The effects of subject's reading achievement level in a recognition memory task
by Anne Thompson-Gibbs

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Psychology
Montana State University
© Copyright by Anne Thompson-Gibbs (1982)

Abstract:
Studies of recognition memory usually examine the effects of variables related to the stimulus materials, one of the most common being the meaningfulness of brief letter strings. The subject in a recognition study may use meaningfulness as a cue in the decision process. Conceivably the subject's reading achievement level may directly affect letter string recognition due to differences in accessing letter string codes during the recognition process. A signal detection paradigm was used to obtain measures of performance for the two reading achievement groups in a recognition task varying the meaningfulness of CVC trigrams. Non-parametric measures were employed to evaluate differences in sensitivity and response bias. While there were no differences in the levels of sensitivity as a function of the subject variable, there were significant differences in response bias, suggesting that the less capable reader does not process letter strings in the same manner as the skilled reader.
THE EFFECTS OF SUBJECT'S READING ACHIEVEMENT LEVEL IN A RECOGNITION MEMORY TASK

by

Anne Thompson-Gibbs

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Psychology

MONTANA STATE UNIVERSITY
Bozeman, Montana

December 1982
APPROVAL

of a thesis submitted by

Anne Thompson-Gibbs

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

Date 12/27/82

Chairperson, Graduate Committee

Approved for the Major Department

Date 12/27/82

Head, Major Department

Approved for the College of Graduate Studies

Date 12-28-82

Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made.

Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his absence, by the Director of Libraries when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature
Date
Dec. 16, 1982
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>METHOD</td>
<td>8</td>
</tr>
<tr>
<td>Subjects</td>
<td>8</td>
</tr>
<tr>
<td>Stimulus Materials</td>
<td>8</td>
</tr>
<tr>
<td>Apparatus</td>
<td>10</td>
</tr>
<tr>
<td>Procedure</td>
<td>11</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>15</td>
</tr>
<tr>
<td>Measures of Sensitivity and Response Bias</td>
<td>15</td>
</tr>
<tr>
<td>Area Under the ROC Curve - $P(A)$</td>
<td>18</td>
</tr>
<tr>
<td>Chi Square Values as a Measure of Response Bias</td>
<td>23</td>
</tr>
<tr>
<td>Mean Rating Category Values</td>
<td>26</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>37</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Instructions to Subjects</td>
<td>41</td>
</tr>
<tr>
<td>B. Post Experimental Questionnaire</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. Mean Meaningfulness Value for Each CVC Condition by Tray . . . 10
2. Analysis of Variance for Area under the ROC Curve
 As a Measure of Sensitivity... 19
3. Analysis of Variance for Chi Square (2x6)
 As a Measure of Response Bias 26
4. Analysis of Variance for Mean Rating Category Values
 As a Measure of Sensitivity and Response Bias............... 29
LIST OF FIGURES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ROC Curves for Meaningfulness Conditions.</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Sample Frequency Data as Organized for Computation of Chi-Square Measure</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>of Response Bias.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mean Response Categories for Old and New CVC Conditions</td>
<td>28</td>
</tr>
</tbody>
</table>
ABSTRACT

Studies of recognition memory usually examine the effects of variables related to the stimulus materials, one of the most common being the meaningfulness of brief letter strings. The subject in a recognition study may use meaningfulness as a cue in the decision process. Conceivably the subject's reading achievement level may directly affect letter string recognition due to differences in accessing letter string codes during the recognition process. A signal detection paradigm was used to obtain measures of performance for the two reading achievement groups in a recognition task varying the meaningfulness of CVC trigrams. Non-parametric measures were employed to evaluate differences in sensitivity and response bias. While there were no differences in the levels of sensitivity as a function of the subject variable, there were significant differences in response bias, suggesting that the less capable reader does not process letter strings in the same manner as the skilled reader.
INTRODUCTION

Studies of recognition memory usually take into consideration the effects of variables related only to the stimulus materials. When the stimulus materials consist of letter strings or words, these variables often include approximation to the English language, meaningfulness, pronounceability, and familiarity. Underwood and Schulz (1960) suggested that there are a number of relationships between meaningfulness, pronounceability, and familiarity, and that one or all of these may play a part in the recognition of letter strings and words. The subject in a recognition study would use these factors as cues aiding the decision process.

Peterson, Peterson, and Miller (1961) found positive relationships between meaningfulness and short term memory with the single presentation of trigrams and three letter words. Keppel and Underwood (1967) varied response meaningfulness in a paired associate paradigm and found a positive relationship between meaningfulness and short term memory in a recognition memory task.

Raser (1970) studied the effects of meaningfulness utilizing a paired associate paradigm allowing for separation of both the stimulus and response meaningfulness. Using the four possible combinations of high and low meaningfulness stimuli, as defined by Noble (1961), he found that meaningfulness was an effective variable in recognition.
performance. Raser indicated that recognition was more likely when both members of a given pair were high in meaningfulness.

In an unpublished study, Thompson-Gibbs (1972) utilized a signal detection paradigm, presenting old and new CVC trigrams serially and sequentially, varying meaningfulness across four conditions. Trials where both old and new CVCs were high in meaningfulness yielded the best recognition performance.

While it is well established that meaningfulness provides effective cues to the subject in a recognition study, subjects' utilization of the cues may be directly affected by a subject variable not generally considered. Wallach (1963) approached the problem of subject variables in his study on the relationship of spelling achievement to the perception of letter strings. He found positive relationships between high levels of spelling achievement and the recognition of letter strings. Spelling and reading achievement are directly related to one another (Jastak, Bijou, and Jastak, 1965), as spelling is more or less the reverse of reading, translating sound into graphic symbols. Subjects' ability to recognize English words out of context, then, may be a potentially confounding subject variable that should be considered in recognition memory studies. This skill, generally defined as skilled recognition reading, or the ability to read individual words out of normal sentence structure, combines several subskills or components that may be directly related to recognition memory performance. These subskills are discussed by Eleanor Gibson in her 1969 analysis of reading skills.
The first of these is the acquisition of language, not only comprehending its meaning, but perceiving its various segments and orders of combination. The second skill is visual discrimination of the various letters, noting the contrasts and similarities in their form. Both these skills are originally developed during the preschool years and reach maturation during the early school years. Neither needs to be considered in a word recognition task unless the subject population is known to have defects in visual perception or is considered learning disabled.

The decoding of written language is the third skill. At this reading level the subject reads out in silent verbalization units what is directed by the written units. This may be an important skill in the recognition of letter strings and words, especially if the verbalization unit is not a word, but rather, a string of letters. If the letter string can be coded as meaningful, i.e., one that can be associated with known words or word-like patterns, the subject is more likely to recognize that sequence when it is presented to him as a recognition stimulus.

Jackson (1980) suggests that the better reader is more efficient in the processes of accessing letter codes, and that the unfamiliar or new item will be processed more quickly by the better reader. A unique item, i.e., one that is an unfamiliar letter pattern, may be processed serially by the less skilled readers due to their decreased automatization of recognition skills. This is supported by Healy's (1981) discussion of the rules readers use to process reading units. She suggests that a letter string is processed as a unit when it is
normally contained in a frequent word, but that when the letter string is unfamiliar, it is processed in single letter units.

Gibson's fourth subskill related to the recognition of new words is the ability to read in higher order units . . . reading in chunks, utilizing all of the structural regularities found in the written language. It is this skill that facilitates the learning of new words, allowing the reader to attach meaning to the various combinations of written symbols. This skill is continuously developed and improved upon with practice, leading to the differences in performance that are measured by tests of word recognition.

Skilled recognition reading as discussed here is measured by one of the subtests of the Wide Range Achievement Test (WRAT) devised by Jastak, Bijou, and Jastak (1965). During development and standardization of the WRAT, research indicated that the test scores correlate highly with the verbal scores of various other individual intelligence tests, and with other standardized tests measuring academic achievement.

With the tendency for researchers to use readily available subjects and small groups for recognition studies, perhaps the ability to recognize words out of context should be considered a subject variable. Subjects are often a select group, i.e., college students who tend to be at the upper end of the reading achievement scales for the general population. College students do, however, exhibit a wide range of intellectual and academic skills and cannot be considered to be a matched subject group for studies that rely heavily on one specific skill. The use of a word recognition test such as the WRAT
would allow the experimenter to screen subjects subsequently making
comparisons between subject populations identified by differences in
reading achievement levels and, by doing so, avoid what may prove to
be a confounding variable in recognition studies that use letter
strings as stimulus materials.

Since it is possible that more skilled readers process letter
strings in units as suggested by Jackson (1980), Healy (1981), and
Gibson (1969), while the less skilled reader processes letter strings
sequentially, there may very well be differences in performance between
the two groups. Most recognition studies allow only a very brief time
for both learning trials and recognition trials. The reader who cannot
process a particular item as a unit simply does not have time to enter
that item into the memory code as a meaningful bit of information. In
the recognition task, therefore, there is little information present
in the memory code that is of value to the subject in making the Old
or New decision. This would increase both the subject's tendency to
make errors and his tendency to guess.

This study, therefore, concentrates on the effects of a possible
subject variable, i.e., the ability of the subject to recognize words
out of the normal context as measured by the reading subtest of the
WRAT. Using a signal detection paradigm (Green and Swets, 1966;
Shontz, 1967), data trials were conducted utilizing CVC trigrams of
different meaningfulness values in the four possible combinations of
high and low meaningfulness.

Previous studies of recognition performance which involved
varying the meaningfulness of CVC trigrams as the independent variable
(Raser, 1970, and Thompson-Gibbs, 1972) have yielded consistent patterns of recognition performance. It is expected that the following patterns would again occur.

1. Recognition performance in trials where both the Old and New CVCs were high in meaningfulness would reflect the highest degree of sensitivity to the various stimulus features.

2. Recognition performance for those trials where the Old CVCs were high in meaningfulness and the New CVCs low in meaningfulness would reflect sensitivity of a somewhat lower level.

3. Recognition performance for trials where the Old CVCs were low in meaningfulness and the New CVCs high in meaningfulness would reflect an even lower level of sensitivity to the features of the stimulus materials.

4. In the trials where both the Old and New stimulus materials were low in meaningfulness, the recognition performance would reflect a very low level of sensitivity.

Differences in recognition performance occur not only in response to the meaningfulness levels of the stimulus materials, but also appear to be related to the contrast effects evident in the two conditions where Old and New stimuli are of different values.

The major hypotheses of this study are: 1) Previous findings will continue to hold true regarding recognition performance when meaningfulness is varied across conditions; and 2) subjects in the highest reading achievement group will display consistently better
recognition performance under all four stimulus conditions. The Low reading achievement group will display significantly lower measures of performance.
METHOD

Subjects

Eighty subjects were selected from an original pool of 120 students enrolled in psychology courses at Montana State University. Subjects were selected on the basis of their score on Jastak, Bijou, and Jastak's (1965) Wide Range Achievement Test. Administration of the WRAT was the first task presented in the experimental session. Subjects were assigned to two achievement groups designated as High WRAT and Low WRAT. The forty subjects with the highest WRAT scores were designated the High group, while the forty subjects with the lowest scores were designated as the Low group. The only experimental requirement was that subjects had normal visual acuity with or without corrective lenses.

Each of the original 120 subjects was scheduled for a thirty minute time block, and participated in the data collection trials whether or not he/she was subsequently assigned to one of the two experimental groups.

Stimulus Materials

CVC trigrams used as stimulus materials were identified by selecting 200 High and 200 Low meaningfulness CVC trigrams from Noble's (1961) scaled lists. The CVCs were chosen to exclude English words and known abbreviations.
The CVCs were prepared for presentation by typing the individual trigrams on acetate film, then mounting the film in standard 2X2" slide mounts.

Eight trays of slides were prepared for the experimental task using the four possible pairings of meaningfulness. The four conditions were designated as High-High, High-Low, Low-High, and Low-Low. The first value, in each case, refers to the meaningfulness level of the Old stimulus, and the second to the New stimulus.

Two Carousel trays were assembled for each condition; each contained 25 Old CVCs in random order, then 25 New CVCs interspersed randomly among repeats of the 25 Old CVCs for a total of 50 stimulus slides for the recognition task. Each subject was given two series of recognition trials, both with the same meaningfulness condition for a total of 100 trials per subject.

Old CVCs were defined as those CVCs presented in learning trials; the New CVCs were those added to the list of Old CVCs and presented during recognition trials. No trigram was used more than one time in any condition. As shown in Table 1, the meaningfulness values assigned by Noble (1961) for each CVC were summed for Old and New CVCs in each tray and mean meaningfulness values computed for each condition.
Table 1
Mean Meaningfulness Value for Each CVC Condition by Tray

<table>
<thead>
<tr>
<th>Tray</th>
<th>Condition</th>
<th>Mean Old</th>
<th>Mean New</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High-High</td>
<td>3.41</td>
<td>3.32</td>
</tr>
<tr>
<td>2</td>
<td>High-High</td>
<td>3.53</td>
<td>3.49</td>
</tr>
<tr>
<td>1</td>
<td>High-Low</td>
<td>3.36</td>
<td>1.27</td>
</tr>
<tr>
<td>2</td>
<td>High-Low</td>
<td>3.29</td>
<td>1.26</td>
</tr>
<tr>
<td>1</td>
<td>Low-High</td>
<td>1.27</td>
<td>3.39</td>
</tr>
<tr>
<td>2</td>
<td>Low-High</td>
<td>1.26</td>
<td>3.42</td>
</tr>
<tr>
<td>1</td>
<td>Low-Low</td>
<td>1.25</td>
<td>1.27</td>
</tr>
<tr>
<td>2</td>
<td>Low-Low</td>
<td>1.27</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Total possible range: 1.06 to 4.78.

One tray was used in the practice trials. This tray was assembled using 50 CVCs from the middle range of Noble's scaled lists. No CVC from the practice set was used in any of the eight sets of experimental materials.

Apparatus

Stimulus materials were presented on a rear projection screen (12x15 inches) via dual Carousel projectors equipped with automatic shutters and a timing device known as the Lafayette T-2K constant illumination tachistoscope. The first project projected the CVC on the screen while the second provided comparable interval illumination to the screen to minimize afterimage effects. The screen was placed at eye level with the subject seated approximately 36 inches from the screen.
Illumination of the experimental room during learning and recognition trials consisted of low level lighting sufficient only to allow the experimenter to record the data.

Procedure

The word list from the Reading portion of the *Wide Range Achievement Test, Level II* was administered individually to each of the 120 volunteer subjects. The 40 highest scoring subjects were assigned to the High WRAT group; the 40 lowest to the Low WRAT group. The scores and data trials from the 40 subjects in the middle range were discarded and not included in any experimental analysis.

The mean score on the *Wide Range Achievement Test* for the High WRAT group was 15.6, with a range of 13.2 to 17.1, whereas the mean for the Low WRAT group was 11.2 with a range of 7.7 to 12.2. The scores expressed above represent the academic grade level of subjects' recognition reading skills.

Each of the subjects also participated in the recognition portion of the study. To facilitate counterbalancing the order of presentation of stimulus materials, a running mean was kept for the WRAT scores after the first 20 subjects had completed data trials. Subjects that followed were arbitrarily assigned to High and Low WRAT groups depending on the score being above or below the then current mean WRAT score.

A signal detection paradigm was chosen as the most effective way of obtaining measures that were sensitive to differences in performance between the two reading achievement groups. This paradigm, proposed
by Green and Swets (1966), is formulated on a theory that assumes psychophysical judgments are based on underlying neural activity which can vary in magnitude. This activity can be produced by an external stimulus (the signal) but can also occur when no signal (or a false signal) is present. Gleitman (1981) provides a most simple explanation of the subject's task in the detection experiment:

"... the subject's task in a detection experiment He must decide whether a given sensory process should be attributed to the signal superimposed on background noise or to the background noise along On the average, the signal (plus background noise) produced a process of greater magnitude than does the noise alone, an average value which rises with increasing signal strength. The subject's decision problem arises because the magnitude of the two sets of sensory processes fluctuates. . . . the more intense the stimulus, the less likely it is that such confusion will occur.

... The best they can do is decide that they have a sensation—that their internal sensory experience is produced by a signal rather than by noise alone. And in this decision they can be wrong."

Following a technique discussed by McNicol (1972), a rating scale response was utilized rather than the standard Yes or No answer. The use of such a scale provides the most efficient means of obtaining information regarding the sensitivity of the subject to differences in the stimulus materials.

Prior to the presentation of learning and recognition trials, each subject was handed a copy of the instructions. The experimenter went over these instructions verbally while the subject read his/her copy of the instructions. After the subject had an opportunity to become familiar and comfortable with the rating scale, the experimenter presented the two blocks of practice trials using the tray of medium
value CVC trigrams. The first of these trials consisted of ten CVCs in the learning trial and twenty in the recognition trial. The second practice trials consisted of fifteen and thirty CVCs, respectively. The subject was encouraged to ask questions regarding the use of the rating scale and verbally reinforced for using the scale efficiently.

The instructions for the experimental task (Appendix A) were modified from a previous study (Thompson-Gibbs, 1972).

The stimulus conditions for the data trials were then presented via the Lafayette projection system. The 25 CVCs in the learning trials (Old CVCs) were presented sequentially for 1/125th second at one second intervals. After a fifteen second interval between learning and recognition tasks, the fifty slides for the recognition task were presented for 1/125th second at four second intervals. During the fifteen second interval between learning and recognition trials the subject was instructed to count backwards from 100 by 3s out loud to minimize the rehearsal of the Old CVCs.

The four stimulus conditions were counterbalanced for order of presentation within the stimulus conditions as well as for order of stimulus conditions. This counterbalancing occurred for both reading groups.

During presentation of the recognition stimuli, the subject's task was to respond to each CVC shown with a confidence rating of one through six, with responses of one, two, and three indicating an Old CVC (one that had been seen in the learning trials) with confidence levels of Very Sure, Fairly Sure, and Guess (unsure), respectively. Responses of four, five, and six indicated that the CVC was New (not
seen in the learning trials) and with respective confidence levels, of
Guess, Fairly Sure, and Very Sure. It should be noted that a response
of three or four is different only in terms of the Old or New portion
of the response.

At the end of each experimental presentation, each subject was
asked to complete a post-experimental questionnaire (Appendix B).
RESULTS AND DISCUSSION

Measures of Sensitivity and Response Bias

In the process of tallying responses for each of the two stimulus conditions (Old or New CVC) the raw data from each subject was organized in a two-by-six matrix. Data analysis followed procedures designed to illustrate any differences in sensitivity and response bias across the four meaningfulness conditions and between the two reading achievement groups. Such an analysis yields an in-depth measure of subject performance that is not possible when merely comparing correct response rate.

Sensitivity in the present study is defined in terms of recognition performance. In the language of the signal detection paradigm, presenting an Old CVC, i.e., one that occurred during learning trials, constitutes the "Signal" trial. A New CVC (one that has not been presented before), constitutes a "Noise" trial. The more Old CVCs that are recognized, the more sensitive the observer is to qualities unique to the stimulus materials. A primary factor affecting the sensitivity of the subject to CVCs varying in meaningfulness is presumed to be the number of associations that can be made to the CVC (Noble, 1961). Also related to sensitivity is the ability of the subject to process all of the components of the CVC in such a manner that the meaningfulness factor can operate.
An additional factor was suggested by subjects who participated in Thompson-Gibbs 1972 study. This is a "contract effect" that occurs when Old and New CVCs differ in meaningfulness values. Old CVCs that are high in meaningfulness will appear different to the subject when they occur along the New CVCs that are low in meaningfulness and vice versa. This difference is in the content of the letter string, since CVCs high in meaningfulness often follow patterns found in common words, while low meaningfulness CVCs often appear to have no relationship to the letter strings found in words.

Response bias, on the other hand, is the manner in which the subject uses the rating scale. Subjects in the recognition study responded using a six-point rating scale. Differences in the meaningfulness combinations of the four stimulus conditions may result in subjects using the scales differently. Under one experimental condition subjects may spread out their responses to Signal trials more than to Noise trials or vice versa. The mean category response may shift more for Signal trials than for Noise trials under certain experimental conditions. In this study, this is what is meant by response bias. Subjects may use the scale differently under the four conditions in a systematic way. Measurement of such systematic shifts may provide additional information on how meaningfulness or reading ability influences subject performance in a Short-Term Memory task such as that used in the present study.

It must be pointed out that this definition of response bias does not refer to the type of response set individuals display when responding on a rating scale (Guilford, 1954). In response sets, a
tendency to use extremes of the scale, the center of the scale, or a
normal distribution of responses is determined by the subjects
personality or influenced by the instructions. Sensitivity and
response bias measures in this study are not sensitive to this type of
set.

Three measures of sensitivity and response bias were used in
analyzing the performance of the two reading achievement groups. The
measure of sensitivity is the area under the Receiver Operating
Characteristic (ROC) curve (P_A), as defined by Green and Swets (1966)
and McNicol (1972). This generally accepted measure provides an
analysis sensitive to the effects of meaningfulness, association values
related to meaningfulness, and other distinctive features of the CVC
trigrams used as stimulus materials. This measure should also be
sensitive to any processing differences related to the subject
variable.

The measure of response bias used was a modification of the
Chi-square Goodness of Fit Test. This test measures response bias as
defined earlier. Shontz (1967) discusses this measure in his study of
factors affecting the processing of sequentially presented form parts.
He found this measure to be sensitive to systematic changes in the use
of the rating scale as a function of the experimental variables.

A third measure, an analysis of the Mean Rating Category Values,
should provide information regarding both sensitivity and response
bias. Shontz (1967) has established that this measure is useful in
the interpretation of information regarding response bias data.
Area Under the ROC Curve - $P(A)$

Plotting the probabilities of correct recognitions (Hit Rates) versus "false" recognitions of New stimulus materials (False Alarms) from the rating scale data on the unit square yields the Receiver Operating Characteristic Curve discussed by Green and Swets (1966) and McNicol (1972). As discussed earlier, the area under the ROC curve has become a generally accepted measure of sensitivity as it is independent of changes in response bias. This non-parametric measure is useful when assumptions regarding the parametric measures of sensitivity (d') and response bias (β) cannot be met. Plots of the probability data from this experiment on double probability paper indicated that the assumptions for parametric measure had not been met. The area measure ($P(A)$) has been shown to be comparable to d' (McNicol, 1972) and was chosen as the best measure of sensitivity.

Area values were computed for each subject. These values were used as data points for a two-way ANOVA for the area under the ROC curve as a measure of sensitivity. The two-way ANOVA Table is illustrated in Table 2. There were significant differences, $F(1, 72) = 24.20, p < .001$, in sensitivity as a function of meaningfulness conditions indicating that all subject groups were in some way cognizant of, and using, the features of the stimuli in reaching decisions. The mean area values for the High WRAT group were: High-High, .796; High-Low, .895; Low-High, .773; and Low-Low, .612. Mean area values for the Low WRAT group were .766; .344; .737; and
.737, respectively. There were no significant differences in the sensitivity of the two reading achievement groups, $F(1, 72) = 1.23$, $p > .05$.

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaningfulness (R)</td>
<td>0.622</td>
<td>3</td>
<td>0.207</td>
<td>24.200***</td>
</tr>
<tr>
<td>Reading Level (B)</td>
<td>0.011</td>
<td>1</td>
<td>0.011</td>
<td>1.232</td>
</tr>
<tr>
<td>R B Interaction</td>
<td>0.010</td>
<td>3</td>
<td>0.003</td>
<td>0.396</td>
</tr>
<tr>
<td>Individuals</td>
<td>0.617</td>
<td>72</td>
<td>0.009</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>1.260</td>
<td>79</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

***Significant beyond the .001 level.

The relative differences in sensitivity between stimulus conditions and the two reading achievement groups are illustrated in Figure 1. It should be noted that it is generally not appropriate to combine raw data from individuals as illustrated in Figure 1 as large differences in the slopes of the individual curves exist (McNicol, 1972). It is included here for illustration purposes only.

In previous studies (Raser, 1970; and Thompson-Gibbs, 1972), distinct differences in the pattern of recognition performance were found when meaningfulness was varied as a stimulus variable. Superior recognition performance occurred when both Old and New CVCs were high in meaningfulness. In this study, subjects appear to have utilized
Figure 1

ROC Curves for Meaningfulness Conditions
contrast effect in addition to the stimulus properties related to meaningfulness. Recognition performance was superior for both groups when the Old CVCs were high in meaningfulness and New CVCs were low. Inspection of the representations of the ROC curves for each meaningfulness condition clearly illustrates the decline of sensitivity in the following manner:

1. Subjects were most sensitive to the High-Low condition. Not only were subjects sensitive to the properties of the stimulus CVCs that provided cues for later identification, but they seemed to be able to pick up the contrast in the two levels of meaningfulness.

2. The second level of sensitivity was to the High-High condition. In this case, subjects were sensitive to the similar properties of both Old and New CVCs, apparently making comparisons with accessible representations in the memory codes.

3. The third level of sensitivity was to the Low-High condition. Under this condition, the Old CVCs allow for few associations that might aid the observer in his decision process. The fact that the New CVCs are high in meaningfulness and are therefore more wordlike in nature, probably provides a contrast effect that offers the major cue for the subject's decision process.

4. As expected, the lowest level of sensitivity was present in the Low-Low condition. There is little information contained in the stimulus that allow for the formation of
associations with other information nor is there any contrast information available.

An inspection of Figure 1 suggests that there were slight differences in recognition performance between the two reading achievement groups across all four meaningfulness conditions. While not statistically significant, \(F(1, 72) = 1.232, p > .05 \), these differences in sensitivity may be related to the manner in which subjects process the stimulus materials. Jackson (1980) suggests the less skilled reader is more likely to process the individual components of the stimulus serially rather than as a unit. What is not clear is at what level the degree of reading achievement (related to chronological age, academic level, and reading ability), affects the sensitivity of the subject to the properties of the stimulus.

The possibility should be considered that only those subjects who were reading at the lower end of the range were processing the components of the stimulus differently from other subjects. This would create the differences in sensitivity that are evident in the pictorial representation of the ROC curves. If only those subjects at the lower end of the range of WRAT scores are performing differentially, however, there would not be sufficient differences between the groups to be statistically significant. Additional studies separating subjects into groups differing in degree of reading ability as outlined above would be necessary to determine where differences in sensitivity, if any, would exist.
Chi Square Values as a Measure of Response Bias

Chi-square values can be used in testing the Goodness-of-Fit of a theoretical curve to an observed frequency distribution (McNemar, 1969). The Chi-square Goodness-of-Fit technique enables us to test whether the frequencies of an experimental distribution depart from those of a theoretical curve sufficiently to be regarded as chance departures.

A modification of the Chi-square Goodness-of-Fit test as used by Shontz (1967) was employed to assess the systematic variations in response bias as a function of meaningfulness and reading achievement level. Since the assumptions for the parametric measure (β) could not be met, this non-parametric measure was chosen as the most suitable means of evaluating response bias because it can provide data that reflect differences in the use of rating scales across conditions.

The frequency data were organized as shown in Figure 2. In this case, the ordering of confidence levels is reversed for the New CVC presentations. This new matrix pairs those cells that are equivalent in confidence and accuracy. As a result, as sensitivity changes, the two frequency distributions can be expected to change concurrently. The shape of the two distributions, when no response bias is present, will be similar, and the Chi-square value will be small. If, however, there are systematic shifts in response bias across conditions, the Chi-square values will become larger as the two frequency distributions differ systematically. As this measure is insensitive to both sensitivity and variation bias, it serves as an independent measure of response bias.
Response bias, as discussed here, is not the type of response set characterized by a subject's consistent idiosyncratic use of the rating scale. This measure is sensitive, however, to changes in the use of the scale due to experimental conditions. As an example, there may be changes in the distribution of responses on Signal trials (Old CVCs) without concomitant changes in Noise trial distributions. If sensitivity changes across conditions but the use of the rating scale remains constant for Signal and Noise trials, the responses will be distributed in similar patterns, and the resultant Chi-square Goodness-of-Fit test value will be small. If response distributions are different for Signal and Noise conditions the resultant Chi-square value will be large. Differences in Chi-square values across the
different meaningfulness and subject conditions provide the measure of response bias.

Chi-square values were calculated for each subject. These values were then transformed using $\sqrt{x + \frac{1}{2}}$ to stabilize the variance of distribution of the Chi-square values (Snedecor and Cochran, 1980). The transformed values were analyzed using the same ANOVA model as was used on the analysis of the area under the ROC curve. It must be pointed out that these values are used only as data points in the ANOVA and have no other significance in the overall analysis of results.

The results of the analysis are shown in Table 3. The nonsignificant $F (3, 72) = 2.059, p>.05$, indicates there were no significant changes in the use of the rating scale as a function of meaningfulness. There were, however, obvious systematic differences in the use of the rating scale as a function of the subject variable. The significant difference $F (1, 72) = 4.495, P<.05$ found in reading achievement level indicates that there were systematic differences in the way the two reading achievement groups used the rating scale. Means for the High WRAT group were: High-High, 3.59; High-Low, 3.36; Low-High, 3.4; and Low-Low, 4.39. Means for the Low WRAT group were 4.34, 4.49, 3.64, and 4.62, respectively. This measure, however, while providing evidence that there were differences in response bias as a function of reading achievement level, does not provide clues to the manner in which they differ. These differences are more clearly illustrated in the discussion of the Mean Rating Category Values that follows.
Table 3
Analysis of Variance for Chi Square (2x6) as a Measure of Response Bias

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaningfulness (R)</td>
<td>9.783</td>
<td>3</td>
<td>3.261</td>
<td>2.059</td>
</tr>
<tr>
<td>Reading Level (B)</td>
<td>7.102</td>
<td>1</td>
<td>7.120</td>
<td>4.495*</td>
</tr>
<tr>
<td>R/B Interaction</td>
<td>3.006</td>
<td>3</td>
<td>1.002</td>
<td>0.633</td>
</tr>
<tr>
<td>Individuals</td>
<td>114.032</td>
<td>72</td>
<td>1.584</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>113.942</td>
<td>79</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*p<.05

Mean Rating Category Values

The analysis of the differences in mean confidence levels for each condition provides an information measure for both response bias and sensitivity. By adding the response condition (Old or New CVC) as additional variables in the ANOVA, it is possible to obtain an analysis sensitive to evidence that mean confidence levels are affected by stimulus conditions.

As sensitivity changes, the mean value of the rating category should decrease for the Old response category, and conversely, increase for the New response category. To provide a measure where the two mean values are positively related to one another, and to avoid negative values in the ANOVA, the value of the New mean rating is subtracted from seven (n rating categories plus one). As sensitivity to stimulus conditions changes, therefore, the two means would now tend to shift
upward or downward simultaneously. The difference between mean rating category values for Old and New stimuli is the index of sensitivity. Differing distributions of response within each of these means across stimulus conditions indicate changes in response bias. Figure 3 illustrates these shifts in value and provides some evidence of the manner in which subject groups differ.

To more clearly illustrate the differences between the subject groups, the transformations of the Old response category data were not used when plotting the data for Figure 3. The data points reflect the original mean category rating values for Old CVCs.

A final type analysis of variance was conducted to provide information sensitive to interactions between reading achievement groups, stimulus conditions (meaningfulness) and mean confidence ratings for each response condition (Old or New). The four-way ANOVA (r(BC)D) provides a measure of the differences in sensitivity and response bias that may exist between the two reading achievement groups, and any interaction that may be present between the mean confidence ratings, stimulus conditions, and reading achievement groups.

This measure is redundant with the two measures previously reported. As indicated in Table 4, this ANOVA does provide additional information regarding the differences in performance between the two reading achievement groups. Of particular interest is the significant interaction between meaningfulness conditions and response category ratings, $F(3, 72) = 3.350, p < .02$, indicating that there were
Figure 3

Mean Response Categories for Old and New CVC Conditions

When the response was 1, 2, or 3, the subject believed the CVC was Old; when responding 4, 5, and 6, the subject believed the CVC was New.
systematic differences in the mean rating category between groups as a function of meaningfulness.

Table 4

Analysis of Variance for Mean Rating Category Values as a Measure of Sensitivity and Response Bias

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>r/BC</td>
<td>26.004</td>
<td>72</td>
<td>.361</td>
<td>--</td>
</tr>
<tr>
<td>Reading Level (B)</td>
<td>.494</td>
<td>1</td>
<td>.494</td>
<td>1.370</td>
</tr>
<tr>
<td>Meaningfulness (C)</td>
<td>14.301</td>
<td>3</td>
<td>4.767</td>
<td>13.119***</td>
</tr>
<tr>
<td>Response Cat. (D)</td>
<td>10.126</td>
<td>1</td>
<td>10.126</td>
<td>59.279***</td>
</tr>
<tr>
<td>rD/BC</td>
<td>12.299</td>
<td>72</td>
<td>.170</td>
<td>--</td>
</tr>
<tr>
<td>BC</td>
<td>1.658</td>
<td>3</td>
<td>.552</td>
<td>1.531</td>
</tr>
<tr>
<td>BD</td>
<td>.238</td>
<td>1</td>
<td>.238</td>
<td>1.396</td>
</tr>
<tr>
<td>CD</td>
<td>1.716</td>
<td>3</td>
<td>.572</td>
<td>3.350**</td>
</tr>
<tr>
<td>BCD</td>
<td>1.086</td>
<td>3</td>
<td>.362</td>
<td>2.120</td>
</tr>
<tr>
<td>Total</td>
<td>67.926</td>
<td>159</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

***p<.001
**p<.02

To see what is actually happening, refer back to Figure 3. The significant difference in the use of the rating scales is a result of the difference in the degree of change across the four stimulus. The pattern of the change is roughly similar for both reading achievement groups, but it is evident that the low reading achievement group experiences a much more dramatic shift in confidence for the Low-High
and Low-Low conditions. It should be noted that the High WRAT group exhibits a consistently higher level of confidence. This is also a reflection of the differences in sensitivity seen in the ROC curves of Figure 1.

The mean rating category values of the High WRAT group remain almost equal (1.93, 2.26 for Old CVCs; 2.04, 2.08 for New CVCs) under the High-Low and How-High conditions. The Low WRAT group, however, exhibits a shift in confidence level (1.96, 2.73 for Old CVCs; 2.38, 2.9 for New CVCs) that suggests that perhaps there has been a change in decision-making strategy or in the manner in which the stimulus is being processed, or both. The High WRAT group appears able to utilize the contrast in meaningfulness during the decision process, while the Low WRAT group appears not to be utilizing this feature.

In the Low-Low condition, the High WRAT group exhibits an extreme shift toward guessing (2.55 Old, 3.8, New CVC) and the mean rating category values for the two reading achievement groups becomes nearly equal. This suggests that the lack of features normally available to the subject when letter strings are orthographically correct (as in the case of the High meaningfulness condition) may be responsible for the shift in the decision criterion. These shifts in mean rating category values as discussed here are the features that illustrate changes in both sensitivity and response bias across conditions.

The differences illustrated here raise questions regarding the manner in which the stimulus materials are processed in each condition. Gibson's 1969 analysis of reading skills suggests that the skilled
reader reads in terms of higher order units, or chunks, using the various structural regularities found in written language. Differences in performance, then, may be related to this ability, but cannot be completely explained by the data from this study.

Jackson (1980) suggests that there are two independent components of reading ability. The major component is made up of the general language skills necessary for understanding language, regardless of modality. The second component of reading ability involves the processes that access memory codes for visual representations at the more abstract levels of analysis. Jackson further suggests that the better reader has faster access to letter identity codes, a skill related not only to reading (or letter recognition), but to the recognition of any visual pattern having a learned abstract representation. He proposes that there may be two sources of difference between skilled and less skilled readers. The first is the possibility that the skilled reader, at an early age, has developed the ability to access memory codes for visual patterns faster than has the less skilled reader at the same chronological age. The alternative possibility is that the skilled reader, through practice, has further automatized the skills of recognition for any meaningful visual pattern. In his study of visual encoding speed, Jackson found that differences in performance are related to a more general difference in the ability to access memory codes for meaningful patterns. This difference in ability could produce the systematic criterion shifts observed in this study.
In reviewing the post-experimental questionnaires, it was noted that both the skilled and less skilled readers observed the lack of "word-like" quality in the low meaningfulness CVCs, but the skilled readers more frequently commented that the New high meaningfulness CVCs were more meaningful, and that they could associate them with other known words. This may explain the differences in the mean rating category values that were evident in the Low-High condition. The more skilled reader, even though unable to associate the Low CVC with "word patterns," was able in the short time available to process the information and reach a decision based on the contrast effect. The less skilled reader, on the other hand, may not have been able to arrive at some sort of "like-unlike" decision due to differences in the efficiency of accessing memory codes. This would tend to produce a shift in criterion as evidenced by a higher frequency of guessing. This hypothesis is supported by the shift in the mean rating category value illustrated in Figure 3.

Differences in the manner of processing stimulus materials may also account for the differences in performance between the two reading achievement groups. Underwood and Bargh (1982) suggest that when distinctive features are not available in letter strings recognition will be more likely to proceed through a serial scanning strategy. The use of less frequent letter combinations as in the case of the Low meaningfulness CVC provides fewer cues for phonological coding in much the same manner as using unfamiliar combinations of letter form will do. When letter combinations are high in meaningfulness, and, therefore, more familiar, they will be processed as a single unit. The
The High WRAT group was more aware of the familiarity of the combination, and was more efficient in the use of a recognition strategy. The Low WRAT group failed to use this information efficiently.

This view is supported by Healy's 1981 discussion of the rules readers use to process reading units. She suggests that readers give more priority to resolving the general shape (or envelope) of a group of letters when searching for a target letter. When the group of letters is written in alternate upper and lower case letters, creating an unfamiliar letter pattern, target recognition increases. She suggests this is due to the necessity for processing each letter in unfamiliar material as an individual unit. On the other hand, subjects failed to recognize target letters efficiently when the letter was imbedded in material that could be processed as a common, familiar unit.

These features of letter string processing may account for the performance differences between the two reading groups, and may also provide clues to the differences in sensitivity noted across meaningfulness conditions. The High WRAT group appeared to be aware of the features of the High CVC, while the Low WRAT group did not. Coding strategies were therefore less efficient and more susceptible to disruption since they were not utilizing the meaningfulness information that was available.
Summary and Conclusions

This study has measured differences in recognition memory performance as a function of the subject variable reading achievement level as measured by a test of recognition reading.

While there were no significant differences between reading achievement groups as a function of sensitivity to stimulus conditions, significant variations in the manner in which the two groups used the rating scale occurred. These results were interpreted in terms of discussions by Jackson (1980), Healy (1981), and Underwood and Bargh (1982) that suggested that differences existed in the manner in which subjects access memory codes in recognition tasks. The data from this study could not be used to differentiate between strategies that may have been used.

The statistical measures employed in this study appear to provide a viable approach for an in-depth evaluation of recognition strategies and processes utilized by subjects in the recognition of letter strings. If a measure is used that confounds response bias and sensitivity, there is no way of knowing whether differences in subject performance is related to one or to the other. A simple Old or New response does confound these measures and gives little information regarding the variables of interest.

The use of the multi-level confidence rating scale measure of sensitivity and response bias allowed for an analysis of the differences in recognition strategy, i.e., response bias. The shift
in confidence levels suggests that there may be a breakdown in stimulus encoding and retrieval mechanisms as a function of reading achievement level.

The weakness of the present study is that while there are performance differences as a function of reading achievement level, there is not sufficient information to justify an explicit theoretical statement regarding the exact nature of the differences. What is needed is a measure that allows for the development of a hypothesis regarding the response bias mechanism, and the encoding strategies underlying it. The development of such a hypothesis would provide a conceptual framework that could have important implications for the development of remedial techniques for dyslexic and minimal cerebral dysfunction syndrome readers.

If, as Jackson suggests, the less skilled reader is simply not efficient in the process of accessing letter codes, it is possible that changes in response bias are due to the subject's inability to reach a decision quickly, therefore lowering his/her confidence in the accuracy of the response. Concentrating future studies on the relationship between meaningfulness and this subject variables, reading achievement, in terms of response bias may be a major issue in determining the structure of the differences in recognition performance. The addition of a response time measure to the present paradigm, combined with a multivariate approach to the mean rating category measure, would more completely address the variables of interest and provide another facet to the information regarding the nature of response bias. Such an
approach would allow for a more precise evaluation of the strategies utilized by subjects with reading disabilities in letter string recognition.
REFERENCES

Noble, C. E. Measurements of association value (a), rated associations (a') and scaled meaningfulness (m') for the 2100 CVC combinations of the English alphabet. Psychological Reports, 1961, 8, 478-521.

APPENDIX A

Instructions to Subjects

The task you are about to perform is a recognition task. You will be scored on the amount of information you are able to recognize. The slides you will see on the screen before you are known as CVC or consonant-vowel-consonant trigrams. A series of these CVCs will be flashed on the screen. It will be necessary for you to keep your eyes focused on the screen during presentation as they will be flashed very quickly.

At the end of the first series, you will be given a fifteen second break. During this break you are to count backwards by threes from one hundred--out loud. At the end of this fifteen second period, you will be told to stop counting. I will then begin to show another set of slides on the screen. Half of these slides will be the CVCs that you saw during the first presentation; the other half will be new CVCs--ones that you've not seen before. They will appear on the screen for the same length of time as during the presentation of the first series, but there will be a longer period of time between the slides to give you an opportunity to respond.

Your task, after seeing each slide in the second series, will be to respond with a number that indicates a specific response. The numbers you use will be 1, 2, 3, 4, 5, or 6. The numbers one, two and three indicate that you believe the CVC you have just seen is an
OLD CVC, or one you have seen before, ONE means that you are VERY SURE; TWO, that you are FAIRLY SURE; and THREE, that you are only GUESSING that it is an OLD CVC.

The numbers four, five, and six indicate that you believe the CVC that you have just seen is a NEW one, or one that you have not seen previously. The numbers four, five, and six, however, DO NOT FOLLOW THE SAME PATTERN OF CONFIDENCE RATING. The largest number, SIX, in this case, indicates that you are VERY SURE; FIVE, that you are FAIRLY SURE; and FOUR, the smallest number, indicates that you are just GUESSING that the CVC is new.

Be sure that you use all of the responses available to you if it is appropriate. It is only rarely true that you are very sure or guessing all of the time. Don't let this confuse you. You will be given the opportunity to practice the scale until you are ease with it.

There will be two sets of practice slides shown to you so that you can practice the rating scale and learn to pace yourself to the rate of presentation. The first set of practice slides has ten OLD CVCs; the second has fifteen. Feel free to ask questions during the practice sessions, and to stop me if you need to discuss the use of the rating scale.

The actual experimental trials will consist of two blocks of trials. Each block will use 25 OLD CVCs, then FIFTY CVCs--half will be NEW CVCs; the other half OLD.
APPENDIX B

Post Experimental Questionnaire

Condition __________________________ Name ______________________________

Please answer the following questions to the best of your ability. When questions require a YES or NO response, check the appropriate answer. Other questions may require a check in the appropriate space, and in addition, ask you to make comments regarding your activities during the experimental trial in which you have just participated. Make your answers concise but as explicit as possible.

There is space at the end of this questionnaire for any further comments you care to make regarding these questions or any other aspect of the study.

1. Did you do anything special to help you remember each CVC as it was presented to you? YES____ NO____

1a. If your answer was YES, what did you do?

1) Pronounce it or attempt to?
2) Said each letter separately?
3) Something else? EXPLAIN

2. Did you attempt to relate the CVC trigrams to something meaningful to you? As an example, DEC might be December, or JAN, a name. YES____ NO____

3. Did you do anything special to help you decide whether a trigram was OLD or NEW? YES____ NO____

3a. If YES, what did you do, think, or look for? EXPLAIN.

4. Once you had decided on what to look for in making a decision, did you change your strategy? YES____ NO____

4a. If you did, how did you change what you were doing? EXPLAIN.

5. Did you notice any differences in the content of the trigrams? YES____ NO____

5a. If YES, what were the differences? EXPLAIN.
6. When you responded with ., 2, or 3, and 4, 5, and 6, did those responses accurately reflect a difference in your level of confidence? In other words, did ONE mean that you were really sure it was OLD, and FOUR really mean that you were guessing that the CVC was NEW? Were all of your responses accurate in the sense of confidence in the OLD or NEW rating? YES____ NO_____

6a. If your answer is NO, please explain why.

7. Should there have been MORE responses available, representing intermediate steps between the responses you were using? YES____ NO_____

8. Were there any physical characteristics of the slides that helped you differentiate between slides? YES____ NO_____

8a. If YES, what were they?

Please make any other comments regarding the methods you used to make OLD and NEW decisions that will explain your strategy.

THANKS FOR TAKING PART IN THE STUDY.
Thompson-Gibbs, Anne

The effects of subject's reading achievement level in a recognition memory task