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ABSTRACT 

 

 

Explosives are a critically important component of avalanche control programs.  

They are used to both initiate avalanches and to test snowpack instability by ski areas, 

highway departments and other avalanche programs around the world.  Current 

understanding of the effects of explosives on snow is mainly limited to shock wave 

behavior demonstrated through stress wave velocities, pressures and attenuation.  This 

study seeks to enhance current knowledge of how explosives physically alter snow by 

providing data from field-based observations and analyses that quantify the effect of 

explosives on snow density, snow hardness and snow stability test results.  Density, 

hardness and stability test results were evaluated both before and after the application of 

0.9 kg cast pentolite boosters as surface and air blasts.  Changes in these properties were 

evaluated at specified distances up to 5.5 meters (m) from the blast center for surface 

blasts and up to 4 m from the blast center for air blasts.  A density gauge, hand hardness, 

a ram penetrometer, Compression Tests (CTs), and Extended Column Tests (ECTs) were 

used.  In addition to the field based observations, the measurement error of the density 

gauge was established in laboratory tests.  Results from surface blasts did not provide 

conclusive data.  Air blasts yielded statistically significant density increases out to a 

distance of 1.5 m from the blast center and down to a depth of 50 centimeters (cm).  

Statistically significant density increases were also observed at the surface (down to 20 

cm) out to a distance of 4 m.  Hardness data showed little to no measurable change. 

Results from CTs showed a statistically significant decrease in the number of taps needed 

for column failure 4 m from the blast center in the post-explosive tests. A smaller data set 

of ECT results showed no overall change in ECT score.  The findings of this study 

provide a better understanding of the physical changes in snow following explosives, 

which may lead to more effective and efficient avalanche risk mitigation. 
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1. INTRODUCTION 

 

 

Explosives are a critically important component of avalanche risk mitigation 

programs.  They are used by ski areas, highway departments and other avalanche 

programs to both initiate avalanches and to test snowpack instability.  Despite their 

importance, knowledge about the effects of explosives on the physical properties of snow 

is limited.  This research provides experimental, field-based observations and analyses of 

the changes in snow density, snow hardness and snow stability test results after the 

application of explosives, thereby contributing to the understanding of how explosives 

affect the physical properties of snow. 

 While knowledge of the physical effects of explosives on snow is limited, many 

prior studies have examined shock wave propagation through the snowpack, focusing on 

stress wave velocities, pressures and attenuation (e.g. Livingston, 1968; Lyakhov et al., 

1989; Mellor, 1973; Wisotski and Snyer, 1966; Bones et al., 2012).  Livingston (1968) 

examined explosives induced failure processes in snow and concluded that snow is 

unique from other materials such as rock, glacier ice and some soils in its failure process.  

Two notable differences, both due to the large amount of pore space in snow, are 

abatement of the disturbance before peak pressures are reached and a considerable 

recovery of potential energy during unloading.  This recovery of potential energy occurs 

as peak under-snow pressures decline and implosion occurs in the crater zone 

(Livingston, 1968).  Mellor (1973) also illustrated differences between snowôs response 

to explosives and that of materials more commonly coupled with explosives such as rock.  

Snow demonstrates peak pressures that are about 100 times less than those measured in 
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granite and also shows much more rapid attenuation of stress waves (Mellor, 1973).  He 

discussed the importance of impedance matching in shockwave propagation.  For 

effective explosives-materials coupling, the product of detonation velocity and explosive 

density should be nearly equal to the product of acoustic velocity and density of the 

medium (Mellor, 1973).  Mellor (1973) emphasized the impedance mismatch between 

snow and explosives and the resulting shockwave attenuation that is not seen in materials 

with better coupling like rock or frozen soil.  Gubler (1977) examined stress wave 

attenuation as a result of charge size, placement, type of explosive, snow type and ground 

type.  He normalized his results to a standard charge of 1kg with a detonation velocity of 

6900 m/s and a density of 1.4 kg/m
3
 which is comparable to a 0.9 kg charge of pentolite 

which has a detonation velocity of approximately 7900 m/s and a density of 1.6 kg/m
3
 

(Orica Ltd., 2010).  He determined that the most effective charge placement was one to 

two meters above the snow surface.  Ueland (1992) investigated the effectiveness of 

different charge types and sizes in various snowpacks and confirmed the effectiveness of 

air blasts suspended above the snow surface.  Contrary to Gublerôs findings, Ueland 

argued that snow hardness influences shock wave attenuation more than density, with 

softer snow exhibiting stronger attenuation than harder snow.   

This rapid attenuation of shock waves demonstrates how snow behaves differently 

from previously mentioned materials (Mellor, 1968; Wisotski and Snyer, 1966; 

Livingston, 1968).  In experiments involving above-snow explosive blasts, Mach-region 

peak pressures were found to be lower over snow than over bare ground or concrete.  

This was attributed to shockwave attenuation upon contact with the snow surface, once 
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again demonstrating much higher shock wave attenuation rates in snow (Wisotski and 

Snyer, 1966; Bones et al., 2012).  This rapid attenuation is a unique response that sets 

snow apart from those other materials and may be a result of the unique structure and 

composition of snow.  Snow is structured in layers that form as it accumulates and 

metamorphoses and is made up of two physically different components, air and ice or 

water, that remain separate within the medium (Livingston, 1968) rather than mixing like 

in more homogenous materials. 

 When explosives are in direct contact with snow, the normal explosive reaction is 

impeded.  The presence of carbon in the crater region after detonations of explosives on 

or near the snow surface suggests the likelihood of an incomplete reaction (Wisotski and 

Snyer, 1966).    Wisotski and Snyer (1966) documented anomalies and scatter in their 

peak pressure and velocity data calculated from snowpack measurements and proposed 

that this is a feature of snow and explosives coupling.  Snow is a composite material 

made up of air, ice and/or water.  Pore space between the solid components makes up 45-

97% of total snow volume (McClung and Schaerer, 2006), a much larger percentage than 

in most other materials.  For example, the porosity of rock is 1-40% and that of concrete 

is 1-10% (Wisconsin Geological and Natural History Survey, 2011; Klieger and Lamond, 

2006).  This large pore space in snow, a non-elastic medium, allows for permanent 

compaction as the momentum behind the shockwave is transferred to the snow and the 

shockwave is attenuated (Johnson et. al, 1994).  Johnson et al. (1993) show that higher 

pressures are necessary to compact snow with lower initial densities; and that snow will 

eventually be compacted to a critical density where elevated pressures are needed to 
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cause further densification.  They also fit a power law to their shockwave attenuation data 

(Johnson et. al, 1994).  Because shockwave attenuation occurs simultaneously with snow 

compaction and densification, it is possible that density change as a function of initial 

density could also be characterized by a power law. 

 Brown (1981) predicted that snow density would increase in the immediate area 

surrounding a blast, but the author did not provide data to support this prediction.  Frigo 

et al. (2010) detonated dynamite and emulsion charges above, on and below the snow 

surface and made snowpack measurements including snow density, but density was only 

measured at the blast crater and their results were inconclusive.   

Miller et al. (2011) presented a model predicting some of the responses of snow to 

an explosive blast.  An explosion is characterized by an increase in pressure and 

temperature across the shock front (Mellor, 1973; Miller et al., 2011).  Creating this 

sudden increase in pressure that ideally leads to weak layer failure is the goal of 

avalanche control operations using explosives.  Miller et al. (2011) use 

ANSYS/AUTODYN, a program commonly used for assessing the movement of rock 

during an explosion, to create an explicit model of snow behavior during such an event.  

The model is ideal for characterizing the rapid increase in pressure across the shock front 

because of its ability to predict changes in nonlinear solids and gases at the same time 

(Miller et al., 2011).  Miller et al. (2011) evaluated pressure and stress waves from both 

surface and air blasts of 0.9 kg and 1.8 kg pentolite charges and examined the decrease in 

both as a result of geometric expansion and snow attenuation of the shock wave.  They 

also used their model to evaluate density changes, predicting increasing density in the 
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region below the explosive (Miller et al., 2011).  Miller et al. (2011) theorized that the 

region affected by a stress wave might provide a gauge of the effectiveness of explosives 

in avalanche control work.     

 All of t hese studies provide insight into the behavior of shock waves in snow, but 

there is still a lack of information and observational data on the physical changes in snow 

that occur as a result of using explosives.  Quantifying changes in physical snow 

properties such as density and hardness at different distances from a blast could help to 

define the area of influence of explosives commonly used for avalanche mitigation 

applications.  These results could either strengthen or contradict the work done by Miller 

et al. (2011) and others prior (e.g. Johnson et al., 1993).   Furthermore, examining 

changes in stability test results after the use of explosives may also provide information 

about how far from the blast center snow stability, as measured by Compression Tests 

(CTs) and Extended Column Tests (ECTs), is being affected and whether the snowpack is 

gaining or losing strength.    

 

1.2 Aims / Research Questions 

 

 

Throughout this thesis, pre- and post-explosives use changes in snow density, 

snow hardness and snow stability test results will be quantified, as will the distances over 

which those changes can be measured.  The following research questions will be 

addressed: 
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1)  After the application of explosives as surface blasts and air blasts, is there a change in 

snow density and to what distances and depths can that change be measured in the field? 

2)  After the application of explosives as surface blasts and air blasts, is there a change in 

snow hardness and to what distances and depths can that change be measured in the 

field? 

3)  After the application of explosives as surface blasts and air blasts, is there a change in 

stability test results as shown by Compression Tests and/or Extended Column Tests, and 

at what distances can those changes be quantified?   

To answer these questions, snow density and snow hardness were measured 

before and after applying explosives as both surface and air blasts at four distances from 

the blast center and down to a depth of 1 meter (m).  Compression Tests (Jamieson and 

Johnston, 1996) were conducted before and after both surface and air blast detonation at 

two distances from center for each detonation.  Extended Column Tests (Simenhois and 

Birkeland, 2006) were performed before and after air blasts only.  Repeated 

measurements of the changes in snow density, snow hardness and snow stability test 

results following detonation of explosives have not previously been made.  This research 

provides observational data and analyses which will help bridge the gap between 

theoretical knowledge and practical field-based knowledge on how snow responds to 

explosives and may lead to improvements in avalanche control operations. 
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2. METHODS 

 

 

2.1 Study Sites 

 

 

 Data for this study was collected from three field sites in three different mountain 

ranges with snow climates that have been classified as both continental and intermountain 

depending on conditions in a given year (Mock and Birkeland, 2000).  The three study 

areas were located in central Colorado and southwestern Montana.  Based on average 

monthly air temperatures during the winters of 2010/2011 and 2011/2012, when this 

study was conducted, the Colorado site was representative of a continental snow climate 

and the Montana study sites demonstrated temperatures characteristic of intermountain 

snow climates.  Selected test sites received no avalanche mitigation and little to no skier 

compaction in an effort to preserve natural snow conditions.  Sites with low slope angles 

were chosen to minimize snow loss through avalanching and to reduce personnel 

avalanche risk during data collection.  All surface blasts were performed in the Colorado 

study site and all air blasts were conducted in the Montana study sites. 

 

2.1.1 Snowmass Study Area  

 

A total of eight explosives tests were conducted as surface blasts at Snowmass Ski 

Area in the Elk Mountain Range located in west-central Colorado between December 27, 

2010 and January 6, 2011 (Figure 1).  The northeast corner of the Snowmass study area is 

located at approximately 39.1705° north and 106.9345° west and has an elevation of 

3,330 m.  The test site lies in an open meadow within ski area boundaries in a clearing 

surrounded by evergreen forest composed mostly of lodgepole pine and subalpine spruce 
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trees (Figure 2).  Test slopes formed a small basin with slope angles ranging from 6° to 

13° and sites facing East-northeast, East-southeast or North-northwest.  Because the test 

site provides poor access to desirable ski terrain and has low slope angles, it receives little 

to no skier compaction and no avalanche mitigation. 

 

 
Figure 1:  Map showing the location of the Snowmass study area outlined in red and its 

relative position within Colorado as indicated by the red dot in the inset.  Elevations are 

shown in meters.  The contour interval is 30 m. 
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Figure 2:  Close-up of Snowmass study area outlined in red.  Elevations are shown in 

meters and the contour interval is 10 m.  

 

 

2.1.2 Montana Study Areas 

  

Twenty-five tests of air blast explosions were conducted at Moonlight Basin 

during the winters of 2010/2011 and 2011/2012 and two were conducted at Bridger Bowl 

in January of 2011.  The majority of the data collected during this study was gathered at 

Moonlight Basin Ski Resort in the Madison Mountain Range in southwestern Montana.  

The Northeast corner of the Moonlight Basin Study site is located at approximately 

45.3028° north, 111.4545° west and an elevation of 2,155 m (Figure 3).  This site lies 

within the ski area boundaries in a closed area that was cut as a ski trail, but never opened 

to skier access.  The slope is completely free of trees and other obstacles and is flanked 

by forest cover.  Slope angles at this site range from 7° to 20°.   Due to its closed status 

3330 

3320 

3310 
N 
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and gentle slope angles this site was free from skier traffic and avalanche mitigation 

(Figure 4). 

 

 
Figure 3:  Map showing the location of the Moonlight Basin study area outlined in red 

and its location within Montana as indicated by the red dot in the inset.  Elevations are 

shown in meters and the contour interval is 30 m. 
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Figure 4: Close up of Moonlight Basin study area outlined in red.  Elevations are shown 

in meters and the contour interval is 10 m. 

 

 

   The second study area in southwestern Montana is located at Bridger Bowl Ski 

Area in the Bridger Mountain Range at approximately 45.8060° north, 110.9108° west 

with an elevation of  2,066 m (NE corner) (Figure 5).  This site was in an open meadow 

surrounded by open evergreen canopy and was located in a permanently closed area.  

Slope angles at the Bridger Bowl site ranged from 7° to 20° (Figure 6).   
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Figure 5:  Map showing the location of the Bridger Bowl study area outlined in red and 

its location within Montana as indicated by the red dot in the inset.  Elevations are shown 

in meters.  The contour interval is 30 m.   

 

 
Figure 6:  Close up of Bridger Bowl study area circled in red.  Elevations are shown in 

meters and the contour interval is 10 m. 


