PALLADIUM (II)-CATALYZED STEREOSELECTIVE FORMATION OF α-O-GLYCOSIDES

by

Brandon Patrick Schuff

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Chemistry

MONTANA STATE UNIVERSITY
Bozeman, Montana
April 2007
COPYRIGHT

by

Brandon Patrick Schuff

2007

All Rights Reserved
APPROVAL

of a thesis submitted by

Brandon Patrick Schuff

This thesis has been read by each member of the thesis committee and has been found to satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education.

Dr. Hien Nguyen, Committee Chair

Approved for the Department of Chemistry

Dr. David Singel, Interim Department Head

Approved for the Division of Graduate Education

Dr. Carl A. Fox, Vice Provost
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirement for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder.

Brandon Patrick Schuff

April 2007
ACKNOWLEDGEMENTS

My sincere thanks are first given to Dr. Hien M. Nguyen. His willingness to provide guidance only when necessary helped me grow as a chemist and will always be remembered. The commitment he provided to see me succeed has been a great factor in finishing this dissertation and completing my degree.

I am also grateful to my Advisory Committee, Dr. Paul Grieco, Dr. David Singel, and Dr. Arthur Alt, for their suggestions, ideas, and overall support. Thanks are also given to Dr. Scott Busse and Dr. Rachel Neal for helping me in acquiring the spectral data enclosed in this dissertation. My thanks also to Dr. Valérie Copié, Dr. Mary Cloninger, Dr. Thomas Livinghouse, and Dr. Steven Holmgren for their advice and support.

During my graduate career at Montana State University, I was able to develop friendships which will transcend the limits of time. Dr. Jaemoon Yang, Dr. Gregory Mercer, Dr. Holly Heath, Dr. Nicholas Jones, Dr. David Fouchard, Dr. Greg Juda, Nick Bizier, Mark Wolfenden, Jake O’ Dell, Todd Madsen, Phillip Sullivan, Kevin Spicka, Kristian Schlick, Enoch Mensah, Nick Reif, Caol Huff, Elisa Leonardo, Bryce Sunsdahl, Amy Brunsvold, Renee Fisher, Matt Hettick, Brett Fors and as well as many other postdocs, graduate, and undergraduate students that made my stay enjoyable.

The love, encouragement, and support provided by my parents, Don and Mary Jo Schuff, has been unending and will always be cherished. Without them behind me, my time spent during my graduate career would have been much more difficult. I would also like to thank my relatives, the Christiansons and David Schuff for the additional support.

Finally, I would like to thank Mark Dehn, John Wong, Jared Poole, Jennifer Axtell, Walter Wood, Bob and Ethyl Alcohol for keeping me smiling.
TABLE OF CONTENTS

1. **INTRODUCTION** .. 1

 References ... 11

2. **PALLADIUM (II)-CATALYZED STEREOSELECTIVE FORMATION OF α-O-GLYCOSIDES** ... 14

 Introduction .. 14
 Initial Studies .. 15
 Proposed Mechanism ... 19
 Pd(II)-Catalyzed Stereoselective Formation of O-Aryl Glycosides 21
 Pd(II)-Catalyzed Stereoselective Formation of O-Glycosides 25
 Conclusion .. 28
 References ... 29

3. **EXPERIMENTALS** ... 30

 General Experimental .. 30
 Experimentals .. 32
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Formation of Glycoside 33</td>
</tr>
<tr>
<td>2.2</td>
<td>Buchwald’s Bulky Phosphine Ligands</td>
</tr>
<tr>
<td>2.3</td>
<td>Pd(II)-Catalyzed Glycosylation of 1-Napthol with Glucal Imidate 32</td>
</tr>
<tr>
<td>2.4</td>
<td>Pd(II)-Catalyzed Stereoselective Formation of O-Aryl Glycosides</td>
</tr>
<tr>
<td>2.5</td>
<td>Using Benzyl Alcohol as a Nucleophile</td>
</tr>
<tr>
<td>2.6</td>
<td>Pd(II)-Catalyzed Formation of O-Glycosides</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1.1</td>
<td>Boons’ Three Component Synthetic Anticancer Carbohydrate Vaccine</td>
</tr>
<tr>
<td>1.2</td>
<td>Mannopeptimycin E</td>
</tr>
<tr>
<td>1.3</td>
<td>Stereochemical Outcome of Koenigs-Knorr Glycosylation</td>
</tr>
<tr>
<td>1.4</td>
<td>O’ Doherty’s Retrosynthetic Analysis</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Glycoside Formation</td>
<td>3</td>
</tr>
<tr>
<td>1.2 First Synthesis of a Glycoside Reported by Michael in 1879</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Koenigs-Knorr Glycosylations</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Lemieux’s Glycosylation Method</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Mukaiyama’s Glycosylation Fluoride Method</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Schmidt’s Trichloroacetoimdate Method</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Kahne Glycosylation</td>
<td>6</td>
</tr>
<tr>
<td>1.8 Gin’s Hemiacetal Method</td>
<td>7</td>
</tr>
<tr>
<td>1.9 De Novo Synthesis of Pyranone</td>
<td>9</td>
</tr>
<tr>
<td>1.10 Lee’s Zn(II) Strategy</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Palladium (II)-Catalyzed Stereoselective Formation of (\alpha)-O-Glycosides</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Preparation of Glucal Imidates</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Allylic Imidate Rearrangement</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Preparation of Glycoside 35</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Proposed Mechanism</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Control Experiment</td>
<td>20</td>
</tr>
<tr>
<td>2.7 (\pi)-Allylpalladium Mechanism</td>
<td>21</td>
</tr>
<tr>
<td>2.8 Preparation of Glycal Donors</td>
<td>22</td>
</tr>
<tr>
<td>2.9 Schmidt’s Conditions</td>
<td>24</td>
</tr>
<tr>
<td>2.10 Application of Schmidt’s Conditions to Glucal Imidate 32</td>
<td>25</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

IgG Immunoglobulin G
Ac Acetyl
Cyc Cyclopentane
t-Bu tert-Butyl
Me Methyl
TEA Triethylamine
Ar Aryl
Tr Trityl
TBS tert-Butylsilane
Imid. Imidazole
py Pyridine
DTTBP 2-Di-t-butylphosphino-2’,4’,6’-tri-i-propyl-1,1’-biphenyl
JohnPhos 2-(Di-t-butylphosphino)biphenyl
RuPhos 2-Dicyclohexylphosphino-2’,6’-di-i-propoxy-1,1’-biphenyl
X-Phos 2-(Dicyclohexylphosphino)-2’,4’,6’-tri-i-propyl 1,1’biphenyl
i-Pr Isopropyl
L_a Ligand
Bz Benzoyl
Piv Pivaloyl
LG Leaving Group
R or R^l Alkyl Group
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>Bu</td>
<td>n-Butyl</td>
</tr>
<tr>
<td>Cp</td>
<td>Cyclopentadiene</td>
</tr>
<tr>
<td>M</td>
<td>Metal</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilane</td>
</tr>
<tr>
<td>DAST</td>
<td>Diethylaminosulfur Trifluoride</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>Tf</td>
<td>Trifluoromethanesulfonyl</td>
</tr>
<tr>
<td>dba</td>
<td>Dibenzylidene Acetone</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>Tol</td>
<td>Toluene</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N’-Dimethylformamide</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetrabutylammonium Fluoride</td>
</tr>
<tr>
<td>r.t.</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
</tbody>
</table>
ABSTRACT

The development of new methods for stereoselective formation of α- or β-O-glycosides has been extensively investigated due to the critical roles carbohydrates play in a variety of biological systems. To date, many efforts have focused on developing new methods and reagents for the generation of isolated glycosyl donors which subsequently undergo glycosidic bond formation with nucleophilic glycosyl acceptors. Despite their potential applications to complex carbohydrate synthesis, each of these methods relies on the nature of the substrates to stereoselectively control the formation of glycosidic bonds. Recently, the use of glycal derivatives as glycosyl donors has been utilized in π-allylpalladium strategies for the stereoselective synthesis of O-glycosides. However, due to the poor reactivity of the glycal donors as well as the alcohol nucleophiles, these groups utilized the more activated pyranone donors. Lee, who recognized the challenge in this approach, utilized Zn(II) ion to activate both the alcohol acceptors for the nucleophilic addition and the glycal donors for the ionization.

My research focuses on the development of a novel method for the stereoselective construction of α-O-glycosides directly from glycal. In this reaction, the Pd(II)/L catalyst is believed to activate the glycal π-system for stereoselective attack by the oxygen nucleophile, and the C(3)-trichloroacetimidate group serves as the leaving group as well as directs Pd(II) to the double bond of the glycal. This strategy relies on palladium-ligand catalyst-donor complexation to control the anomeric selectivity rather than the nature of the protecting groups on the substrates, thus eliminating the need for cumbersome protecting group manipulations that are often employed in glycosylation. The α-selectivity relies on the reagent rather than on the nature of the substrates, which is often employed in traditional glycosylation. This mild method is applicable to an array of glycal donors and aliphatic and aryl alcohol acceptors. The advantages of this methodology are the mild conditions, low reaction temperatures, short reaction times, scope of glycosyl acceptors and donors it applies to, and minimal catalytic loading. Furthermore these reactions are generally express high yield and selectivity.
INTRODUCTION

Carbohydrates are the most highly diverse class of biomolecules in nature. It is well known that carbohydrates play a vast array of roles in biological processes; some of these roles include cell – cell recognition, cellular transport, metabolism, storage and transport of energy, functioning of the immune system, fertilization, pathogenesis, blood clotting, and adhesion. The addition of saccharides to proteins or lipids, known as glycosylation, is a major posttranslational modification of membranes and secreted proteins in cells. Alterations in the structures of glycans and polysaccharides are associated with a variety of diseases, including metastatic cancer. Investigation into carbohydrates has increased over recent years due to their importance as building blocks, biological tools, potential drug candidates, and synthetic targets. For example, Boons and coworkers have successfully synthesized the first three-component synthetic carbohydrate anticancer vaccine and have demonstrated that it elicits an immune response through IgG antibodies (Figure 1.1).

![Figure 1.1]
Mannopeptimycins, newly discovered class of glycopeptides antibiotics produced by *streptomyces hygroscopicus* LL-AC98, have shown antibacterial and mechanistic activities (Figure 1.2). Therefore, a glycosylation methodology to stereoselectively construct cyclic glycopeptides is of synthetic interest.

Figure 1.2

A variety of glycosylation methods have been developed for complex carbohydrate synthesis due to the critical role carbohydrates play in metabolic pathways. In forming glycosidic bonds, the glycosyl donor and the glycosyl acceptor are the two required components; a glycosyl donor 1 is referred to as the carbohydrate unit that donates its anomeric center to the glycosidic bond, and a glycosyl acceptor 2 is
referred to as the unit that receives the anomeric center (Scheme 1.1). In general, a promoter or catalyst is needed to activate the electrophilic glycosyl donor’s anomeric leaving group that then is coupled with an appropriate nucleophilic glycosyl acceptor to generate a glycoside 3 as a mixture of α and β anomers.

Scheme 1.1

In 1879, the first synthesis of a glycosidic bond was reported by Michael. In the reaction, treatment of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl chloride 4 with the potassium salt of 4-methoxyphenol 5, in absolute ethanol, provided β-D-O-phenyl glycoside 6 (Scheme 1.2). Unfortunately, this procedure could only be applied to the synthesis of aryl glycosides and the acetyl groups easily hydrolyzed.

Scheme 1.2

In 1901, Koenigs and Knorr reported that the treatment of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide 7 with silver carbonate, in the presence of methanol, provided β-D-O-methyl glycoside 8 (Scheme 1.3).
The stereochemical outcome of this reaction is influenced by the presence of the neighboring group at the C(2)-position, that via anchimeric assistance provides the formation of a 1,2-trans stereochemical arrangement (Figure 1.3). In general, esters provide good neighboring group participation whereas ethers do not, leading to a mixture of stereoisomers.

Several disadvantages exist in the Koenigs – Knorr glycosylations. First, the unstable glycosyl halides are prepared using harsh reaction conditions. In addition, the toxic and sometimes explosive coactivators are generally used in equimolar quantities. Furthermore, glycosyl halides are prone to undergo 1,2-elimination or hydrolysis.

Lemieux and coworkers introduced a mild glycosylation method that eliminated the use of stoichiometric amounts of heavy metals (Scheme 1.4). Lemieux’s method utilized glycosyl bromide 9 or chloride in the presence of a phase transfer catalyst such as
Bu₄N-Br to yield the corresponding glycoside 11. This methodology led to the elegant syntheses of several blood group antigenic determinants.²²

Scheme 1.4

In 1981, Mukaiyama and coworkers introduced a method closely related to the Koenigs – Knorr glycosylation where a considerably more chemically stable glycosyl fluoride donor 13 is utilized in place of its glycosyl bromide and chloride counterparts (Scheme 1.5).²³ A major advantage of this methodology is the ease of preparation of the glycosyl fluoride donors; these donors are prepared under mild conditions from the corresponding hemiacetal 12 via the use of diethylaminosulfur trifluoride (DAST). Due to the synthetic flexibility of glycosyl fluorides, a diversity of fluorophilic activating reagents have been found to promote glycosylation, including SiF₄, TMSOTf, BF₃·OEt₂, and AgClO₄/[CpMCl₂] (M = Zr or Hf).²⁴

Scheme 1.5

In 1980, Schmidt and coworkers developed a trichloroacetimidiate-mediated glycosylation method that has proven to be of high synthetic value in the construction of
complex molecules (Scheme 1.6). The activated derivative is easily prepared in comparison to traditional methods. In the presence of a base such as DBU or NaH, treatment of a hemiacetal 12 with trichloroacetonitrile yields the corresponding trichloroacetimidate lactal donor 15. In general, the trichloroacetimidate glycosyl donor is activated via a Lewis acid such as TMSOTf or BF$_3$-OEt$_2$.

Scheme 1.6

Kahne and coworkers have reported the use of sulfoxides as effective latent leaving groups. In the reaction, glycosyl sulfoxides 17 were activated with trifluoromethanesulfonyl anhydride in toluene at -78 °C and subsequently coupled with a glycosyl acceptor to yield glycoside 18 (Scheme 1.7). The Kahne method proves to be efficient in the preparation of glycosides from sterically hindered or otherwise unreactive substrates. Unfortunately, the stereochemical outcome of the coupling is dependent on the glycosyl donor and glycosyl acceptor protecting groups. This method goes through a glycosyl triflate generated upon reacting the sulfoxide with triflate anhydride at -78 °C in toluene.

Scheme 1.7
In 1997, Gin and coworkers developed an efficient one-pot dehydrative glycosylation method that utilizes the combination of Ph$_2$O and Tf$_2$O as activating agents for the construction of the glycosidic bond directly from the C(1)-hemiacetal 12 (Scheme 1.8).27

![Scheme 1.8](image)

The use of glycal derivatives as glycosyl donors has recently been used in π–allylpalladium strategies for the stereoselective synthesis of O-glycosides.31,32b,33 Of current synthetic interest is mannopeptimycin E due to the notable increasing bacterial resistance to antibiotics.28 Mannopeptimycin E is the most reactive of the mannopeptimycins. So far, Wang and coworkers have successfully reported a route to construct a cyclic peptide core related to mannopeptimycin possessing a C(4)/C(6) acetal as an isovalerate substitute.29 Based on Wang’s work, O’ Doherty and coworkers approached the synthesis of an O-glycosylated D-tyrosine containing the C(4) isovalerate substitution (Figure 1.4).30 O’ Doherty applies a palladium-glycosylation strategy that provides a diastereoselective route yielding the manno-disaccharide fragments of mannopeptimycin-E from D-tyrosine. However, as seen with previous glycosylation methodology, O’Doherty’s strategy is substrate dependent thus relies heavily on protecting group manipulations.
Figure 1.4
O’Doherty’s strategy is dependent on a de novo π-allylpalladium based glycosylation that utilizes the highly reactive pyranones as glycosyl donors (Scheme 1.9). Some advantages to this palladium based strategy are that the glycosylation proceeds with high diastereoselectivity, the palladium is used in catalytic amounts, and the reaction conditions are mild in the sense that the use of a stoichiometric amount of Lewis acid promoter is avoided. However, due to the poor reactivity of the glycal donors as well as the alcohol nucleophiles, this π-allylpalladium glycosylation strategy is limited to the relatively more activated pyranone donors.

Lee and coworkers were able to increase the reactivity by utilizing the Zn(II) ion to activate both the alcohol acceptors for the nucleophilic addition and the glycal donors for the ionization (Scheme 1.10). A major disadvantage to Lee’s approach is lengthened reaction times.
Currently, many efforts are being concentrated on developing new methodologies and reagents for the construction of isolated glycosyl donors which react with nucleophilic glycosyl acceptors to form glycosidic bonds. In all of these methods, the stereoselective control of the glycosidic bond is dependent on the nature of the substrate. Often, burdensome protecting group manipulations on the substrate are required in glycosylation reactions to control the anomeric selectivity, resulting in the addition of multiple synthetic steps and decreased yields. Therefore, the development of a methodology that does not rely on protecting groups for anomeric selectivity is needed. This thesis will present my efforts to develop such a methodology that utilizes mild palladium catalyzed reaction conditions.

PALLADIUM (II)-CATALYZED STEREOSELECTIVE FORMATION OF α-O-GLYCOSIDES

Introduction

A novel method for the stereoselective construction of α-O-glycosides has been developed utilizing glycals as glycosyl donors. The α-O-glycosides can be directly derived from glycals through the use of a Pd(II)/ligand catalyst, which is further described in this chapter. In this reaction, it is believed that the glycal π system of 28 is activated by the Pd(II)/ligand complex for the stereoselective attack by the external oxygen nucleophile. The trichloroacetimidate group functions as the leaving group as well as the directing group for the Pd(II) catalyst to the double bond of glycal 28 (Scheme 2.1).

Scheme 2.1

One of the major advantages to this strategy is that the anomeric control relies on palladium-ligand catalyst-donor complexation instead of the nature of the protecting groups on the substrates. This eliminates tedious protecting group manipulations that are often associated with glycosylations.
Initial Studies

Initial studies focused on optimizing reaction conditions utilizing the glucal imidate 32 which was prepared in two steps from D-glucal 30 (Scheme 2.2). D-glucal 30 was treated with 2,2-dimethoxypropane and DDQ in acetone to yield the 1-hydroxyl sugar 31. Subsequently, the thermally and chemically stable trichloroacetimidate glycosyl donor 32 was synthesized from the corresponding 1-hydroxyl sugar 31 by treatment with trichloroacetonitrile in the presence of DBU.

\[\text{Scheme 2.2} \]

With access to glycal imidate 32, efforts then focused on the feasibility of Pd(II)-catalyzed stereoselective formation of α-O-aryl glycosides. Initially, treatment of glucal imidate 32 with 5 mol % Pd(CH$_3$CN)$_2$Cl$_2$, 2.0 equivalents of p-methoxyphenol, and CH$_2$Cl$_2$ at 25 $^\circ$C for 35 min provided glycoside 33 in 45% yield with α:$\beta = 2:1$ along with significant amount of decomposition (Table 2.1, entry 1). Decreasing the amount of the Pd loading to 2.5 mol % still afforded the product 33 in 46% yield with α:$\beta = 4:1$ (Table 2.1, entry 2). Changing the solvent from CH$_2$Cl$_2$ to toluene slowed down the reaction. The desired product 33 was obtained in 43% yield with α:$\beta = 2:1$ along with a significant amount of the undesired product (Table 2.1, entry 3).
Table 2.1

The undesired product obtained with toluene as the solvent (Table 2.1, entry 3) is believed to be the glycosylamide 34, which was formed via the allylic imidate rearrangement (Scheme 2.3). In order to minimize the occurrence of 34, CH2Cl2 was used as the reaction solvent for the rest of the glycosylation reactions.

Scheme 2.3
The next aryl alcohol nucleophile examined was the sterically hindered 1-napthol. Under the optimized reaction conditions for p-methoxyphenol, glycoside 35 was obtained in 55% yield with $\alpha:\beta = 3:1$ (Scheme 2.4).

![Scheme 2.4]

It was hypothesized that the anomeric selectivity could be dependent of the palladium ligand. Accordingly, an assortment of Buchwald’s sterically bulky biaryl phosphine ligands were screened (Table 2.2).

![Table 2.2]

Treatment of glucal imidate 32 with a preformed mixture of Pd(CH$_3$CN)$_2$Cl$_2$ with JohnPhos ligand in a 1:1 ratio has no effect on the outcome of the reaction. It is likely that the palladium/phosphine complex may not be in the reaction, since it is known that the rate of ligand exchange for Pd(CH$_3$CN)$_2$Cl$_2$ is slow.3 A significant improvement in yield occurred when Pd(PhCN)$_2$Cl$_2$ was used in place of Pd(CH$_3$CN)$_2$Cl$_2$. Furthermore, the anomeric selectivity slightly increased from $\alpha:\beta = 3:1$ to $\alpha:\beta = 4:1$.

JohnPhos
RuPhos
X-Phos
DTTBP
After screening several of Buchwald’s bulky biaryl phosphine ligands with Pd(PhCN)$_2$Cl$_2$ (Table 2.3), it was found that DTTBP provided glycoside 35 in good yield with excellent selectivity (Table 2.3, entry 5).

![Chemical structure and reaction scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd (II) Sources</th>
<th>Phosphine Ligands</th>
<th>Yield</th>
<th>α:β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(CH$_3$CN)$_2$Cl$_2$</td>
<td>JohnPhos</td>
<td>53%</td>
<td>3:1</td>
</tr>
<tr>
<td>2</td>
<td>Pd(PhCN)$_2$Cl$_2$</td>
<td>JohnPhos</td>
<td>91%</td>
<td>4:1</td>
</tr>
<tr>
<td>3</td>
<td>Pd(PhCN)$_2$Cl$_2$</td>
<td>RuPhos</td>
<td>54%</td>
<td>4:1</td>
</tr>
<tr>
<td>4</td>
<td>Pd(PhCN)$_2$Cl$_2$</td>
<td>X-Phos</td>
<td>70%</td>
<td>8:1</td>
</tr>
<tr>
<td>5</td>
<td>Pd(PhCN)$_2$Cl$_2$</td>
<td>DTTBP</td>
<td>84%</td>
<td>20:1</td>
</tr>
</tbody>
</table>

Table 2.3

All reactions were carried out with a concentration of 0.2 M, 2.0 equivalents of 1-napthol, 2.5 mol % phosphine, and 2.5 mol % Pd (II) in CH$_2$Cl$_2$. These results suggest that a more bulky biaryl phosphine ligand increases the yield and anomeric selectivity of the reaction.
Proposed Mechanism

A proposed mechanism for the Pd(II)-catalyzed stereoselective formation of O-glycosides is shown in Scheme 2.5. Ligand exchange between Pd(PhCN)$_2$Cl$_2$ and DTTBP occurs to yield the palladium/phosphine complex 36 which then undergoes reversible coordination to both imidate’s nitrogen and olefin of the glucal 32 to form the palladium-olefin complex 37. Subsequent migratory insertion will provide the oxonium palladium- σ complex 38. Nucleophilic attack by the glycosyl acceptor on the β face of 38 is sterically blocked by the bulky biaryl phosphine ligand. As a result, 1-napthol approaches to the α face leading to the glycoside intermediate 39. Deoxypalladation of 39 and subsequent dissociation yields the glycoside 35. In this catalytic cycle, 1-napthol acts as both the nucleophile and the proton donor.
In order to make sure that this reaction does not undergo a \(\pi \text{–allylpalladium} \) mechanism, a control experiment was performed (Scheme 2.6). The major concern was that the electron-rich phosphine would reduce Pd(II) to Pd\(^0\). The glucal imidate 32 was treated with a preformed solution of 2.5 mol % Pd\(_2\)(dba)\(_3\) and DTTBP in the presence of 2 equiv of 1-naphthol to yield glycoside 35 in 26% yield with \(\alpha:\beta = 1.5:1 \). The major product was the [3.3]-sigmatropic rearrangement product 34 which was obtained in 41% yield.

![Scheme 2.6](image)

Had the mechanism gone through a \(\pi \text{–allylpalladium} \) intermediate, there would have been no control of stereochemistry and a racemic mixture of \(\alpha \) and \(\beta \) anomers would have been observed (Scheme 2.7).\(^4\) Our primary concern was that the electron rich phosphine was reducing our palladium source from palladium (II) to palladium (0). However, our results were showed that clearly our mechanism did not proceed through a \(\pi \text{–allylpalladium} \) mechanism.
Pd(II)-Catalyzed Stereoselective Formation of O-Aryl Glycosides

To test the feasibility of this novel palladium-catalyzed stereoselective methodology in terms of O-aryl glycoside synthesis, several glucal and galactal donors (Scheme 2.8) with a variety of protecting groups were synthesized.
Scheme 2.8
With the glycal imidates 32, 45, 47, 49, 51, and 54 in hand, the palladium(II) catalyzed stereoselective formation of α-O-glycosides was investigated with an array of aryl alcohols (Table 2.4).

![Reaction Scheme]

<table>
<thead>
<tr>
<th>Ar-OH (2 equiv), CH$_2$Cl$_2$, rt, 2 - 10 hrs</th>
<th>Yieldb((\alpha:\beta))c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me$^\text{O}$O$^\text{O}$Cl$_3$C$^\text{NH}$</td>
<td>77% ((\alpha))</td>
</tr>
<tr>
<td>O$^\text{O}$O$^\text{O}$H$^\text{N}$</td>
<td>70% ((\alpha))</td>
</tr>
<tr>
<td>TBSO$^\text{O}$O$^\text{O}$H$^\text{Bn}$</td>
<td>78% (8:1)</td>
</tr>
<tr>
<td>O$^\text{O}$O$^\text{O}$H$^\text{t-Bu}$</td>
<td>80% (7:1)</td>
</tr>
<tr>
<td>O$^\text{O}$O$^\text{O}$BzHN$^\text{CO}_2$Et</td>
<td>73% ((\alpha))</td>
</tr>
<tr>
<td>O$^\text{O}$O$^\text{O}$BzHN$^\text{CO}_2$Et</td>
<td>76% (10:1)</td>
</tr>
<tr>
<td>33</td>
<td>55</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 2.4
The desired glycosides 33, 55-62 were obtained in good yield with excellent anomeric selectivity. From the results, it can be concluded that the bulky biaryl phosphine ligands were responsible for the anomeric stereoselectivity. This implies that the protecting groups have no influence on the stereochemical outcome and this methodology is reagent based opposed to substrate based. Schmidt and coworkers have reported utilizing galactal imidates 54 as glycosyl donors to obtain exclusively α-\(\text{O-}\)glycosides 63 (Scheme 2.9).\(^5\)

\[
\begin{align*}
\text{ROH} & \quad \text{TMSOTf (5 mol\%)} \\
\text{CH}_2\text{Cl}_2, \text{r.t.} & \quad \text{R = alkyl or sugar or amino acid}
\end{align*}
\]

Scheme 2.9

It is important to note that the \(\alpha\)-selectivity is due to increased steric hinderence obtained from the axial C(4)-OH. These conditions are limited to using galactal imidates and aliphatic alcohols. Repeating Schmidt’s conditions with glucal imidate 32 with 5 mol \% of TMSOTf in the presence of 2 equiv of 1-napthol only led to decomposition (Scheme 2.10).
Scheme 2.10

Pd(II)-Catalyzed Stereoselective Formation of O-Glycosides

Extending this methodology to form O-glycosides from aliphatic alcohols was then investigated. Due to the poor nucleophilicity of benzyl alcohol, it was initially converted to the relatively reactive potassium alkoxides (Table 2.5, entry 1). The glycoside 64 was obtained in 21% exclusively as the \(\alpha \)-anomer along with the recovery of galactal imidate 54 in 53% yield. Next, benzyl alchol was convereted to the relatively more reactive zinc (II) alkoxide.\(^6\) Accordingly, treatment of galactal imidate 54 with a preformed solution of BnOH (3.0 equiv) and ZnEt\(_2\) (1.5 equiv) and 2.5 mol % Pd(PhCN)\(_2\)Cl\(_2\)/DTTBP in a mixture of toluene and CH\(_2\)Cl\(_2\) (1:2) provided glycoside 64 in 68% yield along with the rearrangement product 65 in 22% yield (Table 2.5, entry 2). In this reaction, 2,6-di-\(t \)-butylphenol was used as the proton doner in order for the palladium/phosphine catalyst to turn over. Decreasing the amount of benzyl alchol significantly increased the yield of the glycoside 64 to 77% (Table 2.5, entry 3).
Having shown that the current palladium (II) method was feasible with benzyl alcohol as the glycosyl acceptor, this chemistry was further explored with a variety of aliphatic alcohols. Treatment of glycal imidates with a preformed solution of Zn(II) alkoxide proved successful and provided the glycosides 64, 66-71 exclusively as the α-anomers (Table 2.6). Several aliphatic carbohydrates were examined including furan, rhamnose, and glucose based nucleophiles.

Table 2.5

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BnOH (4.0 Equiv), K₂CO₃ (2 Equiv), CH₂Cl₂, r.t., 21 h</td>
<td>21% 64 + 53% 54</td>
</tr>
<tr>
<td>2</td>
<td>BnOH (3.0 Equiv), Et₂Zn (1.5 Equiv), 2,6-di-t-butylphenol (0.5 Equiv), CH₂Cl₂/Toluene, r.t., 1 h</td>
<td>68% 64 + 22% 65</td>
</tr>
<tr>
<td>3</td>
<td>BnOH (1.5 Equiv), Et₂Zn (0.75 Equiv), 2,6-di-t-butylphenol (0.5 Equiv), CH₂Cl₂/Toluene, r.t., 6 h</td>
<td>77% 64 + 7% 65</td>
</tr>
</tbody>
</table>
By inspecting the NMR data, it was determined that the major byproduct in these glycosylations was the [3.3]-sigmatropic rearrangement product. It is believed that the zinc promoted the rearrangement. The scope of this method was extended into primary and secondary hydroxyls of carbohydrate nucleophiles. The desired glycosides 64, 66-71 were isolated in good yield and exclusively as the α-anomers.
Conclusions

Using glycals as starting material, a novel method for the stereoselective construction of \(\alpha\)-\(O\)-glycosides has been developed. The scope of this methodology can be applied to both aryl and aliphatic alcohols as glycosyl acceptors. For the reaction to proceed with aliphatic alcohols, the glycosyl acceptor needed to be “softened” by converting them to the corresponding zinc alkoxide. The trichloroacetimidate of the glycosyl donor serves as both the leaving group and directs the coordination of the palladium-phosphine complex to the glucal \(\pi\)-system. As a result, the palladium-phosphine complex sterically blocks the \(\beta\)-face of the glycosyl donor from nucleophilic attack resulting in predominately the alpha anomer. In the case of galactals, strictly \(\alpha\)-anomer is observed due to the axial hydroxyl at the C(4)-position. This approach proceeds via mild glycosylation conditions with shortened reaction times at room temperature. In addition, the anomeric stereoselectivity is reagent based as opposed to traditional substrate based glycosylations where tedious protecting group manipulations are often employed.
Reference

EXPERIMENTALS

General Experimental

All experiments were carried out under a positive pressure atmosphere of dry argon gas using oven-dried (140 °C, >24 hours) Schlenk flasks fitted with glass stoppers. Organic solutions were concentrated by rotary evaporation below 40°C at 25 torr. Analytical thin-layer chromatography (TLC) was performed on Sorbent Silica XHL TLC plates, w/ UV254, glass backed, 0.25 mm, 20 x 20 cm plates. Visualization was achieved using UV-light, iodine, cerium molybdate, or potassium permanganate. Column chromatography was performed on Silicycle Ultrapure 60 Å 230-400 mesh silica gel. Solvents for column chromatography and TLC are reported in volume/volume mixtures and are reagent grade. Methylene chloride (DCM), tetrahydrofuran (THF), and toluene were distilled from calcium hydride under an argon atmosphere at 760 torr and stored over 4 Å sieves. Triethylamine (TEA) was distilled from and stored over KOH. Buchwald’s biaryl phosphine ligands, Pd(CH$_3$CN)$_2$Cl$_2$ and Pd(PhCN)$_2$Cl$_2$ were purchased from Strem Chemicals. Ribose was provided by the Cloninger Laboratory located at Montana State University. All other chemicals were obtained from commercial vendors and used without further purification.
All proton (\(^{1}\)H) and carbon (\(^{13}\)C) nuclear magnetic resonance spectra were recorded on a Bruker 300 (300 MHz and 75 MHz) or Bruker 500 (500 MHz and 125 MHz) NMR spectrometer. For \(^{1}\)H and \(^{13}\)C spectra, all chemical shifts were reported in parts-per-millillion (ppm) downfield from tetramethylsilane with residual hydrogen bearing solvent resonance as the internal standard. (deuterochloroform (CDCl\(_3\)): 7.26 ppm for proton and 77.23 ppm for carbon). Furthermore, all \(^{13}\)C spectra are proton decoupled. NMR data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, pent = pentet, m = multiplet; addition of b indicates a broadened splitting pattern), coupling constant in hertz (Hz), and integration. Infrared spectra were recorded on a JASCO FT/IR-4100 as dichloromethane films on sodium chloride cell plates and absorption frequencies are reported in cm\(^{-1}\) (w = weak intensity, m = medium intensity, s = strong intensity, vs = very strong intensity, b = broad absorption). High resolution (ESI) mass spectrometric data was obtained on a Bruker Mircotof (ESI-TOF) spectrometer at the mass spectrometry laboratory located at Montana State University.

Melting points were taken on Lab Device Mel-Temp. Spectral and physical properties for all isolated compounds made from literature preparations are consistent with the values reported.
Experimentals

Compound (31) [BS-I-90]. An oven-dried 50 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with D-glucal (800 mg, 5.47 mmol, 1.0 equiv) and dry acetone (24.0 mL, 328.45 mmol, 60.0 equiv). Once the D-glucal was fully dissolved, 2,2-dimethoxypropane (2.0 mL, 16.42 mmol, 3.0 equiv) was added followed by DDQ (62.1 mg, 0.27 mmol, 0.05 equiv). The reaction mixture was allowed to stir at room temperature for 23 h before being diluted with 80.0 mL of ethyl acetate. The resulting solution was washed with 80.0 mL of NaHCO₃ (sat.) and the organic layer was extracted. The aqueous layer was back extracted with 40.0 mL of ethyl acetate twice. The organic layers were combined and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting crude product was purified by silica gel flash chromatography (2/1. hexane/ethyl acetate) to yield 31 (0.54 g, 53 %). IR (film, cm⁻¹): ν = 3434 (b), 2995 (m), 2942 (m), 2894 (m), 1703 (w), 1643 (s), 1462 (m), 1463 (s), 1273 (m), 1200 (m), 1163 (m), 1118 (s), 1095 (s), 1061 (m), 1031 (m), 1005 (m), 944 (m), 873 (s), 816 (w), 755 (m). ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 6.28 (dd, J = 5.0, 2.0 Hz, 1H), 4.72 (dd, J= 6.0, 2.0 Hz, 1H), 4.35-4.32 (m, 1H), 3.95-3.92 (m, 1H), 3.83-3.70 (m, 3H), 1.52 (s, 3H), 1.42 (s, 3H).
Compound (32) [BS-I-5]. An oven-dried 25 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with 31 (360 mg, 1.94 mmol, 1.0 equiv) and CH₂Cl₂ (11.0 mL). The solution was cooled to 0 °C, and trichloroacetonitrile (0.58 mL, 5.81 mmol, 3.0 equiv) and DBU (58.0 µL, 0.39 mmol, 0.2 equiv) were sequentially added to the solution. The resulting mixture was stirred at 0 °C for 1 h and concentrated. The residue was purified by silica gel flash chromatography (5/1, hexane/ethyl acetate with 1% triethylamine) to give 32 (500 mg, 78%) as a white solid. Rₙ = 0.68 5/1 H/EA. MP = 72. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 8.35 (bs, 1H), 6.39 (d, J = 6 Hz, 1H), 5.54 (d, J = 7.5 Hz, 1H), 4.89 (dd, J = 6.0, 2.0 Hz, 1H), 4.2-4.17 (m, 1H), 3.98 (q, J = 4.0, 1H), 3.85 (t, 5.5 Hz, 2H), 1.5 (s, 3H), 1.40 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz, ppm): δ = 158, 146, 99.4, 83.0, 73.9, 70.0, 49.8, 61.7, 28.9, 19.0. IR (film, cm⁻¹): ν = 3337 (m), 2996 (w), 2952 (w), 2891 (w), 2871 (w), 1664 (s), 1641 (s), 1478 (w), 1455 (w), 1387 (w), 1374 (w), 1363 (w), 1334 (m), 1282 (m), 1266 (m), 1235 (m), 1199 (m), 1165 (m), 1110 (m), 1093 (s), 1063 (vs), 1015 (m), 992 (s), 948 (m), 871 (m), 840 (m), 820 (m), 797 (s), 759 (m), 644 (m).
Compound (33) [BS-I-18]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with 32 (66 mg, 0.2 mmol, 1.0 equiv), 4-methoxyphenol, and CH₂Cl₂ (1.0 mL). The reaction was covered in aluminum foil. Once the solids dissolved, Pd(CH₃CN₂)Cl₂ (1.3 mg, 0.005 mmol, 2.5% mol) was added. The resulting solution was stirred at room temperature for 3 h. The resulting mixture was purified by silica gel flash chromatography (8/1, hexane/ethyl acetate) to give 33 (45.0 mg, 77%). Rf = 0.40 (5/1; H/EA). MP: 107.1°C – 108.5°C. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 6.97 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 9.0 Hz, 2H), 6.10 (d, J = 10.0 Hz, 1H), (dt, J = 10.0, 2.5 Hz, 1H), 5.51 (s, 1H), 4.22 (d, 7.5 Hz, 1H), 3.88 – 3.79 (m, 3H), 3.75 (s, 3H), 1.51 (s, 3H), 1.42 (s, 3H). ¹³C-NMR (CDCl₃, 75 MHz, ppm): δ = 155.1, 151.2, 132.5, 126.0, 118.5, 114.6, 100.0, 94.4, 67.5, 65.8, 63.0, 55.7, 29.2, 19.0. IR (film, cm⁻¹): ν = 3054 (w), 2993 (m), 2941 (m), 2918 (m), 2868 (m), 2837 (m), 1508 (s), 1375 (m), 1219 (s), 1093 (m), 1031 (m), 993 (s), 859 (m), 822 (s). HRMS: calc. for C₁₆H₂₁O₅ (M⁺) 293.1384; found: 293.1383
Compound (35) [BS-I-32]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). The resulting solution was stirred at room temperature for 4 h, 1-napthol (58 mg, 0.4 mmol, 2.0 equiv), glucal imidate 32 (66 mg, 0.2 mmol, 1 equiv), and CH$_2$Cl$_2$ (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 6 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (15/1, hexane/ethyl acetate) to give 35 (52.0 mg, $\alpha:\beta = 20:1$, 84%) as a white solid. $R_f = 0.52$ 8/1 H/EA, MP = 134.7-134.9°C

Compound (44) [BS-I-84]. An oven-dried 50 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with D-glucal (1.0 g, 6.84 mmol, 1.0 equiv),
imidazole (1.16 g, 17.1 mmol, 2.5 equiv), and dry DMF (30 mL). Once the D-glucal was fully dissolved, the reaction mixture was cooled to 0 °C and dicyclohexyldichlorosilane was added dropwise. The resulting reaction mixture was warmed to room temperature and allowed to stir for 20 h. The resulting reaction mixture was poured into H2O (150 mL) and extracted with ether (100 mL). The organic layer was extracted and the aqueous layer was back extracted twice with ether (100 mL). All the organic layers were combined and dried over MgSO4, filtered, and concentrated in vacuo. The resulting crude product was purified by silica gel flash chromatography (2/1. hexane/ethyl acetate) to yield 32 (0.54 g, 53 %). 1H-NMR (CDCl₃, 500 MHz, ppm): δ = 6.24 (dd, J = 6.0, 1.5 Hz, 1H), 4.73 (dd, J = 6.0, 1.8, 1H), 4.30-4.26 (m, 1H), 4.15-4.10 (m, 1H), 3.9-3.73 (m, 3H), 2.25 (d, J = 3.6 Hz, 1 H), 1.78-1.68 (m, 12H), 1.32-1.20 (m, 12H). 13C-NMR (CDCl₃, 75 MHz, ppm): δ = 143.7, 103.0, 72.7, 70.2, 65.4, 27.7, 27.6, 26.9, 26.8, 26.7, 26.2, 25.2, 23.5. IR (film, cm⁻¹): ν = 3441 (b), 2921 (vs), 2847 (s), 1646 (m), 1446 (m), 1231 (m), 1159 (m), 1120 (s), 1097 (s), 995 (m), 912 (m), 871 (m), 779 (m), 746 (m).
Compound (45). An oven-dried 50 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with 44 (1.1 g, 3.22 mmol, 1.0 equiv) and CH₂Cl₂ (20 mL). The solution was cooled to 0 °C, and trichloroacetonitrile (0.65 mL, 6.44 mmol, 2.0 equiv) and DBU (96.0 µL, 0.65 mmol, 0.2 equiv) were sequentially added to the solution. The resulting mixture was stirred at 0 °C for 2 h and concentrated. The residue was purified by silica gel flash chromatography (15/1, hexane/ethyl acetate with 1% triethylamine) to give 45 (1.26 g, 81%). Rₚ = 0.49 15/1 H/EA. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 8.3 (bs, 1H), 6.35 (dd, J= 6.3, 1.2 Hz, 1H), 5.48 (d, J = 7.2 Hz, 1H), 4.90-4.88 (m, 1H), 4.27 (t, J = 3.6 Hz, 1H), 4.18-4.15 (m, 1H), 3.98-3.86 (m, 2H), 1.74-1.67 (m, 12H), 1.41-1.19 (m, 12H). ¹³C-NMR (CDCl₃, 75 MHz, ppm): δ = 162.6, 145.5, 99.0, 73.2, 73.1, 65.6, 27.7, 27.6, 27.5, 26.9, 26.8, 26.8, 26.7, 26.1, 25.0, 23.4.

Compound (46) [BS-II-60]. An oven-dried 50 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with D-glucal (826 mg, 5.66 mmol, 1.0 equiv), and dry DMF (21 mL). Once the D-glucal was fully dissolved, the reaction mixture was cooled to -40 °C and (t-Bu)₂Si(OTf)₂ (2.74 g, 6.23 mmol, 1.1 equiv) was added dropwise
followed by pyridine (0.54 g, 6.79 mmol, 1.2 equiv). The resulting reaction mixture was warmed to room temperature and allowed to stir for 1 h. The resulting reaction mixture was poured into ether (50 mL) and NaHCO₃ (20 mL) was added. The organic layer was extracted and the aqueous layer was back extracted twice with ether (20 mL). All the organic layers were combined and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (9/1. hexane/ethyl acetate) to yield 46 (569 mg, 69 %) as a white solid. ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 8.33 (bs, 1H), 6.35 (dd, J = 6.0, 1.5 Hz, 1H), 5.51 (dd, J = 7.5, 6.0 Hz, 1H), 4.91-4.89 (m, 1H), 4.34-4.31 (m, 1H), 4.22-4.19 (m, 1H), 4.20-3.95 (m, 2H), 1.03 (s, 9H), 0.97 (s, 9H).

Compound (47) [BS-I-60]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with 46 (450 mg, 1.57 mmol, 1.0 equiv) and CH₂Cl₂ (9 mL). The solution was cooled to 0 °C, and trichloroacetonitrile (0.79 mL, 7.87 mmol, 5.0 equiv) and DBU (47.0 µL, 0.32 mmol, 0.2 equiv) were sequentially added to
the solution. The resulting mixture was stirred at 0 °C for 1 h and concentrated. The residue was purified by silica gel flash chromatography (9/1, hexane/ethyl acetate with 1% triethylamine) to give 47 (579 mg, 86%). R_f = 0.25 9/1 H/EA.

![Chemical Structure](attachment:image.png)

Compound (49) [BS-II-49]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with 48 (325 mg, 0.69 mmol, 1.0 equiv) and CH₂Cl₂ (4 mL). The solution was cooled to 0 °C, and trichloroacetonitrile (0.21 mL, 2.07 mmol, 3.0 equiv) and DBU (21.0 µL, 0.14 mmol, 0.2 equiv) were sequentially added to the solution. The resulting mixture was stirred at 0 °C for 1 h and concentrated. The residue was purified by silica gel flash chromatography (5/1, hexane/ethyl acetate with 1% triethylamine) to give 49 (392 mg, 92%). ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 8.29 (bs, 1H), 7.43 (d, J = 8.0 Hz, 6H), 7.28-7.26 (m, 6H), 7.21-7.18 (m, 3H), 6.59 (d, J = 6.5 Hz, 1H), 5.21 (t, J = 4.0 Hz, 1H), 5.16 (t, J = 5.0 Hz, 1H), 5.02-5.00 (m, 1H), 4.34-4.32 (m, 1H), 3.68-3.64 (m, 1H), 3.12 (dd, J = 10.5, 2.0 Hz, 1H), 1.05 (s, 9H).
Compound (50) [BS-I-59]. IR (film, cm$^{-1}$): $\nu = 3434$ (b), 3062 (w), 3027 (w), 2953 (s), 2928 (s), 2882 (m), 2856 (s), 1646 (m), 1462 (m), 1404 (w), 1386 (w), 1358 (w), 1322 (w), 1252 (s), 1236 (s), 1167 (w), 1105 (vs), 1050 (s), 969 (m), 955 (m), 876 (m), 837 (vs), 777 (s), 749 (s), 698 (s). 1H-NMR (CDCl$_3$, 500 MHz, ppm): $\delta = 7.36$-7.33 (m, 4H), 7.30-7.26 (m, 1H), 6.34 (dd, $J = 6.0$ 1.0 Hz, 1H), 4.77 (s, 2H), 4.71-4.69 (m, 1H), 4.28-4.27 (m, 1H), 3.94 (d, $J = 2.0$ Hz, 2H), 3.84 (dt, $J = 8.5$, 3.0 Hz, 1 H), 3.68-3.65 (m, 1H), 2.21 (d, $J = 6.5$ Hz, 1H), 0.90 (s, 9H), 0.08 (s, 6H). 13C-NMR (CDCl$_3$, 125 MHz, ppm): $\delta = 144.5$, 138.5, 128.6, 127.9, 102.2, 77.0, 76.7, 73.7, 68.1, 62.4, 25.9, 18.4, -5.1, -5.4.

Compound (53) [BS-II-11]. An oven-dried 25 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with D-galactal (486 mg, 3.33 mmol, 1.0
equiv), and dry DMF (15 mL). Once the D-galactal was fully dissolved, the reaction mixture was cooled to -40 °C and \((t\text{-Bu})_2\text{Si(OTf)}_2\) (1.33 mL, 3.7 mmol, 1.1 equiv) was added dropwise followed by pyridine (0.32 mL, 4.0 mmol, 1.2 equiv). The resulting reaction mixture was warmed to room temperature and allowed to stir for 1 h. The resulting reaction mixture was poured into ether (100 mL) and NaHCO₃ (150 mL) was added. The organic layer was extracted and the aqueous layer was back extracted twice with ether (100 mL). All the organic layers were combined and dried over MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (6/1 hexane/ethyl acetate) to yield 53 (342 mg, 36 %) as a white solid.

\(^1\text{H-NMR (CDCl}_3, 500 \text{MHz, ppm): } \delta = 6.23 \text{ (dd, J = 6.5, 2.0 Hz, 1H), 4.77 \text{ (s, 1H), 4.69 (dt, J = 6.5, 1.5 Hz, 1H), 4.42 (d, J = 4.0 Hz, 1H), 4.26-4.19 (m, 2H), 3.85 (s, 1H), 1.05 (s, 9H), 1.00 (s, 9H). IR (film, cm}^{-1}\text{): } \nu = 3441 \text{ (b), 2960 (m), 2942 (m), 2897 (m), 2859 (s), 2360 (s), 1650 (m), 1474 (m), 1237 (m), 1168 (s), 1076 (vs), 902 (vs), 826 (m), 801 (m), 746 (s).}
Compound (54). An oven-dried 25 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with 53 (334 mg, 1.17 mmol, 1.0 equiv) and CH₂Cl₂ (7 mL). The solution was cooled to 0 °C, and trichloroacetonitrile (0.59 mL, 5.84 mmol, 5.0 equiv) and DBU (35.0 µL, 0.23 mmol, 0.2 equiv) were sequentially added to the solution. The resulting mixture was stirred at 0 °C for 2 h and concentrated. The residue was purified by silica gel flash chromatography (9/1, hexane/ethyl acetate with 1% triethylamine) to give 54 (381 mg, 76%).

Compounds (57) [BS-I-75]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)₂Cl₂ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH₂Cl₂ (0.5 mL). The resulting solution was stirred at room temperature for 4 h, ortho-methylphenol (43.2 mg, 0.4 mmol, 2.0 equiv), glucaal imidate 45 (96.2 mg, 0.2 mmol, 1 equiv), and CH₂Cl₂ (0.5 mL)
were sequentially added to the solution. The resulting mixture was stirred for 10 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (40/1, hexane/ethyl acetate) to give 57 (68.2 mg, α:β = 7:1, 80%). R_f = 0.32 40/1 H/EA. \(^1\)H-NMR (CDCl\(_3\), 500 MHz, ppm): \(\delta = 7.13\) (t, \(J = 8.0\) Hz, 2H), 7.07 (d, \(J = 7.5\) Hz, 1H), 6.92 (t, \(J = 7.0\) Hz, 1H), 6.12 (d, \(J = 10.5\) Hz, 1H), 5.83 (dt, \(J = 10.0, 2.5\) Hz, 1H), 5.55 (s, 1H), 4.35 (d, \(J = 5.0\) Hz, 1H), 4.09 – 4.08 (m, 1H), 3.86 – 3.82 (m, 2H), 2.23 (s, 3H), 1.75 – 1.68 (m, 12H), 1.28 – 1.19 (m, 12H). \(^1\)C-NMR (CDCl\(_3\), 125 MHz, ppm): \(\delta = 155.7, 134.6, 130.8, 128.0, 126.9, 124.8, 122.2, 115.4, 93.7, 69.7, 68.5, 66.7, 31.6, 27.8, 27.7, 27.6, 26.9, 26.8, 26.7, 26.2, 25.3, 23.8, 22.6, 16.3\). IR (film, cm\(^{-1}\)): \(\nu = 2921\) (s), 2847 (m), 1493 (m), 1449 (m), 1400 (w), 1234 (m), 1195 (w), 1138 (m), 1127 (m), 1114(m), 1103 (m), 1087 (s), 1021 (m), 994 (m), 891 (m), 862 (s), 749 (m), 717 (m), 668 (vs). HRMS: calc. for C\(_{25}\)H\(_{36}\)O\(_4\)SiNa [M+Na]\(^+\) 451.2275; found: 451.2250
Compound (58) [BS-II-67]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). The resulting solution was stirred at room temperature for 4 h, N-benzoyl-L-tyrosine ethyl ester (94 mg, 0.3 mmol, 1.5 equiv), glucal imidate 47 (86.2 mg, 0.2 mmol, 1 equiv), and CH$_2$Cl$_2$ (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 6 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (30/1, hexane/ethyl acetate) to give 58 (81.0 mg, α only, 73%). 1H-NMR (CDCl$_3$, 500 MHz, ppm): δ = 7.71 (d, J = 7.5, 2H), 7.48 (t, J = 7.5, 1H), 7.40 (t, J = 7.5, 2H), 7.04 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 6.65 (d, J = 7.5 Hz, 1H), 6.14 (d, J = 10.5 Hz, 1H), 5.76 (m, 1H), 5.54 (s, 1H), 5.0 (q, J = 6.0 Hz, 1H), 4.40 (d, J = 6.5 Hz, 1H), 4.20 (q, J = 7.0 Hz, 2H), 4.09 (q, J = 5.0 Hz, 1H), 3.87 (q, J = 5.5 Hz, 2H), 3.19 (qd, J = 15.5, 5.5 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H), 1.04 (s, 9H), 0.96 (s, 9H). 13C-NMR (CDCl$_3$, 125 MHz, ppm): δ = 171.7, 166.8, 156.6, 135.3, 133.9, 131.8, 130.5, 129.5, 128.6, 127.0, 124.1, 116.9, 93.3, 70.1, 68.1, 67.0, 61.7, 53.6, 37.1, 27.4, 27.0, 22.7, 20.0, 14.1. IR (film, cm$^{-1}$): ν = 3342 (m), 3298 (m), 3183 (w), 3060 (w), 2964 (m), 2934 (s), 2896 (m), 2860 (s), 1732 (s), 1649 (s), 1611 (m), 1580 (m), 1530 (m), 1510 (s), 1486 (m), 1474 (m), 1445 (m), 1397 (m), 1375 (m), 1365 (m), 1350 (m), 1318 (m), 1306 (m), 1272 (m), 1226 (s), 1186 (m), 1132 (vs), 1107 (s), 1090 (s), 1073 (m), 1025 (s), 993 (s), 938 (w), 911 (m),
884 (w), 859 (s), 826 (s), 761 (m), 734 (m), 714 (m), 693 (m), 653 (m). HRMS: calc. for C_{32}H_{43}NO_{7}SiNa [M+Na]^+ 604.2701; found: 604.2709.

Compound (59) [BS-II-45]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). The resulting solution was stirred at room temperature for 4 h, 1-naphthol (58 mg, 0.4 mmol, 2.0 equiv), glucal imidate 49 (123 mg, 0.2 mmol, 1 equiv), and CH$_2$Cl$_2$ (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 6 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (30/1, hexane/ethyl acetate) to give 59 (91.0 mg, $\alpha:\beta = 10:1$, 76%). $R_f = 0.48$ (9/1; H/EA). 1H-NMR (CDCl$_3$, 500 MHz, ppm): $\delta = 8.29$ (dd, $J = 8.3$, 1.5 Hz, 1H), 7.84 (dd, $J = 8.3$, 1.5 Hz, 1H), 7.53 (dd, $J = 8.0$, 4.0 Hz, 2H), 7.49 (t, $J = 7.5$ Hz, 1H), 7.41 (d, $J = 8$ Hz, 2H), 7.37 (d, $J = 7$ Hz, 6H), 7.22 – 7.17
(m, 9H), 6.15 (dt, J = 10, 2.5 Hz, 1H), 6.04 (d, J = 10 Hz, 1H), 6.00 (s, 1H), 5.41 (d, J = 9 Hz, 1H), 4.33-4.30 (m, 1H), 3.16 (dd, J = 10.0, 6.0 Hz, 1H), 3.11 (dd, J = 10, 1.5 Hz, 1H) 0.99 (s, 9H). 13C-NMR (CDCl$_3$, 125 MHz, ppm): δ = 177.5, 153.1, 143.8, 134.6, 131.2, 128.8, 128.7, 128.5, 127.8, 127.7, 127.6, 127.0, 126.9, 126.8, 126.3, 126.1, 125.8, 125.4, 122.1, 121.9, 121.8, 109.6, 93.2, 86.3, 69.8, 65.1, 62.6, 38.6, 27.0, 26.9.IR (film, cm$^{-1}$): ν = 3057 (m), 2973 (m), 2931 (m), 2874 (m), 1732 (s), 1596 (m), 1578 (m), 1507 (m), 1490 (m), 1479 (m), 1463 (m), 1448 (m) 1396 (m), 1280 (m), 1263 (m), 1237 (m), 1149 (s), 1085 (m), 1051 (m), 1016 (m), 976 (s), 910 (m), 792 (m), 772 (m), 733 (m), 706 (m), 667 (m). HRMS: calc. for C$_{40}$H$_{38}$O$_5$Na [M+Na]$^+$ 621.2611; found: 621.2609

Compound (60) [BS-II-6]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). The resulting
solution was stirred at room temperature for 4 h, 1-napthol (57.7 mg, 0.4 mmol, 2.0 equiv), galactal imidate 54 (85.8 mg, 0.2 mmol, 1 equiv), and CH$_2$Cl$_2$ (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 2 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (50/1, hexane/ethyl acetate) to give 60 (63.2 mg, α only, 76%). MP = 141°C. 1H-NMR (CDCl$_3$, 500 MHz, ppm): δ = 8.16 (d, J = 8 Hz, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.50 – 7.38 (m, 4H), 7.32 (d, J = 7.5 Hz, 1H), 6.31 (dd, J = 9.5, 5.5 Hz, 1H), 6.14 (dd, J = 10.0, 3.0 Hz, 1H), 5.92 (d, J = 3 Hz, 1H), 4.42 (dd, J = 5.0, 2.5 Hz, 1H), 4.33 (d, J = 12.5 Hz, 1H), 4.14 (d, J = 12.5 Hz, 1H), 4.08 (d, J = 1.5 Hz, 1H), 1.05 (s, 9H), 1.03 (s, 9H). 13C-NMR (CDCl$_3$, 125 MHz, ppm): δ = 153.1, 134.5, 130.3, 127.6, 126.2, 126.1, 126.0, 125.3, 121.9, 121.6, 109.2, 93.7, 68.1, 66.3, 64.7, 27.5, 27.1, 23.1, 20.6. IR (film, cm$^{-1}$): ν = 3052 (w), 2963 (m), 2932 (s), 2886 (m), 2858 (s), 1598 (w), 1578 (m), 1507 (w), 1464 (m), 1398 (s), 1362 (w), 1264 (m), 1238 (m), 1195 (m), 1140 (s), 1124 (m), 1075 (s), 1049 (s), 1016 (m), 966 (s), 906 (s), 888 (s), 826 (m), 795 (s), 771 (s), 743 (s), 706 (m). HRMS: calc. for C$_{24}$H$_{32}$O$_4$SiNa [M+Na]$^+$ 435.1962; found: 435.1951.
Compound (61) [BS-II-1]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). The resulting solution was stirred at room temperature for 4 h, N-benzoyl-L-tyrosine ethyl ester (125.3 mg, 0.4 mmol, 2.0 equiv), galactal imidate 54 (85.8 mg, 0.2 mmol, 1 equiv), and CH$_2$Cl$_2$ (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 10 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (4/1, hexane/ethyl acetate) to give 61 (113.1 mg, α only, 97%). MP = 47°C. 1H-NMR (CDCl$_3$, 300 MHz, ppm): $\delta = 7.72$ (d, J = 11.5 Hz, 2H), 7.50 – 7.39 (m, 3H), 7.056 – 6.991 (m, 4H), 6.59 (d, J = 12.0 Hz, 1H), 6.22 (q, J = 8.5 Hz, 1H), 5.98 (dd, J = 16.5, 5.5 Hz, 1H), 5.69 (d, J = 4.5 Hz, 1H), 5.02 (q, J = 12.0 Hz, 1H), 4.37 – 4.31 (m, 2H), 4.21 (q, J = 12.0 Hz, 2H), 4.11 (d, J = 21.0 Hz, 1H), 3.97 (s, 1H), 3.20 (hept., J = 8.5 Hz, 2H), 1.28 (t, J = 12.0 Hz, 3 H), 1.03 (s, 9H), 0.99 (s, 9H). 13C-NMR (CDCl$_3$, 75 MHz, ppm): $\delta = 171.7,$
Compound (62) [BS-I-92]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)₂Cl₂ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH₂Cl₂ (0.5 mL). The resulting solution was stirred at room temperature for 4 h, ortho-methylphenol (43.3 mg, 0.4 mmol, 2.0 equiv), galactal imidate 54 (85.8 mg, 0.2 mmol, 1 equiv), and CH₂Cl₂ (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 10 h,
diluted with benzene (1 mL), and purified by silica gel flash chromatography (30/1, hexane/ethyl acetate) to give 62 (61 mg, α only, 81%). MP = 58°C. 1H-NMR (CDCl$_3$, 300 MHz, ppm): δ = 7.22 (s, 1H), 7.17-7.11 (m, 2H), 6.91 (t, J = 12.0 Hz, 1H), 6.23 (dd, 16.5, 9.0 Hz, 1H), 6.01 (dd, 16.5, 5.0 Hz, 1H), 5.68 (d, 4.5 Hz, 1H), 4.38- 4.32 (m, 2H), 4.15 (d, J = 21.0 Hz, 1H), 4.02 (d, J = 3.0 Hz, 1H), 2.18 (s, 3H), 1.04 (s, 9H), 1.0 (s, 9H). 13C-NMR (CDCl$_3$, 75 MHz, ppm): δ = 130.7, 130.0, 127.0, 126.4, 122.0, 115.5, 93.9, 67.9, 66.3, 64.8, 27.5, 27.1, 23.2, 20.7, 16.3. IR (film, cm$^{-1}$): ν = 3050 (w), 2933 (s), 2890 (m), 2858 (s), 1591 (m), 1493 (s), 1473 (m), 1400 (m), 1363 (m), 1339 (w), 1301 (w), 1236 (s), 1188 (m), 1144 (vs), 1123 (m), 1096 (m), 1077 (s), 1049 (w), 986 (vs), 905 (m), 887 (m), 858 (w), 826 (m), 796 (m), 782 (w), 750 (s), 711 (m). HRMS: calc. for C$_{21}$H$_{32}$O$_4$SiNa [M+Na]$^+$ 399.1962; found: 399.2002.
Compound (64) [BS-II-15]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). A second oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, benzyl alcohol (32 µL, 0.3 mmol, 1.5 equiv), CH$_2$Cl$_2$ (0.5 mL), toluene (0.5 mL), and ZnEt$_2$ (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and galactal imidate 54 (85.8 mg, 0.2 mmol, 1.0 equiv), and 2,6-di-tert-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 12 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (20/1, hexane/ethyl acetate) to give 62 (58.3 mg, α only, 77%).

1H-NMR (CDCl$_3$, 500 MHz, ppm): δ = 7.33 – 7.32 (m, 4H), 7.29 – 7.25 (m, 1H), 6.09 (dd, J = 10.0, 5.0 Hz, 1H), 5.88 (dd, J = 10.0, 3.5 Hz, 1H), 5.13 (d, J = 3.0 Hz, 1H), 4.68 (q, 12.0 Hz, 2H), 4.33 (dd, 12.5, 2.0 Hz, 1H), 4.27 (dd, 5.0, 2.5 Hz, 1H), 4.11 (dd, J = 12.5, 1.5 Hz, 1H), 3.89 – 3.88 (m, 1H), 1.03 (s, 9H), 0.97 (s, 9H). 13C-NMR (CDCl$_3$, 125
MHz, ppm): δ = 138.1, 129.5, 128.4, 127.9, 127.6, 126.9, 94.0, 69.8, 67.2, 66.3, 64.9, 30.3, 27.5, 27.1, 23.1, 20.5. IR (film, cm⁻¹): ν = 2935 (s), 2886 (m), 2858 (s), 1470 (m), 1363 (m), 1195 (m), 1142 (vs), 1121 (m), 1079 (m), 1040 (s), 1025 (s), 987 (m), 825 (m), 795 (s), 745 (m), 696 (m). HRMS: calc. for C₂₁H₃₂O₄SiNa [M+Na]⁺ 399.1962; found: 399.1946.

![Image of compound 66](image-url)

Compound (66) [BS-II-59]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)₂Cl₂ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH₂Cl₂ (0.5 mL). A second oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, dry furanose alcohol (azeotroped with toluene three times) (120 mg, 0.3 mmol, 1.5 equiv), CH₂Cl₂ (0.5 mL), toluene (0.5 mL), and ZnEt₂ (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and glucal imidate 49 (111 mg, 0.2
mmol, 1.0 equiv), and 2,6-di-tert-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 12 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (9/1, hexane/ethyl acetate) to give 66 (117.9 mg, α only, 88%). 1H-NMR (CDCl$_3$, 500 MHz, ppm): δ = 7.45 (d, J = 8.0 Hz, 6H), 7.28 – 7.25 (m, 9H), 7.21 – 7.17 (m, 5H), 5.79 (s, 2H), 5.21 (d, J = 9.5 Hz, 1H), 5.16 (s, 1H), 5.09 (s, 1H), 4.75 (q, 6.0 Hz, 2H), 4.61 (d, 12.0 Hz, 1H), 4.51 (q, J = 4.5 Hz, 1H), 4.40 (d, J = 12.0 Hz, 1H), 4.15 – 4.10 (m, 2H), 3.63 (t, J = 10.0 Hz, 1H), 3.12 – 3.10 (m, 2H), 1.43 (s, 3H), 1.30 (s, 3H), 0.95 (s, 9H). 13C-NMR (CDCl$_3$, 125 MHz, ppm): δ = 177.5, 143.9, 137.1, 129.9, 128.7, 128.4, 128.0, 127.8, 127.4, 126.9, 112.4, 107.3, 96.5, 94.7, 86.4, 85.5, 85.4, 85.3, 82.5, 82.2, 74.9, 69.1, 69.0, 68.8, 68.4, 65.3, 64.7, 62.9, 38.6, 26.9, 26.8, 26.4, 25.0. IR (film, cm$^{-1}$): ν = 3061 (w), 3031 (w), 2976 (m), 2935 (m), 2901 (w), 2874 (w), 1732 (s), 1490 (w), 1450 (m), 1372 (w), 1278 (m), 1210 (m), 1152 (s), 1077 (s), 1040 (s), 1016 (s), 913 (s), 870 (m), 744 (s), 699 (s), 668 (m), 633 (m). HRMS: calc. for C$_{45}$H$_{50}$O$_9$SiNa [M+Na]$^+$ 757.3347; found: 757.3359.
Compound (67) [BS-II-38]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). A second oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, dry 3β-cholestanol (azeotroped with toluene three times) (116.6 mg, 0.3 mmol, 1.5 equiv), CH$_2$Cl$_2$ (0.5 mL), toluene (0.5 mL), and ZnEt$_2$ (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and glucal imidate 49 (123.4 mg, 0.2 mmol, 1.0 equiv), and 2,6-di-tert-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 12 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (45/1, hexane/ethyl acetate) to give 67 (99.1 mg, α only, 61%). 1H-NMR (CDCl$_3$, 500 MHz, ppm): δ = 7.46 (d, J = 7.0 Hz, 6H), 7.27 – 7.24 (m, 6H), 7.20 (t, J = 7.0 Hz, 3H), 5.79-5.78 (m, 1H), 5.27 (d, J = 10.0 Hz, 1H), 5.14 (d, J = 10.0 Hz, 1H), 4.20 – 4.17 (m, 1H), 4.19 (hex, J = 5.0 Hz, 1H), 3.22 – 3.08 (m, 2H), 1.95 (d, J = 12.5 Hz, 1H), 1.80 – 0.96 (m, 24H), 0.94 (s,
9H), 0.88 (d, J = 7.0 Hz, 3H), 0.84 (dd, J = 7.0, 2.5 Hz, 6H), 0.63 (s, 3H), 0.51 (s, 3H).

13C-NMR (CDCl$_3$, 125 MHz, ppm): δ = 144.0, 129.5, 128.7, 128.4, 127.7, 126.9, 91.9,
68.5, 65.5, 63.4, 56.5, 56.3, 54.3, 45.1, 40.0, 39.5, 36.9, 36.3, 36.2, 35.8, 35.5, 32.1, 28.7,
28.3, 28.0, 27.7, 26.9, 26.8, 24.2, 23.8, 22.8, 22.5, 21.2, 18.7, 12.3, 12.1. IR (film, cm$^{-1}$):
ν = 3059 (w), 2932 (vs), 2868 (s), 1733 (s), 1499 (m), 1448 (m), 1382 (m), 1280 (m),
1150 (s), 1035 (m), 1075 (m), 1035 (vs), 909 (m), 764 (m), 734 (s), 705 (s). HRMS: calc.
for C$_{57}$H$_{78}$O$_5$Na [M+Na]$^+$ 865.5741; found: 865.5746.

Compound (68) [BS-II-23]. An oven-dried 10 mL Schlenk flask was equipped
with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol,
2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). A second
oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, dry diacetone D-glucose (azeotroped with toluene three times) (78.1 mg, 0.3 mmol, 1.5 equiv), CH₂Cl₂ (0.5 mL), toluene (0.5 mL), and ZnEt₂ (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and glucal imidate 49 (123.4 mg, 0.2 mmol, 1.0 equiv), and 2,6-di-tert-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 12 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (4/1, hexane/ethyl acetate) to give 68 (94.9 mg, α only, 66%). ¹H-NMR (CDCl₃, 500 MHz, ppm): δ = 7.45 (d, J = 7.5 Hz, 6H), 7.27 (t, J = 7.5 Hz, 6H), 7.20 (t, J = 7.5 Hz, 3H), 5.92 (d, J = 3.5 Hz, 1H), 5.80 (s, 2H), 5.14 (d, J = 10 Hz, 1H), 4.85 (d, J = 3.0 Hz, 1H), 4.42 , (d, J = 2.5 Hz, 1H), 4.23 – 4.20 (m, 1H), 4.15 – 4.10 (m, 3H), 4.00 – 3.97 (m, 1H), 3.15 (m, 2H), 1.48 (s, 3H), 1.43 (s, 3H), 1.34 (s, 3H), 1.02 (s, 3H), 0.95 (s, 9H). ¹³C-NMR (CDCl₃, 125 MHz, ppm): δ = 177.5, 143.7, 129.9, 128.8, 127.8, 127.0, 126.9, 105.4, 95.9, 84.3, 82.0, 81.4, 72.6, 69.2, 67.8, 65.3, 63.4, 27.7, 27.0, 26.8, 26.2, 25.4. IR (film, cm⁻¹): ν = 3060 (w), 3023 (w), 2984 (m), 2981 (m), 2963 (m), 2931 (m), 1734 (s), 1490 (w), 1449 (m), 1372 (m), 1280 (m), 1252 (w), 1217 (m), 1150 (s), 1073 (s), 1035 (s), 983 (s), 850 (m), 765 (m), 745 (m), 706 (s). HRMS: calc. for C₄₂H₅₀O₁₀Na [M+Na]⁺ 737.3296; found: 737.3283.
Compound (69) [BS-II-26]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). A second oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, dry 3β-cholestanol (azeotroped with toluene three times) (116.6, 0.3 mmol, 1.5 equiv), CH$_2$Cl$_2$ (0.5 mL), toluene (0.5 mL), and ZnEt$_2$ (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and galactal imidate 54 (85.8 mg, 0.2 mmol, 1.0 equiv), and 2,6-di-tert-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 12 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (30/1, hexane/ethyl acetate) to give 69 (92.0 mg, α only, 70%). 1H-NMR (CDCl$_3$, 500 MHz, ppm): δ = 6.06 (dd, J = 10.0, 5.5 Hz, 1H), 5.83 (dd, 10.0, 3.0 Hz, 1H), 5.15, (d, 4.0 Hz, 1H), 4.36 (dd, J = 12.3, 1.5 Hz, 1H), 4.25 (q, J = 3.0 Hz, 1H), 4.13 (dd, J = 12.3, 1.5 Hz, 1H), 3.91 (d,
2.0 Hz, 1H), 3.64 (hept., J = 5.0 Hz, 1H), 1.93 (dt, J = 13.0, 3.5 Hz, 1H), 1.82 – 1.75 (m, 2H), 1.69 (dt, J = 10.0, 3.0 Hz, 1H), 1.62 (dq, J = 9.5, 3.5 Hz, 1H), 1.56 – 1.05 (m, 22H), 1.04 – 1.00 (m, 1H), 1.03 (s, 9H), 0.99 – 0.94 (m, 2H), 0.96 (s, 9H), 0.87 (d, J = 6.5 Hz, 3H), 0.84 (dd, J = 6.5, 2.0 Hz, 6H), 0.76 (s, 3H), 0.62 (s, 3H). ^13^C-NMR (CDCl₃, 125 MHz, ppm): δ = 129.2, 127.5, 93.0, 76.9, 66.9, 66.4, 65.1, 56.5, 56.3, 54.4, 45.0, 42.6, 40.0, 39.5, 37.0, 36.4, 36.2, 35.8, 35.5, 32.1, 28.8, 28.2, 28.0, 27.5, 27.1, 24.2, 23.8, 23.1, 22.8, 22.5, 21.2, 18.7, 12.2, 12.1. IR (film, cm⁻¹): ν = 2932 (vs), 2858 (s), 1172 (m), 1384 (m), 1143 (s), 1033 (s), 987 (m), 903 (m), 886 (m), 826 (m), 797 (m). HRMS: calc. for C₄₁H₇₂O₄SiNa [M+Na]^+ 679.5092; found: 679.5094.

Compound (70) [BS-I-91]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)$_2$Cl$_2$ (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH$_2$Cl$_2$ (0.5 mL). A second oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, 2,2,2-trifluoroethanol (29 µL, 0.4 mmol, 2.0 equiv), CH$_2$Cl$_2$ (0.5 mL), toluene (0.5 mL), and ZnEt$_2$ (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions
were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and galactal imidate 54 (85.8 mg, 0.2 mmol, 1.0 equiv), and 2,6-di-tert-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 1 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (30/1, hexane/ethyl acetate) to give 70 (58.2 mg, α only, 79%).

1H-NMR (CDCl$_3$, 300 MHz, ppm): $\delta = 6.15$ (dd, $J = 9.8$, 5.4 Hz, 1H), 5.88 (dd, $J = 10.0$, 3.0 Hz, 1H), 5.11 (d, $J = 3.0$ Hz, 1H), 4.37 (dd, $J = 12.6$, 1.5 Hz, 1H), 4.30 (dd, $J = 5.4$, 2.7 Hz, 1H), 4.16 (dd, $J = 12.6$, 1.5 Hz, 1H), 4.08 – 3.92 (m, 2H), 3.86 (d, $J = 2.1$ Hz, 1H), 1.03 (s, 9H), 0.96 (s, 9H). 13C-NMR (CDCl$_3$, 75 MHz, ppm): $\delta = 130.4$, 125.5, 95.1, 67.6, 66.1, 64.9, 64.6, 64.4, 27.5, 27.1, 23.2, 20.6. IR (film, cm$^{-1}$): $\nu = 2935$ (s), 2891 (m), 2856 (s), 1475 (m), 1428 (w), 1400 (w), 1384 (w), 1363 (w), 1342 (w), 1328 (s), 1304 (m), 1285 (s), 1200 (m), 1162 (s), 1147 (vs), 1127 (s), 1063 (vs), 1001 (s), 981 (s), 936 (m), 899 (m), 882 (m), 848 (w), 827 (s), 794 (s), 772 (w), 752 (w), 718 (w), 681 (m). HRMS: calc. for C$_{16}$H$_7$O$_4$F$_3$Si $[M+Na]^+$ 391.1523; found: 391.2843
Compound (71) [BS-II-64]. An oven-dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with Pd(PhCN)\(_2\)Cl\(_2\) (1.9 mg, 0.005 mmol, 2.5% mol), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol) and CH\(_2\)Cl\(_2\) (0.5 mL). A second oven dried 10 mL Schlenk flask was equipped with a Teflon coated spin bar and charged with, in order, dry XXXXXXXXX (azeotroped with toluene three times) (32 µL, 0.3 mmol, 1.5 equiv), CH\(_2\)Cl\(_2\) (0.5 mL), toluene (0.5 mL), and ZnEt\(_2\) (150 µL, 0.15 mmol, 0.75 equiv). The resulting solutions were stirred at room temperature for 6 h. The catalyst solution was added to the aliphatic alcohol solution and galactal imidate 54 (84.1 mg, 0.3 mmol, 1.5 equiv), and 2,6-\textit{di-tert}-butylphenol (20.6 mg, 0.1 mmol, 0.5 equiv) were sequentially added to the solution. The resulting mixture was stirred for 12 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (9/1, hexane/ethyl acetate) to give 71 (83.4 mg, \(\alpha\) only, 76%). \(^1\)H-NMR (CDCl\(_3\), 500 MHz, ppm): \(\delta = 7.34\) –
7.26 (m, 5H), 6.06 (dd, J = 10.0, 5.5 Hz, 1H), 5.83 (dd, J = 10.0, 5.5 Hz, 1H), 5.13 (s, 1H), 5.03 (d, J = 3.0 Hz, 1H), 4.72 – 4.65 (m, 3H), 4.44 – 4.38 (m, 2H), 4.27 (dd, J = 12.5, 1.5 Hz, 1H), 4.24 (dd, J = 5.5, 2.5 Hz, 1H), 4.13 (dd, J = 12.5, 1.5 Hz, 1H), 3.83 – 3.80 (m, 2H), 3.57 (t, J = 10.0 Hz, 1H), 1.45 (s, 3H), 1.29 (s, 3H), 1.02 (s, 9H), 0.96 (s, 9H). 13C-NMR (CDCl$_3$, 125 MHz, ppm): $\delta = 137.1, 129.4, 128.5, 127.9, 127.8, 126.7, 112.4, 107.2, 95.4, 85.5, 85.4, 82.2, 69.4, 69.1, 67.2, 66.2, 64.8, 27.5, 27.1, 26.5, 25.0, 23.1, 20.5. IR (film, cm$^{-1}$): $\nu = 2934$ (s), 2886 (m), 2859 (s), 1498 (w), 1473 (m), 1383 (m), 1373 (m), 1363 (m), 1271 (m), 1238 (m), 1210 (m), 1194 (m), 1142 (vs), 1121 (s), 1104 (s), 1078 (s), 1041 (vs), 1015 (s), 987 (s), 967 (m), 940 (m), 903 (m), 886 (m), 871 (m), 848 (m), 826 (m), 796 (m), 772 (m), 748 (m), 735 (m), 717 (m), 698 (m), 651 (m), 606 (w). HRMS: calc. for C$_{29}$H$_{44}$O$_8$SiNa [M+Na]$^{+}$ 571.2698; found: 571.2683.