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Abstract:

PART I: STRONG UNIQUENESS IN THE L"P-SPACES, 1<p <00 Let (X,E,~) be a positive
measure space and L"P(X,?,u) =L"P, 1 <p < 00, be the Banach space of all equivalence classes of real
valued p-integrable functions defined on X. Let M be a finite dimensional subspace of L"P, f?L"P\M,
and m* the best L"P- approximation to f from M. It is shown that under certain conditions that m* is
strongly unique of order a™ 1/2 or a~ 1/p and in some cases these orders are shown to be best possible.
In the case when p ™ 1 it is shown that the set {f?LI: L"1: f has a strongly unique best approximation
from M} is dense in L1, provided the measure is nonatomic. If the measure is allowed to have atoms,
the above set is dense in {f?L"1: f has a unique best approximation from M}. PART II: QUESTIONS
ON POLYNOMIAL PRODUCT APPROXIMATION AND AN APPLICATION Let D " [a,b] x [c,d]
and p_n and p_m be the sets of algebraic polynomials of degree at most n and m respectively. Let a<ess
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ABSTRACT
PART I: STRONG UNIQUENESS IN THE Lp-SPACES, l1<p<oe

Let (X,Z,u) be a positive measure space and Lp(x,z;u) = Lp,

1 < p<=, be the Banach space of all equivalence classes of real-
valued p-integrable functions defined on X. Let M be_a finite
dimensional subspace of Lp feL'\M and m* the best LP- approximation
to f from M. It is shown that under certain conditions that m* 1is
strongly unique of order a = 1/2 or o = 1/p and in some cases these
orders are shown to be best possible.

In the case when p = 1 it is shown that the set {feLl: £ has a
strongly unique best approximation from M} is dense in 11, provided
the measure is nonatomic. If the measure is allowed to have atoms,
the above set is dense in {feLl: f has :a unique best approximation
from M}.

PART II: QUESTIONS ON POLYNOMIAL PRODUCT APPROXIMATION AND AN
APPLICATION

Let D = [a,b] x [¢,d] and T_ and Hm be the sets of algebraic
polynomials of degree at most n and m respectively. Let a<x <x.<...

<xn:p be n+l distinct points and 2o(x),21(x),...,2n(x) be the Lagrange
polynom;al basis for Hn defined on XysXyseoesX o Let wo(x),...,wm(x)
be any basis for H . The product Chebyshev approximation of FeC(D) is
the function (P n,m F)(x,y) i 0 j=0 €y j(y)z (x) where 1Egai(y)zi(x)
is the best approximation to F (x) = F(x,y) over [a,b] from H and
jggcij j(y) is the best approximation to a (y) over [c,d] from H .

Error bounds are obtained for this and another method of multi-
variate approximation. These bounds are in terms of univariate error
bounds and are shown to be sharp in an asymptotic. It is also shown
that in some situations the product Chebyshev approximant of a continu-
ous function may fail to converge.

A method of approximating the solutions of linear integral and
integrodifferential equations is developed by utilizing the product
approximant to the kernel function, the theory of degenerate kernels,
and compact operator approximation theory. In all cases, the approxi-
mate solutions are shown to converge to the true solutions.
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INTRODUCTION

Given a real Banach space X with norm denoted by " ~| » a closed
subset M of X, and.xex‘\M, m*eM is called a strongly unique best
approximation to x from M if there is a positive constant y, depending
on x, such that

Ix=ml 2 x-o*]+y | o-ur |
for all meM.

The concept of strong uniqueness has been extensively studied
by many people. The space C(T) where T is a compact metric space
and M is a finite dimensional Chebyshev (Haar) subspace is the first
setting known to enjoy the strong uniqueness property [14]. When T
is a compact subset of [a,b], and M is a finite dimensional Chebyshev
(Haar) subspace of C(T), strong uniqueness plays a vital role in
the computation of a best approximation by use of the Remes exchange
algorithm. In tﬁe event that strong uniqueness occurs at some point
xeX\ M, then it éan be easily seen [4 , p. 82] that the best approxi-
mation operation is Lipschitz continuous at x.

In some nonlinear approximating sets, for example, the sets of
rational functions on C[a,b] and reciprocals of polynomials on
C[0,»), strong uniqueness is known to occur. Again, because of this,
the computation of a best approximation can be done by use of the

Remes exchange algorithm and the best approximation operator is




point Lipschitz continuous.

There are, however, many important cases where strong uniqueness
fails. Wulbert [22] has shown that if X is a smooth Banach space and
M is a nontrivial subspace of X, then no xeX\ M has a strongly
unique best approximation from M. This class of smooth Banach spaces
includes such spaces as the Lp-spaces, 1l < p <, and Hilbert space.
Strong uniqueness also fails for monotone approximation in Cla,b]

[ 8].

In examining the way that strong uniqueness failed for monotone
approximétion, Schmidt [18] was prompted to provide the following alter-
native to strong uniqueness. For xeX\M, m*eM is called a strongly
unique best approximation of order a, 0 < a < 1, if for ail r >0
there exists a positive constant y, depending on x and r, such that

| em | 2 et + v | max
for all meM with || m*-m || < r. Using this concept, Schmidt [18]
éhowed that strong uniqueness of order 1/2 holds for monotone
apprbximation. 0f course, if strong uniqueness of order o holds at
xeX\ M, then the best approximation operator is Lipschitz continuous
of order a at x.

The purpose of this report is to study strong uniqueness in theIB'
spaces, 1 < p < =, It 1s shown that all finite dimensional subspaces
of Lp, 1l < p < », admit strongly unique best approximations pf order

1/2 or 1/p to functions not in the subspace. For the case of




2 < p < =, the orders of 1/2 and 1/p are shown to be the-largest
possible. For the L1 space with an arbitrary measure strong unique-
ness is shown to be a somewhat prevalent property in the following
sense. Given a finite dimensional subspace M of L1 the setA{fele f
has a strongly unique best approximation from M} is dense in the set
'{fele f has a unique best approximation from M}.

Chapter 1 provides background results on the differentiation of
Banach space valued functions and on smooth Banach spaces with
differentiable norms. Also included in this chapter are the propefties
of strong uniqueness of order a. The chapter concludes with a general
result 6n the strong uniqueness of order o of best approximations
from finite dimensional subspaces of certain smooth Banach spaces.

Chapter 2 contains a study of the strong uniqueness of order a
of best approximation from finite dimensional subspaces of Lp,
l<p <o, |

Chapter 3 provides some background material on approximation
in L1 space which is then used to prove that strong uniqueness occurs

quite often when approximating from finite dimensional subspaces.




Chapter 1

PRELIMINARY RESULTS

1.0 Introduction

In this chapter we shall discuss some preliminary results about
the differentiation of functions between Banach spaces. These results
will then be applied to differentiation of a norm on a Banach space.
In addition, a discussion of strong uniqueness of order a, 0 <a < 1,

of unique best approximations from subspaces of Banach spaces is given.

1.1 General Differentiation

Let X and Y be real Banach spaces with norms denoted by H . " X

and | ¢« || ¥ respectively. The unit sphere of X and Y will be denoted
by S(X) and S(Y), respectively, and their normed duals by X* and Y*,
respecti&ely. The set of all continuous linear operators from X to Y
will be denoted by B(X,Y). Bn(X,Y) will be the set of all continuous
n-linear operators from X to Y, i.e., if L € Bn(X, Y) we have

(8 L (xy5 eovy @ xp + B8 x", e x)

i i
N "
= aL (Xl, s 0y xi’ LI Y Xn) + B L (xl, o evey xi’ LIRS xn)
for 1 =1, 2, ..., n and all real numbers a and 8, and
(b) there is a number M > 0 such that

" L (xl' xz’ M 4 X.n) " Y..<_M " x]_"x “ xz "X ¢ n xn "x

for all x x € X,
n

1, x2, s s e

The following definitions and results can be found in various




forms in [7], [13] and [21].

Definition 1.1.1. Let F be a function from X to Y and x€ X. If there

exists an element DF(x) in B(X, Y) such that

1im
t-+0

F(x + t z) = F(x)
t

=0

- DF(x) (2) l
Y
uniformly for all ze S(X), then F is said to be Fréchet differentiable

at x. The operator DF(x) i1s called the Fréchet derivative of F at x

and the operator DF:X + B(X, Y) which assigns to x fhe operator DF(x)
. 18 called the Fréchet derivative of F.
By applying the above definition one can easily prove

Proposition 1.1.2. If F:X -+ Y is Fréchet differentiable at x, then F

is continuous at Xx.
We shall have need of

Proposition 1.1.3. 1If the function F:X -+ R (the real 1line) has a

local minimum or local maximum at XG'CX and DF(xb) exists, then
DF(x) = 0.

Higher derivatives DnF(X) € Bn (X, Y) are defined recursively as

follows.

Definition 1.1.4. Suppose F:X »+ Y is (n-1)- times continuously

Fréchet differentiable in a neighborhood of a point Xt X, If there

exists an element DnF(x)(‘,',...,') in Bn(X. Y) such that




1lim ”‘%‘ ‘(Dn—l F (X+ tzl)(zzs teey zn) - Dn—l F (X) (Zzs L ) zn))
t+0
Y

uniformly for all Z1s Zys eees Z €'S(X), then F is said to be n-times

-D'F (%) (zl, Zys eees zn)

continuously Fréchet differentiable at X. The operator DnF:X > Bn(X,Y)
is called the nth Fréchet derivative of F, forn =1, 2, ....

In the next section we shall need the following generalization of

Taylor's Theorem.

Proposition 1.1.5. If F:X + R is n-times continuously Fréchet differ~

entiable then

L
F(x) = F(x) + kil T D F(xy) (% = X5 +ees X - %)
1 n-1
n 1-t
+ S DUF(xg + £(x) = K (X = Xgs +aes X, = xo){;:T%T—-dt_

0

By applying the mean-value theorem for integrals we have, for some

to’ o £ to_<_ 1,
1
. , (1_t)n—1
DUF (%) + t(x) = %)) (%) = %q, +evy X = Xg) TDHT—dt

n
= D F(xo + tO(x], = XO))(xl - Xo) oy X, - xo)

¢ 1

-1

a-o"°

x g —-———-—-—-(n_l)! dt
0




1 n
=ar DFOxp + g(® = %) = Xoy weey X - TP
Therefore

n~1
F(xl) = F(xo) + I

k=1 '

A opn - - - X

1.2 Smooth Banach Spaces and Norm Differentiation

Let xe S(X). Theﬁ the Hahn-Banach Theorem implies that there is
an element f €S(X*) such that f (x) = h= | = £ | = 1. Such a
functional fx is called a support functional and the mapping x fx
from S(X) to S(X*) is called a support mapping. We can extend this

mapping to all of X\{O} by noting that if A > 0 then " M.

Definition 1.2.1 [6]. The Banach space X is said to be smooth at

xoeS(X) if there exists a unique fe S(X*) such that f(xo) =1, {.e,,
there exists a unique support functional for X If X is smooth at

each point of S(X) then we say X is smooth.

Definition 1.2.2. The norm of a Banach space X 1s said to be Giteaux

differentiable at x_ eS(X) if for ze S(X)

0
1im | %o+t 2ff - %o | = G(XO; z)
t-+0 t

exists. If this limit exists at each point of S(X) we say X has a

Giteaux differentiable norm.




note some properties of G(-3-).

G(x;°*) is a mapping that assigns to each xeS(X) a real number.

G(e3+) 1is a mapping that assigns to each xeS(X) the function-
al G(x;-).v

If A > 0, then G(Ax;°*) = AG(x;+).

G(x3x) = || x| = 1.

For AeR we have G(x;Az) = AG(x;z).

Suppose xoeS(X), fx is a support functional at x., and the

0
0
Giteaux derivative of the norm exists at Xy If t > 0, then
for yeS(X)
£ () £ (ty) £, (xg) — 1+ £ (ty)
xo = 0 = 0 0
t]] xoll IEN
2
. fxo(xo + ty) - IIxOH
aEN|
£, xy + ] = [ x|
< X, 0 0
IEA|
2
< I fxoll | % + tyll = Il x,ll
3EA| —
% + eyl = Il =gl
- 0 0
t

For t < 0 and yeS(X)




10

fxp Ct9)  Exp (-ty) = fy ) (xp) +1
SO N o T

oIl - fxg (g + )
-t || X5l

2
I % I = I 0x + )]

z -t X5l
9 .
2% I7 - Il %o+ eyl
-t " x0 "
I EA N Py
-t
x el -l
t

Therefore G(Xy; y) - f. (v) and so the mapping G(xo;°) is a support
’ 0 .
functional which implies the mapping G(*;+) is a support mapping.

However,.the mapping G(*;*) may not be a bounded linear operator as

can be seen from the following.

Theorem 1.2.3.[61;_‘Let Xg€ S(X). The following are equivalent:

(1) X is smooth at 03

(11) every support mapping is norm to weak-star continuous from

S(X) to S(X*) at xo.

(111) there exists a support mapping that is norm to weak-star

continuous from S(X) to S(X*) at g3

(iv) the norm of X is Gateaux differentiable atxo .




11

In the next chapter we shall require the first and higher deriva-
tives of the norm to be continuous operators in order to apply the
results of the previous section. It therefore becomes necessary to

define a norm derivative that insures this.

Definition 1.2.4. The norm of a Banach space X 1s said to be Fréchet

differentiable at x.0 eS(X) if

Hon  [[x,+tz |- x|
t->0 0 T 0 ED(xozz)

exists uniformly for_all ze S(X). If this limit exists at each point
of S(X), we say X has a Fréchet differentiablé norm.

The Fréchet derivative has all the same properties as the Giteaux
derivative and in addition the operator D(*;*) is a bounded linear
operator from S(X) to S(X*). This can be seen by noting that the limit
in the above definition is uniform for all z e€S(X) and that D(xo;') =
fxO(-). With these propérties we can then define higher derivatives in
the same way as in Definition 1.1.4. Some examples of spaces with

Fréchet differentiable norms will now be given.

Example 1: Hilbert Space.

Let H be a Hilbert space with inner product <-,*> and x, y € H\
{0}. The first Fréchet derivative of the norm on H at x is then

given by
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Dx;y) =lim Jlx+ty || - [Ix]l
t

t-+0

=um  |[x+ eyt - x|f

t+0 e(fix+ tyll+ Il x [

= 1im 2<Xt>+t2< >
t-+0 t(”x+ty”+|ixi|)
= 1dm 2<X,y> + t <y,y>

e+0 Tx+ey[* [xT

= 1 <X,y>.

=1

For the second Fréchet derivative, let x, y, z¢H. Then

2
D" (x;y,z) = tl-i»mo %[D(x-&- ty; z) - D(x | z)]

lim 1| <X+ ¢t z>-<xz>
“t+0 t X + ty]|

=lm 1| <x,2 "X z>
t+0tJ|‘x+ty” Hx+tY|| x

-
= 1n 1 |]x]| -1l x+ ty]l <y,2>
t+0tJuulu+cﬂl‘*” T

_ 2
= 1lim 1 || x ”2_ | x + tyll <xz>]
e>0¢c| =l Mx +ey[[ I x T+ [[x + ey

= 1im - 2<x,y> - t <y <y,z>
£ 0 [Hﬂlux+wuHIW‘ux+ww‘“”]+"xH
- < z> - <m> <xX,2z>

TxT =3 )

Note that

1. DZ(X;',-’) € BZ(H,R) and 1s symmetric. }
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2. .
2. D (x3y,y) > O.
3. Dz(x;x,x) = (),

4. If A # 0 then Dz(kx;';-) exists and Dz(Ax;-,i) = %%T-Dz(x;',').

It is known[20 ] that the above properties are always true for the

second Fréchet derivative of a norm, when it exists.

Example 2: P - space, 1 < p < o,

P
In this example the derivatives of "'“p are given, where we have
P = Lp(X, I, u), (X, I, u) a positive measure space. In order to do
this the following lemma is given which can be found in{[20]and is due

to Banach and Saks.

Lemma: If a and b are any real numbers and 1 < p < =, then there
exists a positive constant M, independent of a, b, and signa such
that

-1

e(p) P
(i)lal (signa) bt <M [b]P.

la + blp - Ialp - I
: i=1

Here e(p) denotes the greatest integer less than or equal to p and

'l a >0
slgna =4 0; a =0 .

-1; a <0

By applying this lemma Sundaresan [20] proves

Theorem. If 1 < p < «,then the nofms'of lp and LP are of class
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c” (Cp-l)if p is an even (odd) integer. They are of class Ce(p)
if p is not an integer.
Thus if f, Bpseces By € Lp\{O}, k is a positive integer, and

p > k we have
D(f;gl) = .PS & |f|p-1 sign f du
x 1

2 -1 . 1p=2
I)(f;gl’g2)==21%?~l S' glgz Iflp (Sign f)zdu
X

plp-1)...(p-k+1)

k! 818y -8y
x .

k
D (f; 81: 829 LA ] gk) =

X Iflp—k (sign f)k dﬁ
and the mappings Dk(-;'; ceey *): LP— Bk(Lp,R).which assign to each
stp\{O} the k-linear operator Dk(f;',...,') are continuous. Recall
that the above expressions are the derivatives of " -"g If p is
an even integer the (p-1)th derivative for f, 81> ...,gp € Lp\{O} is
given by
Dp-l(f; gl,...,gp_l) =—(—pE-I)! S 8 8 gp_l f du

X
and so

- -1,..
lim 1 (1)p 1'(f+t:gp; gl""’gp-l) - P (£ Bl seees8

))
t*0 t

p-l
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_liml_p |
" 20 t (p-1)1 S(gl 8y *-» gp_l(f +t gp) du &gl gz---gp-lf du)

- —P
G-D1 S; 8 8y *+o gp du.

-1
Therefore pP~ (*3%5 evey’): ) R B (Lp F) is differentiable and its

derivative is a constant mapping. «||? 1s of class ¢*. 1f

P
p 1s an odd integer the (p-1)th derivative for f, B1s *es 8

Lp\\{O} is given by

(f;g ,.uu,g ) =—_p'_"' ggon g ‘ lf| du
1 p-1 = G-D1 182851 .
X

and so

1lim p-1 -1
- (D (f+tg ; g s eane g ) - Dp f' e o
t>0 ¢ p 1 ’ p-1 (f; gla » gp—l))

lim 1 _p
£x0 t (-1 & 818 eBplErg du | g8y, [Fla
X

P lim leveg |- 1€l

(p-D! t*0 g 8185 8p-1 2 du.
X

This 1imit may fail to exist for some f, g, eLp\\{O}. For example,

if X = [0,1]) and u is Lebesque measure, let f = x

[0,1/2] P
i
x(l/Z,l] wvhere XA denotes the characteristic function for A. Then

p lim Ifftg |- Ifl
—— S 818y 08 _ P du
(p-1)! t>0 X 1°2 P 1<; T

and g
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1

P 1lim |t|

(D! t0 S 8187 8y ¢ W
1/2

which does not exist. Therefore, | -"g is of class Cp-l.

A similar argument shows that if p is not an integer then the
norm is of class Ce(p). If p =1 the norm is not even once Gateaux
differentiable. Indeed consider R" with the 1l norm. The point

(1, 0, ..., 0) on the unit sphere has more than one support functional.

Thus by Theorem 1.2.1, the norm cannot be Giteaux differentiable.

1.3 Strong Uniqueness of order a, 0 < a < 1,

Let X be a real Banach space with norm denoted by " |, M a
closed subspace of X, and x ¢ X\ M. The set

1 = * e - m* = 1 -

Py(x) = {m* ¢ M | x = m*| m2§ | x - mf }
1s called the set of best approximations to x from M. If PM(x) =

'{m*}, then m* is the unique best approximation to x from M.

Definition 1.3.1. If PM(x) ='{m*}, then m* is called strongly unique

if there is a constant r > 0 such that
(3.0 fx-m fl2 [lx-wll+x |n-n]
for all meM. The largest constant r = y(x) for which (1.3.1) holds

is called the strong unicity constant.

The concept of strong uniqueness has been extensively studied in

the space C(X), X a compact metric space, and 1s used in the study of
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the Remes algorithm. The properties of the strong unicity constant
have also been studied, particularly in the space C[a,b] with poly-
nomial and rational function approximation. However, there are some
situations where strong uniqueness fails to hold. Fletcﬁer and Roulier
[8] have shown that strong uniqueness does not hold in the setting of
monotone appr;ximation in C[a,b]. Another situation is when X is a
smooth Banach space. The following is due to Wulbert [22] and Bartelt

[2]; a new proof is given based on norm differentiation.

Theorem 1.3.2. Let x and m* be as in Definition 1.3.1 and suppose X

is smooth at x~m*. Then m* is not strongly unique.

Proof. Since X 18 smooth at x-m* the Giteaux derivative of the norm
exists there. Now m = O minimizes || x-m* + m " over M and Proposition
1.1.2 can be shown to apply in this situation, see [131, so that
G(x-m*;m) = 0, for meM, i.e., for meM \{0}

Un Jx-m*+ o]~ [x-mf _
t+0 t . *

Suppose m* is strongly unique, then there is a constant r > 0 such
that for all t and meM with [jm || = 1 we have
" x = (m* - tm) | 3_" x - n*| +r | tm I

thus

O<r<lim [ x=(ut-tm)] -] x-mf
t+0 I em

which is a contradiction and the theorem is established.
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The failure of strong uniqueness for monotone approximation and
in smooth spaces or more precisely the way strong uniqueness fails in
these settings provided the motivation for the following definition

due to Schmidt [18].

Definition 1.3.3. Let x and m* be as in Definition 1.3.1. We say

m* is strongly unique of order a, 0 < a < 1, 1if for all r >. 0 there

exists K(r) > 0 such that

(1.3.2) o= o] < R x =] = | x = o*|)®
for all meM with |m - w*| < r, or, equivalently, if for all r > 0
there exists y (r) > 0 such that

3.3 fx-nl > x -+ v | o= o] Ve

for all meM with | m - m*|| <.

Remark. Strong uniqueness of order a, o > 1, is impossible. Indeed,

1f m* is strongly unique of order a, a > 1, then by (1.3.3) for

r > 0 we have

Im-otl> [ x-al-lx=-o%[>y () | m-nx] /e
for all meM with [m-m*|| <,. Then 0 <y (r) < || m - m*lll'(l/“) -+ 0
as |m=n* | - b, a contradiction,

The following lemma states that if strong uniqueness of order a
holds in some relative neighborhood of m*, it holds in all relative

neighborhoods of m*,
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Lemma 1.3.4. Let x, m*, and a be as in Definition 1.3.3. The following

are equivalent:

(1) m* is strongly unique of order a;

(i11) there exists a >0 and K> 0 such that |m ~m* | <K
(]| x - wf - [x-u*| )% for all meM with | m - m*|| < o3

(111) There exists a p > 0 and vy > O such that || x - m| >

I x-mt [ +v | m=n* ]| 7% for al1 meM witn [ m=m*|| < o

Proof. The proofs of (ii) - (iii) and (1) + (1i) are evident from
Definition 1.3.3. To prove (iii) = (i), assume (iii) holds and let
r > 0. Define y(r) =y for 0 < r < pithen (1.3.2) holds ‘for r < p. For

r>0and p< | m-m*| <r, (111) yields

R e

But, .

> x|+ v M.

x- ( m* + '“*ééagn m-mNf=] (x-n*¥) Q- —m® )+

p(x-m)

p -
Towr) 12 Q- ]r;,_—p,;;"“) RS Il ey | x-m {.
Therefore
Tory (xem L= Lxemt D < vo2/e

which implies
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Dxmm || > [ xm [+ v o7 ) e |
1/a)-1 1/
= || xemx |+ &2 ) || memr]) 2/
| o (17071
> | x|+ Y QYO e (/D

Defining v(r) = Y(gjlla)-l‘for r>p, (1.3.2.) holds for r > p and
the proof is complete.
The next lemma provides a necessary and sufficient condition for

strong uniqueness of order a for finite dimensional subspaces.

Lemma 1.3.5. Let x, m*¥ and a be as in Definition 1.3.3. Assume that

dim{M)<», Then m* is stréngly unique of order a if and only if
1im " x=m, " = " x—m*" :
| m - e 2

for all sequences {mk} in M\(m*} with éig I m - m*] =0

(1.3.4)

ko> >0

Proof. Clearly, if m* is strongly unique of order a then (1.3.4) holds

for all sequences {mk}in M\ {m*} with kig I m - m*|] = 0. Note
that the hypothesis, dim(Mk», is not needed here. Suppose then that
m* 18 not strongly unique of order a. It will be shown that, under

this assumption, there exists a sequence {mk} in M\ {m*},

Po | m - m*|] = 0 and
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[l ]| = x|

1/
|| = ="

Two cases are considered.

lin

ko

Case 1: Suppose m* is not unique, then there exists m_.eM, mo#m*,

0
which is also in PM(X)" Since M is a linear subspace and PM(x) is
convex, m, = m¥* + (I/k)(m0 - m*) is also in PM(x) for k > 1. So

{n.} 1s in M\ {m*}, Un|l m -n*|| = 0 and

| o | =[] |
| mene

Case 2: Suppose m* is unique. Since m* is not strongly unique of

order a, there exists r > 0 and a sequence {mk} in M {m*} such

. that Ilmk-m*|l < r and

. ==l -l il |
e ==

as k + =, Since {Ilmkll]is bounded and dim(M) < w,lwe may assume

+0

that %ig||mk -m0|| = 0 for some moeM. But,
lx-mll = llx-w¥l = Undlx -l - || x- =)

- 2 v llm - w10 -0
since %3g Y - 0 and Ilmk-m*ll <r. So Il x—moll = ||x-m*|| and since

m* is unique it must be that m, = m*, Thus kigllmk—m*” = 0 and the
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lemma is established.

Remarks.

1. The hypothesis that dim(M) < e can be removed if

1 m] - hens

00 - a 2y
B2 - e M

>0

for all sequences {mk} in M\ {m*} with iﬁg I mk-m*" = 0 and where

¥ depends only on x and m*.

2, If o =1, then in linear approximation the local strong
unicity constant is equal to the global strong unicity constant,
see [10]. However, if 0 < a < 1 the dependence of K(r) on r in

(1.3.2) cannot be removed because

o (xof - [ x-u*[) ®
| uf e S =0

When considering approximation in the Lp-spaces we shall require
Lemma 1.3.6. Let x, m*, and a be as in Definition 1.3.3 and p > 1.
The following are equivalent: - T

(1) m* is strongly unique of order aj

(11) there exists a # > 0 and y > 0 such that | x-m | P 3_“x-m* "p
+v | x—m*"lla for all meM with || m-m*| < e.

For the proof we will need

Lemma 1.3.7. If 0<a <b< 2a then for p>1, b® = aP > pa® ™' (b-a) and

b-a> @/p)P ) @ - aP).
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Proof. By the mean-value theorem there is a number ¢ between a
and b such that bP - af = pcp-l (b - a) > pap“1 (b-a) and since c <

b < 2a, bP - aP < p (2a)P7! (b-a).

Proof of Lemma 1.3.6. Assume (i) holds, then by Lemma 1.3.%4 there

exist p > 0 and y*> 0 such that ]I x-mll - "x—m* || > y* "m-m* nl/a
for all meM with || m-m*| < po. By Lemma 1.3.7,

' -1
| x-nlP- f-m* P > pll x-m* P~ (x-m)] - | x-m*])

> v+ || xemt] PL) || e 1/

p-1

’

for all meM with | m—m*" < p and setting Yy = py* || x-m*"
(11) holds. |

Assume (11) holds, then there exists p > 0 and Yy > 0 such that
|l - bl P2 v [ m -l for all med with | mut| < o

Let p.= min (p, || x-m*||). Then if | mem*|| < py» We have

x-m | < | xm* “ + [ln* -ml] < 9 |lx-m* . Therefg?e-.-gy Lemma 1.3.7 ’
1 o D
al = hewt | 2 Sy (O 2all P e P
= s B LS

p(2]| m-m* || P~1)

Thus, by Lemma 1.3.4, (1) holds and the proof is complete.

Remark. Expression (1.3.4) of Lemma 1.3.5 can be replaced with

Lo [ xm [IP - || x-ar P
koo >0

[Ee
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where p > 1 and the lemma still holds.
A general situation where strong uniqueness of order a holds
will now be presented. This situation will be shbwn later in

Chapter 2 to be the case for the P - spaces, 2 < p < =, under

certain conditions.

Theorem 1.3.8. Let x and m* be as in Definition 1.3.1 and X a

Banach space with a twice continuously Fréchet differentiable norm
. 2
- m* : -m* ¢
in a neighborhood of x - m*. 1If %\%g(M) D° (x-m*; m,m) > 0, where
S(M) = {meM: || m|] = 1}, then m* is strongly unique of order 1/2.

Moreover, 1/2 is the largest possible order.

Proof. Let 2y = még{M) Dz(x—m*; m,m) > 0. Since D2 (*:*,°) is a

continuous bilinear operator valued function at x - m*, there exists

€ > 0 such that

I Dz(x-m*;'.') - Dz(x-m* +m3e, ) <y
for meM with ||m || < €. Thus for moeS(M) and meM with m || <€
2y - Dz(x-—m* + m; mo. mo) < Dz(x-m*; mg, mo)
-D2 (x-m* + m; LS mo) <y
and hence Dz(x-m* + m; LS mo)l Y. So if ||m|/ < € and 0 <tx<1
9 o :
we have D”(x-m* + tm; lftr%'ﬂ > sz—ﬂ) > Y, and thus

(1.3.5) Dz(x-m* + tm; m,m) > vy | m ||2.
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Now by Proposition 1.1.3 and the remarks following Proposition 1.1.5

there is a t,, 0 < t, < 1 such that -

o’ 0

lrx-m* +m| - || x-m*|] = (1/2) Dz(x-m* + t m;m,m)

0
< /2| P (xmt + e | || mlP
Since Dz(x-m*;',') is a bounded operator, there is a number L>0

such that, for || m|| sufficiently small, || D(x-m* + tm) || < L, and so

| x-m* + m|| - || x-u*|| s
0 < < L=l »o0

R | m|f"

as ||m|| + 0. So by Lemma 1.3.5, m* cannot be strongly unique of

order 1/(2-8) and since § 1s arbitrary, m* is not strongly unique
of order a, a > 1/2. To show that strong uniqueness of order 1/2
holds, let meM with ||m|| < €. Then by (1.3.5)

|| x-n* + ]| = [| x-w*]| = (1/2) D*(x-n* + tm;m,m)

> (1/2) v [|n]l?.

Therefore, by Lemma 1.3.4, m* is strongly unique of order 1/2.

Suppose M is a finite dimensional subspace of a Hilbert space H.
Let xeH\M and Q the best approximation to x from M. Thus by example
1, section 2,

2 2
2 ”m “ <x,m>
D" (x;m,m) =

>0

3
Il =l Il =i
for all m S(M) provided strict inequality holds in the Cauchy~Schwarz
inequality. This will occur provided x¢M. Therefore, Theorem 1.3.8

applies to approximation in a Hilbert space.
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Schmidt [18] has shown that in the setting of monotone approxima-
tion in C[a,b] strong uniqueness of order 1/2 holds and an example
of Fletcher and Roulier [ 8] shows that, in general, 1/2 is the

largest possible order.




Chapter 2
STRONG UNIQUENESS IN THE Lp-SPACES, l<p<w

2.0 Introduction

Let (X, I, u) be a complete positive measure space. LP(x, T, )

z LP will denote the Banach space of all equivalence spaces of real=-

valued p-integrable functions on X with norm given by

e, =(Slflpdu) i,

The above integral will denote integration over the entire set X
unless specified otherwise. Let M be a finite dimensional subspace
of LP and feLp\M. ‘Since M is finite dimensional, there exists an -
element g*eM such that

e - el ;= infll £ - &l
i.e., g* is a best ) A approximation to f from M, see [4, p. 20].
It is known tha; the Lp-sbaces (1 <p < w) are strictly convex aﬁd
so g*‘is unique, see [4, p. 23]. We require the following character-
ization theorem for LP - approximation. A more general form can be

found in [19].

Theorem A. Let M be a finite dimensional subspace of Lp, feLp\\M,

and g*eM. Then g* is the best P - approximation to f from M if and

only 1f
p-1
glf - g*| sign (f-g*) du =0
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for all geM.

Recall that the first Fréchet derivative of ||

P at f-g* is
P g

given by

D(f-g*;g) =p Sglf -g*lp-l sign (f-g*) du.

We know from Chapter 1, Section 2 that the Lp—spaces (1 < p < )
are smooth and so strong uniqueness of order 1 does not hold. There-
fore, if such a property holds at all it must be of some order O,

0 <o < 1. It will be shown that under certain conditions Theorem

1.3.8 applies provided 2 < p < =, otherwise the order 1/p holds. The

case where 1 < p < 2 must be treated differently since the second
Fréchet derivative of the norm does not exist. A¢ain, in this case,

the order is either 1/2 or 1/p. The case where p=2 was discussed

following Theorem 1.3.8.

2.1 Strong Uniqueness for the Lp—spaces

Throughout this section McLlP is a finite dimensional subspace,

feLp\\M, and g*eM 1is the best Lp-approximation fo f from M.

Theorem 2.2.1. Let 2 < p < » and define supp(f-g*) = {xeX: (f-g*)

(x) # O} and supp(g) similarly. If for all geM\ {0}, wu(supp(f-g*)
N supp(g)) > 0, then g* is strongly unique of order 1/2. Moreover,

1/2 is the largest possible order.

Proof. In view of Theorem 1.3.8 and Lemma 1.3.6 we need only show
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gedth ( ng|f_g*|1”2 d11)> 0.

Recall that the expression in the parentheses is a nonzero multiple

of the second Fréchet derivative of || ¢ l@ » and so we shall use

Lemma 1.3.6. Since dim(M) < =, S(M) is compact so it suffices to prove

(2.2.1) nglf-g*lp‘Z du >0
‘for all geS(M). Let geS(M). By hypothesis u{x € supp(f-g*): g(x) #
0} > 0 so gzlf-g*lp_z > 0 on a set of positive measure. Therefore
(2.2.1) holds for all.gsS(M). The proof that 1/2 is the largest

possible order for which g* is strongly unique follows from Theorem

1.3.8 and Lemma 1.3.6.

We also have the following corollaries.

Corollary 1. If u{xeX: £(x) = gk (x) = 0} = 0, then g* is strongly

unique of order 1/2.

Proof. 1In this case, supp(f-g*) differs from X by a set of measure

zero, hence for all geM\ {0}, u(supp(f-g*) A supp(g)) > O.

Corollary 2. If u{xeX: g(x) = O} > O implies g = 0 for all geM,

then g* is strongly unique of order 1/2.

Proof. Suppose there exists geM such that u(supp(f-g*) nsupp(g))
= 0, that is, u{x € supp(f-g*): g(x) # 0} = 0 hence u{xe X \ supp

(f-g*): g(x) = 0} > 0. But {xeX\supp(f-g*); g(x) = 0}e {xeX: g(x) =
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0} so u{xeX: g(x) = 0} =0 which implies, by hypothesis, that g = 0.

Thus if geM\\ {0}, then u(supp(f-g*)N\supp(g)) > O.

Remark. The hypothesis of Corollary 2 is a Haar type condition in
that it places a restriction on the zeros of the elements of M\{0}.
A more general situation than that of Theorem 2.2.1 1s we allow

u(supp (f-g*!) M supp(g)) = 0 for some geM\{0}.

Theorem 2.2.2. Suppose there exists an element geM\ {0} such that

u(supp(f-g*)Nsupp(g)) = 0. Then g* is strongly unique of order 1/p.

Moreover, 1/p is the largest possible order.

Proof. Without loss of generality assume g* = 0. It is first shown
that 1/p is the largest possible order for which gk = 0 is strongly
unique. Let a > 1/p and geM\. {0} such thét u(supp(£f) O\ supp(g)) = 0.
Denote by Z(f) the s.et {xeX: £f(x) = 0}. Then u(zZ(f)) > 0, for other-
wise by Corollary 1 u(supp(£f)N\supp(g)) > O for all geM\\{0} which

is a contradiction. 1If A > 0,then, since g(x) = 0 a.e. on supp(f),

e -ell® - |l €] glf\*’au +) |rg|Pau Y |£|Pay
P P = Jsupp(f) Y2(f) Supp (£)
I J\glll/a Al/a Sl8|pdu 1/pa
P | Z(£)

1-(1/pa)
(f) %
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p-(1/a)
1/ p |
But AP a)" 8"§ - (/a) + 0 as A + 0, thus by Lemma 1.3.5 and Lemma

= R g

1.3.6 g* = 0 is not strongly unique of order a > 1/p.

Now we prove'that 1/p is the correct order. Assume there exists
geM\ {0} such that u( supp(£)M\supp(g)) = 0. Then g(x) = 0 a.e.
on supp(f). Let Ml = {geM: g(x) = 0 a.e. on supp(f)}. Now Ml is a

subspace of M so obtain a basis for M1 and expand this basis to one

for all of M. The additional basis elements span a subspace MZ,-where
if gzeMz and gz(x) = 0 a.e. on supp(f) then g8y = 0. Thus u(supp(f)
f\supp(gz)) > 0 for all gzeMZ\\{O} and 0 is strongly unique of order

1/2 relative to M, by Theorem 2.2.1. Let geM. Then since M is

2

the direct sum of and M,, g =g, + g, where g, eM. and g, eM,.
2 1 2 171 272

Suppose | g]l. < 1. Define a new norm |gf|” = "gln + |lg. ]l which is
P P 27p

equivalent to the Lp norm on M since dim M < », Since 0 is strongly

unique of order 1/2 relative to M2’ given Ty > 0 there 18 a constant

2
Y; > O such that | £+ gzﬂg - f“g 2 I gzup for all gy eM, with

“ 82“p f.rl. Now B [

le+ e +e)l® - el® (le+elPa S| Pay -{jg|?
1t 8 g, du +\ |g, + g, du -\|£|Pau
P P m Jsupp(£)* 2(g) 2

ey + g, 117 Slg1 + g, [Pau
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Qe v ggiPan - Yieras - § 1o tran +§ 1, + 0,17
= Z(f

(f)
Sl gl + 82|pdu

St R Ig P+ le sl
' P
Ie, + e,
P
sl gl Uyl v e+ gyl -y, vyl 1B - 1,
Iey +&,l7 I elp
Since p > 2 there exists r, > 0 such that if || g2"p < T, then Y,
lg zﬂi - gzﬂp > 0. Since the norm || *||I” 1s equivalent to the

norm || '"p on M, there exists a constant K > 0 such that K | glk
le I > 1 gzllp, thus there exists rj, 0 < r, < 1. such thar 1if |
I & "p < ry then I 82" L r = min‘{rl, rz}. Therefore if | g

r3, then
P p
+ - | £
Ie+slp -2,

R )

1

and so by Lemma 1.3.5 and Lemma 1.3.6, 0 is strongiy unique of order
1/p. This completes the proof. .

For the case 1 < p < 2 the norm is only once continuously
Fréchet differentiable so Theorem 1.3.8 does mot apply. 1In this case,

however, if will be shown that strong uniqueness of order 1/2 or 1/p
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holds.

Again, let M be a finite dimensional subspace of Lp, l<p«<2,
fe Lp\\M, and suppose g% = 0 is the best Lp-approximation to £ from
M. For geM\ {0} 1let

5, = {xc supp(f): sign f(x) = sign g(x)},

S2 = {xe supp(f): sign f(x) # sign g(x) and |g(x)| jzlf(x)l},

S3 = {xe supp(f): sign £(x) # sign g(x) and Ig(x)l > If(x)l},
and Z(f) = X\ supp(f). Then

(2.2.2) Slf + g|Pau = \|g|Pau +.S(If| + gl au

Z(f) Sl

; Slfl-lgi)"du { dal- 1607,
. S, S, ,
Consider now the following Taylor expansion. For a # 0, b # 0,

and some t, 0 < t < 1, we have

(a+b)P =aP +paPlp+ p_(gil (a + tp)P"2 b2

For b > -a, this follow frdm the remainder formula for Taylor expan-
sioﬁs. For b = -a, solve

aP - pap +p(p-1/2(Q - t)p—zap =0
or

1?p+p(p-1)/2 (1-6P2=p

togett =1 - (2/p)1/(p-2) and since 1 < p <2, 0 <t < 1. The above

Taylor expansion is applied to (|f| + Igl)p on Sl’ (Ifl - Igl)p on
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SZ’ and (Igl - Ifl)p on S3. Hence, there exist functions 61, 92, and

63 with O _<_9i <1l,1i=1, 2, 3, such that

(2.2.3) S(Ifl + |g])Pau

51

- S(Iflp +ple]P7" Jg| + pe-1/2 (J£] + 0, l8))P D)au

5)

(2.2.4) S(Ifl - |g|)Pau

S,

= \ ([£]P - p|£]P7 |g| + pGe-1)/2 (|£] - ezlgl)p'zgz)du

Sy

(2.2.5) (lg] - |£])Pau

S,

- S(Iglpv- plel? LE| + pp-1/2 (|g] - 0,1 £)P %)) an.

S,
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Combining (2.2.3), (2.2.4), and (2f2.5), (2.2.2) becomes

S;If-+ g|Pau = S§|g|pdu

Z(£f)

+ NP+ ol£]! Jg] + pe-172 (I£] + 0, ]g)P2eHyau

)

+ \Ul® - plel® gl + pe-/2 ([£] - 0,]8)P 2P an

Sy

- -2.2
+ \del®? - plg|P? [£] + pep-1)/2 (|g] - 63|f|)p 22y du .

S5

Now, if |£f]| < |g|, then lflp < lg[p and since 1 < p < 2, Iglp-z <

-2 -1 -1 - -
[£1P7% so [g]P™" [£] < |€]P"! |g| and ~p|g|P! |£] > -p|g|P7Y |g].

Thus,

Slf+glpdu > Slglpdu

Z(f)

+ \UEIP +pl£1P™Y gl + pe-1/2 (J£] + 0,]eDP 2Py an

5
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- -2 2
+\ (EIP - pl£lPh gl + pe-1/2 (J€] = 0, 8P g*yau

2

wnl~)

(el® - ple[P7h |g] + p(p-1)/2 (Igl -0, |£DhP" "2 2y ay

[}
C/'jwm

Iglp du + %Iflp +p %g If]p—l sign £ du

()

+ p(p—l)/z(g(lfl + 0, |ehP? g%

51

+ S(lfl - f’zlgl)"—2 e du + g (gl - 63|f|)p_2 £2 du).
S

2 : 53

By Theorem A, the third integral on the right is zero. Also, the

first and final integrals are nonnegative so

Slf + g|Pau > Smp + .P(p-l)/Z(g(lfl + 0, |g)P 2%
S(Ifl -9 Igl)p ~2,2 §

S
Define 6(x) by 6(x) = el(x) on Sl and 6(x) = 62(x) on SZ' Then
(2.2.6)S|f + glpdu _>_S|f|pdu + -p(p-1)/2 S(Ifl + 6|g|)p-2 gzdu

U
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