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ABSTRACT 

 

 

 The research presented uses nuclear magnetic resonance (NMR) experimental 

techniques to study systems of geochemical and biological processes.  This thesis first 

presents an introduction to the NMR experimental concepts and data analysis.  Several 

experimental systems are then described in detail:  biological reduction of uranium; 

biofilm growth in porous media; and solutions and gels of alginate, a polymer molecule 

commonly found in the biofilm polymeric matrix. 

 Bioremediation of heavy metal contaminants such as uranium around nuclear 

waste storage sites is an important environmental problem.  Uranyl (UO2
2+

) is soluble in 

water, while uraninite (UO2) precipitates as nanoparticles.  Certain types of bacteria are 

able to use uranium as the electron acceptor and reduce uranyl ions to uraninite.  The 

experiments presented used a solution of uranyl ions that was reduced by a sulfur 

reducing bacteria and were studied using images and relaxation measurements. 

 The growth of biofilms in the subsurface may also be used for bioremediation.  

Biofilms form when bacteria attach to surfaces and then produce and live within a 

polymeric matrix known as the extracellular polymeric substance (EPS).  Experiments 

were done on a biofilm grown through the pore structure of a model bead pack.  During 

the biofilm growth, displacement-relaxation correlation experiments were performed 

which were able to separate the biofilm phase from the bulk fluid phase using relaxation 

information.  The results presented show that during biofilm growth very little convective 

flow occurs through the biofilm phase, while pore clogging causes channeling that 

increases the flow through non-biofilm filled pores and increases hydrodynamic 

dispersion. 

 The EPS matrix of a biofilm contains DNA, proteins, and biologically produced 

polymers.  Some biofilms such as those produced by the bacteria Pseudomonas 

aeruginosa contain the polymer alginate.  Three biologically produced alginates were 

compared: alginate produced by algae, alginate produced by P. aeruginosa FRD1153, 

and alginate produced by P. aeruginosa FRD1.  A diffusive reaction gelation process was 

used to produce heterogeneous gels which were analyzed both during and after gelation.  

Homogeneous gels and solutions were studied using relaxation dispersion techniques.  

Differences in hydrogen exchange processes, polymer conformation, and gel structure 

were analyzed. 
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INTRODUCTION 

 

 

 The research presented in this thesis is an exploration of the use of nuclear 

magnetic resonance (NMR) experimental techniques to study a variety of systems 

applicable to the fields of biological engineering, chemical engineering, geosciences, and 

mathematical modeling [1-11].  A wide array of NMR experiments that enable non-

invasive analysis of opaque and heterogeneous samples both static and dynamic were 

performed for this thesis research including relaxation experiments, magnetic resonance 

imaging, and dynamic measurements.  NMR relaxation measurements are sensitive to a 

range of sample effects such as the surface to volume ratio and have been used for years 

as a tool to study heterogeneous samples.  In recent years, multi-dimensional correlation 

experiments have seen increased use as computing power has increased that allows data 

analysis on personal computers.  Magnetic resonance imaging (MRI) is a powerful tool 

that is used extensively in medicine.  MRI is used in this thesis to study the pore structure 

of porous media such as rocks and bead packs, a system of uranium nanoparticles, and 

biopolymer gels.  Dynamic measurements of diffusion and fluid flow using NMR 

techniques are used to study systems of fluid flow through porous media and diffusion of 

colloidal particles in gels. 

This thesis first presents an introduction to the experimental concepts and data 

analysis of magnetic relaxation measurements, multi-dimensional correlation 

experiments, magnetic resonance images, and dynamic measurements.  The basics of 

magnetic resonance phenomenon including the quantum mechanics that underlie the 

technique, classical mechanics concepts, and basic pulse sequences are first presented in 
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Chapter 2.  The data analysis of magnetic relaxation measurements and multi-

dimensional correlation experiments requires the use of the inverse Laplace transform, 

the basic concepts of which are presented in Chapter 3.  More advanced concepts of 

magnetic resonance experiments such as relaxation mechanisms, dynamic measurements, 

and velocity images are explored in Chapter 4. 

 The experiments performed for this thesis research are presented in Chapters 5-9.  

The results of the authorôs work for several large collaborative projects are presented in 

Chapter 5.  Experiments that included magnetic resonance images and two dimensional 

relaxation correlations were performed on both limestone and sandstone rocks before and 

after a solution of supercritical CO2 was pumped through the pore structure of the rocks.  

The limestone was shown to dissolve along preferential flow pathways, while the pore 

structure of the sandstone did not change.  A manuscript containing this data is being 

prepared for submission to Geophysical Research Letters [9].  In a separate but related 

project, a biofilm was grown throughout the pore structure of a sandstone and two 

dimensional relaxation measurements were performed.  The biofilm growth was not able 

to be detected using high field relaxation correlations.  This work was published in the 

journal Organic Geochemistry [1].  High resolution velocity images were obtained for a 

system of fluid flow through a model porous medium.  The images were then compared 

with computational fluid dynamics simulations done by collaborators, and the results are 

shown to compare very well spatially.  This work was submitted for publication in the 

journal Advances in Water Resources [8]. 
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 Several experimental systems are then described in detail in Chapter 6-9:  

biological reduction of uranium; biofilm growth in porous media; and solutions and gels 

of alginate, a polymer molecule commonly found in the biofilm polymeric matrix.  

Chapter 6 presents the use of magnetic resonance to study a system of biological 

reduction of uranium.  Bioremediation of heavy metal contaminants such as uranium 

around nuclear waste storage sites is an important environmental problem.  Uranyl 

(UO2
2+

) is soluble in water, while uraninite (UO2) precipitates as nanoparticles.  

Precipitation of uranium may be able to reduce contaminant transport through the 

subsurface.  Certain types of bacteria are able to use uranium as the electron acceptor and 

reduce uranyl ions to uraninite.  The experiments presented used a solution of uranyl ions 

that was reduced by a sulfur reducing bacteria and studied using images and relaxation 

measurements to show the potential use of NMR as a tool to study these biological 

reactions.  This work was published in the journal Biotechnology and Bioengineering [2]. 

 Chapter 7 presents the use of displacement-relaxation correlation experiments to 

study a system of a biofilm growing within a porous medium.  The growth of biofilms in 

the subsurface is another tactic that may be used for bioremediation.  Biofilms form when 

bacteria attach to surfaces and then produce and live within a polymeric matrix known as 

the extracellular polymer substance (EPS).  The fluid dynamics and nutrient transport 

during biofilm growth in porous media is an important area of study.  Experiments were 

done on a biofilm grown through the pore structure of a model bead pack.  During the 

biofilm growth, displacement-relaxation correlation experiments were performed.  These 

experiments were able to separate the biofilm phase from the bulk fluid phase using 



4 
 

 
 

relaxation information.  The results presented show that during biofilm growth very little 

convective flow occurs through the biofilm phase, while pore clogging causes channeling 

that increases the flow through non-biofilm filled pores and increases hydrodynamic 

dispersion.  This work will also be published in the journal Biotechnology and 

Bioengineering [6]. 

 The EPS matrix of a biofilm contains DNA, proteins, and biologically produced 

polymers.  Some biofilms such as those produced by the bacteria Pseudomonas 

aeruginosa contain the polymer alginate.  To study this constituent of the EPS, 

experiments were performed on alginate solutions and gels.  Three biologically produced 

alginates were compared: alginate produced by algae, alginate produced by P. aeruginosa 

FRD1153, and alginate produced by P. aeruginosa FRD1.  The differences between these 

alginates were studied using relaxation techniques and images.  Chapter 8 is a study of 

heterogeneous gelation of the biopolymer alginate.  A diffusive reaction gelation process 

was used to produce heterogeneous gels which were analyzed both during and after 

gelation using images and relaxation and diffusion-relaxation correlation experiments.  

Significant differences were shown between the gel structures produced by the three 

different alginates.  This work was published in the Journal of Biotechnology [3].  

Chapter 9 is a study of homogeneous gelation of alginate.  Homogeneous gels and 

solutions were studied using relaxation dispersion techniques.  Differences in hydrogen 

exchange processes, polymer conformation, and gel structure were analyzed.  This 

research is ongoing and is being conducted in collaboration with current undergraduate 

students and will result in future publications. 



5 
 

 
 

INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE 

 

 

 The phenomenon of nuclear magnetic resonance (NMR) was first observed in 

1945 by Purcell, Torrey, and Pound [12] at Harvard University and Bloch, Hansen, and 

Packard [13] at Stanford University.  The observation of NMR and the physics behind it 

was an important breakthrough for the validation of some of the concepts of quantum 

mechanics.  The experimental use of this phenomenon has been widely developed in the 

past 75 years and applied in the fields of medicine, chemistry, and fluid dynamics, in 

addition to physics, due to the ability to non-invasively study the molecular dynamics of 

macroscopic samples.  This chapter will explain the basic concepts behind the use of 

NMR, while the next chapter will expand upon these ideas and describe more advanced 

experiments and data analysis.  This introduction will cite original references, but  

essentially obtains most information from [14] and [15]. 

 

 

Theory of Nuclear Magnetic Resonance: Quantum Mechanics 

 

 

 Nuclear magnetic resonance utilizes the quantum mechanical property of the spin 

angular momentum of a single nucleus and its response to a magnetic field to study 

molecular ensemble properties of macroscopic systems containing a large number of 

nuclei.  Since most experiments do not detect single molecules, the experiments 

discussed in this thesis can mostly be understood using classical physical concepts 

describing molecular ensemble properties, but some quantum mechanics background is 

necessary to understand the fundamental phenomena of NMR.   
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Spin Angular Momentum 

Each nuclear isotope has a fundamental property called the spin quantum number 

I, which is a half integer or integer value that depends on the number of protons and 

neutrons in the nucleus.  This quantum number refers to a type of angular momentum that 

is an intrinsic property, and does not imply that the nucleus is physically rotating or 

spinning.  However, the nucleus does behave mathematically and physically as if it is 

spinning, so the term ñspin angular momentumò is universally used in the literature.  The 

quantum number I defines the number of discrete values of the spin angular momentum 

quantum number m that are possible for each nucleus: 

IIIIm ),1),...(1(, -+--=  (2.1) 

For example, for the most abundant isotope of hydrogen H1 , 
2

1
=I  and 

2

1
-=m  or 

2

1
+=m  and two discrete angular momentum values are possible.  Hydrogen is the most 

commonly used nucleus in NMR for a number of reasons that are discussed later, and 

will be used as the main example.  However, a large number of nuclei have 0̧I  and 

can be studied using NMR experiments. 

The angular momentum associated with the spin angular momentum quantum 

number m is represented by a vector, since angular momentum always has a direction 

associated with it.  The fundamental idea of quantum mechanical measurements is that at 

any time each nucleus is not in one state or another (referred to here as m
G

), but that each 

nuclei has some probability ma  that it is in each of the states m
G

.  This leads to the  

 



7 
 

 
 

arbitrary spin state of a nucleus Y  being described by the linear combination of all the 

values for m
G

: 

ä=Y
m

m ma
G

 (2.2) 

However, the act of measuring the moleculeôs spin state causes it to only exist in one of 

the discrete states.  In the following discussion, the deterministic angular momentum 

vector will be referred to as m
G

 while the quantum mechanical spin state will be referred 

to as Y .  The directionality of the angular momentum vector leads to the terms ñspin-

upò and ñspin-downò that represent the two spin states m of a 
2

1
=I  nucleus.  The 

Schrodinger equation describes the time dependence of the spin state: 

() )()( ttHt
t

i Y=Y
µ

µ
>  (2.3) 

where ()tH  is the Hamiltonian energy operator (which has units of energy) and > is 

Planckôs constant (which has units of energy multiplied by time).  For example, if the 

Hamiltonian is constant with time, such as in the description of a stationary system, this 

equation is straight-forward to solve: 

)(exp)( t
iHt

t Yö
÷

õ
æ
ç

å-
=Y

>
 (2.4) 

() ö
÷

õ
æ
ç

å-
=

>

iHt
tU exp  (2.5) 

where U(t) is known as the evolution operator. 
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Spin Magnetism 

 In order to find a useful expression for the Hamiltonian energy operator H, the 

nucleus is regarded as a magnetic dipole moment.  A magnetic dipole moment exists 

because the moving electrical charges associated with the electron and proton will 

interact and produce a magnetic field according to Maxwellôs equations relating 

electricity and magnetism.  The magnetic dipole moment m
G

 is proportional to the angular 

momentum m
G
>  of the nucleus with the constant of proportionality g, known as the 

gyromagnetic ratio, i.e.: 

m
G
>

G
gm=  (2.6) 

The gyromagnetic ratio has units of Hz/T or rad/s/T, and is different for every nucleus.  

The hydrogen proton H1  has one of the highest values for g (42.58 MHz/T) and, along 

with its nearly 100% natural isotopic abundance, helps to explain its common use in 

NMR experiments. 

In a magnetic field B
G

, these dipole moments will align along the axis of the 

magnetic field, with the energy needed for this realignment represented by BH
GG
Ö-= m .  

Combining this expression with equation 2.6, the Hamiltonian energy operator for a 

nucleus in a magnetic field oriented along the z-axis ( kBB
GG

0=  and kmm
GG

= ) is: 

mBH 0>g-=  (2.7) 

This is known as the Zeeman interaction energy, and is the dominant energy exchange 

mechanism utilized in NMR experiments.  The difference between energy levels of spin 

states is discrete and is equal to 0B>g , since m varies only by integer values.  The spin 
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state for 
2

1
=m  (ñspin-upò) has a lower energy than 

2

1
-=m  (ñspin-downò), as shown in 

Figure 2.1.  Applying energy to the system will cause spins to ñflipò from spin-down to 

spin-up, which disturbs the system from equilibrium.  The system will then exchange 

energy with the environment and return to equilibrium as the spins return to the lower  

energy state. 

 

 

 

Figure 2.1.  Schematic of Zeeman interaction energy for a nucleus with 
2

1
=I .  

2

1
=m  

corresponds to a spin that is aligned with the magnetic field and is the lower energy state. 

 

 

The evolution operator for the Zeeman interaction found by combining Equations 

2.5 and 2.7 is: 

() ( )mtBitU 0exp g=  (2.8) 

This function is an example of a rotation operator, with the form: 

() ( )miRz ff exp=  (2.9) 

where tB0gf=  represents the angle of the rotation about the z-axis.  Therefore, in a  
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homogeneous, constant magnetic field kB
G

0 , all of the nuclear spins will rotate, or 

precess, about the z-axis at a constant frequency known as the Larmor frequency: 

00 Bgw =  (2.10) 

The precession of the nuclei and the Larmor frequency are very important concepts in 

understanding NMR and its practical use.  The ñresonanceò in NMR refers to the fact that 

the application of a small amount of energy at the Larmor frequency will cause a large 

effect to the magnetization of the sample.  A good analogy to think of this effect is a 

parent pushing a child on a swing.  By giving a small push every time the child swings 

back to the parent (i.e. applying energy at the same frequency) the child will continue to 

swing until the parent stops pushing. 

This discussion of quantum mechanics is the underlying theory of the nuclear 

magnetic resonance phenomenon, but so far only applies to a single nucleus.  No process 

of measurement can observe just one nucleus, however, so practical measurements will 

be on the behavior of a large ensemble of nuclei.  A discussion of the observation of spin 

states is beyond the scope of this thesis, but the measurement of an ensemble of spin 

states is shown by: 

ö
÷

õ
æ
ç

å -=YY -

2

2/1

2

2/1
2

1
aaI z  (2.11) 

where 2/1a  is the probability of a molecule being in the spin-up state and 2/1-a  is the 

probability of a molecule being in the spin-down state.  The observation is related to the 

overall energy of the ensemble since it is the difference in the populations of the spins in 
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the higher and lower energy states.  This energy difference leads to a magnetization of the 

sample at equilibrium that is utilized and manipulated during NMR experiments.  At  

thermal equilibrium, the high and low energy populations can be calculated by 

Boltzmannôs distribution: 
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At room temperature, 0BTkB g>>> , and this expression reduces to: 
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 (2.13) 

 Equation 2.13 is important to understand for its practical implications:  by 

increasing g or 0B  or by decreasing T, the energy difference between the spin 

populations is increased, and therefore the magnetization at equilibrium is increased 

(Equation 2.11).  This will lead to an increase in the signal-to-noise ratio, which is an 

important consideration for designing NMR experiments and will be discussed more in a 

later section.  Therefore, the study of nuclei with high g (such as H1 ) and/or the use of 

high magnetic fields (such as the 7-17T superconducting magnets used in most 

laboratories) is common. 
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Theory of NMR: Classical Mechanics 

 

 

Excitation 

 With these concepts from quantum mechanics understood but in the background, 

most NMR experiments can be explained using macroscopic ideas, first derived by Bloch 

in 1946 [13].  The bulk magnetization of the ensemble of spins can be represented by a 

vector M
G

.  As mentioned above, at equilibrium a larger number of spins will align 

parallel to the magnetic field 0B
G

 (spin-up) than anti-parallel (spin-down), and M
G

 will be 

oriented along the axis of the field.  NMR experiments proceed by disturbing this 

magnetization away from equilibrium, referred to as excitation, and observing how the 

spin interactions and energy exchange with the environment affect the magnetization as 

the system returns to equilibrium. 

The excitation of the magnetization from equilibrium is caused by pulses of 

oscillating radio frequency (referred to as ñr.f. pulsesò) administered to the sample while 

in the static magnetic field.  The Larmor frequency (Equation 2.10) of protons in 

experimental magnetic fields is on the same order of magnitude as the frequency of radio 

electromagnetic waves (i.e. from kHz to GHz).  Applying pulses with the same frequency 

as the Larmor frequency will result in large changes to the magnetization due to the 

resonance effects described earlier.  These r.f. pulses create an oscillating transverse 

magnetic field 1B
G

 within the sample, which is much smaller in magnitude than 0B
G

.  1B
G

 

can be applied for different amounts of time and in different functional forms in order to 

control the manipulation of M
G

.   
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Using ideas from classical mechanics, the evolution of the M
G

 vector during 

excitation can be described in detail by using the fact that the rate of change of the 

angular momentum, which is related to the magnetization by Equation 2.6 as 

dt

Md

dt

md
GG

>

g

1
= , is equal to the torque on the magnetization caused by the magnetic field, 

BM
GG
³ , leading to the expression: 

( ) ( ) ù
ù

ú

ø

é
é

ê

è

-

=³=

00101 sincos BtBtB

MMM

kji

BM
dt

Md
zyx

ww

gg
GG

G

 (2.14) 

where 0B
G

 is along the z-axis, and 1B
G

 is in the xy-plane, oscillating at the Larmor 

frequency 0w .  This representation is derived in the ñlaboratoryò frame of reference, but 

it is also convenient to define a rotating frame of reference in which to view the 

magnetization.  In this notation, the reference frame is rotating at the Larmor frequency, 

so the 1B
G

 field is simply along the x-axis and the magnetic field seen along the z-axis is 

reduced by what is caused by off-resonant spins, i.e. those rotating at w instead of 0w .  

In this rotating frame of reference, the excitation expression becomes: 
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Or in terms of each component of M
G

: 

öö
÷
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1BM
dt

dM
y

z g-=  (2.15c) 

The importance of the off-resonance spins is minimized by applying a pulse with 

a range of frequencies, or in other words, a pulse with a large bandwidth.  The turn angle 

q of the pulse is determined for a pulse of duration t by: tB1

G
gq= , with g expressed in 

units of rad/s/T.  For example, a 1B
G

 field applied along the x-axis in the rotating frame for 

a specified amount of time t may rotate the M
G

 vector from its equilibrium along the z-

axis (caused by the static magnetic field 0B
G

) onto the y-axis through an angle 
2

p
q= .   

This process is known as applying a 
x2

p
 pulse, as shown in Figure 2.2. 

 

 

 
Figure 2.2.  Schematic of the process of excitation by application of a r.f. pulse.  The bulk 

magnetization vector begins aligned with the static magnetic field.  After the pulse, the 

magnetization will be along the y-axis in the rotating frame of reference. 
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Relaxation 

 After the spins in the system have been excited from equilibrium, the system 

begins to undergo a phenomenon called relaxation.  The individual spins are constantly 

exchanging energy with each other and the environment and the rate at which the 

magnetization vector M
G

 returns to equilibrium depends on this energy exchange.  There 

are two different mechanisms for relaxation, known as spin-lattice 1T  relaxation and spin-

spin 2T  relaxation.  Qualitatively, the two mechanisms refer respectively to the spins 

returning to thermal equilibrium with the surrounding environment, or lattice, and 

returning to thermal equilibrium with other spins.  Mathematically, the difference 

between the two mechanisms is explained by introducing the concept of an auto-

correlation function of the molecular dipole-dipole interactions and the effect of the 

molecular motion on the energy exchange in the system.  While this discussion concerns 

the motion of individual molecules, the quantum mechanical properties of the individual 

spins are neglected, and spins are treated as either being in the spin-up or spin-down  

state. 

 

 

 Auto-correlation Functions:  In general, the auto-correlation function G(t) is the 

probability that a function h(t) is correlated to itself at another time, h(t+tô), and is 

defined by:   

() ()( ) '''

0

dttththtG +=ñ
¤

 (2.16) 

For an ergodic, stationary system, all starting times are the same and can be set equal to  
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zero and only the time difference in question is important, so the auto-correlation 

function can be represented by: 

() ()()0hthtG =  (2.17) 

Equations 2.16 and 2.17 are general definitions applicable to any system or function.  For 

a system exhibiting Brownian motion, such as the interactions between molecules of 

water at room temperature, the auto-correlation function decreases exponentially with a 

time constant tc [16]:   

()()

()2
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dthth

c
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=t  (2.18) 
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c
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hthtG

t
exp~0  (2.19) 

For the present discussion of magnetic relaxation, the auto-correlation function 

G(t) is the probability that the fluctuating magnetic fields h(t) caused by the individual 

dipole moments of the diffusing nuclei are correlated to each other after a time t.  After a 

short amount of time t compared to the time scale of the fluctuation due to thermal 

motion tc, the magnetic field of the nucleus will still depend on its magnetic field at time 

zero.  After a time longer than tc there will be little or no correlation with the initial state.  

As temperature increases, the vibrations and velocity of the nuclei increase and the time 

constant of the fluctuation of the magnetic fields will  decrease, so the auto-correlation 

function will decay more quickly [14].  Similarly, in more ordered materials such as  
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solids, the correlation time between the fluctuations is longer and the auto-correlation  

function of the system takes longer to decay to zero [17]. 

 

 

 Spectral Density Functions:  The spectral density function J(w) is the Fourier 

transform of the auto-correlation function and describes the frequency dependence of the 

magnetic field fluctuations.  For this discussion of magnetic relaxation, the spectral 

density is useful to consider as it relates the dependence of the magnetic field fluctuations 

to frequency of precession more explicitly.  The concept of the Fourier transform is used 

for many applications in NMR and will be important throughout this thesis.  In this case, 

the Fourier transform pair of G(t) and J(w) are related by: 

() () ( )ñ
¤

¤-

= wwpw dtiJtG 2exp   (2.20) 

() () ( )ñ
¤

¤-

-= dttitGJ wpw 2exp   (2.21) 

The spectral density, in other words, describes the way that the energy of the 

magnetic field fluctuations depends on time and frequency of precession.  These 

molecular fluctuations are complex, but a simple model for water is an isotropic, 

randomly rotating molecule.  Energy will exchange between molecules due to dipole-

dipole interactions, and this energy exchange will depend on the distance between the 

molecules R, the time constant for the molecular interactions tc, and the precession 

frequency w of the molecules [18].  For the purposes of this discussion, the energy 

exchange will cause the spins to ñflipò, i.e. to move from the lower energy state to the 
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higher energy state, or 
2

1
=m  to 

2

1
-=m , and vice versa.  In this model for molecular 

interactions between two spins, there are three configurations possible after a certain 

amount of time: no net spin flip J
(0)

(w), one of the spins has flipped J
(1)

(w), or both  

spins have flipped J
(2)

(w).  For this model, the spectral density functions are derived 

exactly for an isotropic liquid [18]: 
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 Using the three spectral density functions, the differences between the two 

mechanisms for magnetic relaxation can now be explained.  The spin-lattice, or 1T , 

relaxation time at the Larmor frequency 0w  is represented by: 
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Qualitatively, this means that the 1T  relaxation is only affected by the energy exchange of 

spins that have flipped, or changed energy states, due to the Zeeman interaction caused 

by the applied magnetic field which results in spin precession at frequency 0w , as well as 

a contribution at a frequency of 02w . 
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The spin-spin, or 2T , relaxation is represented by: 
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which qualitatively shows that 2T  relaxation also depends on a zero-frequency term 

which corresponds to no net spin flip.  This term encompasses other energy exchange 

mechanisms besides the Zeeman interaction energy and causes 2T  to always be shorter 

than 1T . 

 For example, a sample of water at room temperature in a magnet operating at 

300MHz has a 1T  approximately equal to 2T  because the correlation time of the 

molecular field fluctuations tc is much shorter (on the order of 1310- s) than 
0

1

w
 (on the 

order of 910- s).  This system is known as being in the motional averaging regime 

because the rapid motion of the molecules quickly averages out the magnetic field 

interactions.  As the precession frequency 0w  increases or the correlation time tc of the 

magnetic field fluctuations increases, the dependence of 2T  on the zero-frequency term 

increases, and the two relaxation times 1T  and 2T  diverge.  The effect of temperature [17] 

on the two relaxation times is shown schematically in Figure 2.3. 
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Figure 2.3.  Relaxation times as a function of temperature.  As the temperature decreases, 

the zero-frequency term in the equation for 2T  increases and the two relaxation times are 

no longer approximately equal as they are in the motional averaging regime.  

 

 

 This explanation has so far dealt with the molecular scale dynamics of relaxation, 

but for the discussion of practical NMR experiments we can use the concept of the bulk 

magnetization vector M
G

 to describe the relaxation of the sample magnetization.  The 

following equations apply to spins in the motional averaging regime such as those in a 

liquid.  More complicated relaxation effects will be discussed in the next chapter of this 

thesis.   

The spin-lattice or 1T  relaxation mechanism acts only along the axis of the static 

magnetic field z since it is only caused by the Zeeman interaction, and is described by: 

( )

1

0

T

MM

dt

dM zz --
=  (2.27) 

where 0M  is the equilibrium magnetization of the sample.  This equation is solved to 

show: 
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If ()0zM  is equal to 0M- , as immediately following a p r.f. pulse, this equation reduces 

to: 
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These equations show that when ( )2ln1Tt= , the magnetization along the z-axis will 

equal zero.  Determination of the 1T  time using this concept is called an inversion 

recovery experiment and will be discussed later in this chapter. 

 Spin-spin or 2T  relaxation occurs only in the transverse plane, and is described by 

the following equations, in both the x and y directions: 

2
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Equation 2.30 is solved for a homogeneous sample to give: 
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 By adding these relaxation terms to the excitation equations discussed earlier, we 

obtain what are called the Bloch equations, which describe the evolution of the 

magnetization vectors in the rotating frame during the excitation pulse: 
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The Bloch equations are a powerful phenomenological way to examine and understand  

NMR phenomena and will be expanded upon again in the next chapter of this thesis. 

 

 

Experimental Background 

 

 

Experimental Equipment 

The equipment needed to perform NMR experiments include the magnet to 

supply a static magnetic field, a spectrometer to deliver r.f. pulses, and a computer to 

control the spectrometer.  The sample is surrounded by a r.f. coil that administers the r.f. 

pulses to the sample as homogeneously as possible and also acts as the receiver coil.  A 

ñbird-cageò coil is widely used because of the ease in loading the sample into the magnet, 

but a solenoid coil is the most efficient configuration [14].  The optimization of all of this 

equipment has been an essential part of NMR experimental development, but will not be  

a major point of discussion in this thesis and readers are referred to references [17] and 

[14]  

 

for more information. 

 

 

Signal Detection 

 The signal that is detected in an NMR experiment is the voltage produced by the 

oscillating magnetization in the transverse plane.  For example, after applying a 
2

p
 r.f. 

pulse to a system with equilibrium magnetization 0M  and Larmor frequency 0w , the 

magnetization is described by: 
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By converting this to exponential notation using Eulerôs formula, the component of the 

magnetization in the x-direction is described by the real component and in the y-direction 

by the imaginary component.  We define the complex magnetization ()tM +  as: 
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÷
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2
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t
tiMtM w  (2.34) 

In order to detect both the x and y components of the magnetization, a process called 

heterodyning is used.  The voltage from the sample is mixed with two different reference 

voltages 90 degrees out of phase with each other, which allows the detection of both the 

xM  and yM  components.  The voltage signal ()tS  is then: 

() () ( ) öö
÷

õ
ææ
ç

å-
D=

2

0 expexpexp
T

t
tiiStS wf  (2.35) 

where f is the phase of the receiver and rwww -=D 0  with rw  as the reference  

frequency.  This results in an oscillating and decaying voltage signal which is called the  

Free Induction Decay, or FID, shown in Figure 2.4. 

 

 

 

Figure 2.4.  a)  M
G

 immediately after a 
x2

p
 pulse.  The magnetization starts along the y-

axis and will precess around the z-axis as shown.  b)  Schematic of the Free Induction 

Decay (FID).  The red line is the voltage received along the y-axis and the green line is 

the voltage received along the x-axis.  The signal oscillates due to M
G

 precession around 

the z-axis relative to the static detection axis and decays due to the 2T  relaxation process. 
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 This oscillating signal is often Fourier transformed and expressed in terms of 

frequency using the following relations: 

()[ ] () ( )twtp ditStSF ñ
¤

¤-

-= 2exp  (2.36) 

() ()[ ] ( )twtp ditSFtS ñ
¤

¤-

= 2exp  (2.37) 

 The Fourier transform of a time signal that has an exponential relaxation and one 

frequency component results in a spectrum ()[ ]tSF  which has a Lorentzian line shape 

centered on the single frequency value and a Full-Width-Half-Maximum (FWHM) of 

2

1

Tp
.  This single pulse experiment to obtain a spectrum is the common result of 

experiments used in chemistry applications to differentiate hydrogen atoms in different 

magnetic environments and therefore give information on molecular structure [15].  This 

type of experiment will be discussed in relation only to specific experiments in a later 

chapter. 

 NMR is a low sensitivity technique due to the small difference between 

populations of spin-up and spin-down nuclei, so an important consideration is the signal-

to-noise ratio, or SNR.  Many different components in the NMR apparatus and the 

environment contribute to the noise in an experiment.  However, signals from multiple 

experiments can be added and averaged so that signal adds coherently while noise adds 

randomly.  The SNR improvement by averaging N experiments is: 

N
N

N
SNR

noise

signal
=¹¹  (2.38) 
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 In addition to signal averaging, the SNR can also be improved by increasing 

signal and/or decreasing noise.  There are many techniques that are applicable, including 

applying a smoothing function to filter out the noise and optimizing the experimental  

apparatus to maximize the signal [14].   

 

 

Basics of Pulse Sequences 

 

 

 Formation of Echoes:  With the concepts of r.f. pulses and signal detection 

understood, the next level of complexity is to consider multiple pulse experiments, or 

pulse sequences.  A common phenomena utilized in many pulse sequences is an ñechoò.  

After exciting the spins in a sample with a 
2

p
 r.f. pulse, inhomogeneity in the magnetic 

field, either in the 0B  field or within the sample itself, will cause spins in different spatial 

positions to precess at different Larmor frequencies.  The detected signal is from a large 

number of spins precessing coherently, so when spins are precessing at different 

frequencies the signal from the bulk magnetization detected along a fixed axis will be 

smaller, and the signal is said to dephase.  If the spins dephase for a time t after the 
2

p
 

pulse, applying a p r.f. pulse will invert the magnetization within the transverse plane and 

reverse the sense of precession of the spins so that a ñspin echoò will form when the spins 

reach coherence again at time 2t, as shown in Figure 2.5.  The amplitude of this echo will 

still be attenuated by 2T  relaxation because this dephasing is caused by stochastic 

molecular interactions and cannot be refocused.  However, dephasing caused by 

inhomogeneities in the magnetic field or other fluctuations will be refocused by the spin 
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echo.  The use of spin echoes allows the equilibrium magnetization of the sample to be 

manipulated and re-used until full 2T  relaxation has occurred and all phase coherence is 

lost.   

  A good analogy for thinking about this phenomenon is to think of the spins as 

runners on a track, who start running in the same direction but at different speeds at the 

time of the 
2

p
 pulse [19].  At some point (the p pulse at time t) the runners are told to 

turn around, but still run at the same speed.  At time 2t, all of the runners will return to  

the starting line.   

 

 

 
Figure 2.5.  Schematic of the spin echo pulse sequence.  The first row of images is a 

depiction of the effects of the r.f. pulses on the magnetization vector.  The middle row is 

the r.f. pulse sequence.  The last row is the signal that would be received.  There will be a 

FID after the first r.f. pulse and a spin echo occurring at 2t. 
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Another useful technique to form echoes is a pulse sequence called a stimulated 

echo.  In this sequence, instead of using a 
2

p
 pulse followed by a p pulse to refocus the  

spins, three 
2

p
 pulses are used.  The first 

2

p
 pulse excites the magnetization into the 

transverse plane in both sequences.  In the stimulated echo sequence, the second 

2

p
 pulse returns the magnetization to the z-axis, and the third re-excites the 

magnetization back into the transverse plane.  This sequence is useful in samples where 

the 2T  time is very short but the 1T  time is long, because the signal is ñstoredò along the 

z-axis where it experiences only 1T  relaxation, as shown in Figure 2.6.  The FID after the 

second pulse is due to magnetization which has relaxed by 1T  relaxation during 1t and is 

re-excited, in addition to signal from spins excited by the second pulse but not the first  

pulse as discussed in the next section.   

 

 

 
Figure 2.6.  Stimulated echo pulse sequence.  The signal shown after each pulse is shown 

to illustrate the need for phase cycling, as explained in the next section.  The echo will 

occur at a time of 12t plus the time between the second and third pulses, which is the 

amount of time that the magnetization is stored along the z-axis.   
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Phase Cycling:  An important consideration in multiple pulse experiments is the 

concept of phase cycling.  The basic idea is that because of the quantum mechanical 

properties of spins, some spins will experience each r.f. pulse but other spins will not.  

For example in the stimulated echo sequence, spins that do not experience the first 
2

p
 

pulse but do experience the second will produce a FID during the storage time, as shown 

in Figure 2.6.  By extension, spins that do not experience either of the first two pulses but 

do experience the third will produce a FID during the echo from signal that has 

experienced all three pulses.  However, the experiment is optimal when only spins which 

have experienced all three pulses are detected. 

 To avoid this problem, the phase of the pulses and the detector are chosen and 

cycled through during multiple experiments so that the desired echoes add together, while 

the undesired signals are cancelled out.  For example, one stimulated echo experiment 

may use three 
x2

p
 pulses, resulting in the desired spin echo formed along the ïy-direction 

as well as a FID formed in the y-direction after each pulse.  The next experiment may use 

two 
x-2

p
 pulses and a 

x2

p
 pulse, again resulting in a spin echo along the ïy-direction but 

with the FIDs after the first two pulses now along the ïy-direction.  By cycling through 

the different phases for the pulses and the receiver, the desired signal can be added while 

the undesired signal can be subtracted.  The addition of the signals from multiple 

experiments also increases the SNR, and the two effects can be addressed at the same 

time.  This process is called signal averaging, and is done in nearly every NMR  

experiment. 
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 Introduction to Relaxation Measurements:  The determination of the 1T  time of a 

sample is usually done by performing an inversion recovery experiment, shown in Figure 

2.7.a.  The p pulse moves the magnetization to the ïz-axis and the 
2

p
 pulse excites this 

magnetization into the xy-plane for detection.  By recording the amount of signal as a 

function of 1t , the minimum amount of signal will be related to the 1T  time by 

( )2ln1min,1 Tt = , as mentioned earlier. 

An experimental use of spin echoes is to measure the 2T  time of the sample using 

a pulse sequence developed by Carr, Purcell, Meiboom and Gill [20], often referred to as 

the CPMG sequence.  This sequence uses a long series of equally spaced p pulses to 

produce a series of spin echoes (see Figure 2.7.b).  The amplitudes of the echoes can be 

plotted and used to find the 2T  time of the sample using the following relation (see also 

Equation 2.31):  
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 Relaxation measurements are a powerful way to examine complicated samples.  

These applications will be discussed more thoroughly in the next chapter and applied  

throughout the experiments described in later chapters.  
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Figure 2.7.  a)  Inversion recovery pulse sequence, used to determine 1T .  The first pulse 

inverts the equilibrium magnetization which is then excited into the transverse plane for 

detection after a variable amount of time 1t .  b)  CPMG pulse sequence, used to 

determine 2T .  The series of echoes may contain thousands of pulses and last several 

seconds in some cases. 

 

 

Introduction to Magnetic Resonance Imaging:  As mentioned in the discussion of 

spin echoes, any inhomogeneity in the magnetic field causes the spins to precess at 

different Larmor frequencies.  This phenomenon is utilized and manipulated by linearly 

varying the magnetic field with respect to position, or applying a gradient in the magnetic 

field ()rG
G

, as shown in Figure 2.8.  This gradient adds to the static 0B  field, but is much  
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smaller in magnitude; for example, most of the experiments in this thesis were done with  

a 0B  of 7 T and an available maximum gradient of 1.482T/m. 

 

 

 
Figure 2.8.  Schematic of the application of a magnetic field gradient in the same 

direction as the static magnetic field 0B . 

 

 

 By applying this gradient to the sample, the spins are encoded based on position: 

() ()rrGBr
GGG
Ö+= ggw 0  (2.40) 

The first term in this equation is the Larmor frequency, and is subtracted out by using the 

rotating frame of reference.  Using the simplified equation with spatially dependent 

frequency, the signal received from the sample is then, in complex notation: 

() () ()[ ]rdtrrGirtS
GGGG

Ö=ñññgr exp  (2.41) 

where  ()rGr  is the spatial density of the spins in the sample.  This equation leads to the  
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definition of a vector k
G

, which depends on both the applied gradient and the amount of 

time that it is applied: 

()
p

g

2

trG
k

GG
=  (2.42) 

Substitution of the definition of k
G

 in equation 2.42 into 2.41 results in another 

Fourier transform relationship, in this case between the signal and the density of the 

spins: 

() () ( )ñññ Ö= rdrkirkS
GGGGG

pr 2exp  (2.43) 

() () ( )ñññ Ö-= kdrkikSr
GGGGG

pr 2exp  (2.44) 

These equations describe the acquisition of the NMR signal in the time domain as a 

function of k
G

 and how the Fourier transform of this signal returns the spin density or the 

ñimageò. 

 The k
G

vector depends on both the gradient that is applied, ()rG
G

, and the time t 

over which it is applied.  This leads to two different ways to ñmove through k
G

-spaceò:  

frequency encoding or phase encoding.  By keeping the gradient fixed and changing the 

time, the spins are frequency encoded.  This is generally done by applying a steady 

gradient during the acquisition of the echo signal.  This gradient is then referred to as the 

read gradient, and the direction in space in which the gradient is applied is called the read 

direction.  By keeping the time fixed and changing the magnitude of the applied gradient, 

the spins are phase encoded.  This refers to the fact that only spins from a certain area of 



33 
 

 
 

the sample and with a specific frequency defined by k
G

 will refocus at the same time to 

form the echo.   

For example, by applying a read gradient in one direction a one-dimensional 

profile is obtained, which is the projection of the spins onto the plane defined by the 

gradient direction.  If the gradient is applied along the z-direction, the equations 2.43 and 

2.44 become: 

() ( ) ( )ñññ= dxdydzzikzyxkS zz pr 2exp,,  (2.45) 

()[ ] () ( )dydxzyxzkSF z ññ== ,,rr  (2.46) 

Acquisition of the signal as a function of time and subsequent Fourier 

transformation leads to the spin density as a function of frequency, which is related to the 

spatial dimension because of the applied magnetic field gradient.  This concept is 

extended into two dimensions, resulting in a 2D image, by applying a phase gradient in 

one direction and then applying the read gradient in another direction.  Phase encoding in 

the third dimension results in a 3D image.   

 To reduce experimental time, rather than phase encoding in the third dimension 

and acquisition of a full 3D image, a ñsliceò in the third dimension is excited which 

results in a 2D image averaged over the specified slice.  Instead of exciting all the spins 

in the sample, referred to as a ñhardò pulse, in slice-selection a shaped ñsoftò pulse is 

applied during the application of a gradient.  Therefore only spins that correspond to the 

spatial slice of interest are excited.  Due to the Fourier relationship involved, to excite a 

rectangular shaped slice in the sample a sinc shaped pulse is often applied.  Slice 
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selection can occur using several different types of pulse sequences, as shown in Figure 

2.9.  Since soft pulses occur in the presence of a gradient, a 
2

p
 excitation pulse requires a 

gradient to be applied in the opposite direction in order for the excited spins to refocus as 

required while a p pulse is self-refocusing [14].  The use of a spin echo is desirable for a  

number of reasons:  the inhomogeneous dephasing of the signal is refocused, as discussed  

 

 

 

Figure 2.9.  a)  Slice selection using two slice selective pulses. A soft 
2

p
 pulse requires 

an additional refocusing gradient, while a soft p pulse is self-refocusing.  b)  Slice 

selection with a slice selective excitation pulse and a non-slice selective refocusing pulse.  

The refocusing gradient in the slice direction is shown at two different points in the 

sequence to emphasize that it may be applied at different times while having the same 

effect. 
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earlier, and hardware issues related to the finite time that is needed to switch gradients on 

and off and to start the data acquisition are avoided. 

The combination of slice selection and application of gradients to acquire data in 

2D k-space leads to an example of a standard imaging sequence, shown in Figure 2.10.  

The pulse sequence consists of slice selection in the z-direction using a spin echo (see 

Figure 2.9.b).  A gradient is applied in the phase direction, which moves the starting point 

of data acquisition up in k
G

-space.  In this example, the full echo is sampled, so a 

negative gradient is applied in the read direction to move in the negative x-direction in 

k
G

-space (corresponding to (a) in Figure 2.10).  Data is then acquired by applying a 

constant gradient in the read direction, and the points in the xk  direction are acquired by 

sampling the echo as a function of time (points (b)).  Figure 2.10 also illustrates the 

concept of k
G

-space, with the variation of yk  occurring in the phase direction and xk  in 

the read direction.  The dots on the grid correspond to data points that are collected as a 

function of time.  A line of data in the read (xk ) direction is acquired following the 

application of each amplitude of the phase (yk ) gradient.  Two-dimensional Fourier  

transformation (equation 2.43) yields a 2D image of the spin density of the sample. 
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Figure 2.10.  Basic imaging pulse sequence with a schematic of k

G
-space.  A detailed 

description is contained in the text. 

 

 

Introduction to Measurement of Molecular Motion:  The basic process of 

observing molecular motion with NMR is that of encoding molecules for their position 

by applying one or more spatially varying gradients and then observing over a fixed time 

the effect of the molecular motion on the detected signal.  Carr and Purcell [20] 
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calculated the effect of the application of a steady gradient ()rG
G

 with amplitude G to a 

sample for a time t with random diffusive motion as: 

()
()

() ö
÷

õ
æ
ç

å
-== 322

3

1
exp

0
DtGGE

S

GS
g  (2.47) 

where ()GE  is the signal normalized with the signal amplitude at 0=G , or the signal 

attenuation.  The steady gradient method of measuring diffusion is limited by this 3t   

behavior because only very small amounts of time may be measured before total signal 

attenuation has occurred.   

Stejskal and Tanner [21] developed the pulsed gradient spin echo (PGSE) 

sequence shown in Figure 2.11.  The first pulse excites the spins, then the application of 

two gradients ()rG
G

 with duration d and amplitude g  spaced time D apart encode for 

molecular motion.  If a molecule is at a position defined by the first gradient pulse as 1r
G

 

and stays at 1r
G

 during the observation time D, the second gradient pulse will cancel out 

the phase effect of the first gradient pulse and signal from the molecule will refocus at the 

correct time and contribute to the echo.  However, if it moves to position 2r
G

 during D, its 

frequency will have changed and so the signal will have a phase shift, causing it to 

refocus at a different time.  If the molecules are moving randomly (i.e. diffusion) they 

will all refocus at different times due to a random distribution of phase shifts and the 

intensity of the echo signal will be attenuated.  If a large number of spins are moving the 

same amount (i.e. from 1r
G

 to 2r
G

 at velocity v
G

) they will coherently refocus but at a 

different time than if 0=v
G

 and therefore lead to a measureable phase shift in the echo. 
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Figure 2.11.  PGSE pulse sequence, used to measure molecular motion.  In this example, 

the molecular motion is encoded for in the y-direction. The first pulse excites the spins, 

then the application of two gradients ()rG
G

 with duration d and amplitude g  spaced time 

D apart encode for molecular motion.  A refocusing pulse during D results in a spin echo 

which is affected by the molecular motion as described in the text. 

 

 

The equation for the signal attenuation for the PGSE experiment with molecular 

diffusion and bulk flow is: 

() ( ) ù
ú

ø
é
ê

è
ö
÷

õ
æ
ç

å
-D-ÖD=

3
exp 222 d

dggd DgvgigE
GGG

 (2.48) 

The random diffusive motion contributes to a signal attenuation while the velocity 

contributes a phase shift.  By varying d, g , or D, different time and length scales of 

molecular motion can be measured, which makes this pulse sequence much more 

versatile than the steady gradient method.  The PGSE sequence can be modified to use a 

stimulated echo instead of a spin echo, known as the PGSTE sequence.  This allows 

measurement of molecular motion of samples with short 2T  relaxation. 
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 NMR RELAXATION AND MULTI -DIMENSIONAL RELAXATION AND  

 

DISPLACEMENT CORRELATION EXPERIMENTS 

 

 

Using the basic ideas introduced in the previous chapter, NMR and MRI 

experiments used for this thesis research are discussed in more depth in the following 

chapters.  This chapter will explain the acquisition and data analysis of relaxation 

measurements and multi-dimensional relaxation and displacement correlations.  Magnetic 

relaxation is affected by surface interactions, hydrogen exchange, and magnetic field 

inhomogeneities in addition to the dipolar interactions among nuclei.  NMR relaxation 

measurements have been used for 20 years by the oil industry to study the pore structure 

of rocks to determine the amount of recoverable oil [22, 23] and by chemists for 60 years 

to study hydrogen exchange in polymer systems [24].  Multi-dimensional relaxation and 

diffusion correlation experiments developed more recently have been used to study rocks 

[25, 26], food [27], contact lenses [28], and concrete [29-31].  The systems studied in this 

thesis included a variety of samples containing liquid water including porous rock [1],  

hydrogels [3], biofilm growth in porous media [6], and colloidal suspensions [2]. 

 

 

Data Acquisition:  NMR Relaxation Experiments  

and Multi-Dimensional Correlations 

 

 

 As introduced in Chapter 2, the 1T  and 2T  relaxation times of a liquid depend 

largely on the stochastic motion of the molecules which mediate dipolar correlations.  

This relaxation leads to exponential decays of the magnetization in both the direction of 

the magnetic field (1T ; Equation 2.28) and in the transverse plane ( 2T ; Equation 2.31) 
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which can be measured using the pulse sequences shown in Figure 2.7.  The motion of 

the liquid molecules will be present for all experiments, but for complex solutions and 

geometries described in this thesis additional mechanisms occur.  Therefore other sample 

effects on the magnetization such as surface effects, diffusion, and molecular exchange 

will  also be considered.  While these effects will be present in both longitudinal 1T  and 

transverse 2T  relaxation, the emphasis of this discussion and of the subsequent  

experiments will be on 2T  measurements using the CPMG experiment.   

 

 

1D T2 Relaxation Distributions 

 The multitude of sample dependent effects on the magnetization can be 

incorporated and described using the full Bloch-Torrey equation [14].  In Chapter 2, the 

Bloch equations for relaxation [13] in the rotating frame were presented as Equation 2.32.  

The effect of diffusion on the bulk magnetization was first taken into account by Torrey 

[32], and the influence of magnetic field gradients, hydrogen exchange, and fluid velocity 

can also be incorporated into a single equation.  In the rotating frame, the complex 

magnetization ( ) yx iMMtrM +=+ ,
G

 in the transverse plane after excitation is given by: 

( ) ( )++++
++ D-Ö-ÐÖ-Ð+-= MMgriMvMD

T

M

dt

dM
wg

GGG2

2

  (3.1) 

where 2T  is the spin-spin magnetic relaxation caused by the dipolar interactions in the 

liquid, D is the self-diffusion coefficient, v is coherent fluid velocity, g represents any 

magnetic field gradient present in the sample, and wD  is a chemical shift difference 

between different molecular species.  If multiple chemical species are present in the 
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sample wD  incorporates the effect of hydrogen exchange [33].  The 2T  relaxation effect 

was discussed in Chapter 2 and is caused by molecular interactions due to dipole induced 

molecular magnetic field fluctuations.  In addition, Equation 3.1 shows how the 

measurement of the relaxation decay of complex samples contains information about 

other molecular interactions.  The mechanisms of relaxation for these additional effects 

will be discussed in greater detail in the following chapter.   

For the present discussion, data obtained from a CPMG experiment (Figure 2.7.b) 

on a complex sample may lead to a multi-exponential M(t) decay with a range of 

apparent 2T  values: 

() () 2

2

20 exp dT
T

t
TMtM ñ öö

÷

õ
ææ
ç

å-
=  (3.2) 

where ()20 TM  is the distribution of molecules in the sample as a function of their 

apparent 2T  decay and is also known as the 2T  spectrum.  The range of apparent 2T  

values sampled will depend on the sample and on the time scale of the measurement but 

in general may vary between the shortest resolvable liquid state decay time (about 0.0001 

s or 100 ms) and the longest possible 2T  (less than 10 s).  In the following discussion, 

references to different 2T  times will imply the apparent or measured 2T , which 

incorporates other effects to the magnetization in addition to molecular dipole 

interactions.  For example, molecules of water in smaller pores of a rock have shorter 

measured 2T  times than molecules in larger pores in the same rock because of surface 

relaxation effects [34].  An example of a 2T  distribution of a Berea sandstone rock is 

shown in Figure 3.1.  The range of measured 2T  times is between 0.1 ms and 10 s.  The 
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height of the peaks in the distribution corresponds to the amount of water molecules in 

each 2T  environment ()20 TM .  This sample has a majority of smaller pores, as evidenced 

by the largest peak of the distribution being centered around 0.001 s.  The range of 2T  

times up to 1 s can be related to the surface to volume ratio of the porous structure of the  

rock; this will be discussed further in the next chapter. 

 

 

 
Figure 3.1.  Example of a 1D 2T  distribution for a Berea sandstone rock core saturated 

with brine (salt water). Experimental parameters:t = 200 ms; 512 echoes.  Figures 3.1, 

3.3, 3.4, and 3.5 are data obtained for the same rock sample. 

 

 

1D 2T  distributions are obtained experimentally in two different ways.  Figure 

3.2.a shows the classic CPMG measurement.  The echo signal is collected after a 

logarithmically varying number of p pulses.  The advantage of this method is that the 

full echo can be collected to obtain molecular spectral information, leading to its use by 

chemists to study the 2T  relaxation mechanisms of complex molecules.  The downside of 

this method is that for each iteration with a certain number of p pulses, only one data 

point is collected before the experiment must be repeated.  Figure 3.2.b shows what is 
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sometimes called the ñone-shotò CPMG measurement.  In this sequence, the signal is 

collected by sampling the echoes that occur between each p pulse.  In this way, the 

magnetization decay as a function of echoes on the order of thousands and time on the 

order of seconds can be obtained during one experiment.  The 2T  relaxation distributions 

described in this thesis were almost entirely obtained using the method shown in Figure 

3.2.b.  This method is faster, but the downside is that due to data acquisition constraints  

only the amplitude of the echoes is recorded, so spectral information is not obtained. 

 

 

 
Figure 3.2.  Two experimental methods for measuring 2T  relaxation.  a)  CPMG 

experiment.  The dotted box indicates that the number of p pulses is changed 

logarithmically for each experiment.  One echo is sampled for each iteration, which will 

be weighted by 2T  based on how many p pulses were performed in that iteration.   

b)  One-Shot CPMG experiment.  The echoes between each of the p pulses are sampled, 

so that an entire 2T  relaxation decay can be sampled during one iteration of the 

experiment. 
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2D Relaxation and Diffusion Correlations 

In recent years, two-dimensional relaxation and displacement correlation 

experiments [25-31, 35-48] have become more common.  Computing power has 

increased to the point that fast computation algorithms have been developed that enable 

data analysis using personal computers [49, 50].  These NMR experiments, shown in 

Figure 3.3, combine two types of relaxation or PGSE measurements into a single 

experiment to quantify the correlations between magnetic relaxation mechanisms and/or 

molecular motion.  A 2D spectrum 0M  of molecules is obtained whereby molecular 

populations are resolved using the two different measurements, so more detailed 

information about the sample is obtained within a single experiment. 

The 21 TT -  sequence in Figure 3.3.a [51] obtains the spectrum of molecules with 

correlated 1T  and 2T  relaxation mechanisms.  The data acquired will have the form: 

( ) ( ) ( )2121

2

2

1

1
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where 1t  and 2t  are time scales of 1T  and 2T  encoding as defined in Figure 3.3.a and will 

define the range of 1T  and 2T  values that are sampled, and ( )21,ttE  is the noise of the 

measurement.  The data inversion of 2D exponential decay data of this form will be 

discussed in the next section. 

An example of a ( )210 ,TTM  spectrum of a Berea sandstone rock is shown in 

Figure 3.4.  For samples such as rocks with large magnetic field inhomogeneities, 1T   
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Figure 3.3.  Two-dimensional correlation pulse sequences.  a)  21 TT -  pulse sequence.  

2T  data is acquired and is weighted by 1T  by changing 1t  for each acquisition.  1t  is 

varied logarithmically.  b)  22 TT -  pulse sequence.  2T  is encoded by application of an 

initial train of p pulses; the signal is stored along the z-axis during a storage time mt ; 

and then 2T  data is acquired.  The dotted box indicates that the 2T  in the first dimension 

is encoded by applying a logarithmically varying number of p pulses.  c)  2TD-  or 

( ) 2, TZP -D  sequence.  Diffusion or displacement is encoded in the first dimension by a 

PGSTE pulse sequence, then 2T  data is acquired.  The magnitude of the pulsed gradient 

is varied linearly for each acquisition of 2T  data. 
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relaxation will be less affected than 2T  by magnetic susceptibility [23].  The 1T  and 2T  

times will be approximately equal for large pores while for smaller pores the 1T  time will 

be significantly longer than the 2T  time.  The range of 2T  values in Figure 3.4 is similar 

to the 1D distribution in Figure 3.1, but by resolving the molecular populations by 1T  as 

well the effects of surface relaxation and magnetic field inhomogeneities can be 

analyzed.  For example in Figure 3.4, the smallest pores have the shortest measured T2 ~ 

0.001 s and two different 1T  populations, 1T  ~ 0.5 s and 1T  ~ 0.01s.  These two 

populations distinguish between molecules in the middle of the pores that have a 2T  that 

is affected by diffusion within the magnetic field inhomogeneities but have a longer 1T ,  

from molecules which interact with the surface and have both a shorter 1T  and 2T .  

 

 

 
Figure 3.4.  An example of a 21 TT -  spectrum of a Berea sandstone rock core saturated 

with brine.  Experimental parameters: 1t  varied between 0.001 and 10 s in 32 

logarithmically spaced steps; t = 200 ms; 512 echoes.   

 

 

The 22 TT -  sequence shown in Figure 3.3.b consists of encoding for 2T , waiting 

a mixing time mt , then measuring the 2T .  If molecules have the same 2T  before and 

after the mixing time, the distribution in the 2D spectrum will be along the diagonal, 
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while if molecules have changed 2T  environments during the mixing time there will be 

off-diagonal peaks in the spectrum.  The data will have the form: 

( ) ( ) ( )2,21,22,21,2

2,2

2,2

1,2

1,2

2,21,202,21,2 ,expexp,, ttEdTdT
T

t

T

t
TTMttM +

ö
ö

÷

õ

æ
æ

ç

å-

ö
ö

÷

õ

æ
æ

ç

å-
=ññ  (3.4) 

where 1,2t  and 2,2t  are time scales of the two 2T  encoding periods as defined in Figure 

3.3.b and will define the range of 2T  values that are sampled, and ( )2,21,2 ,ttE  is the noise 

of the measurement.   

An example of a ( )220 ,TTM  spectrum for a Berea sandstone rock is shown in 

Figure 3.5.  For this example, the magnetic field inhomogeneities are large and the off-

diagonal peaks indicate the pore size distribution because molecules have had time to 

diffuse through the magnetic fields within the pore during the mixing time [26].  The 1D 

2T  distribution is related to pore size through the pore surface to volume ratio of the rock 

[22], but the addition of the mixing time allows quantification of additional molecular  

exchange effects. 

 

 

 
Figure 3.5.  An example of a 22 TT -  spectrum for a Berea sandstone rock core saturated 

with brine.  Experimental parameters: number of echoes in the first dimension varied 

between 2 and 512 in 32 logarithmically spaced steps; t = 200 ms; 512 echoes;mt  = 250 

ms.   
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The 2TD-  or ( ) 2, TZP -D  correlation sequence shown in Figure 3.3.c encodes 

the molecules of water for displacement and then measures the 2T .  The data for a 2TD-  

experiment will have the form: 

( ) ( ) ( )22
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where g is the magnitude of the pulsed field gradient, 2t  is the time scale of 2T  sampling 

as defined in Figure 3.3.c and will define the range of 2T  values that are sampled, and 

( )2,tgE  is the noise of the measurement.  Depending on the range of g values that are 

used and the number of data points acquired, the same pulse sequence can be used to 

either encode for diffusion or for full propagator data.  The data analysis of 2TD-  data 

is similar to 21 TT -  and 22 TT -  due to the exponential decay relationship between the 

diffusion and the applied gradient.  ( ) 2, TZP -D  data analysis utilizes a Fourier transform 

in the displacement dimension and will be discussed in more detail in later chapters.   

This sequence can be used to separate and correlate the effects of molecular 

motion and magnetic relaxation [52].  Figure 3.6 is an example of a 2TD-  spectrum for 

a porous rock.  Smaller pores have both more restricted diffusion and a shorter 2T .  

Again, the measurement of diffusion and relaxation information in the same experiment 

gives more detailed information about the pore structure than D  or 2T  information alone. 
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Figure 3.6.  2TD-  spectrum for a Berea sandstone rock core saturated with brine.  

Experimental parameters: g varied between 0 T/m and 1.482 T/m in 21 linearly spaced 

steps; d = 1 ms; D = 20 ms; t = 200 ms; 512 echoes.   

 

 

Data Analysis:  Inverse Laplace Transform 

 

 

 For complex samples with different magnetic relaxation effects that contribute to 

the measurement resulting in a range of relaxation decay constants, the measured decay 

data must be inverted to obtain the distribution of molecules 0M .  The inverse Laplace 

transform (ILT) is the technique of choice at this time, but other methods of analysis are 

also possible.  The 1D and 2D spectra shown in Figures 3.1, 3.4, 3.5, and 3.6 were 

computed using the ILT procedure described below. 

If the change in time of the magnetization is represented as a sum of exponential 

decays, the result of a CPMG measurement may be represented by Equation 3.2, 

() () 2

2

20 exp dT
T

t
TMtM ñ öö

÷

õ
ææ
ç

å-
= .  Each apparent 2T  may correspond to molecules in 

different size pores, undergoing hydrogen exchange, or other magnetic relaxation effects, 

as discussed in the previous section.  The form of the data in Equation 3.2 is the same as  
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that of a Laplace transform: 

() () ( )ñ
¤

-=

0

exp dsstsftF  (3.6) 

The inverse Laplace transform pair is also defined: 

() () ()ñ
¤

=

0

exp dtsttFsf  (3.7) 

Therefore to obtain the molecular distribution of apparent 2T  values ()20 TM , an 

ILT can be used: 
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The ILT is a well-known ill -posed problem [53].  The eigenfunctions do not form a 

complete set, so there is always at least one free variable and the problem cannot be fully 

defined.  The algorithm for computing the ILT of a given data set begins by forming a 

function to minimize using non-linear least squares subject to constraints that are defined 

by the data set.  Starting with an initial guess for the final spectrum, the solution is then 

compared to the given data using the minimization function until the difference between 

the solution and the original data is minimized.  The minimization function used is very 

important because random error of CPMG measurements is significant due to signal to 

noise of the signal and will result in an infinite number of possible distributions.  

Smoothing algorithms are used to constrain the number of final distributions possible and 

obtain reproducible data inversion.  CPMG experiments often contain several thousand 

echoes and the error minimization takes significant computing time, so reduction of the 
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size of the data set to be analyzed is also often desirable.  The basic algorithm used to 

analyze exponential decay data in this thesis will first be described, followed by the  

modified algorithm with data size reduction used to analyze data more efficiently. 

 

 

1D Inverse Laplace Transform 

Consider data with the form of a sum of exponential decays as in Equation 3.2.  

Echo amplitude data M
G

 obtained as a function of time from 1t  to mt  with a 1D one shot 

CPMG experiment with m data points can be represented in vector form as: 
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+= 0K  (3.9.a) 
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 (3.9.b) 

where 0M
G

 is the final spectrum as a function of n 2T  times to be calculated, K  is the 

matrix of exponential relations between the time of the measurement t and the 2T  times, 

and E
G

 is the error of the measurement. 

The algorithm for obtaining 1D relaxation distributions proceeds as follows: 

1.  Form a vector that corresponds to a ñguessò for the final 2T  spectrum, for example 
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.  

2.  Form the matrix K  that contains the exponential relations between the range of 

expected 2T  values and the time of the collected data points.  A typical range of expected 
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2T  values is 16 values that are logarithmically spaced between 0.001 s and 10 s.  The 

times of the data collection will depend on the t2  value used for echo spacing in the 

experiment and the number of echoes, with typical values being t2  = 400 ms and 5000 

echoes, leading to 5000=mt  = 2 s.  For this example: 
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The matrix K  is therefore fully defined based on experimental and calculation 

parameters. 

3.  Calculate the fit F
G

 to check against the data set with: 

0MF
GG

K=  (3.10) 

4.  Calculate the error 2c  between the fit and the original data.  A simple representation 

of that error without smoothing is found by rearranging Equation 3.9.a: 

() () ()ä
=

--=

m

j

jjj tEtFtM

1

2
2c  (3.11) 

5.  Iterate the 0M  spectrum until 2c  is minimized using a non-linear least squares 

algorithm, such as those described by Lawson and Hanson [54]. 

 The error E
G

 of the measurement is unknown and will be different for each 

experiment performed, so it is undesirable for this measurement error to be a significant 

factor in calculating the spectrum.  There are a number of different ways to avoid this.  

For this thesis, a smoothing algorithm using Tikhonov regularization parameters known  
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as a and b was used [50].  In this case, E
G

 in Equation 3.11 is replaced by factors that 

are related to the calculated distribution: 
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where 
2

0

dT

dM
 and 

2

2

0

2

dT

Md
 are the first and second derivatives of the calculated fit.  The 

b parameter for this research was always set to a value of 1, so the last term of this 

equation is a measure of the smoothness of the calculated distribution.  The optimal a is 

found by iterating the data fitting with different values of a and finding the value that 

just minimizes Equation 3.12.    

It is this point in the analysis where knowledge of the physical limitation due to 

signal to noise ratio of the collected data is important.  The trade-off between the error in 

the data fit and the smoothness of the distribution is important because a smooth 

distribution of molecular populations is in most cases a more physical result.  This is 

known as the principle of parsimony, which states that the best solution is the simplest 

solution that fits the data [49].  The effect caused by using too large a value for a is 

known as ñpearling of the distributionò, and leads to presentation of a distribution that 

implies more confidence in the measurement of fine details of the spectrum than is 

physically possible given the measurement error.  A robust method of choosing a is 

therefore important to the data analysis in order to have confidence that the calculated 

distributions are physically relevant.  The L-curve method [55] was used for the data 

analysis described in this thesis, an example of which is shown in Figure 3.7.  Calculated 
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2c  values for different a values are plotted.  As a is increased above the optimal value 

the 2c  will stay approximately constant, leading to an L shaped curve where the optimal 

value of a is found at the base of the L.  At this a, the error between the fit and the data 

is balanced out by the smoothness of the distribution.  Increasing a does not decrease the 

amount of error between the fit and the data but instead allows the calculated  

distribution to be less smooth, or ñpearledò. 

 

 

 
Figure 3.7.  Example of the L-curve for the distribution shown in Figure 2.6.  The a 

used to calculate the final distribution was therefore chosen to be 810 . 

 

 

 As a concrete example, consider a sample containing two relaxation times 2T  = 1 

s and 2T  = 0.05 s in equal proportions, so that the total magnetization is described by 
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tt
tM , as shown in Figure 3.8.a.  The expected 2T  
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spectrum in this case would be [ ]5.0,5.00 =M
G

 for [ ]1,05.02 =T .  In this case, there is no 

error in the measurement so the final 2T  distribution plotted as a function of 2T  should be 

two delta functions with height 0.5 centered at 2T  = 1 s and 2T  = 0.05 s.   

Using the ILT algorithm described above, the computed distribution of 2T  times 

is shown in Figure 3.8.b.  The vector for 2T  times in this case was 32 values 

logarithmically spaced between 0.01 and 10 s, i.e. [ ]10,...01.0 .  As the pictured 

distribution demonstrates, the algorithm leads to the expected two populations at 

approximately the same height and approximately centered at 0.05 and 1, but there is a 

distribution of possible 2T  times around each 2T .  The peaks have a finite width and as a 

result do not have exactly a height of 0.5.  An a = 810  was found to be the optimal value 

using the L-curve method.   

Figure 3.8.c demonstrates what the computed 2T  distribution will look like if a 

non-optimal value for a is used.  Using an a that is smaller than the optimal value 

(LHS of Figure 3.8.c) allows for too much error 2c  between the solution and the data, 

and often leads to features such as very broad distributions that do not resolve into 

multiple populations.  The large peak seen for the smallest 2T  value considered is also a 

common feature of these distributions.  The algorithm finds that there is a population 

with a short 2T , but the large 2c  allowed at this a value means that the pictured 

distribution is a good enough fit even though the population is not resolved.  Using an a 

that is larger than the optimal value (RHS of Figure 3.8.c) may lead to very sharp peaks 

despite the fact that the real data is noisy and the distribution is not known at such 



56 
 

 
 

precision.  In this case, there is no error so the peaks should be highly resolved, but in  

most cases this is not a physical result. 

 

 

 
Figure 3.8.  Simulated CPMG data for a sample with half of the molecules decaying with 

a 2T  of 1 s and half of the molecules decaying with a 2T  of 0.05 s, i.e. 
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tM .  a) Simulated raw data.  b)  2T  distribution 

obtained by inverse Laplace transformation of the simulated data set.  c)  Demonstration 

of the effect of varying the a parameter on the computed distribution.    














































































































































































































































































































