’s a “hold on”

Or “bump!”

Most times it’s a “sorry”

No really, it’s hard, I had an ambulance call and I was driving and there was something important I had to say to her [the medic] that I gleaned from the patient’s relative sitting next to me, going to the hospital. And the patient was elderly, and I hadn’t communicated some things to the paramedic. And I had to communicate that to her, and I couldn’t get her attention. So I mean instead of waving and screaming through the hole, boy if we had a PA system or something that would help a lot.

Or an intercom.

Or these ambulances, have a door, we have that door, which makes it easy for the person in the rear to talk to the person in the front, but, you can’t open it while you’re driving –

They don’t all have that door –

And I mean, 6 [ambulance 6] has that little porthole.

-Yeah, and I mean plus if you just open that door and leave it open there’s no locking point for the door, so its smacks around and it’ll usually end up shutting anyway.
We usually have stuff on the door too.

Yeah and it –

Yeah, projectiles.

I’ve been in ambulances where the door opens and then has it locking open position, which is awesome. Of course then you have a big hole that you can yell back and forth at each other. But then, you have this little slide window, sometimes you turn and then the slide window shuts, and you can’t hear.

It’s funny, because this just happened yesterday with this one patient. And it was imperative, like, really important information that I couldn’t relay to my medic in the back. And it might have changed; we might have done some interventions sooner.

Please think about the last time you were providing emergency care in the rear patient compartment of the ambulance and lights and sirens were used during the transport:

Whose decision is it to initiate emergency response mode?

The person in the back

The care provider

I guess there are some situations where you’re you know cardiac arrest and they’re doing CPR, and you get in the ambulance and you already know. It’s a given.

Yeah, there’s some givens. Definitely, that you don’t have to communicate lights and sirens, it’s just a given.

Yeah sometimes just automatically code 3.

Yeah I’d say also, its rare, but there are some circumstances where the amount of traffic is big enough that its worthwhile to turn on lights and sirens for a brief period.

In that case, the driver makes that decision. That’s normally just a brief period, not the entire call. Like if there’s some jam up or another accident that they need to get around, the driver will decide “ok, we’re probably going to light up to get around this,” go code 3, then go back down.

What else can influence the initiation of emergency mode?

Certain road conditions can influence us to not go L&S.

Right
Like if it's icy we're probably not going to go code 3. Because it's going to make everybody else freak out, and we're going to have crashes.

If it’s really poor and the weather's really bad, we’re probably not going to do it.

Like if we’re going up Gallatin canyon, it can be more dangerous to try to have people pull over.

Yeah! Because you come around that corner, then everybody else is like “what do I do” and then stutter step, or go off the road.

Please think about the last time you were providing emergency care in the rear patient compartment of the ambulance providing emergency care. How often are you able to be belted during a patient transport?

Able? Or are belted?

That’s a good point.

I’m not belted very often.

I would say the ideal situation for a seatbelt would be a non-emergent transfer, because 75% of the time the patient needs very minimal care, basically just check vitals, so it’s not a lot of moving around. That would probably be the best case scenario.

We’ve done some really long trips and we didn’t buckle either.

Yeah, I always seem to just wedge myself somewhere [meaning between the stretcher and bench seat].

What influences your choice to not be restrained?

I guess the procedures that I’m doing.

Yeah, severity of the patient.

In all reality, too, if the ambulance does roll, there’s not a roll cage back there. So you’re going to be dead, whether you have a seatbelt on or not.

What else can influence the use of restraint devices?

The procedures I’m trying to do. Whether it be putting the monitor on or back.

I mean realistically, if we crash, being in the back of the ambulance, we’re going to be dead.
What was it that guy said? Any crash over 30 mph is probably going to involve fatalities?

And thinking about it that way. In that aspect, if it’s my choice, I’d rather be dead than just maimed. Or paralyzed, I don’t know. That’s just my personal thought.

When I was in [city] we had a crew that got hit by a semi truck and basically all the cabinets on the driver’s side of the ambulance, there was nothing there. Barely missed the patient’s gurney, and it just folded the cabinets around the medic who was sitting in the jump seat, the rear facing seat. That’s the reason he’s alive, is because he was sitting in that seat, and it wrapped around him, got cocooned around him, and the patient was fine. Had a vertebral fracture, but was fine.

Please think about the last time you were providing emergency care in the rear patient compartment of the ambulance providing emergency care. What equipment is the easiest to access?

Anything on the bench.

The monitor? The monitor is probably the easiest one and that’s about it. Unless we sometimes have life pack sometimes. In the big black bag

But that’s usually harder to get to, because that’s in front and you’re trying to get to it.

Sometimes it’s on the bench but it’s at the feet and then it’s easier to reach for. And then if you hit a corner its probably on the patient at that point.

Yeah, you basically have to unbelt to get to that bag.

What equipment is the most difficult to access?

Airway stuff. Because that’s all in the front. All of your intubation equipment and airway supplies. Suction, onboard O2.

Yeah that’s bad in the vans; you pretty much have to move the patient to get to it.

What equipment is most frequently accessed?

IVs, oxygen, IV meds, O2 administration. It’s basically at the patient’s hips, second cabinet up [straight across from bench seat].

And oxygen normally, in the van it’s in the rear – Above the rear door. The type III’s, the O2 is up and to the left. Top left corner. They’re all different.

Do you currently do anything to work around equipment retrieval during transport?
Put some stuff on the bench?

Maybe. Once in a while.

Occasionally you’ll grab the IV box and put it on the bench before you start rolling, or spike the IV before you roll –

Yeah, get your IV spike and bag setup on the bench so you can get access to it.

Yeah like 80% of the time I start my IV before we roll.

Suppose you were able to localize frequently used equipment safely to your body, in a vest or belt. Would you use this?

Like a bat belt?

Utility belt?

I think it would be handy, but it would get in the way more than not.

Stuff would get smashed.

What equipment would you include?

IV supplies, just like a basic setup kit. Maybe your most common medications (Benadryl, etc) the little ones, that take forever to find.

So your main reason for not wearing, would be that it is too big, or bulky, or unwieldy?

Cumbersome, and -

Probably more uncomfortable too. Maybe in a higher call volume area would benefit? You know, because you’re constantly moving and doing things. Here, we can do a decent amount of hours, not doing anything. Like I’d probably forget it and not take it. I’d probably take it off, put it on the couch next to me and forget about it.

What about [name]? [Name] started putting stuff in an emesis basin on the bench before starts.

Oh? [Name] does that too.

Yeah, they started working together.
In [old city they worked at] we had these little bins that we kept, you know, in that little gap in the back of the bench seat. We had little bins that fit right down there so it didn’t interfere if you were sitting on it, or if you had to strap a patient on it. All your IV needles, commonly used stuff was sitting right there. That way we didn’t have to get into the cabinets to get stuff out.

Yeah that might be like an option or having something out so the bench seat has a pad here and a pad here, what about –

Oh yeah, use the section in between!

Or, a drop down thing, that’d be cool

I’ve been in an ambulance that had a pull out cabinet, that’d be cool. They do have them out there.

Think about where you currently hang IV bags. What location is most convenient to use while providing care for the majority of patients?

The jump seat.

There, just to the back, by

The CPR seat?

Straight above the patient.

It keeps the tubing out of your way

If you have to move up and down that channel, between the patient and the bench seat, there’s no tube you have to cross, trip over, rip out, or go underneath.

A cabinet on the ceiling would be kind of cool, like a drop down where you could keep all your stuff.

Yeah until the latch fails and you hit a bump and it SMACKS you in the head.

Yeah! Imagine by the time WE [emphasizing that AMR Bozeman gets used equipment] get the ambulance, it’d probably be completely shot –

200,000 miles later.
All the latches completely busted.

Think about the panel in the rear patient compartment which contains light/air controls, and oxygen controls. What on this panel do you access most frequently?

In the Action Area?

Here? Lights, the main 02, suction, and that’s it. There’s other switches but I don’t really know what they do?

Lights, dim, hot/cold, exhaust, fan most of the time.

If this panel was relocated or duplicated, where would you place it?

Right by the bench?

No, I’d probably hit it with my elbow or something.

You know how those Type III’s have the oxygen tree right there next to the bench seat?

Yeah.

Yeah but those are

Those are beneficial when you have 2 patients. Then you can have the guy that’s on the bench, and have the 02 right there.

They’re also beneficial when you have a couple plugs. Plug one in and – and I did a nebulizer on one side, and the CPAP on other.

I don’t know if I’d want the switches somewhere else, unless they get in the way.

Maybe the Heat/AC and lights over there [rear wall of ambulance]

Suction you got to reach over there anyway

Suction you got to reach over to grab your suction anyway

Maybe over by the medic catcher? By the net? They got that light switch sometimes, like on 6, that would be a good spot to have an extra set of stuff like right there.

What about toward the back where we have that little twist-
Or towards the back, because then you could turn the heat on like if you know it’s going
to be cold you can turn the heat on and go get your patient, you don’t have to crawl in
and turn it on.

Exactly, that’d be an excellent place for it.

**Would you use the panel if it was located nearer to a seat where you traditionally
provide patient care?**

Yeah, probably a lot. Yeah, lights and heater, that’d be great.

I would duplicate it. Yeah if we had it in both spots. I would duplicate instead of just
moving it. If it’s like a LDT, long distance trip, I sit in that rear-facing seat more often
than not. It’s the safest.

Where the cabinets wrap around you instead of on top of you [in the event of a wreck].
Yeah plus mostly your accidents are front on or head end so you have a big seat behind
you, you have the big seat behind you, you have support as opposed to sitting
perpendicular to the road and then a lot more spinal injury to get whipped forward like
that. So I would duplicate it [the control panel]

**Now thinking in general about different ideas for changing ambulance storage
layouts, like if you were to move equipment to a different place, what characteristics
would be important in regards to that? What would you move, and why?**

I really like the ambulances, and its already done in a lot of them, that have the fold down
child seat in the rear facing seat. It’s got a panel that you basically pull down, with arm
straps, waist straps, and a harness. That’s really nice instead of an inflatable harness.

You would like to see that introduced to the ambulances?

Yeah, I mean they have them at the Yellowstone club, their ambulances, but these don’t.
It’s just nice, you know, when you need it.

You don’t have to track down the kids’ seat, have the mom go get it out of their car, or
try to inflate ours [imitate heavy breathing].

That’s all you would move?

The emesis basin. That’s something that comes up that you need really quick.

You know what’d be nice? You know how we have that medic catcher cargo net? What
if we had, not a cabinet, but you know how they have those over-the-door shoe hangers?
Something like that where you can stuff multiple pockets you can stuff stuff in, right there where you can grab. That would be great for oxygen, or IV supplies, have one bag sitting there for IV fluid,

We could do that, that would be easy.

That would be perfect, really easy to get set up.

Yeah, grab an alcohol swab, grab a set of needles,

Yeah, just have a bunch of little clear Velcro pockets. Or fold out picture windows. I think that would be super nice.

Anything else?

Reposition the emesis basin for rapid deployment. Like maybe a drop down puke bag.

Have you seen those bio cups?

With a zip tie on it so it doesn’t spill out afterwards? They have a hook you can hook it on their shirt and it just sits there in front of them. That’s nice.

Is there any other equipment that you frequently need quickly?

Well its usually unexpected [referring to vomiting]. I mean you’re like “la la la” and your patient’s like “I’m gonna throw up” and you’re like “oh” and you’re scrambling and you got to like go open up the door, pull out the emesis basin, get a towel so it doesn’t splash everywhere, or pull the extra towels out, and then they’re fumbling with it [the basin] because they can’t hold it because they’re retching, it gets ugly.

Alright. If equipment were relocated, but you could access necessary tools from your preferred seat while providing patient care, would that influence your choice to be restrained?

If I didn’t have to move, at all, potentially yes.

The thing is, I mean, I think it would be hard to accomplish to be restrained and be close enough to your patient to provide care, to even be close enough in the ambulance.

So the distance from the patient to the seat is inhibitive toward patient care.

Exactly, and that’s enough to-

And you can’t really narrow that distance. You’d be tripping on that.
So what if you put the patient, the cot, on like a sliding track. Like pull closer, and lock, and release.

As long as there was a safety stop. Don’t want to be going around a corner and crack your shins or break your ankle.

Yeah, that might not be bad. Sometimes I think that even if the patient was sitting a little higher, like more like up to your, like, on a table; you’re right here with the patient –

Yeah but then you have your combative patients –

Ha, then you have a hydraulic and you can just push them away! (joking) Like WHACK and it’s like padded on the ceiling. Like memory foam.

More serious patients require more EMS workers, so there is less chance to be restrained. A lot of times you have an EMT and a medic in the back, and a Fire guy driving.

So severity of patient illness can impact the number of people that are in the back, and that is something that affects restraint patterns?

Well yeah, and even if you don’t have a lot of people back there, and the patient is severe, you’re doing stuff the whole time.

How many times would you be willing to have a sit/stand change before you would not engage restraints?

In one call?

I think probably one would be enough.

Like if you could point the heater at the patient

Where is the heater right now?

If you’re in the ambulance, it’s facing back, above the right passenger side above the blankets. The new ambulances, we don’t have it here, have airplane, like you can point them, directional heating. So I can turn them all off over the bench if you’re hot, and turn them on the patient. Because you’re dressing for the day when you’re going to be stuck outside for 30 minutes while they’re being cut out of the car and so you’re bundled up and you’re like –
You’re like “how you doing for temperature?” and they’re freezing, and you’re sweating, and taking off your jacket. That’s another thing that would inhibit care if you wore that vest, unless you wore it under your jacket.

You could get a big paramedic patch for your vest!

Do you have any questions, or other comments?

Maybe instead of the patient sliding towards you, your chair slides towards them? Like the bench is on rollers.

I’d probably fall out.

New ones probably have that. We just got a new one and our “new” one has what, 180,000 miles on it? So yeah, I’ve seen all these new ambulances with their captain’s chairs and 5-point restraint systems you can stand up and walk around with.

Aren’t there some problems with that on [the bench seat]? Like if you’re strapped in and you crash and your body doesn’t move but your head does and… and it’s too stationary.

Yeah I like the cargo net. Fetal position, end up in the net.

What about the one that doesn’t have the cargo net? [laughing]

I wonder how, could you improve the cargo net? Add a little give to it?

Yeah, what about an airbag that fills the entire compartment [joking]

Yeah! Secure foam, like on demolition man.

No really, kind of like those bungees, those nylon webbing bungee things? If the cargo net was made out of that so it had some give, with maybe like a side curtain airbag in cars?

Or even if just certain airbags deployed to keep you from hitting sharp objects.

Yeah, I think that’d be good, as long as they were like all secured, away from the patient, only in certain spots.

CLOSING SCRIPT
APPENDIX D

SAS CODE FOR VIBRATION ANALYSIS
/*Here, I am reading in individual files, separately.*/
/*This is an abbreviated list, following this comment I call in 4 of the 108 files*/

/*Reading data for each file is as follows:*/
/*DATA <what I am calling that data file>;*/
/*INFILE <"filepath"> <define my source file as comma delimited> <Handle missing observations> <First row is title> <Longest record is no greater than 1000 characters>;*/
/*Inupt <Define each parameter as well as how to read it in (character, numeric, decimals, etc)>;*/

DATA T_100715_2042;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100715_2042.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100808_1339;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100808_1339.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100808_2241;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100808_2241.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100809_1725;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100809_1725.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100809_2046;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100809_2046.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100809_2202;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100809_2202.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100810_0019;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100810_0019.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100810_1443;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100810_1443.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100810_1714;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100810_1714.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100811_1414;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100811_1414.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100812_0050;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100812_0050.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100813_0949;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100813_0949.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100813_2007;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100813_2007.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100814_0746;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100814_0746.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100814_1003;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100814_1003.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100814_1517;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100814_1517.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100815_0049;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100815_0049.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100815_1240;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100815_1240.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100815_1850;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100815_1850.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100815_2001;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100815_2001.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100816_1715;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100816_1715.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100816_2056;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100816_2056.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100817_0253;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100817_0253.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100818_1203;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100818_1203.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100818_1533;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100818_1533.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100818_1952;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100818_1952.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100818_2240;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100818_2240.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_0448;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_0448.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_0617;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_0617.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_0749;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_0749.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_1114;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_1114.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_1203;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_1203.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_1706;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_1706.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_2108;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100828_2108.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100828_2211;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100829_0149.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100830_1004;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100831_0908.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100831_2229;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100831_2359.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100902_1120;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100902_1120.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100902_1816;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100902_1816.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100902_2233;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100902_2233.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100903_0506;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100903_0506.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100903_1739;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100903_1739.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100903_1823;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100903_1823.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100904_1953;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100904_1953.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100904_2049;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100904_2049.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100904_2153;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100904_2153.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100905_0046;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100905_0046.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100905_0628;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100905_0628.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100905_0820;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100905_0820.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100905_2204;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100905_2204.dat" dlm=',
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100906_0708;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100906_0708.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100906_1417;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100906_1417.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100907_0003;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100907_0003.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100907_1405;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100907_1405.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_0007;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_0007.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_1217;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_1217.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_1345;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_1345.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_1442;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_1442.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_1737;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_1737.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_1837;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_1837.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_1938;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_1938.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100909_2156;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100909_2156.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100911_1803;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100911_1803.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100911_1834;
 INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100911_1834.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100913_2255;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100913_2255.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100914_1708;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100914_1708.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100922_1224;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100922_1224.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100922_1348;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100922_1348.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100922_1839;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100922_1839.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100922_1947;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100922_1947.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100927_1240;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100927_1240.dat" dlm=','
DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100928_1155;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100928_1155.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100928_1524;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100928_1524.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100928_2017;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100928_2017.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100929_0946;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100929_0946.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100929_2203;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100929_2203.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100930_0314;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100930_0314.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100930_0908;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in
them\XMSU_0000_0000_MS_100930_0908.dat" dlm=',' DSD FIRSTOBS=2
LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7
VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100930_1033;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100930_1033.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100930_1203;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100930_1203.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_100930_1759;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_100930_1759.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101001_1146;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101001_1146.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101001_1516;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101001_1516.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101001_1621;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101001_1621.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101001_1717;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101001_1717.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101001_2324;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101001_2324.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_0043;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_0043.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_1011;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_1011.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_1339;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_1339.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_1502;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_1502.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_1620;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_1620.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_2018;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_2018.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101002_2244;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101002_2244.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101006_0506;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101006_0506.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101009_0846;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101009_0846.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101014_1552;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101014_1552.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101014_1701;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101014_1701.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101016_2158;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101016_2158.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101017_1110;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101017_1110.dat" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101017_1605;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101017_1605.dat" dlm=',' LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101018_0229;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101018_0229.dat" dlm=',' LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
DATA T_101018_0407;
INFILE "C:\EMS Naturalistic\Vibration\DAT with medic in them\XMSU_0000_0000_MS_101018_0407.dat" dlm=',' LRECL=1000;
Input VAR1 systemtime VAR3 :$40. filename :$30. VAR5 VAR6 VAR7 VAR8 VAR9 accelx1 accely1 accelz1 VAR13 VAR14 VAR15 speedHU;
RUN;
/*Stacking the data sets into one set called "fullset" */
Data Fullset;
Set T_100715_2042 T_100808_1339 T_100808_2241 T_100809_1725 T_100811_1414 T_100812_0050 T_100813_0949 T_100814_0746 T_100815_2001 T_100816_1517 T_100817_2056 T_100818_0253 T_100818_1203 T_100818_1533 T_100818_1952 T_100818_2240 T_100828_0448 T_100828_0617 T_100828_0749 T_100842_1114 T_100828_1203 T_100828_1706 T_100828_2108 T_100828_2211 T_100829_0149 T_100830_1004 T_100831_0908 T_100831_2229 T_100831_2359 T_100902_1120 T_100902_1816 T_100902_2233 T_100903_0506 T_100903_1406 T_100903_1739 T_100905_1823 T_100904_1953 T_100904_2049 T_100904_2153 T_100905_0628 T_100905_0820 T_100905_2204 T_100906_0708 T_100906_1417 T_100907_0003 T_100907_1405 T_100909_1217 T_100909_1345 T_100909_1442 T_100909_1737 T_100909_1837 T_100909_1938 T_100909_2156 T_100911_1803 T_100911_1834 T_100913_2255 T_100914_1708 T_100922_1224 T_100922_1348 T_100922_1839 T_100922_1947 T_100927_1240 T_100928_1155 T_100928_1524 T_100928_2017 T_100929_0946 T_100929_2203 T_100930_0314 T_100930_0908 T_100930_1033 T_100930_1203 T_100930_1759 T_101001_1146 T_101001_1516 T_101001_1621 T_101001_1717 T_101001_2324 T_101002_0043 T_101002_1011 T_101002_1339 T_101002_1502 T_101002_1620 T_101002_2244 T_101006_0506 T_101009_0846 T_101014_1552 T_101014_1701 T_101016_2158 T_101017_1110 T_101017_1605 T_101018_0229 T_101018_0407;
Run;
/*Here I am making the table which I will put all my important statistics in*/
/*Crest factor I'll have to get by hand, that's OK. */
Proc SQL;
CREATE TABLE VibrationStats
(
 Filename Character(30),
 RMS_X1 Numeric,
 RMS_Y1 Numeric,
 RMS_Z1 Numeric,
 VDV_X1 Numeric,
 VDV_Y1 Numeric,
 VDV_Z1 Numeric,
 Max_X1 Numeric,
 Max_Y1 Numeric,
 Max_Z1 Numeric,
 Time Numeric,
 Duration Numeric
)
;
quit;

Data vibcalcs;
/*Here i am dropping the variables I do not want and will not
use*/
set Fullset (drop = VAR1 VAR3 VAR5 VAR6 VAR7 VAR8 VAR9 VAR13 VAR14 VAR15);

/*Converting from g's to m/s^2, and weighting it according to ISO 2361
for seated.*/
accelX1 = accelX1 * 9.80665 * 1.4;
accelY1 = accelY1 * 9.80665 * 1.4;
accelZ1 = accelZ1 * 9.80665;

/*Accounting for gravity in the vertical direction (z)*/
accelz1 = accelz1 - 9.80665;

/*'generating columns for x,y,z^2 (RMS)*/
accelX1sq = accelX1 * accelX1;
accelY1sq = accelY1 * accelY1;
accelZ1sq = accelZ1 * accelZ1;

/*'generating columns for x,y,z^4 (VDV)*/
accelX1_4 = accelX1sq * accelX1sq;
accelY1_4 = accelY1sq * accelY1sq;
accelZ1_4 = accelZ1sq * accelZ1sq;

/*Cleaning up so that when I group by filename, the 3-5 lines without
text in them won't hang up the program.*/
if filename = '' then delete;
if filename = ' ' then delete;
RUN;

/*generates a lag accel^2 for 3 axes, and system time lag for
calculating integrals*/
proc expand data=vibcalcs out=vibcalcs_laglead method = none;
 by filename;
 id systemtime;
 convert accelXlsq = accelXlsq_lag1 /transformout=(lag 1);
 convert accelXlsq;
 convert accelYlsq = accelYlsq_lag1 /transformout=(lag 1);
 convert accelYlsq;
 convert accelZlsq = accelZlsq_lag1 /transformout=(lag 1);
 convert accelZlsq;
 convert accelX1_4 = accelX1_4_lag1 /transformout=(lag 1);
 convert accelX1_4;
 convert accelY1_4 = accelY1_4_lag1 /transformout=(lag 1);
 convert accelY1_4;
 convert accelZ1_4 = accelZ1_4_lag1 /transformout=(lag 1);
 convert accelZ1_4;
 convert systemtime = systemtime_lag1 /transformout=(lag 1);
 convert systemtime;
RUN;

/*This generates for each time step the integral for acceleration in
one axis
using the formula for area of a trapezoid; this is repeated for each
entry.*/
Data VibIntegralCalcs;
 Set vibcalcs_laglead;
 volumeX1_sq = 0.5 * (systemtime - systemtime_lag1) * (accelXlsq +
convert accelXlsq_lag1);
 volumeY1_sq = 0.5 * (systemtime - systemtime_lag1) * (accelYlsq +
convert accelYlsq_lag1);
 volumeZ1_sq = 0.5 * (systemtime - systemtime_lag1) * (accelZlsq +
convert accelZlsq_lag1);
 volumeX1_4 = 0.5 * (systemtime - systemtime_lag1) * (accelX1_4 +
convert accelX1_4_lag1);
 volumeY1_4 = 0.5 * (systemtime - systemtime_lag1) * (accelY1_4 +
convert accelY1_4_lag1);
 volumeZ1_4 = 0.5 * (systemtime - systemtime_lag1) * (accelZ1_4 +
convert accelZ1_4_lag1);
 timestep = systemtime - systemtime_lag1;
Run;

Proc SQL;
/*This populates my SQL table with relevant statistics*/

Insert into Vibrationstats (Filename, Duration, RMS_X1, RMS_Y1, RMS_Z1, VDV_X1, VDV_Y1, VDV_Z1, Max_X1, Max_Y1, Max_Z1, Time)

Select /*Here am populating each column with: <function to populate> as <columnname>*/
/*filename*/
sum(timestep) as Duration,
filename as filename,
/*RMS_X^2 (take square root once in excel)*/
(sum(volumeX1_sq) / sum(timestep)) as RMS_X1,
/*RMS_Y^2 (remember to sqrt this!)*/
(sum(volumeY1_sq) / sum(timestep)) as RMS_Y1,
/*RMS_Z^2 (remember to sqrt this!)*/
(sum(volumeZ1_sq) / sum(timestep)) as RMS_Z1,
/*RMS_X^4 (remember to ^.25 this!)*/
(sum(volumeX1_4) / sum(timestep)) as VDV_X1,
/*RMS_Y^4 (remember to ^.25 this!)*/
(sum(volumeY1_4) / sum(timestep)) as VDV_Y1,
/*RMS_Z^4 (remember to ^.25 this!)*/
(sum(volumeZ1_4) / sum(timestep)) as VDV_Z1,
/*Max_X1*/
max(accelx1) as Max_X1,
/*Max_Y1*/
max(accely1) as Max_Y1,
/*Max_Z1*/
max(accelz1) as Max_Z1,
/*Time*/
max(systemtime) as Time

From Vibintegralcalcs
Where speedHU > 1
group by filename
;
quit;
Data CleanVibrationStats;
Set VibrationStats;

RMS_X = sqrt(RMS_X1); /*This is \(a_{\text{wx}} \) for the trip*/
RMS_Y = sqrt(RMS_Y1); /*This is \(a_{\text{wy}} \) for the trip*/
RMS_Z = sqrt(RMS_Z1); /*This is \(a_{\text{wz}} \) for the trip*/

VDV_X2 = sqrt(VDV_X1);
VDV_Y2 = sqrt(VDV_Y1);
VDV_Z2 = sqrt(VDV_Z1);

VDV_X = sqrt(VDV_X2);
VDV_Y = sqrt(VDV_Y2);
VDV_Z = sqrt(VDV_Z2);

CrestFactorX = Max_X1 / RMS_X;
CrestFactorY = Max_Y1 / RMS_Y;
CrestFactorZ = Max_Z1 / RMS_Z;

If Max_X1 > Max_Y1 and Max_X1 > Max_Z1 then SevereAxis = 'X';
If Max_X1 > Max_Y1 and Max_X1 > Max_Z1 then a_wMAX = RMS_X;

If Max_Z1 > Max_Y1 and Max_Z1 > Max_X1 then SevereAxis = 'Z';
If Max_Z1 > Max_Y1 and Max_Z1 > Max_X1 then a_wMAX = RMS_Z;

If Max_Y1 > Max_X1 and Max_Y1 > Max_Z1 then SevereAxis = 'Y';
If Max_Y1 > Max_X1 and Max_Y1 > Max_Z1 then a_wMAX = RMS_Y;

Drop RMS_X1 RMS_Y1 RMS_Z1 VDV_X1 VDV_Y1 VDV_Z1 VDV_X2 VDV_Y2 VDV_Z2;
Run;
APPENDIX E

SAS CODE VIBRATION OUTPUT
<table>
<thead>
<tr>
<th>Filename</th>
<th>Time</th>
<th>Max X1</th>
<th>Max Y1</th>
<th>Max Z1</th>
<th>RMS X</th>
<th>RMS Y</th>
<th>RMS Z</th>
<th>VDV X</th>
<th>VDV Y</th>
<th>VDV Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMSU_0000_0000_MS_100715_2042</td>
<td>468.792</td>
<td>3.836</td>
<td>3.029</td>
<td>6.057</td>
<td>0.917</td>
<td>0.944</td>
<td>0.716</td>
<td>1.313</td>
<td>1.246</td>
<td>1.306</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100808_1339</td>
<td>991.905</td>
<td>4.765</td>
<td>5.371</td>
<td>5.769</td>
<td>0.921</td>
<td>0.842</td>
<td>0.806</td>
<td>1.549</td>
<td>1.401</td>
<td>1.281</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100808_2241</td>
<td>181</td>
<td>3.069</td>
<td>2.342</td>
<td>3.750</td>
<td>0.910</td>
<td>0.611</td>
<td>0.743</td>
<td>1.202</td>
<td>0.677</td>
<td>1.151</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100809_1725</td>
<td>437.807</td>
<td>6.340</td>
<td>2.867</td>
<td>6.778</td>
<td>0.950</td>
<td>0.789</td>
<td>0.856</td>
<td>1.482</td>
<td>1.076</td>
<td>1.348</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100809_2202</td>
<td>1358.741</td>
<td>4.401</td>
<td>2.544</td>
<td>5.076</td>
<td>0.748</td>
<td>0.470</td>
<td>0.750</td>
<td>1.072</td>
<td>0.732</td>
<td>1.110</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100810_0019</td>
<td>636.313</td>
<td>5.613</td>
<td>3.675</td>
<td>5.048</td>
<td>0.890</td>
<td>0.611</td>
<td>0.743</td>
<td>1.202</td>
<td>0.877</td>
<td>1.151</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100810_1443</td>
<td>489.102</td>
<td>2.504</td>
<td>2.423</td>
<td>3.923</td>
<td>0.569</td>
<td>0.677</td>
<td>0.677</td>
<td>1.254</td>
<td>0.730</td>
<td>1.278</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100811_1414</td>
<td>714.912</td>
<td>5.572</td>
<td>3.150</td>
<td>5.826</td>
<td>0.758</td>
<td>0.910</td>
<td>0.697</td>
<td>1.200</td>
<td>1.281</td>
<td>1.165</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100812_0050</td>
<td>567.036</td>
<td>8.116</td>
<td>3.755</td>
<td>5.048</td>
<td>1.084</td>
<td>0.796</td>
<td>0.900</td>
<td>1.750</td>
<td>1.227</td>
<td>1.391</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100812_0049</td>
<td>354.648</td>
<td>5.332</td>
<td>2.584</td>
<td>5.480</td>
<td>0.665</td>
<td>0.635</td>
<td>0.661</td>
<td>1.140</td>
<td>0.954</td>
<td>1.101</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_1240</td>
<td>543.141</td>
<td>2.584</td>
<td>2.504</td>
<td>5.307</td>
<td>0.658</td>
<td>0.587</td>
<td>0.655</td>
<td>1.080</td>
<td>0.884</td>
<td>1.132</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_1850</td>
<td>623.635</td>
<td>5.330</td>
<td>2.705</td>
<td>4.701</td>
<td>0.778</td>
<td>0.707</td>
<td>0.613</td>
<td>1.289</td>
<td>1.021</td>
<td>0.991</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_2001</td>
<td>1354.923</td>
<td>0.836</td>
<td>3.392</td>
<td>7.615</td>
<td>0.746</td>
<td>0.497</td>
<td>0.789</td>
<td>1.112</td>
<td>0.768</td>
<td>1.208</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100816_1715</td>
<td>400.043</td>
<td>3.715</td>
<td>3.352</td>
<td>5.134</td>
<td>0.849</td>
<td>0.734</td>
<td>0.737</td>
<td>1.355</td>
<td>1.110</td>
<td>1.235</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100816_2056</td>
<td>826.571</td>
<td>4.563</td>
<td>5.128</td>
<td>7.845</td>
<td>0.981</td>
<td>0.727</td>
<td>0.876</td>
<td>1.610</td>
<td>1.302</td>
<td>1.542</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100817_0253</td>
<td>174.32</td>
<td>3.375</td>
<td>5.134</td>
<td>0.849</td>
<td>0.734</td>
<td>0.737</td>
<td>1.355</td>
<td>1.110</td>
<td>1.235</td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_1203</td>
<td>1219.885</td>
<td>3.796</td>
<td>4.119</td>
<td>5.009</td>
<td>0.904</td>
<td>0.592</td>
<td>0.827</td>
<td>1.299</td>
<td>1.064</td>
<td>1.269</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_1952</td>
<td>737.311</td>
<td>3.634</td>
<td>3.634</td>
<td>5.711</td>
<td>0.889</td>
<td>0.568</td>
<td>0.773</td>
<td>1.407</td>
<td>0.956</td>
<td>1.217</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_1706</td>
<td>1029.361</td>
<td>4.644</td>
<td>3.392</td>
<td>3.836</td>
<td>0.936</td>
<td>0.539</td>
<td>0.719</td>
<td>1.499</td>
<td>0.884</td>
<td>1.060</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_2240</td>
<td>360.548</td>
<td>3.029</td>
<td>2.948</td>
<td>7.153</td>
<td>0.754</td>
<td>0.915</td>
<td>0.645</td>
<td>1.113</td>
<td>1.206</td>
<td>1.154</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_0448</td>
<td>468.897</td>
<td>7.511</td>
<td>2.988</td>
<td>4.182</td>
<td>0.859</td>
<td>0.722</td>
<td>0.668</td>
<td>1.351</td>
<td>1.088</td>
<td>1.094</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_0617</td>
<td>824.614</td>
<td>4.038</td>
<td>3.150</td>
<td>6.403</td>
<td>0.880</td>
<td>0.619</td>
<td>0.778</td>
<td>1.261</td>
<td>0.902</td>
<td>1.232</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_0749</td>
<td>640.475</td>
<td>3.553</td>
<td>2.988</td>
<td>5.711</td>
<td>0.773</td>
<td>0.661</td>
<td>0.673</td>
<td>1.155</td>
<td>1.039</td>
<td>1.142</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_1114</td>
<td>931.946</td>
<td>4.926</td>
<td>3.836</td>
<td>5.394</td>
<td>0.811</td>
<td>0.878</td>
<td>0.694</td>
<td>1.357</td>
<td>1.305</td>
<td>1.132</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_1203</td>
<td>324.603</td>
<td>7.470</td>
<td>5.774</td>
<td>7.730</td>
<td>1.600</td>
<td>1.620</td>
<td>0.799</td>
<td>2.627</td>
<td>2.220</td>
<td>1.481</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_1706</td>
<td>487.965</td>
<td>2.423</td>
<td>2.342</td>
<td>4.355</td>
<td>0.554</td>
<td>0.720</td>
<td>0.572</td>
<td>0.894</td>
<td>0.984</td>
<td>0.926</td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_2108</td>
<td>300.06</td>
<td>2.059</td>
<td>2.302</td>
<td>5.134</td>
<td>0.701</td>
<td>0.638</td>
<td>0.623</td>
<td>0.959</td>
<td>0.908</td>
<td>1.069</td>
</tr>
<tr>
<td>Filename</td>
<td>CrestFactorX</td>
<td>CrestFactorY</td>
<td>CrestFactorZ</td>
<td>SevereAxis</td>
<td>a_wMAX</td>
<td>a_wTOTAL</td>
<td>VDV_TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100715_2042</td>
<td>4.183</td>
<td>3.209</td>
<td>8.458</td>
<td>Z</td>
<td>0.716</td>
<td>1.498</td>
<td>2.232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100808_1339</td>
<td>5.174</td>
<td>6.376</td>
<td>7.154</td>
<td>Z</td>
<td>0.806</td>
<td>1.486</td>
<td>2.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100808_2241</td>
<td>3.374</td>
<td>3.832</td>
<td>5.047</td>
<td>Z</td>
<td>0.743</td>
<td>1.324</td>
<td>1.881</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100809_1725</td>
<td>6.676</td>
<td>3.632</td>
<td>7.921</td>
<td>Z</td>
<td>0.856</td>
<td>1.502</td>
<td>2.274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100809_2046</td>
<td>5.881</td>
<td>5.411</td>
<td>6.771</td>
<td>Z</td>
<td>0.750</td>
<td>1.159</td>
<td>1.708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100810_2202</td>
<td>6.343</td>
<td>6.195</td>
<td>6.577</td>
<td>Z</td>
<td>0.868</td>
<td>1.279</td>
<td>1.933</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100811_1443</td>
<td>4.401</td>
<td>3.580</td>
<td>7.095</td>
<td>Z</td>
<td>0.553</td>
<td>1.043</td>
<td>1.573</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100811_1414</td>
<td>7.350</td>
<td>3.463</td>
<td>8.362</td>
<td>Z</td>
<td>0.697</td>
<td>1.374</td>
<td>2.106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100812_0050</td>
<td>7.487</td>
<td>4.716</td>
<td>5.609</td>
<td>X</td>
<td>1.084</td>
<td>1.618</td>
<td>2.550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100813_0949</td>
<td>8.867</td>
<td>4.531</td>
<td>6.300</td>
<td>X</td>
<td>1.025</td>
<td>1.583</td>
<td>2.533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100813_2007</td>
<td>5.654</td>
<td>5.570</td>
<td>6.208</td>
<td>X</td>
<td>0.843</td>
<td>1.351</td>
<td>2.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100814_0746</td>
<td>7.504</td>
<td>4.097</td>
<td>10.165</td>
<td>Z</td>
<td>0.644</td>
<td>1.118</td>
<td>1.919</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_1203</td>
<td>4.580</td>
<td>4.515</td>
<td>7.683</td>
<td>Z</td>
<td>0.653</td>
<td>1.314</td>
<td>2.089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_1517</td>
<td>5.170</td>
<td>4.331</td>
<td>8.990</td>
<td>Z</td>
<td>0.818</td>
<td>1.446</td>
<td>2.287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_0049</td>
<td>8.316</td>
<td>4.067</td>
<td>8.423</td>
<td>X</td>
<td>0.665</td>
<td>1.127</td>
<td>1.850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_1240</td>
<td>3.930</td>
<td>4.264</td>
<td>8.100</td>
<td>Z</td>
<td>0.655</td>
<td>1.098</td>
<td>1.797</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_1850</td>
<td>6.852</td>
<td>3.829</td>
<td>7.675</td>
<td>X</td>
<td>0.778</td>
<td>1.216</td>
<td>1.920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100815_2001</td>
<td>5.141</td>
<td>6.828</td>
<td>9.645</td>
<td>Z</td>
<td>0.789</td>
<td>1.195</td>
<td>1.812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100816_1715</td>
<td>4.377</td>
<td>4.565</td>
<td>6.970</td>
<td>Z</td>
<td>0.737</td>
<td>1.343</td>
<td>2.143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100816_2056</td>
<td>4.653</td>
<td>7.058</td>
<td>8.958</td>
<td>Z</td>
<td>0.876</td>
<td>1.502</td>
<td>2.581</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100817_0253</td>
<td>3.681</td>
<td>2.742</td>
<td>7.589</td>
<td>Z</td>
<td>0.802</td>
<td>1.797</td>
<td>2.591</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_1203</td>
<td>4.198</td>
<td>6.955</td>
<td>6.663</td>
<td>Z</td>
<td>0.827</td>
<td>1.361</td>
<td>2.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_1533</td>
<td>4.087</td>
<td>6.401</td>
<td>7.390</td>
<td>Z</td>
<td>0.773</td>
<td>1.308</td>
<td>2.091</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_1952</td>
<td>4.961</td>
<td>6.293</td>
<td>5.333</td>
<td>X</td>
<td>0.936</td>
<td>1.298</td>
<td>2.038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100818_2240</td>
<td>4.017</td>
<td>3.221</td>
<td>11.083</td>
<td>Z</td>
<td>0.645</td>
<td>1.350</td>
<td>2.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_0448</td>
<td>8.742</td>
<td>4.137</td>
<td>6.257</td>
<td>X</td>
<td>0.859</td>
<td>1.306</td>
<td>2.051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_0617</td>
<td>4.589</td>
<td>5.085</td>
<td>8.235</td>
<td>Z</td>
<td>0.778</td>
<td>1.328</td>
<td>1.981</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_0749</td>
<td>4.597</td>
<td>4.519</td>
<td>8.490</td>
<td>Z</td>
<td>0.673</td>
<td>1.220</td>
<td>1.929</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_1114</td>
<td>6.071</td>
<td>4.367</td>
<td>7.772</td>
<td>Z</td>
<td>0.694</td>
<td>1.383</td>
<td>2.197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_1203</td>
<td>4.668</td>
<td>3.564</td>
<td>9.678</td>
<td>Z</td>
<td>0.799</td>
<td>2.413</td>
<td>3.744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filename</td>
<td>CrestFactorX</td>
<td>CrestFactorY</td>
<td>CrestFactorZ</td>
<td>SevereAxis</td>
<td>a_wMAX</td>
<td>a_wTOTAL</td>
<td>VDV_TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100828_2211</td>
<td>7.232</td>
<td>4.197</td>
<td>7.481</td>
<td>X</td>
<td>0.871</td>
<td>1.223</td>
<td>1.871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100829_0149</td>
<td>5.983</td>
<td>6.597</td>
<td>6.348</td>
<td>Z</td>
<td>0.804</td>
<td>1.222</td>
<td>1.887</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100830_1004</td>
<td>4.154</td>
<td>3.004</td>
<td>7.296</td>
<td>Z</td>
<td>0.617</td>
<td>1.289</td>
<td>1.924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100831_0908</td>
<td>3.458</td>
<td>3.844</td>
<td>6.793</td>
<td>Z</td>
<td>0.705</td>
<td>1.374</td>
<td>2.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100831_2229</td>
<td>4.472</td>
<td>4.441</td>
<td>11.357</td>
<td>Z</td>
<td>0.630</td>
<td>1.243</td>
<td>2.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100831_2359</td>
<td>5.594</td>
<td>6.600</td>
<td>12.287</td>
<td>Z</td>
<td>0.793</td>
<td>1.197</td>
<td>1.979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100902_1120</td>
<td>3.254</td>
<td>3.321</td>
<td>7.243</td>
<td>Z</td>
<td>0.510</td>
<td>0.963</td>
<td>1.340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100902_1816</td>
<td>5.095</td>
<td>4.600</td>
<td>7.194</td>
<td>Z</td>
<td>0.549</td>
<td>0.972</td>
<td>1.447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100902_2233</td>
<td>4.688</td>
<td>4.257</td>
<td>9.060</td>
<td>Z</td>
<td>0.583</td>
<td>1.148</td>
<td>1.844</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100903_0506</td>
<td>5.843</td>
<td>5.583</td>
<td>9.764</td>
<td>Z</td>
<td>0.727</td>
<td>1.259</td>
<td>1.865</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100903_1406</td>
<td>5.459</td>
<td>3.682</td>
<td>7.054</td>
<td>Z</td>
<td>0.748</td>
<td>1.313</td>
<td>2.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100903_1739</td>
<td>5.101</td>
<td>3.643</td>
<td>6.237</td>
<td>Z</td>
<td>0.712</td>
<td>1.283</td>
<td>2.149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100903_1823</td>
<td>5.575</td>
<td>4.294</td>
<td>9.548</td>
<td>Z</td>
<td>0.822</td>
<td>1.497</td>
<td>2.366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100904_1953</td>
<td>5.534</td>
<td>3.459</td>
<td>11.831</td>
<td>Z</td>
<td>0.956</td>
<td>1.645</td>
<td>3.065</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100904_2049</td>
<td>7.499</td>
<td>4.519</td>
<td>5.331</td>
<td>Z</td>
<td>0.958</td>
<td>1.545</td>
<td>2.574</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100904_2153</td>
<td>5.015</td>
<td>3.852</td>
<td>8.824</td>
<td>Z</td>
<td>0.588</td>
<td>1.142</td>
<td>1.766</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100905_0046</td>
<td>3.628</td>
<td>4.129</td>
<td>5.175</td>
<td>Z</td>
<td>0.569</td>
<td>1.019</td>
<td>1.486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100905_0628</td>
<td>6.922</td>
<td>4.226</td>
<td>6.386</td>
<td>X</td>
<td>0.963</td>
<td>1.507</td>
<td>2.239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100905_0820</td>
<td>7.558</td>
<td>4.551</td>
<td>7.108</td>
<td>X</td>
<td>0.588</td>
<td>1.044</td>
<td>1.620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100905_2204</td>
<td>6.726</td>
<td>5.452</td>
<td>7.246</td>
<td>X</td>
<td>0.883</td>
<td>1.253</td>
<td>1.932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100906_0708</td>
<td>4.056</td>
<td>4.259</td>
<td>7.456</td>
<td>Z</td>
<td>0.747</td>
<td>1.469</td>
<td>2.355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100906_1417</td>
<td>5.058</td>
<td>3.981</td>
<td>6.139</td>
<td>Z</td>
<td>0.742</td>
<td>1.359</td>
<td>2.137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100907_0003</td>
<td>6.930</td>
<td>5.944</td>
<td>6.147</td>
<td>X</td>
<td>0.991</td>
<td>1.424</td>
<td>2.163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100907_1405</td>
<td>4.627</td>
<td>5.128</td>
<td>6.414</td>
<td>Z</td>
<td>0.585</td>
<td>0.969</td>
<td>1.486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100909_0007</td>
<td>4.257</td>
<td>5.033</td>
<td>8.379</td>
<td>Z</td>
<td>0.644</td>
<td>1.175</td>
<td>1.840</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100909_1217</td>
<td>5.253</td>
<td>3.333</td>
<td>7.021</td>
<td>Z</td>
<td>0.723</td>
<td>1.289</td>
<td>1.966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100909_1345</td>
<td>4.935</td>
<td>3.454</td>
<td>7.323</td>
<td>Z</td>
<td>0.642</td>
<td>1.223</td>
<td>1.874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100909_1442</td>
<td>7.140</td>
<td>4.378</td>
<td>7.957</td>
<td>Z</td>
<td>0.707</td>
<td>1.246</td>
<td>2.028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100909_1737</td>
<td>5.810</td>
<td>3.969</td>
<td>6.845</td>
<td>Z</td>
<td>0.544</td>
<td>1.076</td>
<td>1.640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100910_1837</td>
<td>5.455</td>
<td>4.060</td>
<td>7.643</td>
<td>Z</td>
<td>0.691</td>
<td>1.192</td>
<td>1.844</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filename</td>
<td>CrestFactorX</td>
<td>CrestFactorY</td>
<td>CrestFactorZ</td>
<td>SevereAxis</td>
<td>a_wMAX</td>
<td>a_wTOTAL</td>
<td>VDV_TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100914_1708</td>
<td>4.846</td>
<td>3.723</td>
<td>7.968</td>
<td>Z</td>
<td>0.764</td>
<td>1.392</td>
<td>2.131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100922_1224</td>
<td>4.646</td>
<td>3.492</td>
<td>6.141</td>
<td>Z</td>
<td>0.625</td>
<td>1.122</td>
<td>1.764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100922_1348</td>
<td>9.951</td>
<td>5.633</td>
<td>12.239</td>
<td>Z</td>
<td>0.662</td>
<td>1.231</td>
<td>2.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100922_1839</td>
<td>5.007</td>
<td>4.579</td>
<td>6.043</td>
<td>Z</td>
<td>0.706</td>
<td>1.183</td>
<td>1.791</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100922_1947</td>
<td>9.474</td>
<td>4.934</td>
<td>13.050</td>
<td>Z</td>
<td>0.696</td>
<td>1.170</td>
<td>1.909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100927_1240</td>
<td>11.313</td>
<td>5.633</td>
<td>12.239</td>
<td>Z</td>
<td>0.662</td>
<td>1.231</td>
<td>2.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100928_1155</td>
<td>5.347</td>
<td>4.257</td>
<td>7.357</td>
<td>X</td>
<td>0.689</td>
<td>1.086</td>
<td>1.845</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100928_1524</td>
<td>4.004</td>
<td>3.667</td>
<td>7.173</td>
<td>Z</td>
<td>0.704</td>
<td>1.250</td>
<td>1.903</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100929_0946</td>
<td>8.653</td>
<td>4.572</td>
<td>7.392</td>
<td>X</td>
<td>0.625</td>
<td>1.118</td>
<td>1.806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100930_0314</td>
<td>14.93</td>
<td>6.029</td>
<td>6.258</td>
<td>X</td>
<td>0.714</td>
<td>1.77</td>
<td>1.862</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100930_0908</td>
<td>5.063</td>
<td>4.445</td>
<td>6.791</td>
<td>Z</td>
<td>0.688</td>
<td>1.378</td>
<td>2.444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100930_1033</td>
<td>4.050</td>
<td>4.584</td>
<td>6.951</td>
<td>Z</td>
<td>0.880</td>
<td>1.679</td>
<td>2.513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100930_1203</td>
<td>6.088</td>
<td>6.426</td>
<td>8.453</td>
<td>Y</td>
<td>1.018</td>
<td>1.526</td>
<td>2.460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_100930_1759</td>
<td>4.936</td>
<td>3.933</td>
<td>7.171</td>
<td>Z</td>
<td>0.708</td>
<td>1.361</td>
<td>2.467</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101001_1146</td>
<td>6.158</td>
<td>5.030</td>
<td>13.104</td>
<td>Z</td>
<td>0.663</td>
<td>1.291</td>
<td>2.208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101001_1516</td>
<td>5.304</td>
<td>4.844</td>
<td>11.647</td>
<td>Z</td>
<td>0.702</td>
<td>1.255</td>
<td>2.109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101001_1621</td>
<td>4.197</td>
<td>3.402</td>
<td>6.875</td>
<td>Z</td>
<td>0.667</td>
<td>1.402</td>
<td>2.037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101001_1717</td>
<td>4.839</td>
<td>3.910</td>
<td>8.181</td>
<td>Z</td>
<td>0.670</td>
<td>1.483</td>
<td>2.262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101001_2324</td>
<td>5.623</td>
<td>5.853</td>
<td>8.097</td>
<td>Z</td>
<td>0.805</td>
<td>1.202</td>
<td>1.856</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101002_0043</td>
<td>4.137</td>
<td>3.648</td>
<td>7.071</td>
<td>Z</td>
<td>0.697</td>
<td>1.228</td>
<td>1.917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101002_1011</td>
<td>5.696</td>
<td>4.356</td>
<td>9.659</td>
<td>Z</td>
<td>0.678</td>
<td>1.218</td>
<td>1.926</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101002_1339</td>
<td>7.819</td>
<td>3.596</td>
<td>8.406</td>
<td>X</td>
<td>0.738</td>
<td>1.278</td>
<td>2.082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101002_1502</td>
<td>3.650</td>
<td>4.017</td>
<td>6.921</td>
<td>Z</td>
<td>0.683</td>
<td>1.331</td>
<td>1.997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101002_1620</td>
<td>6.407</td>
<td>4.158</td>
<td>8.539</td>
<td>Z</td>
<td>0.797</td>
<td>1.444</td>
<td>2.260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSU_0000_0000_MS_101002_2018</td>
<td>5.412</td>
<td>4.603</td>
<td>9.522</td>
<td>Z</td>
<td>0.697</td>
<td>1.197</td>
<td>1.873</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F

SAS CODE FOR PATIENT ILLNESS PREDICTORS
DATA Transported_PCR;
 INFILE "C:\Documents and Settings\JMueller\Desktop\PCR Analysis Emergency Mode\PCR Transported Only.csv" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 INPUT Index FromScene012 TransMode012 Emerg_NonEmerg :$12.
 TransMode0_1 PrimaryInjury :$15. InjuryCode1_62 Outcome :$11.
 Responses1-Response47;
 Array Responses (47) Responses1-Response47;
 Do i = 1 to 47;
 If Responses(i) = . Then Responses(i) = 0;
 End;
 Drop i;
RUN;

Proc SQL;
Create Table PatientIllness
 (TransMode Numeric,
 Illness1 Numeric,
 Illness2 Numeric,
 Illness3 Numeric,
 Illness4 Numeric,
 Illness5 Numeric,
 Illness6 Numeric,
 Illness7 Numeric,
 Illness8 Numeric,
 Illness9 Numeric,
 Illness10 Numeric,
 Illness11 Numeric,
 Illness12 Numeric,
 Illness13 Numeric,
 Illness14 Numeric,
 Illness15 Numeric,
 Illness16 Numeric,
 Illness17 Numeric,
 Illness18 Numeric,
 Illness19 Numeric,
 Illness20 Numeric,
 Illness21 Numeric,
 Illness22 Numeric,
 Illness23 Numeric,
 Illness24 Numeric,
 Illness25 Numeric,
 Illness26 Numeric,
 Illness27 Numeric,
 Illness28 Numeric,
 Illness29 Numeric,
 Illness30 Numeric,
 Illness31 Numeric,
 Illness32 Numeric,
 Illness33 Numeric,
Illness34 Numeric,
Illness35 Numeric,
Illness36 Numeric,
Illness37 Numeric,
Illness38 Numeric,
Illness39 Numeric,
Illness40 Numeric,
Illness41 Numeric,
Illness42 Numeric,
Illness43 Numeric,
Illness44 Numeric,
Illness45 Numeric,
Illness46 Numeric,
Illness47 Numeric,
Illness48 Numeric,
Illness49 Numeric,
Illness50 Numeric,
Illness51 Numeric,
Illness52 Numeric,
Illness53 Numeric,
Illness54 Numeric,
Illness55 Numeric,
Illness56 Numeric,
Illness57 Numeric,
Illness58 Numeric,
Illness59 Numeric,
Illness60 Numeric,
Illness61 Numeric,
Illness62 Numeric

quit;

/*This is to identify patient illnesses that are contributing to the
quasi-complete separation of our data. Violating illnesses are 7, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 32, 35, 38, 39, 40, 41, 42, 50, 53, 59 */
Proc freq data = Transported_PCR;
 TABLES InjuryCode1_62 * TransMode0_1;
 TITLE;
run;

/*Creating dummy variables and deleting those which contribute to quasicomplete data separation*/
Data DummyIllnesses;
Set Transported_PCR (drop = FromScene012 TransMode012 Emerg_NonEmerg PrimaryInjury Outcome Response16 Response28 Response29 Response33 Response35 Response41);

 if InjuryCode1_62 = 1 then Illness_1 = 1;
 else Illness_1 = 0;
 if InjuryCode1_62 = 2 then Illness_2 = 1;
else Illness_2 = 0;
if InjuryCode1_62 = 3 then Illness_3 = 1;
else Illness_3 = 0;
if InjuryCode1_62 = 4 then Illness_4 = 1;
else Illness_4 = 0;
if InjuryCode1_62 = 5 then Illness_5 = 1;
else Illness_5 = 0;
if InjuryCode1_62 = 6 then Illness_6 = 1;
else Illness_6 = 0;
if InjuryCode1_62 = 7 then delete;
if InjuryCode1_62 = 8 then Illness_8 = 1;
else Illness_8 = 0;
if InjuryCode1_62 = 9 then Illness_9 = 1;
else Illness_9 = 0;
if InjuryCode1_62 = 10 then Illness_10 = 1;
else Illness_10 = 0;
if InjuryCode1_62 = 11 then Illness_11 = 1;
else Illness_11 = 0;
if InjuryCode1_62 = 12 then Illness_12 = 1;
else Illness_12 = 0;
if InjuryCode1_62 = 13 then Illness_13 = 1;
else Illness_13 = 0;
if InjuryCode1_62 = 14 then Illness_14 = 1;
else Illness_14 = 0;
if InjuryCode1_62 = 15 then delete;
if InjuryCode1_62 = 16 then Illness_16 = 1;
else Illness_16 = 0;
if InjuryCode1_62 = 17 then delete;
if InjuryCode1_62 = 18 then delete;
if InjuryCode1_62 = 19 then delete;
if InjuryCode1_62 = 20 then Illness_20 = 1;
else Illness_20 = 0;
if InjuryCode1_62 = 21 then delete;
if InjuryCode1_62 = 22 then delete;
if InjuryCode1_62 = 23 then Illness_23 = 1;
else Illness_23 = 0;
if InjuryCode1_62 = 24 then delete;
if InjuryCode1_62 = 25 then delete;
if InjuryCode1_62 = 26 then delete;
if InjuryCode1_62 = 27 then delete;
if InjuryCode1_62 = 28 then Illness_28 = 1;
else Illness_28 = 0;
if InjuryCode1_62 = 29 then Illness_29 = 1;
else Illness_29 = 0;
if InjuryCode1_62 = 30 then Illness_30 = 1;
else Illness_30 = 0;
if InjuryCode1_62 = 31 then Illness_31 = 1;
else Illness_31 = 0;
if InjuryCode1_62 = 32 then delete;
if InjuryCode1_62 = 33 then Illness_33 = 1;
else Illness_33 = 0;
if InjuryCode1_62 = 34 then Illness_34 = 1;
{
 else Illness_34 = 0;
 if InjuryCode1_62 = 35 then delete;
 if InjuryCode1_62 = 36 then Illness_36 = 1;
 else Illness_36 = 0;
 if InjuryCode1_62 = 37 then Illness_37 = 1;
 else Illness_37 = 0;
 if InjuryCode1_62 = 38 then delete;
 if InjuryCode1_62 = 39 then delete;
 if InjuryCode1_62 = 40 then delete;
 if InjuryCode1_62 = 41 then delete;
 if InjuryCode1_62 = 42 then delete;
 if InjuryCode1_62 = 43 then Illness_43 = 1;
 else Illness_43 = 0;
 if InjuryCode1_62 = 44 then Illness_44 = 1;
 else Illness_44 = 0;
 if InjuryCode1_62 = 45 then Illness_45 = 1;
 else Illness_45 = 0;
 if InjuryCode1_62 = 46 then Illness_46 = 1;
 else Illness_46 = 0;
 if InjuryCode1_62 = 47 then Illness_47 = 1;
 else Illness_47 = 0;
 if InjuryCode1_62 = 48 then Illness_48 = 1;
 else Illness_48 = 0;
 if InjuryCode1_62 = 49 then Illness_49 = 1;
 else Illness_49 = 0;
 if InjuryCode1_62 = 50 then delete;
 if InjuryCode1_62 = 51 then Illness_51 = 1;
 else Illness_51 = 0;
 if InjuryCode1_62 = 52 then Illness_52 = 1;
 else Illness_52 = 0;
 if InjuryCode1_62 = 53 then delete;
 if InjuryCode1_62 = 54 then Illness_54 = 1;
 else Illness_54 = 0;
 if InjuryCode1_62 = 55 then Illness_55 = 1;
 else Illness_55 = 0;
 if InjuryCode1_62 = 56 then Illness_56 = 1;
 else Illness_56 = 0;
 if InjuryCode1_62 = 57 then Illness_57 = 1;
 else Illness_57 = 0;
 if InjuryCode1_62 = 58 then Illness_58 = 1;
 else Illness_58 = 0;
 if InjuryCode1_62 = 59 then delete;
 if InjuryCode1_62 = 60 then Illness_60 = 1;
 else Illness_60 = 0;
 if InjuryCode1_62 = 61 then Illness_61 = 1;
 else Illness_61 = 0;
 if InjuryCode1_62 = 62 then delete;
}

Run;

/*This gives us our OR, p-values, AIC values for patient illness. Illnesses contributing to quasi-complete separation of data are not
PROC logistic data = DummyIllnesses descending;
 model TransMode0_1 = Illness_1 Illness_2 Illness_3 Illness_4
 Illness_5 Illness_6 Illness_8 Illness_9 Illness_10 Illness_11
 Illness_12 Illness_13 Illness_14 Illness_16 Illness_20 Illness_23
 Illness_28 Illness_29 Illness_30 Illness_31 Illness_33 Illness_34
 Illness_36 Illness_37 Illness_43 Illness_44 Illness_45 Illness_46
 Illness_47 Illness_48 Illness_49 Illness_51 Illness_52 Illness_54
 Illness_55 Illness_56 Illness_57 Illness_58 Illness_60 Illness_61 /
 RIDGING = None;
RUN;
APPENDIX G

SAS CODE OUTPUT FOR PATIENT ILLNESS PREDICTORS
The LOGISTIC Procedure

Model Information

Data Set WORK.DUMMYILLNESSES
Response Variable TransMode0_1
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 8737
Number of Observations Used 8737

Response Profile

<table>
<thead>
<tr>
<th>Ordered Value</th>
<th>TransMode0_1</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>501</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8236</td>
</tr>
</tbody>
</table>

Probability modeled is TransMode0_1=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Intercept Only</th>
<th>Intercept and Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>3839.140</td>
<td>3368.258</td>
</tr>
<tr>
<td>SC</td>
<td>3846.215</td>
<td>3651.271</td>
</tr>
<tr>
<td>-2 Log L</td>
<td>3837.140</td>
<td>3288.258</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>548.8818</td>
<td>39</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>1202.2897</td>
<td>39</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>380.5082</td>
<td>39</td>
<td><.0001</td>
</tr>
</tbody>
</table>

NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

The LOGISTIC Procedure

Illness_61 = Intercept - Illness_1 - Illness_2 - Illness_3 - Illness_4 - Illness_5 - Illness_6 - Illness_8 - Illness_9 - Illness_10 - Illness_11 - Illness_12 - Illness_13 - Illness_14 - Illness_16 - Illness_20 - Illness_23 - Illness_28 - Illness_29 - Illness_30 - Illness_31 - Illness_33 - Illness_34 - Illness_36 - Illness_37 - Illness_43 - Illness_44 - Illness_45 - Illness_46 - Illness_47 - Illness_48 - Illness_49 - Illness_51 - Illness_52 - Illness_54 - Illness_55 - Illness_56 - Illness_57 - Illness_58 - Illness_60
Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-3.6079</td>
<td>0.3378</td>
<td>114.0611</td>
<td><.0001</td>
</tr>
<tr>
<td>Illness_1</td>
<td>1</td>
<td>-0.3401</td>
<td>0.5329</td>
<td>0.4073</td>
<td>0.5233</td>
</tr>
<tr>
<td>Illness_2</td>
<td>1</td>
<td>1.7361</td>
<td>0.8313</td>
<td>4.3616</td>
<td>0.0368</td>
</tr>
<tr>
<td>Illness_3</td>
<td>1</td>
<td>0.1422</td>
<td>0.7936</td>
<td>0.0321</td>
<td>0.8578</td>
</tr>
<tr>
<td>Illness_4</td>
<td>1</td>
<td>0.8253</td>
<td>0.3801</td>
<td>4.8295</td>
<td>0.0280</td>
</tr>
<tr>
<td>Illness_5</td>
<td>1</td>
<td>1.4678</td>
<td>0.8203</td>
<td>3.2017</td>
<td>0.0736</td>
</tr>
<tr>
<td>Illness_6</td>
<td>1</td>
<td>-0.9102</td>
<td>0.6716</td>
<td>1.8368</td>
<td>0.1753</td>
</tr>
<tr>
<td>Illness_7</td>
<td>1</td>
<td>0.5169</td>
<td>0.4799</td>
<td>1.1601</td>
<td>0.2814</td>
</tr>
<tr>
<td>Illness_8</td>
<td>1</td>
<td>0.8229</td>
<td>0.3957</td>
<td>4.3244</td>
<td>0.0376</td>
</tr>
<tr>
<td>Illness_9</td>
<td>1</td>
<td>5.5696</td>
<td>0.4908</td>
<td>128.7893</td>
<td><.0001</td>
</tr>
<tr>
<td>Illness_10</td>
<td>1</td>
<td>1.3878</td>
<td>0.4004</td>
<td>12.0138</td>
<td>0.0005</td>
</tr>
<tr>
<td>Illness_11</td>
<td>1</td>
<td>2.7862</td>
<td>0.5220</td>
<td>19.1829</td>
<td><.0001</td>
</tr>
<tr>
<td>Illness_12</td>
<td>1</td>
<td>0.9689</td>
<td>1.0888</td>
<td>0.7918</td>
<td>0.3736</td>
</tr>
<tr>
<td>Illness_13</td>
<td>1</td>
<td>4.5896</td>
<td>1.1168</td>
<td>34.2371</td>
<td><.0001</td>
</tr>
<tr>
<td>Illness_14</td>
<td>1</td>
<td>1.3413</td>
<td>0.4231</td>
<td>10.0474</td>
<td>0.0015</td>
</tr>
<tr>
<td>Illness_15</td>
<td>1</td>
<td>1.0188</td>
<td>0.3528</td>
<td>8.3408</td>
<td>0.0039</td>
</tr>
</tbody>
</table>

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illness_57</td>
<td>1</td>
<td>2.7717</td>
<td>0.4737</td>
<td>34.2371</td>
<td><.0001</td>
</tr>
<tr>
<td>Illness_58</td>
<td>1</td>
<td>1.3053</td>
<td>1.1019</td>
<td>1.4034</td>
<td>0.2362</td>
</tr>
<tr>
<td>Illness_59</td>
<td>1</td>
<td>-0.2941</td>
<td>0.7901</td>
<td>0.1385</td>
<td>0.7097</td>
</tr>
<tr>
<td>Illness_60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

Point 95% Wald
The LOGISTIC Procedure

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illness_56</td>
<td>2.770</td>
<td>1.387 5.31</td>
</tr>
<tr>
<td>Illness_57</td>
<td>15.985</td>
<td>6.317 40.450</td>
</tr>
<tr>
<td>Illness_58</td>
<td>3.689</td>
<td>0.426 31.975</td>
</tr>
<tr>
<td>Illness_60</td>
<td>0.745</td>
<td>0.158 3.506</td>
</tr>
</tbody>
</table>

Association of Predicted Probabilities and Observed Responses

<table>
<thead>
<tr>
<th></th>
<th>Percent Concordant</th>
<th>Somers' D</th>
<th>Percent Discordant</th>
<th>Gamma</th>
<th>Percent Tied</th>
<th>Tau-a</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68.8</td>
<td>0.453</td>
<td></td>
<td>0.492</td>
<td>7.8</td>
<td>0.049</td>
<td>4126236</td>
</tr>
<tr>
<td></td>
<td>23.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX H

SAS CODE FOR MEDICAL RESPONSE ACTIVITY PREDICTORS
DATA Transported_PCR;
 INFILE "C:\Documents and Settings\JMueller\Desktop\PCR Analysis Emergency Mode\PCR Transported Only.csv" dlm=',' DSD FIRSTOBS=2 LRECL=1000;
 INPUT Index FromScene012 TransMode012 Emerg_NonEmerg $12. TransMode0_1 PrimaryInjury $15. InjuryCode1_62 Outcome $11. Response1-Response47;
 Array Responses (47) Response1-Response47;
 Do i = 1 to 47;
 If Responses(i) = . Then Responses(i) = 0;
 End;
 Drop i;
RUN;

/*This gives us our OR, p-values, AIC values for patient responses. Responses contributing to quasi-complete separation of data are not included in the model. Violating responses are 16 28 29 33 35 41*/

Proc logistic data = DummyIllnesses descending;
 Model TransMode0_1 = Response1-Response15 Response17-Response27 Response30-Response32 Response34 Response36-Response40 Response42-Response47 / RIDGING = none;
Run;
APPENDIX I

SAS CODE OUTPUT FOR MEDICAL RESPONSE ACTIVITY PREDICTORS
The LOGISTIC Procedure

Model Information

Data Set WORK.DUMMYILLNESSES
Response Variable TransMode0_1
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 8737
Number of Observations Used 8737

Response Profile

Ordered Value Trans Mode0_1 Total Frequency
1 1 1 501
2 0 0 8236

Probability modeled is TransMode0_1=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Intercept Only</th>
<th>Intercept and Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>3839.140</td>
<td>2906.207</td>
</tr>
<tr>
<td>SC</td>
<td>3846.215</td>
<td>3203.370</td>
</tr>
<tr>
<td>-2 Log L</td>
<td>3837.140</td>
<td>2822.207</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>1014.9329</td>
<td>41</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>2090.0463</td>
<td>41</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>582.0620</td>
<td>41</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-5.6280</td>
<td>1.0352</td>
<td>29.5560</td>
<td><.0001</td>
</tr>
<tr>
<td>Response1</td>
<td>1</td>
<td>1.2592</td>
<td>1.0829</td>
<td>13.521</td>
<td>0.2449</td>
</tr>
<tr>
<td>Response2</td>
<td>1</td>
<td>-0.5975</td>
<td>0.5067</td>
<td>13.983</td>
<td>0.2383</td>
</tr>
<tr>
<td>Response3</td>
<td>1</td>
<td>0.1614</td>
<td>0.2868</td>
<td>0.3165</td>
<td>0.5737</td>
</tr>
<tr>
<td>Response4</td>
<td>1</td>
<td>0.0852</td>
<td>0.1755</td>
<td>0.2359</td>
<td>0.6272</td>
</tr>
<tr>
<td>Response5</td>
<td>1</td>
<td>0.9364</td>
<td>1.3753</td>
<td>0.4636</td>
<td>0.4959</td>
</tr>
<tr>
<td>Response6</td>
<td>1</td>
<td>0.7745</td>
<td>0.3715</td>
<td>4.3458</td>
<td>0.0371</td>
</tr>
<tr>
<td>Response7</td>
<td>1</td>
<td>1.2210</td>
<td>0.2801</td>
<td>18.9964</td>
<td><.0001</td>
</tr>
<tr>
<td>Response8</td>
<td>1</td>
<td>0.8108</td>
<td>0.2657</td>
<td>9.3145</td>
<td>0.0023</td>
</tr>
<tr>
<td>Response9</td>
<td>1</td>
<td>1.5421</td>
<td>0.3612</td>
<td>0.3163</td>
<td>0.9675</td>
</tr>
<tr>
<td>Response10</td>
<td>1</td>
<td>-0.6239</td>
<td>0.5991</td>
<td>1.0845</td>
<td>0.2977</td>
</tr>
<tr>
<td>Response11</td>
<td>1</td>
<td>-1.8085</td>
<td>1.0246</td>
<td>3.1156</td>
<td>0.0775</td>
</tr>
<tr>
<td>Response12</td>
<td>1</td>
<td>1.4216</td>
<td>0.3132</td>
<td>26.6941</td>
<td><.0001</td>
</tr>
<tr>
<td>Response13</td>
<td>1</td>
<td>-1.2823</td>
<td>1.3163</td>
<td>0.9490</td>
<td>0.3300</td>
</tr>
<tr>
<td>Response14</td>
<td>1</td>
<td>-1.1702</td>
<td>5.0095</td>
<td>0.0546</td>
<td>0.8153</td>
</tr>
<tr>
<td>Response15</td>
<td>1</td>
<td>-8.7569</td>
<td>434.80</td>
<td>0.0004</td>
<td>0.9839</td>
</tr>
<tr>
<td>Response17</td>
<td>1</td>
<td>0.7292</td>
<td>0.3924</td>
<td>3.4527</td>
<td>0.0631</td>
</tr>
<tr>
<td>Response18</td>
<td>1</td>
<td>1.0470</td>
<td>0.1501</td>
<td>48.6337</td>
<td><.0001</td>
</tr>
<tr>
<td>Response19</td>
<td>1</td>
<td>-0.3939</td>
<td>0.3865</td>
<td>1.6511</td>
<td>0.1988</td>
</tr>
<tr>
<td>Response20</td>
<td>1</td>
<td>1.5435</td>
<td>0.4950</td>
<td>9.7221</td>
<td>0.0018</td>
</tr>
<tr>
<td>Response21</td>
<td>1</td>
<td>1.7229</td>
<td>0.3255</td>
<td>28.0009</td>
<td><.0001</td>
</tr>
<tr>
<td>Response22</td>
<td>1</td>
<td>0.2685</td>
<td>0.1459</td>
<td>3.3846</td>
<td>0.0658</td>
</tr>
<tr>
<td>Response23</td>
<td>1</td>
<td>-0.3083</td>
<td>0.1225</td>
<td>6.3368</td>
<td>0.0118</td>
</tr>
<tr>
<td>Response24</td>
<td>1</td>
<td>1.0238</td>
<td>0.8319</td>
<td>1.5146</td>
<td>0.2184</td>
</tr>
<tr>
<td>Response25</td>
<td>1</td>
<td>0.5270</td>
<td>0.1320</td>
<td>15.9463</td>
<td><.0001</td>
</tr>
<tr>
<td>Response26</td>
<td>1</td>
<td>-0.7904</td>
<td>2.7159</td>
<td>8.0847</td>
<td>0.0710</td>
</tr>
<tr>
<td>Response27</td>
<td>1</td>
<td>0.8194</td>
<td>0.9457</td>
<td>8.7508</td>
<td>0.0682</td>
</tr>
<tr>
<td>Response28</td>
<td>1</td>
<td>1.7087</td>
<td>0.5832</td>
<td>8.5042</td>
<td>0.0035</td>
</tr>
<tr>
<td>Response29</td>
<td>1</td>
<td>1.1566</td>
<td>0.4110</td>
<td>7.9192</td>
<td>0.0049</td>
</tr>
<tr>
<td>Response30</td>
<td>1</td>
<td>0.0397</td>
<td>1.0375</td>
<td>0.0015</td>
<td>0.9695</td>
</tr>
<tr>
<td>Response31</td>
<td>1</td>
<td>-0.0789</td>
<td>0.1179</td>
<td>0.4479</td>
<td>0.5033</td>
</tr>
<tr>
<td>Response32</td>
<td>1</td>
<td>1.7826</td>
<td>1.4110</td>
<td>1.5962</td>
<td>0.2064</td>
</tr>
<tr>
<td>Response33</td>
<td>1</td>
<td>0.8041</td>
<td>0.5891</td>
<td>1.8629</td>
<td>0.1723</td>
</tr>
<tr>
<td>Response34</td>
<td>1</td>
<td>3.0034</td>
<td>0.6602</td>
<td>20.6975</td>
<td><.0001</td>
</tr>
<tr>
<td>Response35</td>
<td>1</td>
<td>-0.5874</td>
<td>1.0137</td>
<td>8.3557</td>
<td>0.5623</td>
</tr>
<tr>
<td>Response36</td>
<td>1</td>
<td>1.5337</td>
<td>0.1838</td>
<td>69.6894</td>
<td><.0001</td>
</tr>
<tr>
<td>Response37</td>
<td>1</td>
<td>0.3682</td>
<td>0.1158</td>
<td>9.0354</td>
<td>0.0026</td>
</tr>
<tr>
<td>Response38</td>
<td>1</td>
<td>2.2199</td>
<td>0.7254</td>
<td>9.3652</td>
<td>0.0022</td>
</tr>
<tr>
<td>Response39</td>
<td>1</td>
<td>3.0130</td>
<td>1.3175</td>
<td>5.2302</td>
<td>0.0222</td>
</tr>
<tr>
<td>Response40</td>
<td>1</td>
<td>0.0162</td>
<td>0.1442</td>
<td>0.0127</td>
<td>0.9103</td>
</tr>
<tr>
<td>Response41</td>
<td>1</td>
<td>0.6690</td>
<td>1.0768</td>
<td>0.3860</td>
<td>0.5344</td>
</tr>
<tr>
<td>Response42</td>
<td>1</td>
<td>1.4695</td>
<td>1.3755</td>
<td>1.1414</td>
<td>0.2854</td>
</tr>
</tbody>
</table>
The LOGISTIC Procedure

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response1</td>
<td>3.522</td>
<td>0.422 29.417</td>
</tr>
<tr>
<td>Response2</td>
<td>0.558</td>
<td>0.204 1.485</td>
</tr>
<tr>
<td>Response3</td>
<td>1.175</td>
<td>0.670 2.062</td>
</tr>
<tr>
<td>Response4</td>
<td>1.089</td>
<td>0.772 1.336</td>
</tr>
<tr>
<td>Response5</td>
<td>2.551</td>
<td>0.172 37.788</td>
</tr>
<tr>
<td>Response6</td>
<td>2.170</td>
<td>1.047 4.494</td>
</tr>
<tr>
<td>Response7</td>
<td>3.391</td>
<td>1.958 5.871</td>
</tr>
<tr>
<td>Response8</td>
<td>2.250</td>
<td>1.337 3.787</td>
</tr>
<tr>
<td>Response9</td>
<td>4.674</td>
<td>2.303 9.489</td>
</tr>
<tr>
<td>Response10</td>
<td>0.536</td>
<td>0.166 1.734</td>
</tr>
<tr>
<td>Response11</td>
<td>0.164</td>
<td>0.022 1.221</td>
</tr>
<tr>
<td>Response12</td>
<td>4.144</td>
<td>2.243 7.656</td>
</tr>
<tr>
<td>Response13</td>
<td>0.277</td>
<td>0.021 3.661</td>
</tr>
<tr>
<td>Response14</td>
<td>0.310</td>
<td><0.001 >999.999</td>
</tr>
<tr>
<td>Response15</td>
<td><0.001</td>
<td><0.001 >999.999</td>
</tr>
<tr>
<td>Response17</td>
<td>2.073</td>
<td>0.961 4.474</td>
</tr>
<tr>
<td>Response18</td>
<td>2.849</td>
<td>2.123 3.824</td>
</tr>
<tr>
<td>Response19</td>
<td>0.674</td>
<td>0.370 1.230</td>
</tr>
<tr>
<td>Response20</td>
<td>4.681</td>
<td>1.774 12.351</td>
</tr>
<tr>
<td>Response21</td>
<td>5.601</td>
<td>2.959 18.601</td>
</tr>
<tr>
<td>Response22</td>
<td>1.308</td>
<td>0.983 1.741</td>
</tr>
<tr>
<td>Response23</td>
<td>0.735</td>
<td>0.578 0.934</td>
</tr>
<tr>
<td>Response24</td>
<td>2.784</td>
<td>0.545 14.216</td>
</tr>
<tr>
<td>Response25</td>
<td>1.694</td>
<td>1.308 2.194</td>
</tr>
<tr>
<td>Response26</td>
<td>0.454</td>
<td>0.002 93.011</td>
</tr>
<tr>
<td>Response27</td>
<td>2.269</td>
<td>0.356 14.483</td>
</tr>
<tr>
<td>Response28</td>
<td>5.478</td>
<td>1.747 17.181</td>
</tr>
<tr>
<td>Response29</td>
<td>3.179</td>
<td>1.421 7.115</td>
</tr>
<tr>
<td>Response30</td>
<td>1.041</td>
<td>0.136 7.950</td>
</tr>
<tr>
<td>Response31</td>
<td>0.924</td>
<td>0.733 1.164</td>
</tr>
<tr>
<td>Response32</td>
<td>5.945</td>
<td>0.374 94.454</td>
</tr>
<tr>
<td>Response33</td>
<td>2.235</td>
<td>0.704 7.090</td>
</tr>
<tr>
<td>Response34</td>
<td>28.154</td>
<td>5.526 73.584</td>
</tr>
<tr>
<td>Response35</td>
<td>0.556</td>
<td>0.076 4.853</td>
</tr>
<tr>
<td>Response36</td>
<td>4.635</td>
<td>3.233 6.646</td>
</tr>
<tr>
<td>Response37</td>
<td>1.416</td>
<td>1.129 1.777</td>
</tr>
<tr>
<td>Response38</td>
<td>9.206</td>
<td>2.221 38.155</td>
</tr>
<tr>
<td>Response39</td>
<td>20.349</td>
<td>1.539 269.147</td>
</tr>
<tr>
<td>Response40</td>
<td>1.016</td>
<td>0.766 1.348</td>
</tr>
<tr>
<td>Response41</td>
<td>1.952</td>
<td>0.237 16.111</td>
</tr>
<tr>
<td>Response42</td>
<td>4.347</td>
<td>0.293 64.428</td>
</tr>
</tbody>
</table>
The LOGISTIC Procedure

Association of Predicted Probabilities and Observed Responses

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Concordant</td>
<td>82.1</td>
<td>Somers’ D</td>
<td>0.658</td>
</tr>
<tr>
<td>Percent Discordant</td>
<td>16.3</td>
<td>Gamma</td>
<td>0.669</td>
</tr>
<tr>
<td>Percent Tied</td>
<td>1.6</td>
<td>Tau-a</td>
<td>0.071</td>
</tr>
<tr>
<td>Pairs</td>
<td>4126236</td>
<td>c</td>
<td>0.829</td>
</tr>
</tbody>
</table>
APPENDIX J

REBA ANALYSIS WORKSHEETS
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position

1. Neck Score

Step 1a: Adjust...
If neck is twisted: +1
If neck is side bending: +1

Step 2: Locate Trunk Position

1. Trunk Score

Step 2a: Adjust...
If trunk is twisted: +1
If trunk is side bending: +1

Step 3: Legs

1. Legs Score

Step 4: Look-up Posture Score in Table A
Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score
If load < 11 lbs: +0
If load > 22 lbs: +2
If load < 20 lb and up to 22 lbs: +1
Add +1 if shock or rapid build up of force

Step 6: Score A, Find Row in Table C
Add values from steps 4 & 5 to obtain Score A.
Find Row in Table C

Scoring:

2 or 3 = low risk, change may be needed
4 to 7 = medium risk, further investigation, change soon
8 to 10 = high risk, investigate and implement change
11+ = very high risk, immediate change

Table A

<table>
<thead>
<tr>
<th>Neck Score</th>
<th>Leg Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck Score</td>
<td>Leg Score</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Lower Arm Score</th>
</tr>
</thead>
</table>

Table C

<table>
<thead>
<tr>
<th>Score B (法则化 score)</th>
<th>Score C (法则化 score)</th>
</tr>
</thead>
</table>

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:

1. Upper Arm Score

Step 7a: Adjust...
If shoulder is raised: +1
If arm is abducted: +1
If arm is supported or person is leaning: -1

Step 8: Locate Lower Arm Position:

1. Lower Arm Score

Step 9: Locate Wrist Position:

1. Wrist Score

Step 10: Look-up Posture Score in Table B
Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score
Well fitting handle and mid range power grip: +9
Acceptable but not ideal: hand held or coupling acceptable with another body part: +6
Hand held not acceptable but possible: +3
Hand held not acceptable: -9

Step 12: Score B, Find Column in Table C
Add values from steps 10 & 11 to obtain Score B. Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score

1. 1 or more body parts are held for longer than 1 minute (static)
2. Repeated small range actions (more than 4x per minute)
3. Action causes rapid large range changes in posture or unstable base

Task name: Bennett to Deploy Cables
Reviewer: Jim Mueller
Date: 2/7/01

provided by Practical Ergonomics

rbarkan@ergosmart.com (818) 444-1687
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position
- +1
- +2
- -2

Step 1a: Adjust...
- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position
- +1
- +2
- 3-20°
- >20°

Step 2a: Adjust...
- If trunk is twisted: +1
- If trunk is side bending: +1

Step 3: Legs
- +1
- 30-60°
- >60°
- =0
- Add +1
- Add +2

Step 4: Look-up Posture Score in Table A
Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score
- If load < 11 lbs: +0
- If load 11 to 22 lbs: +1
- If load > 22 lbs: +2

Step 6: Score A, Find Row in Table C
Add values from steps 4 & 5 to obtain Score A. Find Row in Table C

Scoring:
- 1 = negligible risk
- 2 or 3 = low risk, change may be needed
- 4 to 7 = medium risk, further investigation, change soon
- 8 to 10 = high risk, investigate and implement change
- 11+: very high risk, implement change

Table A

<table>
<thead>
<tr>
<th>Neck</th>
<th>Leg</th>
<th>Trunk Posture Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Score A</th>
<th>Score from Table A (Total Score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Table C

<table>
<thead>
<tr>
<th>Score A</th>
<th>Score B</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:
- +1
- +2
- 90°
- >90°

Step 7a: Adjust...
- If shoulder is raised: +1
- If upper arm is abducted: +1
- If arm is supported or position leaning: -1

Step 8: Locate Lower Arm Position:
- +1
- +2

Step 9: Locate Wrist Position:
- +1

Step 9a: Adjust...
- If wrist is bent from midline or twisted: Add +1

Step 10: Look-up Posture Score in Table B
Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score
- Well fitting Handle and mid range power grip: +0
- Acceptable but not ideal hand held or coupling acceptable with another body part, \textit{fair}: +1
- Hand held not acceptable but possible, \textit{poor}: +2
- No handles, awkward, unsafe with any body part, \textit{impossible}: +4

Step 12: Score B, Find Column in Table C
Add values from steps 10 & 11 to obtain Score B. Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score
- +1 1 or more body parts are held for longer than 1 minute (static)
- +1 Repeated small range actions (more than 4x per minute)
- +1 Action causes rapid large range changes in postures or unstable base

Task Name: RF | Made Cap Rove
Reviewer: Jessie Mueller | Date: 2/7/11

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position

- 1
- 2

Step 1a: Adjust...
If neck is twisted: +1
If neck is side bending: +1

Step 2: Locate Trunk Position

- 1
- 2

Step 2a: Adjust...
If trunk is twisted: +1
If trunk is side bending: +1

Step 3: Legs

- 1
- 2

Step 4: Look-up Posture Score in Table A

Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score

If load < 11 lbs: +0
If load 1 to 22 lbs: -1
If load > 22 lbs: +2
Adjust: If shock or rapid build up of force: add +1

Step 6: Score A, Find Row in Table C

Add values from steps 4 & 5 to obtain Score A. Find Row in Table C.

Scoring:

1 = negligible risk
2 or 3 = low risk, change may be needed
4 to 7 = medium risk, further investigation, change score
8 to 10 = high risk, investigate and implement change
11+ = very high risk, implement change

Table B

<table>
<thead>
<tr>
<th>Score A (from Table A)</th>
<th>score B (from Table A)</th>
<th>score C (from Table A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:

- 1
- 2

Step 7a: Adjust...
If shoulder is raised: +1
If upper arm is abducted: +1
If arm is supported or person is leaning: -1

Step 8: Locate Lower Arm Position:

- 1
- 2

Step 9: Locate Wrist Position:

- 1
- 2

Step 9a: Adjust...
If wrist is bent from midline or twisted: Add +1

Step 10: Look-up Posture Score in Table B

Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score

Well fitting handle and mid range power: good: +0
Acceptable but not ideal hand hold or coupling acceptable with another body part: fair: +1
Hand not acceptable but possible, poor: +2
No handle, awkward, unsafe with any body part: Unacceptable: +3

Step 12: Score B, Find Column in Table C

Add values from steps 10 & 11 to obtain Score B. Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score

+1 or more body parts are held for longer than 1 minute (static)
+1 Repeated small range actions (more than 4x per minute)
+1 Active causes rapid large range changes in posture or unstable base

Table C

Score A
Score B
Score C
Score D
Score E
Score F
Score G
Score H
Score I
Score J
Score K
Score L
Score M
Score N
Score O
Score P
Score Q
Score R
Score S
Score T
Score U
Score V
Score W
Score X
Score Y
Score Z
Score AA
Score AB
Score AC
Score AD
Score AE
Score AF
Score AG
Score AH
Score AI
Score AJ
Score AK
Score AL
Score AM
Score AN
Score AO
Score AP
Score AQ
Score AR
Score AS
Score AT
Score AU
Score AV
Score AW
Score AX
Score AY
Score AZ
Score BA
Score BB
Score BC
Score BD
Score BE
Score BF
Score BG
Score BH
Score BI
Score BJ
Score BK
Score BL
Score BM
Score BN
Score BO
Score BP
Score BQ
Score BR
Score BS
Score BT
Score BU
Score BV
Score BW
Score BX
Score BY
Score BZ
Score CA
Score CB
Score CC
Score CD
Score CE
Score CF
Score CG
Score CH
Score CI
Score CJ
Score CK
Score CL
Score CM
Score CN
Score CO
Score CP
Score CQ
Score CR
Score CS
Score CT
Score CU
Score CV
Score CW
Score CX
Score CY
Score CZ
Score DA
Score DB
Score DC
Score DD
Score DE
Score DF
Score DG
Score DH
Score DI
Score DJ
Score DK
Score DL
Score DM
Score DN
Score DO
Score DP
Score DQ
Score DR
Score DS
Score DT
Score DU
Score DV
Score DW
Score DX
Score DY
Score DZ

Task Name: Floor to Mid Reap Cab
Reviewer: Jessie Mueller
Date: 2/7/11

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position

- Neck Score

Step 1a: Adjust...
- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position

- Trunk Score

Step 2a: Adjust...
- If trunk is twisted: +1
- If trunk is side bending: +1

Step 3: Legs

- Leg Score

Step 4: Look-up Posture Score in Table A

Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score

If load < 11 lbs: +2
If load 11 lbs - 22 lbs: +1
If load > 22 lbs: +2
Adjust: If shock or rapid build up of force: add +1

Step 6: Score A, Find Row in Table C

Add values from steps 4 & 5 to obtain Score A.
Find row in Table C.

Scoring:
1 = negligible risk
2 or 3 = low risk, change may be needed
4 to 7 = medium risk, further investigation, change soon
8 to 10 = high risk, investigate and implement change
11 or higher = very high risk, implement change

Table C Score + Activity Score = Final REBA Score

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:

- Upper Arm Score

Step 7a: Adjust...
- If shoulder is raised: +1
- If upper arm is abducted: +1
- If arm is supported or person is leaning: -1

Step 8: Locate Lower Arm Position:

- Lower Arm Score

Step 9: Locate Wrist Position:

- Wrist Score

Step 10: Look-up Posture Score in Table B

Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score

Well fitting handle and mid range power grip: +5
Acceptable but not ideal hand hold or coupling
acceptable with another body part: fair: +3
Hand held not acceptable but possible, poor: +1
No handles, awkward, unsafe with any body part
Unacceptable: -3

Step 12: Score B, Find Column in Table C

Add values from steps 10 & 11 to obtain Score B.
Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score

- 1 for more body parts are held for longer than 1 minute (static)
- 1 for repeated small range actions (more than 4x per minute)
- 3 for action causes rapid large range changes in postures or unstable base

Task name: Side Faucet
Reviewer: J. Mueller
Date: 2/7/11

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position
- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position
- If trunk is twisted: +1
- If trunk is side bending: +1

Step 3: Legs
- Adjust: 30°-60° (60°)
- Add +1

Step 4: Look-up Posture Score in Table A
Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score
- If load < 11 lbs: +0
- If load 11 to 32 lbs: +1
- Adjust: If shock or rapid build up of force: add +1

Step 6: Score A, Find Row in Table C
Add values from steps 4 & 5 to obtain Score A. Find row in Table C.

Scoring:
1 = negligible risk
2 or 3 = low risk, change may be needed
4 to 7 = medium risk, further investigation, change soon
8 to 10 = high risk, investigate and implement change
11+ = very high risk, implement change

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:
- If shoulder is raised: +2
- If upper arm is abducted: +1
- If arm is supported or person is leaning: -1

Step 8: Locate Lower Arm Position:
- +1

Step 9: Locate Wrist Position:
- If wrist is bent from midline or twisted: Add +1

Step 10: Look-up Posture Score in Table B
Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score
- Well fitting handle and mid range power grip: +0
- Acceptable but not ideal hand held or coupling
- Acceptable with another body part, fair: +1
- Hand held not acceptable but possible, poor: +2
- No handles, awkward, unsafe with any body part: Unacceptable: +3

Step 12: Score B, Find Columns in Table C
Add values from steps 10 & 11 to obtain Score B. Find columns in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score
+1 if more body parts are held for longer than 1 minute (static)
+1 Repeated small range actions (more than 4x per minute)
-1 Action causes rapid large range changes in postures or unstable base

<table>
<thead>
<tr>
<th>Task name:</th>
<th>Bench to M furry Reviewer:</th>
<th>James Mueller</th>
<th>Date:</th>
<th>8/7/11</th>
<th>provided by Practical Ergonomics</th>
</tr>
</thead>
</table>

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position
- +1
- +2
- +3

Step 1a: Adjust...
- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position
- +1
- +2
- +3

Step 2a: Adjust...
- If trunk is twisted: +1
- If trunk is side bending: +1

Step 3: Legs
- +1
- +2

Step 4: Look-up Posture Score in Table A
Using values from steps 1-3 above, locate score in Table A.

Step 5: Add Force/Load Score
- If load < 11 lbs: +0
- If load 11 to 22 lbs: +1
- If load > 22 lbs: +2

Step 6: Score A, Find Row in Table C
Add values from steps 4 & 5 to obtain Score A. Find row in Table C.

Scoring:
1 = negligible risk
2 or 3 = low risk, change may be needed
4 to 7 = medium risk, further investigation, change soon
8 to 10 = high risk, investigate and implement change
11+ = very high risk, implement change

Table A

<table>
<thead>
<tr>
<th>Neck Score</th>
<th>Table A</th>
<th>Neck</th>
<th>Score</th>
<th>Table B</th>
<th>Lower Arm</th>
<th>Score</th>
<th>Table C</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scores:
- Neck: 0
- Trunk: 0
- Leg: 0

Total Score: 0

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position
- +1
- +2
- +3

Step 8: Locate Lower Arm Position
- +1
- +2

Step 9: Locate Wrist Position
- +1
- +2

Step 10: Look-up Posture Score in Table B
Using values from steps 7-9 above, locate score in Table B.

Step 11: Add Coupling Score
Well fitting handle and mid-range power grip, good: +0
Acceptable but not ideal handle held or coupled with another body part, fair: +1
Hand held not acceptable but possible, poor: +2
No handle, awkward, unsafe with any body part, Unacceptable: +3

Step 12: Score B, Find Column in Table C
Add values from steps 10 & 11 to obtain Score B. Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score
- +1 One or more body parts are held for longer than 1 minute (static)
- +1 Repeated small range actions (more than 4x per minute)
- +1 Action causes rapid large range changes in postures or unstable base

Task name: Floor Bottom Reviewer: Jacee Mueller

Date: 2/7/11

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position
- +1 (if neck is lateral flexion)
- +2 (if neck is side bending)
- -2 (if neck is twisted)

Step 1a: Adjust...
- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position
- +1 (if trunk is in extension)
- +2 (if trunk is lateral flexion)
- -2 (if trunk is side bending)

Step 2a: Adjust...
- If trunk is twisted: +1
- If trunk is side bending: +1

Step 3: Legs
- Adjust: 30-60° (60°)
- +1 (if legs are above 60°)
- +2 (if legs are below 30°)

Step 4: Look-up Posture Score in Table A

Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score
- If load < 11 lbs: +0
- If load 11 to 22 lbs: +1
- If load > 22 lbs: +2

Step 6: Score A, Find Row in Table C
Add values from steps 4 & 5 to obtain Score A.
Find row in Table C.

Scoring:
1 - negligible risk
2 or 3 - low risk, change may be needed
4 to 7 - medium risk, further investigation, change score
8 to 10 - high risk, investigate and implement change
11+ - very high risk, implement change

Table A

<table>
<thead>
<tr>
<th>Neck</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Leg</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Trunk</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Step 7: Locate Upper Arm Position:
- +1 (if shoulder is raised)
- +2 (if upper arm is abducted)
- -1 (if arm is supported or person is leaning)

Step 8: Locate Lower Arm Position:
- +1 (if elbow is flexed)
- +2 (if wrist is extended)

Step 9: Locate Wrist Position:
- +1 (if wrist is bent)

Step 10: Look-up Posture Score in Table B
Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score
Well fitting handle and mid range power grip, good: +0
Acceptable but not ideal hand hold or coupling acceptable with another body part, fair: +1
Hand hold not acceptable but possible, poor: +2
No handles, awkward, unsafe with any body part, unacceptable: +3

Step 12: Score B, Find Column in Table C
Add values from steps 10 & 11 to obtain scores B.
Find column in Table C and match with Score A in row from step 6 to obtain Table C Score

Step 13: Activity Score
- +1 or more body parts are held for longer than 1 minute (static)
- +4 Repeated small range actions (more than 4x per minute)
- +1 Action causes rapid large range changes in postures or unstable base

Final REBA Score

Task name: P/T TO TOP FRONT CAB
Reviewer: Jessie Mueller
Date: 2/7/11

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.

© 2007 Homer Consulting, Inc.
riker@ergosmart.com (813) 444-1607

provided by Practical Ergonomics
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position

<table>
<thead>
<tr>
<th>Neck Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Step 1a: Adjust...

- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position

<table>
<thead>
<tr>
<th>Trunk Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Step 2a: Adjust...

- If trunk is twisted: +1
- If trunk is side bending: +1

Step 3: Legs

<table>
<thead>
<tr>
<th>Leg Score</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Step 4: Look-up Posture Score in Table A

Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score

- If load < 11 lb: +0
- If load 11 to 22 lb: +2
- If load > 22 lb: +4

Step 6: Score A, Find Row in Table C

Add values from steps 4 & 5 to obtain Score A. Find Row in Table C.

<table>
<thead>
<tr>
<th>Score A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:

<table>
<thead>
<tr>
<th>Upper Arm Score</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Step 8: Locate Lower Arm Position:

<table>
<thead>
<tr>
<th>Lower Arm Score</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Step 9: Locate Wrist Position:

Step 9a: Adjust...

- If wrist is bent from midline or twisted: +2

Step 10: Look-up Posture Score in Table B

Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score

- Well fitting handle and mid range power grip, good: +0
- Acceptable but not ideal hand hold or coupling acceptable with another body part, fair: +1
- Hand hold not acceptable but possible, poor: +2
- No handles, awkward, unsafe with any body part, unacceptable: +3

Step 12: Score B, Find Column in Table C

Add values from steps 10 & 11 to obtain Score B. Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final REBA Score

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task Name: [Project Title]

Reviewer: [Reviewer Name]

Date: 2/7/11

Provided by: Practical Ergonomics

Copyright: 2004 Home Consulting Inc.
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

<table>
<thead>
<tr>
<th>Step 1: Locate Neck Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
</tr>
<tr>
<td>Step 1a: Adjust...</td>
</tr>
<tr>
<td>If neck is twisted: +1</td>
</tr>
<tr>
<td>If neck is side bending: +1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2: Locate Trunk Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
</tr>
<tr>
<td>Step 2a: Adjust...</td>
</tr>
<tr>
<td>If trunk is twisted: +1</td>
</tr>
<tr>
<td>If trunk is side bending: +1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3: Legs</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
</tr>
<tr>
<td>Adjust: 30-60°</td>
</tr>
<tr>
<td>Add +2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4: Look-up Posture Score in Table A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using values from steps 1-3 above, locate score in Table A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5: Add Force/Load Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>If load < 11 lbs: -1</td>
</tr>
<tr>
<td>If load 11 to 22 lbs: +1</td>
</tr>
<tr>
<td>Adjust: If shock or rapid build up of force: add +1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6: Score A, Find Row in Table C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add values from steps 4 & 5 to obtain score A</td>
</tr>
<tr>
<td>Find Row in Table C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = negligible risk</td>
</tr>
<tr>
<td>2 or 3 = low risk, change may be needed</td>
</tr>
<tr>
<td>4 to 7 = medium risk, further investigation, change soon</td>
</tr>
<tr>
<td>8 to 10 = high risk, investigate and implement change</td>
</tr>
<tr>
<td>11+ = very high risk, implement change</td>
</tr>
</tbody>
</table>

B. Arm and Wrist Analysis

<table>
<thead>
<tr>
<th>Step 7: Locate Upper Arm Position:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
</tr>
<tr>
<td>Step 7a: Adjust...</td>
</tr>
<tr>
<td>If shoulder is raised: +1</td>
</tr>
<tr>
<td>If upper arm is abducted: +1</td>
</tr>
<tr>
<td>If arm is supported or person is leaning: -1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8: Locate Lower Arm Position:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9: Locate Wrist Position:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
</tr>
<tr>
<td>Step 9a: Adjust...</td>
</tr>
<tr>
<td>If wrist is bent from midline or twisted: Add +1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10: Look-up Posture Score in Table B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using values from steps 7-9 above, locate score in Table B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11: Add Coupling Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well fitting Handle and mid rang power grip, good: +0</td>
</tr>
<tr>
<td>Acceptable but not ideal hand hold or coupling acceptable with another body part, fair: +1</td>
</tr>
<tr>
<td>Hand hold not acceptable but possible, poor: +2</td>
</tr>
<tr>
<td>No handles, awkward, unsafe with any body part</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12: Score B, Find Column in Table C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add values from steps 10 & 11 to obtain Score B. Find row in Table C and match with Score A in row from step 6 to obtain Table C Score.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13: Activity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1 1 or more body parts are held for longer than 1 minute (static)</td>
</tr>
<tr>
<td>+1 Repeated small range actions (more than 4x per minute)</td>
</tr>
<tr>
<td>+1 Action causes rapid large range changes in postures or unstable base</td>
</tr>
</tbody>
</table>

Task name: Jump Start Electrical
Reviewer: [Signature]
Date: 2/17/11

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
© 2004 - 2011 Human Factors, Inc.
Merritt@ergosmart.com (818) 444-1667
provided by Practical Ergonomics
REBA Employee Assessment Worksheet

A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position
- Neck Score
 - 1
 - 2
 - 3
 - 4

Step 1a: Adjust...
- If neck is twisted: +1
- If neck is side bending: +1

Step 2: Locate Trunk Position
- Trunk Score
 - 1
 - 2
 - 3

Step 2a: Adjust...
- If trunk twisted: +1
- If trunk is side bending: +1

Step 3: Legs
- Adjust: 30-60°

Step 4: Look-up Posture Score in Table A
- Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score
- If load < 17 lbs: 0
- If load 17 to 22 lbs: +1
- If load > 23 lbs: +2

Step 6: Score A, Find Row in Table C
- Add values from steps 4 & 5 to obtain Score A.
- Find Row in Table C.

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:
- Upper Arm Score
 - 1
 - 2
 - 3

Step 8: Locate Lower Arm Position:
- Lower Arm Score

Step 9: Locate Wrist Position:
- Wrist Score

Step 10: Look-up Posture Score in Table B
- Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score
- Well fitting Handle and mid range power grip: +0
- Acceptable but not ideal hand hold or coupling acceptable with another body part: fair: +1
- Hand hold not acceptable but possible: poor: -2
- No handles, awkward, unsafe with any body part: unacceptable: -3

Step 12: Score B, Find Column in Table C
- Add values from steps 10 & 11 to obtain Score B.
- Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score
- +1 or more body parts are held for longer than 1 minute (static)
- +2 Repeated small range actions (more than 4x per minute)
- +3 Action causes rapid large range changes in postures or unstable base

Task name: Floor to Benches/Lines
Reviewer: Jenine Mueller
Date: 2/7/11

4x4 Ergonomics Consulting, Inc.
444-1657

This tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts provided in REBA.
A. Neck, Trunk and Leg Analysis

Step 1: Locate Neck Position

1. Neck score
2. Trunk score
3. Leg score

Step 1a: Adjust...
If neck is twisted: +1
If neck is side bending: +1

Step 2: Locate Trunk Position

1. Trunk score

Step 2a: Adjust...
If trunk is twisted: +1
If trunk is side bending: +1

Step 3: Legs

1. Leg score

Step 4: Look-up Posture Score in Table A

Using values from steps 1-3 above, locate score in Table A

Step 5: Add Force/Load Score

If load < 11 lbs: +0
If load 11 to 22 lbs: +1
If load > 22 lbs: +2
Adjust: If shock or rapid build up of force: add +1

Step 6: Score A, Find Row in Table C

Add values from steps 4 & 5 to obtain Score A.
Find Row in Table C

Scoring:
1 = negligible risk
2 or 3 = low risk, change may be needed
4 to 7 = medium risk, further investigation, change soon
8 to 10 = high risk, investigate and implement change
11+ = very high risk, implement change

Table A

Table B

Table C

Score A (score postion Table A (A) + score in Table B)

Score B: (Sum of values in Table C)

Score C: (Sum of values in Table C)

B. Arm and Wrist Analysis

Step 7: Locate Upper Arm Position:

1. Upper Arm score

Step 7a: Adjust...
If shoulder is raised: +1
If arm is supported or in overhead leaning: -1

Step 8: Locate Lower Arm Position:

1. Lower Arm score

Step 9: Locate Wrist Position:

1. Wrist score

Step 9a: Adjust...
If wrist is bent from midline or twisted: +1

Step 10: Look-up Posture Score in Table B

Using values from steps 7-9 above, locate score in Table B

Step 11: Add Coupling Score

Well fitting handle and mid range power grip: +0
Acceptable but not ideal hand hold or coupling acceptable with another body part: +1
Hand held not acceptable but possible, poor: -2
No handles, awkward or unstable with any body part: -4

Step 12: Score B, Find Column in Table C

Add values from steps 10 & 11 to obtain Score B.
Find column in Table C and match with Score A in row from step 6 to obtain Table C Score.

Step 13: Activity Score

*1 1 or more body parts are held for longer than 1 minute (static)
*2 Repeated small range actions (more than 4x per minute)
*3 Activity causes rapid large range changes in postures or unstable base

Task name: JUMP to PancakeTime
Reviewer: Jennifer McCull
Date: 2/7/11

The tool is provided without warranty. The author has provided this tool as a simple means for applying the concepts presented in REBA.