Supply response function for beef in Botswana: an economic analysis and policy implication by Loftus Othogile Ndzinge

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Applied Economics
Montana State University
© Copyright by Loftus Othogile Ndzinge (1981)

Abstract:
The purpose of this study was to identify the factors that determine beef cattle inventory and beef cattle slaughter behavioral relationships in Botswana, and to derive the impact of changes in these factors on the cattle industry. A dynamic production model consisting of two structural equations, cattle inventory and cattle slaughter, and an identity equation of total meat production was formulated, based on the theory of the firm. The independent variables included deflated cattle prices, rainfall index, road development and trend. The model was estimated using a nonlinear least squares algorithm.

Cattle inventory was found to be significantly influenced by cattle prices. Cattle slaughter was found to be significantly affected by both price and rainfall index. Road development and trend showed no explanatory power in the model. Interpretation of the results is offered in the body.
STATEMENT OF PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Montana State University, I agree that the Library shall make it freely available for inspection. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by my major professor, or, in his absence, by the Director of Libraries. It is understood that any copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Signature

Date 7/15/81
SUPPLY RESPONSE FUNCTION FOR BEEF IN BOTSWANA:
AN ECONOMIC ANALYSIS AND POLICY IMPLICATION
by
LOFTUS OTHOGILE NDZINGE

A thesis submitted in partial fulfillment
of the requirements for the degree
of
MASTER OF SCIENCE
in
Applied Economics

Approved:

R. Clyde Deere
Chairperson, Graduate Committee

Dean R. Booth
Head, Major Department

Michael Malone
Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana
August, 1981
ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and thanks to the chairman of my graduate committee, Dr. R. Clyde Greer, for his guidance and interest in the preparation of this thesis. Special thanks are due to the remaining members of my graduate committee: Drs. John Marsh, Myles Watts and Edward Ward. I am indebted to Dr. Victor Amman, the staff of the Planning and Statistics, Ministry of Agriculture, Botswana, for their data contribution to this study, and also USAID for funding my training. Special thanks are also extended to Mrs. Evelyn Richard for typing the initial copies and the final draft.

Appreciation is expressed to my wife and two children who were a constant source of encouragement and support and for their patience during my academic career.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vita.</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
</tr>
<tr>
<td>2 REVIEW OF THE LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>3 MODEL DEVELOPMENT</td>
<td>17</td>
</tr>
<tr>
<td>Outline of the Data</td>
<td>30</td>
</tr>
<tr>
<td>Estimation of Structural Parameters</td>
<td>32</td>
</tr>
<tr>
<td>Supply Elasticities</td>
<td>37</td>
</tr>
<tr>
<td>Dynamic Multiplier Analysis</td>
<td>41</td>
</tr>
<tr>
<td>Rates of Adjustment Over Time</td>
<td>42</td>
</tr>
<tr>
<td>4 RESULTS AND IMPLICATIONS</td>
<td>45</td>
</tr>
<tr>
<td>Beef Cattle Inventory</td>
<td>45</td>
</tr>
<tr>
<td>Beef Cattle Slaughter</td>
<td>57</td>
</tr>
<tr>
<td>Quantity of Beef</td>
<td>61</td>
</tr>
<tr>
<td>Model Validation</td>
<td>63</td>
</tr>
<tr>
<td>Policy Implications</td>
<td>64</td>
</tr>
<tr>
<td>Limitations</td>
<td>67</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>69</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table	Description	Page
1 | Cattle Inventory Equation Results — With Price Only | 48 |
2 | Rate of Adjustment Over Time From One Pula Change on Cattle Inventory | 58 |
3 | Beef Cattle Slaughter Response Results | 59 |
4 | Rate of Adjustment in Cattle Slaughter Over Time From a One Pula Change | 62 |
5 | Impact of 10 Percent Rise in Cattle Prices on Cattle Inventory and Slaughter Number | 66 |

Appendix Table

A | Original Data Used | 74 |
B | Inventory Equation with Price Lagged Twice | 75 |
C | Inventory Equation with Price and Trend | 76 |
D | Inventory Equation with Rainfall Index Only | 77 |
E | Inventory Equation with Price and Rainfall Index | 78 |
F | Rate of Dynamic Adjustment Due to Price Change | 79 |

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Optimal Output Levels</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>
The purpose of this study was to identify the factors that determine beef cattle inventory and beef cattle slaughter behavioral relationships in Botswana, and to derive the impact of changes in these factors on the cattle industry. A dynamic production model consisting of two structural equations, cattle inventory and cattle slaughter, and an identity equation of total meat production was formulated, based on the theory of the firm. The independent variables included deflated cattle prices, rainfall index, road development and trend. The model was estimated using a nonlinear least squares algorithm.

Cattle inventory was found to be significantly influenced by cattle prices. Cattle slaughter was found to be significantly affected by both price and rainfall index. Road development and trend showed no explanatory power in the model. Interpretation of the results is offered in the body.
Chapter 1

INTRODUCTION

Botswana is among the leading African countries in beef cattle production and beef exports. The technology of beef production in Botswana is characterized by land extensive beef ranching, which depends entirely on the vast native rangeland resources. The country is basically divided into three categories of land tenure. First, is state lands held by the national government comprising 23 percent of the country. Second, freehold land which is held by private owners and accounts for 6 percent of the country. The third category, accounting for 71 percent of the country, is not owned by individuals but is held in trust by District Land Boards for the people of the tribe. Individuals may apply for and be granted the use of areas for drilling boreholes for watering cattle.

Traditionally, cattle were kept for a variety of reasons such as milk, meat, hides and draught power. However, with the development of a modern cash economy, provision of consumer goods, and European influence, cattle have become a commercial asset as well as a subsistence resource.

The beef cattle industry accounts for a majority of the agricultural output and is a major source of domestic income and wealth. It produces four-fifths of agriculture's contribution to Gross Domestic Product. In spite of the discovery and rapid development
of major mineral resources, beef cattle production still contributes more than a third of the national exports.

Between 70 and 80 percent of Botswana's population is in agriculture, and cattle are their largest source of agricultural income. Although the Rural Income Distribution Survey [11] in 1974/75 found cattle ownership to be highly skewed (half the cattle surveyed were owned by 5 percent of the households and 45 percent of the rural households had no cattle), about 80 percent of the population are still directly or indirectly dependent on cattle through either sales revenue, draught power, milk or other subsistence needs.

Due to the relative importance of the cattle industry, the Botswana Government attaches considerable importance to it, both as an export revenue earner and a vital sector for development.

During the last two decades, the nature of Botswana's beef cattle industry has been undergoing rapid changes. Technological changes have been introduced, e.g. new breeds, intensified disease control and improvements in the transportation system. Government assistance has been part of the livestock development policy in order to facilitate structural changes in this subsector. Government assistance to producers through input subsidy programs and the extensive development of a network of livestock advisory centers, has affected both the risks faced by producers and their costs of production. The same period also witnessed market development
including building auction saleyards, the improvement of railway handling and loading facilities and the expansion of slaughter facilities. A large proportion of government development expenditures during this period has been providing and improving the country's infrastructure to facilitate rapid economic development and industrialization. This development has had an affect on the aggregate demand for agricultural products and on producers' incentives.

The overall production response of beef to these factors has not been estimated. This study will focus on the beef producers' responsiveness to changes in prices, range conditions, and government expenditure on infrastructure with subsequent policy implications.

Problem Statement

The export nature of the beef cattle industry in Botswana makes it vulnerable to exogenous shocks in international beef markets. Beef price change in the international market has significant economic impacts on Botswana producers and the economy as a whole through income multiplier effects.

Since Botswana's beef cattle sector is significantly influenced by factors outside the domestic economy plus the resource allocation problem facing the government, it is necessary to formulate models which will serve as planning tools in evaluating the future of Botswana's beef cattle industry. These models will also provide
valuable information needed to fully understand the dynamic nature of the beef cattle industry. In addition, they will provide policy makers and planners with a framework for predicting the effects on production, resource adjustment and exports due to changes in important variables such as prices, government programs, technology and forage production. Thus facilitating government policy decisions with regard to livestock development.

Objectives

The purpose of this study is to develop a model for the Botswana beef industry that measures the responsiveness of beef cattle supply to changes in prices, range conditions and level of government investment in infrastructure. Specifically the objectives are:

1. To formulate a dynamic supply model of the Botswana beef cattle sector that estimates beef supply responsiveness to various exogeneous factors and economic incentives;
2. To estimate supply elasticities for relevant variables with respect to the supply of beef cattle in Botswana;
3. To carry out an impact multiplier analysis for the beef cattle sector; and
4. To discuss results and policy implications of the study.

A survey of previous literature relevant to the present study is briefly reviewed in Chapter 2.
In Chapter 3 the dynamic supply model on which this study is based is developed. The model incorporates annual time-series data on cattle prices, rainfall index (used as a proxy for range condition), and government development expenditure on infrastructure. Annual time series data are used to estimate the equations of the model. The first section of this chapter discusses the specification of the model. The second section discusses the data employed and the estimation of the structural parameters using appropriate statistical procedures. In the third section, supply elasticities at the means of the respective variables are calculated using estimated coefficients of the model. The final section of this chapter considers the time response pattern of beef cattle supply to a one time change in the values of some of the exogeneous variables (impact multiplier analysis).

The fourth chapter presents a summary of the results and discusses policy implications from the study.
Chapter 2

REVIEW OF THE LITERATURE

This chapter reviews previous work specific to agricultural supply response, particularly those directly related to the livestock sector and distributed lag models.

Early studies of supply response started with forecasting crop yields and prices, and studies of the correlation between the first differences of acreages and first differences of price lagged one year, H. L. Moore [26] and John D. Black [1]. According to Moore [26] they believed that, "There should . . . in normal times be some relation between the percentage change in the price of cotton last year over the preceding year and the percentage change in the acreage of cotton this year over last year." (p. 87).

Professional agricultural economists since the late 1930's to the present day have debated the question of farmer responsiveness to price changes and resource adjustment in production resulting from product/factor price changes. Some have argued that farmers are not responsive to prices because of asset fixity and the long biological nature of agricultural production, John K. Galbraith and John D. Black [12]. Willard W. Cochrane [5] asserted that it is "the peculiar unity of occupational functions (labor, technological and business management), the fixity of labor supply, and the importance of overhead
costs as compared with operating costs on family farms that argue for
the plausibility of an inelastic aggregate output curve" (pp. 384-358).

There is an ongoing policy analysis debate in less developed
countries concerning the appropriateness of price as a tool in policy
options and programs which promote agricultural production and develop­
ment. Doran, Low and Kemp [6] asserted that beef cattle producers in
Swaziland were not responsive to prices. They argued that because of
this non-responsiveness to price many livestock developments have been
counterproductive. They argued that the programs have exacerbated
rather than improved the overgrazing situation by stimulating producers
to increase the number of animals owned for nonproductive purposes.
The overgrazing resulted in a declining offtake rate for the herd.

These few illustrations show that the dynamic nature of the
agricultural sector is not yet fully understood. Factors identified
theoretically as responsible for the dynamic character include:
fixed assets; a long production period; inelastic supply function for
agricultural labor; technological advance; and price and weather
uncertainties [LaFrance 21]). However, since the classical work of
Marc Nerlove [27], many statistical studies of dynamic demand and
supply response of agricultural commodities have been undertaken.
These studies attempted to improve understanding of the behavioral
and economic forces underlying distributed lag concepts. Estimates
of the parameters of supply response and demand are beneficial in
improving the quality of forecast and outlook information for products as well as providing input into choosing between alternatives in formulating national commodity policies.

Econometric studies of the livestock sector investigating supply response and inventory functions with respect to own price and feed costs are common in the literature. Kulshreshtha and Wilson [18] estimated simultaneously the relationship among demand, price, supply and export variables in the Canadian beef sector. They found that grain prices had a negative yet minimal effect on inventory levels, whilst the expected price of beef had a supply elasticity of 0.2149. Peter Tryfos [31] in 1974 investigated Canadian supply functions for livestock and meat by developing livestock supply and inventories in which he assumed "desired" livestock inventories as dependent on the expected live animal prices and expected feed costs. Current price and feed costs were used as proxies for expected price and feed costs. He then used first order difference equations in which inventory at the end of a given period was a function of average prices and feed costs during that period and inventory at the end of the preceding period. The results were consistent with previous studies in that short run livestock supply is related to prices and feed costs of previous periods, rather than to current prices and costs. Langemeier and Thomson [22] in their study of demand, supply and price relationships for the beef sector in the post World-War II period, concluded that
there was an inverse relationship between the supply of nonfed beef and the price of nonfed beef and range conditions in the previous year. Schlomo Reutlinger in 1966 [28] estimated a short-run supply elasticity of beef which indicated that a demand existed for cows and heifers as investment goods as well as consumption goods. He then developed separate models for the individual components of beef supply response which resulted in a positive elasticity of response to price changes for steer slaughter and negative elasticity for cow slaughter. A combined equation yielded a very small negative aggregate elasticity of response.

Freebairn [10] estimated supply and inventory response functions for cattle and sheep sectors of New South Wales and concluded that the closing stock of breeding beef cows was positively related to the expected profitability of beef production relative to competing enterprises and favorable seasonal conditions. In other words, the number of beef cows increased with the price of beef but declined with prices of substitutes. This study supports the hypothesis that variability of prices has some explanatory power in describing aggregate supply and inventory response of beef cattle. It also showed that seasonal conditions have an important influence on the supply of beef and on the rate of growth of the beef cattle inventory.

The basic methodology employed in these studies for estimating supply response functions utilized the adaptive expectation type of
distributed lag model. The pioneering works of Irving Fisher and Tinbergen [Griliches; p. 109 (14)] marks the beginning history of distributed lag models. "But the recent popularity of distributed lag as a workable econometric technique is mostly due to the work of Koyck, Cagan and Nerlove." [Griliches p. 109]. In general, the following quote illustrates the theory of the distributed lag model.

Day to day observations in a competitive market reveal that a change in the price of a commodity affects its quantity demanded. . . . If we observe this demand-price relationship over time we shall often note that the response of demand to a change in price of a commodity which persists over a sufficiently long period is gradually adaptive rather than instantaneous. For example, consider the response of a large number of consumers to a sudden fall in the price of one commodity, say tea. Obviously, all the consumers will not react to it at once and at the same point of time. Some will react immediately or after a short time and some slowly for obvious reasons. They may delay their response for lack of precise knowledge of the market and may take some time to learn and then to find alternative choices before they are able to act. The remaining ones may not respond at all for known and unknown reasons. Consequently, the total reaction of all consumers will be spread over some length of time. Sometimes effect will be confined to a short interval but in many cases the adjustment process will be distributed over a long period of time. While studying the behaviour of producers and suppliers with respect to changes in price we come across a similar situation. This type of behavior of consumers or producers gives rise to a 'distributed' lag. (Gupta; [15], p. 17).

Reasons for the existence of distributed lags are generally broken into three broad categories:

(1) Technological - where production requires time, and durable goods last more than one production period.
Thus, agricultural supply depends on lagged variables since these variables influence decisions to produce certain commodities rather than others and time must elapse between planting and harvesting. The durability of capital goods implies that output depends in part on past investment decisions.

(2) Institutional - where it takes time to respond to external events such as government regulations and customs, to adjust contracts and certain rules.

(3) Psychological - where factors such as habit, persistence, inertia and imperfect knowledge of the market exist.

Fisher [9] assumed a general form of the distribution of lag which could be approximated by means of a "logarithmically normal" probability curve. This distribution implies that the effect of a given variable is very small at first, rises fast to its mode and then decreases gradually.

Koyck [Maddala, p. 363] developed a distributed lag model with a geometric lag distribution structure by suggesting that restrictions be imposed on the reaction coefficients of the linear model

\(Y_t = \alpha_1 X_t + \alpha_2 X_{t-1} + \cdots + \nu_t \)

such that

\(\alpha_{k+1} = \alpha \beta^i, i = 0, 1, \ldots \)
where $0 \leq \beta < 1$ and the index k represents the point from which the parametric approximation starts. He showed that if this restriction is substituted into equation (1), it can easily be reduced to

$$Y_t = \alpha X_t + \beta Y_{t-1} + \mu_t - \beta \mu_{t-1}$$

which is much simpler to estimate than (1) except for the problem of correlation between Y_{t-1} and the composite error term which makes ordinary least squares estimates biased and inconsistent.

Cagan [3] developed the adaptive expectation model in which price expectations (P^*) are revised each period in proportion to the error associated with the previous level of expectations.

$$P_t^* - P_{t-1}^* = \beta (P_{t-1} - P_{t-1}^*), \quad 0 < \beta < 1$$

which leads to an exponentially decaying lag structure for expected price as a function of all past prices

$$P_t^* = \beta \sum_{i=0}^{\infty} (1-\beta)^i P_{t-i}$$

or

$$P_t^* - P_{t-1}^* = \beta (P_{t-2} - P_{t-1}^*)$$

Thus, revised expectations of price in period t are in proportion to the difference between price in period $t-2$ and previously held price expectation, P_{t-1}^*

$$P_t^* = \beta P_{t-2} + (1 - \beta)P_{t-1}^*$$

When (5) is substituted into a more general linear model of the form

$$Y_t = \alpha + \beta P_t^* + U_t$$

the Koyck transformation can be applied giving
If this model is operationally feasible, then in trying out different \(\beta \)'s on the interval \((0,1)\) and choosing that \(\beta \) which gives the highest \(R^2 \) yields maximum likelihood estimates of the parameters.

Nerlove's partial adjustment model also leads to a declining distributed lag structure. He assumes current values of the independent variables determine the desired values of the dependent variable.

\[
Y^*_t = a + b X + \mu_t.
\]
But because of fixities and adjustment costs, only some fraction of the desired adjustment is accomplished within any particular time period.

\[
Y_t - Y_{t-1} = \gamma(Y^*_t - Y^*_{t-1}), \quad 0 < \gamma \leq 1,
\]
which reduces to exactly the same reduced form as the adaptive expectations model, except that it does not induce additional correlation in the stochastic error term if there was none from the beginning.

Nerlove's model combined the Cagan adaptive expectations model with Koyck's reduction procedures to provide both an acceptable rationale and a feasible estimation procedure applicable to a wide range of problems (Griliches, [7] p. 110). The desired value of the dependent variable is determined by the unobserved expected value of the independent variable. Mathematically, it is expressed as follows:

\[
Y^*_t = a + b \, P^*_t + \mu_t
\]
which reduces to
\(Y_t = a\beta + a\beta + b \) \(Y_{t-1} - (1-a)(1-b)Y_{t-2} + \varepsilon_t \)

where the error term \(\varepsilon_t = a\varepsilon_t - a(1-b)\varepsilon_{t-1} \).

Because \(a \) and \(\beta \) enter (11) symmetrically, it is not possible to distinguish between the two cases if either \(a = 1 \) or \(\beta = 1 \), creating an identification problem with respect to these parameters (Nerlove [27], p. 64).

From the early development of statistical economic models, the problem of obtaining consistent and efficient estimates of the coefficients has been addressed by many researchers. Given a general distributed lag of the form

\(Q_t = \beta_1 + \beta_2 X_t + \beta_3 X_{t+2} + \cdots + \beta_k X_{t-k-1} + \varepsilon_t \),

estimation of the coefficients would present a degree of freedom problem because there would be an infinite number of regressors and finite sample size. Secondly, there would likely be multicollinearity between the \(X \)'s. Early attempts at estimation began by imposing restrictions (Koyck) on the formulation such that \(Q_t = a \sum_{i=0}^{k} \lambda_i X_{t-i} + \varepsilon_t \) which follows a geometric distribution function. Estimates of the \(\lambda \)'s were still biased and inconsistent because of contemporaneous correlation between \(Q_{t-1} \) and the composite error term \(\varepsilon_{t-1} \). Lawrence R. Klein [17] recognizing that Koyck's proposals could produce either generalized least squares or maximum likelihood estimates proposed an iterative technique for obtaining coefficients when the correlation coefficient of the original error is not known. Malinvaud [24]
subsequently showed that the method did not yield consistent estimates.

Attempts to find unbiased, consistent and efficient estimates of parameters were extensively covered in most early and current works on distributed lag models. To mention a few, Robert Solow's [30] work on the use of the Pascal distribution and Zvi Griliches' work on the problem of serial correlation in the error terms. Also, Wayne Fuller and James Martin [11] were interested in maximum likelihood estimates of coefficients in first order difference equations with a first order autoregressive error structure.

Having recognized the fact that many of the early attempts failed to provide a satisfactory solution to the estimation problem of correlated error terms, Nissan Livitan [Gupta, p. 43] proposed a simple instrumental variables approach which yielded consistent estimates of the parameters. His technique was independent of the autocorrelation properties of the disturbances. Although Livitan's estimates were consistent, they were not efficient.

Hannan [19] later derived the asymptotic distribution of Livitan's estimates under general conditions. He drew upon the theory of spectral techniques to develop efficient estimators with serially correlated error terms.

Drymes [8] while searching for a method of estimating distributed lag models with autocorrelated errors came up with a procedure that obtained maximum likelihood estimates that "globally maximize the
likelihood function for every sample size". His procedure involved a two stage iterative process which yielded consistent and efficient estimates. Jorgenson proposed the use of rational distributed lag functions to solve problems attempted by Koyck and Solow.

In 1978, Oscar Burt [2] reviewed the problems of estimating agricultural supply response and proposed the use of nonstochastic difference equations. He pointed out the justification for using difference equations in agriculture. He then developed a non-linear least squares estimation procedure which could jointly handle lagged expectations on the dependent variable and autocorrelation in the disturbance.
In this chapter, a model specification employed for this study is developed. The chapter is divided into four sections, namely model specification, an outline of the data and estimation of the structural parameters, the derivation of supply elasticities and evaluation of impacts of change in exogeneous factors (multiplier analysis).

The production and marketing decisions of beef cattle producers in Botswana are heavily influenced by fluctuating prices and range conditions. These fluctuations, particularly the latter, sometimes lead to significant changes in the amount of beef produced. Likewise there is an impact on prices received for beef cattle and in the number of breeding animals retained for future production. Indirectly these factors influence returns to the beef cattle sector, the utilization of slaughtering facilities, the amount of beef and beef by-products for export and the general economic development of the country.

This study is concerned with the determination of cattle inventory response, supply (slaughter) response and quantity of meat produced. The beginning year cattle inventory and range grazing conditions provide a measure of output capacity for the supply function. According to economic theory, the normal response of a producer to an increased/decreased price is to increase/decrease
output. However, certain physical as well as biological peculiarities of beef cattle production dictate that an increase in output can only be accomplished by first reducing current beef supplies. This is accomplished via reduction in cull cow slaughter and increasing heifer retention for herd breeding purposes.

As a result of biological production constraints and lags in economic adjustments world beef production and trade system is marked by distinct cycles. The beef cattle cycle is divided into three stages. First, the rapid growth stage which is characterized by favorable beef prices and rapid increases in cattle numbers. Usually there are low ratios of slaughter to inventory and higher than average financial returns to beef cattle producers. Second, as more animals start reaching the market from herd build up, the deceleration stage of the cycle begins. The characteristics of this stage include lower cattle prices and a decline in herd sizes and inventories. Usually there is an increasing ratio of slaughter to inventory and below average returns to beef cattle producers. Third, there is the turn around stage with prices recovering from low levels. Herd sizes stabilize, the slaughter to inventory ratio is around normal and returns to beef cattle producers are about average. The beef cattle cycle illustrates that physical and biological constraints are partly responsible for the lag between the changes in price expectations and producer response.
Many investment models have been developed and used in manufacturing. Jarvis [15] and Freebairn [10] applied similar models in studying livestock inventory and supply responses to changing economic and range conditions. The methods and assumptions employed by Freebairn appear to be theoretically acceptable for modelling livestock investment decisions in this study.

Certain underlying facts are important in quantifying cattle producer decision behavior. Beef cattle usually serve a dual purpose as both capital goods and consumption goods [Jarvis]. On this basis, it is apparent that price changes will have two opposite effects on the producer's decision. That is, an increase in price would lead the producer to increase the size of his herd so that he can take advantage of future returns - thus beef cattle are viewed as a capital good. Alternatively, the price increase would make the producer want to sell immediately to take advantage of the current high price - in this case beef cattle are finished consumption goods. As a result at any point in time the animals may either be slaughtered for current beef production, or be retained for breeding or future beef production or other derived benefits. The assumptions of this study concur with Jarvis that "beef cattle serve a broader function of benefits such as money substitutes and those received directly from ownership, such as security and prestige. . . that cattle serve as a store of wealth because they are perceived to be productive assets. Their exchange
value, determined chiefly by their use as a source of milk, beef and hides and as draught animals is established in orderly markets -- wealth can be invested in cattle with the likelihood of increasing, not just for preservations. -- owners derive security from exchange value of their animals, and may obtain status and prestige among other persons because of this economic wealth. -- owners will find it profitable to prolong the life of an individual animal only as long as its daily production (including future beef) exceeds its current value as beef and hide and other benefits."

Beef cattle producers' decisions are cast into the framework of a discrete, multi-period mathematical optimization problem. The producer's problem involves choice of values for a time sequence of decision variables which maximize an objective function subject to a set of constraints. The producers' principal decision variables are annual number of beef animals (Q_{sl}) to sell for slaughter and the closing inventory of the beef herd (Q_{cp}) to retain for future production (in order to maximize the expected utility of a stream of annual net returns). Net returns are specified as gross returns less variable costs. This argument of an objective function allows for the inclusion of terms measuring expected values and expected variance of the uncertain elements in a livestock production model, namely market prices. The aggregate objective function of a beef cattle producer is the maximization of
(14) $J = \{E(\pi_1, \pi_2, \ldots, \pi_t), Var(\pi_1, \pi_2, \ldots, \pi_t)\}$

with

(15) $\pi_t = E(\pi_{s1} + K_{bt} - P_{bt}) - RC(Q_{cp}) - AC(\Delta Q_{cp})$

where

$\pi_t =$ net ranch income in period t

$P_t =$ ranch price received for beef cattle in period t

$Q_{s1_t} =$ quantity of beef cattle supplied in period t

$Q_{cp_t} =$ beef cattle inventory in period t

$RC =$ variable cost function

$AC =$ adjustment cost function

$E =$ expectation operator

$Var =$ variance operator

$\Delta =$ change in operator

$K_{bt} =$ other benefits from the nth class of animal in period t

such as milk and draught power

$P_{bt} =$ average value of all other benefits from the nth class of animal in period t

The rancher acts to maximize his net worth, defined as the present value of all future net cash flows. Thus, present value of the future income stream (PV) is given by

(16) $PV = \sum_{t=1}^{\infty} \frac{\pi_t}{(1+\gamma)}$

where γ is the discount factor.
The planning horizon faced by the beef cattle producer is then modelled by selecting some appropriate number of years, say T, over which the yearly net revenue is explicitly accounted for. At the end of year T, the future income from all the classes of animals in the inventory in year T is valued. Then the objective is to maximize explicitly the present value of the income stream of all years in the planning period.

\[
(17) \quad PV = \sum_{t=1}^{T} \frac{\pi_t}{(1 + \gamma)^t} \sum_{k=1}^{P} \sum_{n=1}^{q} V_n \cdot Z_{kn}
\]

where

$Z_{kn} =$ number of animals in class n left in inventory in year T from the kth management system.

$V_n =$ inventory value of an animal in the nth class ($n = 1, \ldots, q$) where classes are based upon sex and age.

The inventory value becomes the discounted expected future return to the producer. For those animals whose sale value is as slaughter beef, the return will be the discounted profit on the animal when sold at slaughter which is a measure of income of the process in that period. The inventory value for other animals is similarly derived except future offspring are taken into account. The inventory value gives the valuation of stock at a particular time and could be considered a measure of wealth or store of wealth at that time.

The attainment of this objective function is constrained by resource limitations and technical production factors which when
combined with the beginning inventory delineate the production possibility surface. The availability of range grazing is assumed to be the most limiting resource in range beef production. Technical constraints include calving and death rates, output production relations, and inventory accounting relations.

\[(18) \quad g(Q_{cP_t}) \leq FR_t \]

\[(19) \quad Q_{cP_t} = (1 + C_{cP} - D_{cP}) Q_{cP_{t-1}} - Q_{s1_t} \]

\[(20) \quad Q_{s1} = f(Q_{cP_t}, FR_t) \]

where

- \(FR = \) range resources (grazing availability)
- \(C_{cP} = \) calving rate
- \(D_{cP} = \) death rate
- \(Q_{s1} = \) number beef cattle sold in period \(t \)
- \(Q_{cP} = \) inventory in period \(t \).

The general aggregate values for \(t \)-th period decision variables, ending inventory of beef cattle \((Q_{cP_t}) \) and annual quantity of beef supply \((Q_{s1_t}) \) can be expressed in terms of the opening inventory \((Q_{cP_{t-1}}) \), expected current and future beef cattle prices \((E(P_{t}, P_{t+1}, \ldots P_{t+n})) \), the expected variance of the price \((\text{Var} (P_{t}, P_{t+1}, \ldots P_{t+n})) \) and the level of grazing resources \((FR_t) \) and other exogeneous shifters like government programs.
Model Specification

In this study, the Botswana beef cattle industry is divided into three subsectors; the cow herd inventory, the slaughter supply and the meat production. The hypothesized inventory response model is one in which expectations of beef cattle prices, range conditions, other exogeneous shifters (such as past government development expenditures on infrastructure) and past inventory levels are explanatory variables. The cow herd inventory equation in period t is represented by

\begin{equation}
Q_{cp_t} = \alpha + \beta_1 \text{Price}_{t-j} + \beta_2 \text{Rainfall}_t + \beta_3 \text{CP}_{t-j-1} + \beta_4 \text{DF}_{t-j-1} + \\
\beta_5 T + \epsilon_t
\end{equation}

where

- Q_{cp_t} = desired herd size in period t
- Price_{t-j} = expected beef cattle price in period $t-j$
- Rainfall_t = rainfall index (proxy for forage production)
- CP_{t-j-1} = past inventory levels in period $t-j$
- DF_{t-j-1} = past levels of government development expenditure on infrastructure in period $t-j$
- T = a measure of technological change (trend variable)
- ϵ_t = disturbance term

It was hypothesized that changes in beef cattle numbers could be initiated either by deliberate policy on the part of producers, or by
physical factors such as drought (induced by the amount and timeliness of rainfall) and outbreak of diseases. It was assumed that producers base their decisions about herd size on their expectation of future beef cattle prices. As already indicated price changes could have two different effects on producer decisions.

The amount of rainfall in a given year is a major determinant of cattle numbers under native range beef production. This is especially true in Botswana where existing management of cattle production does not have built-in strategies for hedging against a natural disaster such as drought. It was assumed that years with below average rainfall would result in increased marketings and high death losses, both of which affect the breeding herd and the capacity for expansion in the subsequent years. The distribution and duration of rainfall plus temperature and climatic factors, all of which determine forage production, are influential in range beef production.

The effect of past herd size on inventory in time period t depends on the composition and age structure of the herd. Past herd sizes also give some indication of capacity at that time.

Past government programs can affect inventory levels in period t in two ways, depending on their impact on the long run costs of production. The location of the export abattoir in Lobatse, Southern Botswana, which is of considerable distance from most of the beef cattle-producing areas, makes transportation availability and cost a
major determinant of beef supply. McGowan and Associates [13] in a study of drought relief and contingency measures relating to the livestock sector of Botswana reported that livestock producers in Northern Botswana pay 8 to 10 percent of their gross sale proceeds to transport animals to the abattoir. Producers in the most extreme areas pay about 25 percent of their gross proceeds to move cattle to market. It was therefore hypothesized that the improvement of existing and the development of new roads would have a significant effect on the profitability of beef production.

A trend variable was included in the model to capture technological changes that have taken place. The changes have enabled ranchers to gradually increase output from given herds and forage supplies. The net effect of technological change was regarded as a linear function of time.

The second equation explains the slaughter herd \(Q_{sl_t} \) in period \(t \) as dependent on current inventory level, the price of beef cattle, past quantities slaughtered and range condition.

\[Q_{sl_t} = \alpha + \beta_1 \hat{Q}_{cp_t} + \beta_2 Price_t + \beta_3 Q_{sl_{t-j}} + \beta_4 R_{index_t} + e_{2t} \]

where
\[\hat{Q}_{cp} = \text{current level herd size} \]
\[Price_t = \text{price of beef cattle in period } t \]
\[Q_{sl_{t-j}} = \text{past quantity slaughtered in period } t-j \]
\[e_t = \text{disturbance term} \]
The third equation is an identity which explains the quantity of meat produced in period t (Q_m) as a function of the number of beef cattle slaughtered and also the slaughter weights (average dressed weight).

\[(23) \quad Q_m = Q_{s1} \cdot A D W_{s1} \]

where

- $Q_{s1} = \text{quantity slaughtered in period } t$
- $A D W_{s1} = \text{average dressed weight}$

The development of a theory of producer behavior in response to price changes and other exogenous influences should begin at the individual farm level. For example, consider an adaptive expectations model for the purpose of allowing uncertainty and discounting of current information to enter the decision environment, and to show the distinction between the expected and actual output. "Man adapts current behavior not only to past experiences but also to future expectation." [Dutta, p. 191]. Assume a model

\[(24) \quad Q_{cp} = \alpha X^*_t + \mu_t \]

Let Q_{cp} be the current quantity of beef produced for rancher i in year t, X^*_t is the expected price and μ_t is a random variable reflecting exigencies of uncertainties. We assume

- $E(\mu_t) = 0$; $E(\mu_t, \mu'_t) = 0$ ($t \neq t'$), $E(\mu^2_t) = \sigma^2$ for all t

A rancher in his production planning estimates output for the next period, $t + 1$, in the current period. Let X^*_t be the level of expected price in current period to be received in the next period and X_t be
the actual price in the current period. Here it is assumed that the expected average impact of the random variable u_t is zero. If the rancher adapts his current expectations for the next period on the basis of how closely the expectations for the current period are matched by actual prices, then the adaptive expectation relationship is given by

$$ (25) \ (X_t^* - X_{t-1}^*) = \rho \ (X_t - X_{t-1}^*) \quad 0 \leq \rho < 1 $$

The difference between the actual price X_t and the price expected in the preceding period for the current period, that is the expected price in the previous period X_{t-1}^*, indicates the degree of fulfillment of expectation. Based on this experience, the rancher revises his present expectation of price X_t^*. The adjustment between his past expectation X_{t-1}^* and present expectation X_t^* is assumed to be proportional to the experience with the difference between expectation and actuality in the current period t.

$$ (26) \ X_t^* = \rho \ X_t + X_{t-1}^* - \rho \ X_{t-1}^* $$

$$ \quad \rho X_t + (1 - \rho) X_{t-1}^* $$

and if this process is repeated for $t-n$ we get

$$ X_t^* = \sum_{i=0}^{n} (\rho (1-\rho)^i X_{t-i} \) \text{ which is similar to equation (4).} $$

This equation can be substituted into a general autoregressive model

$$ C_{Cp_t} = \delta X_t^* + \mu_t $$

to give
\[Q_{cp_t} = \delta \left[\mu + (1 - \mu) \sum_{i=0}^{\infty} x_{t-i} \right] + \mu_t \]

If we define \(\lambda = 1 - \rho \) and \(\beta = \rho \delta \), then the equation becomes

\[Q_{cp_t} = \beta \sum_{i=0}^{\infty} \lambda^i x_{t-i} + \mu_t \]

which is the same as the Koyck transformation of the distributed lag model. Namely,

(27) \[Q_{cp_t} = \delta x_t + \lambda Q_{cp_{t-1}} + \mu_t - \lambda \mu_{t-1} \]

which is similar to equation (2).

Noting that \(Q_{cp_{t-1}} - \mu_{t-1} = E(Q_{cp_{t-1}}) \), equation (27) can be rewritten as a homogeneous nonstochastic difference equation

(28) \[Q_{cp_t} = \beta x_t + \lambda E(Q_{cp_{t-1}}) + \mu_t \]

which has the stochastic and systematic components of the model well delineated. The disturbance term is simpler and has the same properties as in the equation \(Q_{cp_t} = \delta x_t + \mu_t \).

LaFrance (1979) suggested that the correct behavioral response variable for farmers in a distributed lag model was expected normal (or planned) output rather than actual output. He showed that the proxy used for planned output is approximated in the aggregate for the industry by the nonstochastic lagged dependent variable. Further, he argued that a nonstochastic difference equation implied output in the current period is affected by the "planned or expected levels of output in previous periods rather than by the actual levels."

Another theoretical explanation of the theory of producer behavior is through the partial adjustment hypothesis which assumes
that technological, institutional and psychological impediments pre­
vent producers from making adjustments to a change instantaneously,
thus actual output is equal to the desired output multiplied by an
adjustment coefficient.

Both the adaptive expectations and partial adjustment hypotheses
or their combination are appropriate in explaining cattle inventories
since both physical rigidities and uncertainty enter into the
decision variables of the cattle producer.

Outline of the Data

Time series studies are often constrained by data availability.
This study was no exception. Data used in this study consisted of
observations over time on all the variables in the economic model
specified on pages 24 and 28. The purpose of this section is to
describe the sources of data and present some rationalization of the
choice of measurements.

The sample period for the model are years 1966 to 1980. The
choice of 1966 as the initial observation was mainly conditioned by
the availability of data and the fact that 1966 was the year the
Republic of Botswana gained the status of self government from the
British Crown. It was therefore of particular interest to this
study to investigate structural changes in Botswana's livestock
industry after independence.
Data on cattle numbers was available from the Agricultural Statistics Unit of the Ministry of Agriculture. The published data on production of beef cattle include the total number of cattle at the end of year by regions.

The rainfall index was calculated by a weighting scheme in which the average rainfall from representative centers in each region was multiplied by the total number of cattle in that region, then summed over regions, and finally divided by the total national herd. This figure gave the relative effect of rainfall distribution in all beef producing districts.

\[
\text{Rainfall index} = \frac{R_1 \cdot C_{11} + R_2 \cdot C_{12} + \ldots + R_i \cdot C_{in}}{\text{Total number of cattle/year}}
\]

where

- \(R_i\) = rainfall index to average rainfall
- \(C_{in}\) = cattle number in a region

The annual rainfall figures were available from the Meteorological Bureau.

The Botswana Meat Commission reports floor prices received by farmers for each class of beef cattle. Again a weighted average animal price was calculated. A weight for each grade was calculated by adding over a period of years and averaging the annual percent of animals killed in each grade category. These weights were then multiplied by each class price and summed by category to obtain the
weighted annual price per 100 kg.

A variable to measure the impact of road development was included in the analysis. The data used for this variable were the actual annual expenditures on road infrastructure development from the Botswana Government Annual Statements of Accounts 1965/66 through 1980/81. It was assumed that the trend variable followed a linear function over the sample period.

Estimation of Structural Parameters

Estimation procedures suggested by Burt [2] using nonstochastic difference equations were applied in this study. The procedure involves the removal of the stochastic component from the lagged dependent variable and uses the resulting nonstochastic variable as a regressor. This delineates the stochastic and nonstochastic components of the equation. "In a stochastic difference equation, the lagged values of the dependent variables contain a random, as well as a systematic element, implying that the delineation is not well defined. In a nonstochastic difference equation, the lagged dependent variables only contain a systematic component" [Rucker (30), p. 89].

Cagan and Nerlove (1956) argued that models in which the distributed lag on the independent variable is infinite could be converted to low order difference equation. Jorgenson [12] in 1966 showed by approximation that any arbitrary infinite distributed lag function
could be approximated to any desired degree of accuracy by a rational distributed lag function. This could be achieved by the introduction of a lag operator \(L \) which provides a simple notational means of specifying any desired degree of lag on a variable by being defined such that

\[
L^i X_t = X_{t-i}, \quad i = 1, 2, \ldots \quad L^j X_t = X_{t-j}.
\]

For this study, a rational distributed lag model was selected for estimating the herd inventory and slaughter response functions where the sequence \(\beta_k \) of coefficients had a rational generating function.

Letting the generating function of the sequence \(\beta_k \) be represented by \(P(s) \) where

\[
P(s) = p_0 + p_1 s + p_2 s^2 + \ldots \ldots ;
\]

and if we assume the function to be rational

\[
P(s) = \frac{M(s)}{N(s)}
\]

where \(M(s) \) and \(N(s) \) are polynomials in \(s \)

\[
M(s) = m_0 + m_1 s + \ldots \ldots m_t s^t
\]

\[
N(s) = n_0 + n_1 s + \ldots \ldots n_u s^u
\]

when \(N_0 \) is normalized at unity and the polynomials \(M(s) \) and \(N(s) \) are assumed to have no characteristic root in common, we may represent a rational function as the ratio of the two polynomials. By letting inventory \(Q_{cp} \) be a function of past prices only, we get
where \(L \) is the lag operator.

Assuming the sequence \((\beta_k)\) has a rational generating function

\[
Q_{cp} = \beta_0 P_t + \beta_1 P_{t-1} + \beta_2 P_{t-2} + \cdots + \beta_k P_{t-k} = \beta_0 P_t + \beta_1 L P_t + \beta_2 L^2 P_t + \cdots = [\beta_0 + \beta_1 L + \beta_2 L^2 + \cdots + \beta_k L^k] P_t
\]

Let \(M(L) = a_0 + a_1 L + a_2 L^2 \)2352 and \(N(L) = 1 - \lambda_1 L - \lambda_2 L^2 \), then multiplying both sides of the equation by the denominator of the rational lag function gives rise to a difference equation.

Burt [1978] argued that the use of a polynomial rational lag operation had the advantage of smoothing the coefficients of the lagged values of exogenous variables and partially solves the problem of degrees of freedom and large samples needed in complete specification. In order to achieve a low order difference equation for each the inventory and slaughter equations, a common denominator was forced on the rational lag function associated with each exogenous variable. In terms of the lag operator, the inventory equation at period \(t \) becomes

\[
Q_{cp} = \frac{\delta_1 + \delta_2 L}{1 - \lambda_1 L - \lambda_2 L^2} P_t + \frac{\delta_3 + \delta_4 L}{1 - \lambda_1 L - \lambda_2 L^2} X_t + \delta_5 R_{t-1} + \delta_6 T + e_t
\]

For ease of estimation, we multiply both sides by \(1 - \lambda_1 L - \lambda_2 L^2 \) to get a second order stochastic difference equation.
Burt (1978) argued for the use of nonstochastic difference equations in estimating distributed lag models. In a stochastic difference equation, both the random error term e_t and the lagged dependent variables Q_{cp-1} and Q_{cp-2} enter directly as independent variables.

If we define the unconditional expectation of $Q_{cp} = \theta_t = \frac{\alpha P_t}{1-\lambda_1 L}$, which gives a first order difference equation

$$\theta_t = \alpha P_t + \lambda \theta_{t-1}$$

and if iterated by successive substitutions, the result gives

$$\theta_t = \lambda [\lambda \theta_{t-2} + \alpha P_{t-1}] + \alpha P_t$$

$$= \lambda^2 [\theta_{t-2} + \alpha P_{t-1}] + \alpha P_t$$

$$= \ldots$$
\[\theta_t = \alpha \left[p_t + \lambda p_{t-1} + \frac{2}{\lambda} p_{t-2} + \ldots + \lambda^{t-1} p_o \right] \lambda^t \theta_o \]

which shows that the unconditional expectation of \(Q_{cp} \) is dependent only on the historical series of the exogenous variables [Burt, p. 15].

This is interpreted to mean that a one time change in the explanatory variable such as price, while all other variables remained constant changes inventory level \(Q_{cp} \) in period \(t \) by

\[\alpha(\Delta P) \]

and in period \((t+1) \) inventory level would change by

\[\alpha(\Delta P) (1 + \lambda) \]

while the total long run response would be

\[\alpha(\Delta P) (1 + \lambda + \lambda^2 + \ldots) \]

This suggests that the long run price elasticity from this formulation of the statistical model would be

\[E_{LR} = \frac{\alpha}{1-\lambda} \cdot \frac{\overline{P}}{Q_{cp}} \]

If the iterations in the substitutions in equation (34) are truncated when \(\lambda^t \theta_o \) appears, the result is

\[\theta_t = \alpha(\lambda^t p_{t-1} \ldots + \lambda^{t-1} p_o) + \lambda^t \theta_o \]

If the parameter \(\alpha \) and \(\lambda \) were known together with \(\theta_o \), \(\theta_t \) could be easily calculated for difference sample points. The same argument could be extended to second order difference equation giving
\[(35) \ E(Q_{cp}) = \delta_0 + \delta_P t - 1 + \delta_2 P t - 1 + \lambda_1 E(Q_{cp - 1}) + \lambda_2 E(Q_{cp - 2}) + \delta_3 X_t + \delta_4 X_{t - 1} \]
\[+ \delta_5 (1 - \lambda_1 L - \lambda_2 L^2) R_{t - 1} + \delta_6 (1 - \lambda_1 L - \lambda_2 L^2) T + \mu_t \]

This type of formulation is plausible since it captures most of the information on rigidities in the industry due to institutional impediments, inertia and technological change. Additionally, it accounts for the age distribution problem in the national cattle herd.

The structural equation [21] is now in a form suitable for estimation as a non-stochastic difference equation but some properties of the error term need to be specified. The expectation of \(Q_t \) is defined as \(Q_t - U_t \). Therefore, the non-stochastic difference equation could be estimated with \(U_t \) having the classical properties \(E(U_t) = 0 \) and \(E(U_t^2) = \sigma^2 \) for \(t = 1, 2 \ldots t \), and \(E(U_t U_j) = 0, t \neq j \). In this case we are assuming that the two components of the error term (random elements and factors left out of the model) have zero value implying the planned output equals the actual output. The procedure utilized to estimate the unknown parameters of the model is a modified Marquardt generalized non-linear least squares algorithm which uses the maximum likelihood technique.

Supply Elasticities

Supply elasticity measures the percentage change in output (dependent variable) associated with a unit percent change in any of
the explanatory variables, all other factors held constant. Estimates of supply elasticities are useful in analyzing public programs dealing with agricultural price and income policy, both for short-term forecasting and for long-range projections of resource use and needs. Supply elasticity estimates can be an indication of the level and productivity of farm resources since they indicate output adjustments in response to changes in product prices and government programs. In this case the importance of supply elasticity for public policy becomes evident because it measures the ability of farmers to adjust production to the changing economic environment that perpetually confronts them in a dynamic world. For the beef cattle industry, beef output and inventory levels need to be projected under alternative levels of prices, government programs, input costs and technology.

Agriculture has great flexibility in substituting one commodity for another over the long run. Therefore, in the long run comparable resources in agriculture should earn similar rates of return in the production of each product. However, supply elasticity, or the rate of adjustment of total farm resources is dependent on the relative size of that particular commodity to total farm production, the alternatives that are easily substitutable in production, the length of the production period of that commodity and the range of resources that could be used to produce the commodity.

There are several methods of deriving supply elasticities. One
method is to derive it by least-squares estimates of the price parameters in the supply function. Another way of looking at supply elasticities is to separate the yield and the basic production unit into components of supply. This is common in livestock response studies where the output per animal could be more responsive to an exogenous variable than is the number of animal units in the short run, and the reverse is true in the long run. That is, producers could see a greater potential for expanding livestock production by increasing the number of animals on the farm than by increasing output per animal unit over a long period. The supply elasticity of livestock output is the summation of the basic production unit and the output component.

Supply elasticity has also been derived from the elasticities of production and elasticities of input demand with respect to prices received by producers. In this case we are measuring the degree of responsiveness between output and input. In other words, output is a function of the productivity of an input and its level of use and the level of use is a function of product prices and input prices [Tweeten, (33)].

In this study elasticities are derived from the direct least squares estimates of the structural equations since all functions were transformed into log form. If we take our estimated inventory
equation

\[Q_{cp} = \hat{\delta}_0 + \hat{\delta}_1 P_{t-1} + \hat{\delta}_2 P_{t-2} + \hat{\lambda}_1 E(Q_{cp_{t-1}}) + \hat{\lambda}_2 E(Q_{cp_{t-2}}) + \hat{\delta}_3 X_{t-1} \]
\[+ \hat{\delta}_4 X_{t-2} + \hat{\delta}_5 (1-\lambda_1 L - \lambda_2 L^2) R_{t-1} + \hat{\delta}_6 T, \]

we can derive short run elasticities by taking partial derivatives with respect to any of the independent variables.

For example, the short-run elasticity with respect to last year's price would be \(\hat{\delta}_1 \).

The long-run direct elasticity allows for a complete adjustment to a one time change in the own price variable, all other factors held constant. For simplicity, if we take equation (34) as a first order non-stochastic difference equation with only price as the independent variable, we get

\[Q_{cp} = \hat{\delta}_0 + \hat{\delta}_1 P_{t-1} + \hat{\lambda}_1 E(Q_{cp_{t-1}}). \]

To solve for the long-run elasticity the long-run equilibrium output is first derived:

\[Q_{\mu} = \frac{\hat{\delta}_0}{1-\lambda} + \frac{\hat{\delta}_1}{1-\lambda} P_{t-1} + \frac{\hat{\delta}_2}{1-\lambda} P_{t-2} \]

therefore the long-run price elasticity

\[\frac{\hat{\delta}_1 + \hat{\delta}_2}{1-\hat{\lambda}} \]

where \(1-\hat{\lambda} \) is the coefficient of adjustment.
Dynamic Multiplier Analysis

The complex nature of beef cattle production and its multi-year production process confronts policy makers with a difficult problem of evaluating proposals relating to the beef cattle subsector. Because beef cattle production involves a complex and interdependent production system, government intervention in the system may take several years to realize the full impacts. This makes it difficult to evaluate policy proposals to the industry since economic planning requires some analysis of how current plans, policies, programs will affect future production, prices, consumption and foreign trade. In this section the dynamic nature of Botswana's beef cattle industry is reviewed by examining changes in the explanatory variables over time.

Interest is focused on forecasting industry equilibrium from a one time change in price (or other supply and inventory determining exogenous factors), or changes in government policy. The policy maker would want to make quantitative statements about the dynamic response over time to particular variables. One method of quantification would be to calculate the multipliers associated with the model's exogenous variables. For example, it is of interest to determine the effect on inventory Q_{cp} and quantity slaughtered Q_{sl} of a one Pula increase in the price of beef. Assuming the model parameters are stable, one would expect that the initial increase in price would result in ever declining increases in Q_{cp} or Q_{sl}. These changes in Q_{cp} or Q_{sl} are
referred to as dynamic multipliers over time.

In general, the impact multipliers are obtained directly from the reduced form of the estimated structural equations. In analyzing the dynamic nature of the industry, we are interested in the time path of the number of cattle supplied for slaughter or changes in inventory over time (rates of adjustments). These can be calculated as shown in the table below.

Rates of Adjustment Over Time

<table>
<thead>
<tr>
<th>Number of Years Since Change</th>
<th>Actual Adjustment Since Initial Change</th>
<th>Percent of Ultimate Adjustment Since Initial Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((\Delta P)(\beta))</td>
<td>%</td>
</tr>
<tr>
<td>2</td>
<td>((\Delta P)(\beta)(1+\lambda))</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>((\Delta P)(\beta)(1+\lambda+\lambda^2))</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>((\Delta P)(\beta)(1=\lambda+\lambda^2+\lambda^3))</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>((\Delta P)(\beta)(1+\lambda+\lambda^2+ \ldots))</td>
<td>(\frac{(\Delta P)(\beta)}{1-\lambda}) (100%)</td>
<td>.</td>
</tr>
</tbody>
</table>

where percent of adjustment completed = \(\frac{\text{actual adjustment completed}}{\text{total ultimate adjustment}}\)

Therefore the rate of adjustment in period one is

\[
\frac{(\Delta P)(\beta)}{(\Delta P)(\beta)} = (1-\lambda)
\]

This dynamic nature of supply may also be looked at as follows
Where \(Q_{cp_{t+\tau}} \) = the adjustment in number of cattle between the initial price change at period \(t \) and the number of time periods over which the adjustment has occurred (\(\tau \)).

\(\Delta P_t \) = initial price change which is assumed to change by \(\Delta P \) and remain at the new level indefinitely.

\(\frac{\bar{P}_t}{Q_t} \) = the ratio of the mean values of price and number of cattle over the time of analysis.

\(\tau \) = number of period of adjustment under consideration.

Thus, in period one

\[E_p(1) = \frac{\bar{P}_t}{Q_t} \cdot \frac{Q_{cp_{t+1}} - Q_{cp_t}}{\Delta P} \]

but \(Q_{cp_{t-1}} - Q_{cp_t} \) is equal to \((\Delta P)(\beta) \)

therefore \(E(p)1 = \frac{\bar{P}_t}{Q_{cp_t}} \cdot \frac{(\Delta P)(\hat{\beta})}{\Delta P} \)

\[= \frac{\bar{P}_t}{Q_{cp_t}} \cdot \hat{\beta} \] which is the short-run elasticity for time period one or just \(\hat{\beta} \) if the function was transformed into its log form.

For period 2

\[E(p)2 = \frac{\bar{P}_t}{Q_{cp_t}} \cdot \frac{Q_{cp_{t+2}} - Q_{cp_t}}{\Delta P} \]
\[\frac{\bar{P}_t}{Q_{cp_t}} \cdot \frac{(\Delta P)(\beta)(1+\lambda)}{\Delta P} \]

\[= \frac{\bar{P}_t}{Q_{cp_t}} \cdot (\beta)(1+\lambda) \]

hence the ultimate adjustment to an initial change in price

\[\lim E(p) = \frac{\bar{P}_t}{Q_{cp_t}} \cdot \frac{(\Delta P)(\hat{\beta})(1+\lambda+\lambda^2+\ldots)}{\Delta P} \]

\[= \frac{\bar{P}_t}{Q_{cp_t}} \cdot \frac{\hat{\beta}}{(1-\lambda)} \]

which gives the long-run price elasticity of supply.
Chapter 4

RESULTS AND IMPLICATIONS

In chapter three, the theoretical development of the model used for this study was presented. The statistical results from the estimated equations and their implications are discussed in this chapter. The model consisted of two structural equations, one for the cattle inventory response and another for the beef cattle slaughter response, plus an identity equation for the annual quantity of beef produced.

Beef Cattle Inventory

Many versions of the Botswana beef cattle inventory equation were tested in an effort to determine the "best empirical model" that would explain the behavioral relationships. During the preliminary tests some of the variables such as road development and trend were omitted since they were not statistically discernible. In specifying the equation, it was hypothesized that the development of road infrastructure would have an impact on the profitability of the livestock industry. As reported earlier a significant proportion of producer gross sales are taken up by transportation costs, hence the development and improvement of roads was hypothesized to reduce transportation costs significantly. In all specifications tested this variable did not enter significantly different from zero. That is, it added
little to the explanatory power of the equation. Possibly its effect is captured by the price variable.

In the initial specification, a trend variable was also included in the equation. It was hypothesized that this variable would capture technological changes in the industry that have occurred over the sample period. Concerted effort has been undertaken by the government to improve the gene pool of the local breeds by introducing exotic breeds which have better growth rates, higher fertility rates and early maturing abilities. In all the specifications tested this variable was not statistically significant.

The final specifications tested included cattle prices and rainfall index as the explanatory variables. Whenever both regressors were entered in the same specification, spurious results were obtained. The coefficient on the price variable would have the incorrect sign and be insignificant. However, the greatest concern was that the function was unstable. The coefficient on the second difference equation term was greater than negative one in absolute value. Also, the difference between the first difference and the second difference coefficients was greater than one. As a result, two final specifications were tested using price and rainfall index as separate regressors. The specification with rainfall index as the only regressor still showed spurious results and was then dropped from the equation. A possible explanation for this phenomenon would be that there was multicollinearity
between the rainfall index and price variable; they varied together because the data were not collected from a wide enough base. This could be particularly so in this case because the sample period is not long enough to cover a weather cycle. A second order nonstochastic difference equation with price of beef cattle as the only independent variable became the final choice.

The results presented in Table 1 are consistent with established economic theory on investment in stock goods. If cattle inventories are viewed as a stock good, the normal response of a producer to a price increase would be to increase output, in this case building up herd size. In addition, the equation implies that cattle inventory in period t in Botswana is also a function of past inventories. The size of the coefficient on the second difference equation indicates that even if price is held constant the beef cattle inventory would still show oscillatory behavior which would be due to random weather effects. This would suggest that cattle density should also be directly and strongly dependent on rainfall and grazing availability or other terrestrial phenomenon which show definite oscillations. The equation has a first order autoregressive error term which would account for the irregularity of the amplitude of oscillations in cattle numbers resulting from environmental factors. This seems biologically reasonable because it is likely that the factors causing changes in cattle
Table 1. CATTLE INVENTORY EQUATION RESULTS - WITH PRICE ONLY

<table>
<thead>
<tr>
<th>Intercept</th>
<th>(P_{t-1})</th>
<th>(E(Q_{cP_{t-1}}))</th>
<th>(E(Q_{cP_{t-2}}))</th>
<th>(e_{t-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>1.5774</td>
<td>.33039</td>
<td>1.8688</td>
<td>-.99594</td>
</tr>
<tr>
<td>Std error</td>
<td>.19876</td>
<td>.023945</td>
<td>.023945</td>
<td>.022709</td>
</tr>
<tr>
<td>t-Value</td>
<td>7.9362*</td>
<td>13.798*</td>
<td>90.954*</td>
<td>-43.856*</td>
</tr>
</tbody>
</table>

Standard error of estimate .012448279

Multiple \(R^2 \) .99534

Adjusted Multiple \(R^2 \) .99268

Degrees of freedom 7

* Significant at 95 percent confidence level.
numbers are functions of the birth and death rates of the population. The cattle population in any year depends on the population in the previous year plus birth rate and minus death rate.

The coefficient and the associated "t" statistic on the price variable indicate that producers are responsive to price. The popularity of some government instituted programs such as the bull subsidy scheme and the Botswana Meat Commission grazier scheme with local producers supports the general hypothesis that producers are profit maximizers. However, given the fact that the Botswana beef cattle industry is represented by a spectrum from pure subsistence at one extreme to semi-commercial or commercial at the other, general statements about the industry's responsiveness to economic incentives should be made with guarded caution. One would argue that even though the traditional sector is considered not to be profit maximizing, it is exposed to the outside world and responds to it economically in a limited way.

It would be prudent at this stage to take a look at the interaction of forces determining cattle inventory levels in Botswana. The institutional setting and other cultural matrix undoubtedly affects the behavioral response of producers in general. The traditional sector is characterized by a lack of well defined property rights in the communal grazing system. This social institution plays a decisive role in explaining the behavior of cattle producers in the traditional
sector. Under communal grazing, forage resources have zero cost to the individual producer. In addition, with one exception of the costs of quasi-fixed assets, costs of variable inputs of production are relatively insignificant. The rational producer in this case expands his herd size until the industry reaches its feasible output levels. However, the grazing resource available in any given year is fixed and it is shared equally by all animals in any given area. With every producer enlarging his herd size, the result will be a reduction in total output and reduced technical efficiency because of increased competition for feed.

Under private property, beef cattle producers would be constrained by either economic conditions, physical capacity constraints, policy constraints, or weather conditions. Under a market oriented production system producers desire to produce the output level where factor elasticities are equal to the factor shares of the inputs. However, under a communal grazing system the marginal cost to the individual of adding one more unit of animal to the herd is insignificant. Producers in this case do not equate marginal revenue with marginal cost to decide on the optimal output level, but are rather constrained by the availability of grazing. Producer behavior can be illustrated as shown in Figure 1. Under classical economic theory of the firm, the rational producer under perfect competition would desire to produce output Q_1 where marginal revenue is equal to marginal cost. That level of
Figure 1. OPTIMAL OUTPUT LEVELS.
output represents the economic capacity of the firm. However, under a communal grazing system, and in the absence of major costs of variable inputs or policy constraints, the profit maximizing firm would produce output level Q_2 where the supply function becomes vertical. That level of output is defined by the biological capacity of the range.

Neoclassical theory of investment under conditions of perfect competition suggests that a firm will continue to add to their stock of productive capital as long as the present value of the net cash flow generated by an additional unit of capital exceeds its cost. Given the relatively low development of the economy in Botswana, the opportunity cost of capital invested in livestock is relatively low. In addition, under the Botswana cattle marketing system the value of an animal depends more on its weight than its age. Under these conditions, the producer in the traditional sector would equate the value of the annual growth of an animal with the interest rate on investment. That is, the desired stock of capital is associated with the alternative opportunity costs of capital. The desired capital or inventory level should increase with a decline in the opportunity cost of capital and decrease with a rise in the opportunity cost of capital. Under this hypothesis, the producer would continue to hold an animal until it reaches physical maturity at which time its annual weight gain would have slowed down to the real market rate of interest.
Therefore, the traditional cattle sector would reach equilibrium when grazing available per animal, allows the internal rate of return on capital invested in that subsector to equal the market rate of interest. Given the decision making environment in the traditional sector, the equilibrium would occur when grazing resources are overexploited and when the economic rent of the range is dissipated as output starts declining. Conversely, in the semi-commercial to commercial sector there is private range ownership, individual producers can produce subject to product and factor prices. Market interest rates will also influence decisions regarding output levels and input uses.

It is therefore apparent that changes in product and factor prices will produce different responses in these two sectors. Since the model employed in this study was an aggregation of the two sectors it is difficult to separate levels of response by each sector.

It is assumed that in the short run an increase in beef cattle prices would induce herd expansion in the traditional sector. However, the expected net effect in the long run would be small. The increase in herd size further reduces the forage available to each animal and that lowers the technical efficiency of the herd which would be evidenced by a high proportion of cows, older oxen, low calving rates and low offtake. The 1978/80 livestock inventories from the Agricultural Statistics Unit gives credence to this conclusion. Also since there are two possible reactions to price increases, sell or
keep, if the sell decision more than offsets the keep decision, reduced response to price would be expected.

In Table I, estimates of the coefficients of the nonstochastic difference equations are reported. From Table I elasticity estimates of both the short run and long run and the stability of the equation can be calculated. First the equation can be reduced to a second order nonstochastic difference equation.

\[E(Q_{cp_t}) = 1.8688 E(Q_{cp_{t-1}}) - .99617 E(Q_{cp_{t+2}}) + K \]

where \(K = 1.5774 + .33039 P_{t-1} \).

If we evaluate the nonstochastic difference equation (1) at the means of the regressors, then

\[K = 1.5774 + .33039 \bar{P}_{t-1} = 17.6856. \]

This nonhomogeneous nonstochastic difference equation can be solved by use of De Moirs theorem (see Chiang pp 583-4) since it has complex roots to give

\[Q_{cp_t} = (1.0561)^t (e \cos \theta + f \sin \theta) + 2,135,184.6 \]

where \(e \) and \(f \) are determined by the initial conditions of the system and the value of \(K \) (where \(K \) is dependent on the values of the independent variables at which the difference equation is evaluated). The value of \(\theta \), which is approximately \(20.86^\circ \), is determined by values of the parameters of the homogeneous portion of the difference equation (1). The value of \(\theta \) implies that \(Q_{cp} \) has a cycle of
approximately 17.25 years. However, this may not necessarily be the case because the industry is constantly subjected to external shocks. The solution presented in equation (2) suggests that the system is unstable. That is, if the system is disturbed from equilibrium by a one time change in price, as time passes $e \cos \theta_t$ and $f \sin \theta_t$ will repeat itself $(1.0561)^t$ and would not approach zero. In absence of specification errors this could be explained by the fact that there have been frequent interventions in the system which do not allow it to settle back to equilibrium. Secondly, there could be lags in response between producers and consumers due to availability of market information. This would result in producers over-reacting to external stimuli, hence generating instability in the system.

From Table 1 it appears that producers respond to changing price levels in the cattle industry. The sign of the estimated price coefficient and its associated "t" statistic (13.798) suggests a positive relationship between the price and cattle inventory. Since the beef inventory equation was estimated in logarithmic form short run price elasticity is given by
\[
\frac{\partial Q_{cp_t}}{\partial P_{t-1}} = \hat{\beta}_1 = .33039
\]
This means that a ten percent change in the price of beef cattle in year t would result in 3.309 percent change in the cattle inventory in year $t + 1$. This shows that producers are relatively responsive
to prices in the short run, possibly by retaining more females and marginal producing animals in anticipation of higher future prices and possible capital gains.

The long run price elasticity is given by the equilibrium price P^* and inventory Q^*_{cp}. In equilibrium

$$Q^*_{\text{cp}_t} = Q^*_{\text{cp}_{t-2}} = Q^*_{\text{cp}_{t-1}} = Q^*_{\text{cp}_t}$$

and similarly

$$P^*_t = P^*_{t-2} = P^*_{t-1} = P^*_t.$$

Thus,

$$Q^*_{\text{cp}_t} = 1.5774 + 0.33039P^*_t + 1.8688E(Q^*_{\text{cp}_{t-1}}) - 0.99594E(Q^*_{\text{cp}_{t-2}}) - 45107e_{t-1}$$

where $Q^* = \frac{\alpha}{1-\Sigma \lambda_j} + \frac{\beta}{1-\Sigma \lambda_j} P^*$

From the above, the long run price elasticity is given by

$$\frac{\partial Q^*_{\text{cp}}}{\partial P^*} = \frac{\beta}{1-\Sigma \lambda_j} = \frac{0.33039}{0.12714} = 2.598$$

This shows that a 10 percent increase in beef cattle price would result in a 25.98 percent increase in inventory levels after a complete adjustment has taken place with all other factors held constant.

In order to show the dynamic nature of the industry we would follow the time path of inventory resulting from a change in price over the entire adjustment period. If we assume an initial change in
beef cattle price of one pula, then the adjustment path would be as presented in Table 2.

Beef Cattle Slaughter

The second equation estimated was beef cattle slaughter. Many versions of the beef cattle slaughter response equation were tested in an effort to determine the best fit. The parameter estimates and associated statistical measures for the final beef slaughter equation are given in Table 3.

The results presented in Table 3 imply that producers are responsive to exogenous variables specified in the equation. The sign of the coefficient and associated "t" value on the rainfall index variable suggests that given a good rainfall year, there would be a reduction in the number of cattle going to slaughter. This appears logical given the fact that cattle inventory in Botswana seems to be explained by both biological and economic phenomena. With good rainfall, forage production increases and producers hold back cattle in the hope of benefiting from added value from the weight gain.

The coefficient and size of the "t" statistic on the price variable suggests that price is a major determinant of number of cattle slaughtered in a given year. The sign of the coefficient suggests that increases in price induce beef producers to sell more cattle.

From Table 3 it is apparent that the increases in cattle inventory
Table 2. RATE OF ADJUSTMENT OVER TIME FROM ONE PULA CHANGE ON CATTLE INVENTORY

<table>
<thead>
<tr>
<th>Number of years since Change</th>
<th>Actual Adjustment since Initial Change</th>
<th>Value of Dynamic Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(\Delta P)(\beta)$</td>
<td>.33</td>
</tr>
<tr>
<td>1</td>
<td>$(\Delta P)(\beta)(1 + \lambda)$</td>
<td>.619</td>
</tr>
<tr>
<td>2</td>
<td>$(\Delta P)(\beta)(1 + \lambda + \lambda^2)$</td>
<td>.825</td>
</tr>
<tr>
<td>3</td>
<td>$(\Delta P)(\beta)(1 + \lambda + \lambda^3)$</td>
<td>.927</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>∞</td>
<td>$(\Delta P)(\beta)\left(\frac{1}{1 - \Sigma \lambda_j}\right)$</td>
<td>2.599</td>
</tr>
</tbody>
</table>
Table 3. BEEF CATTLE SLAUGHTER RESPONSE RESULTS

<table>
<thead>
<tr>
<th>Intercept</th>
<th>Rainfall Index t</th>
<th>P_t</th>
<th>Q_{cP_t}</th>
<th>$E(Q_{s1t-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td>18.124</td>
<td>-0.64577</td>
<td>3.9651</td>
<td>-0.03114</td>
</tr>
<tr>
<td>Std Error</td>
<td>2.344</td>
<td>0.19313</td>
<td>0.71644</td>
<td>0.018525</td>
</tr>
<tr>
<td>t-Value</td>
<td>7.7321*</td>
<td>-3.3438*</td>
<td>5.5344*</td>
<td>-1.6795</td>
</tr>
</tbody>
</table>

Standard Error of Estimate: 0.12422
Multiple R^2: 0.8684
Adjusted R^2: 0.8026
Degrees of Freedom: 8

* Significant at 95 percent level.
are inversely related to the quantity of cattle slaughtered. When producers are building up their breeding herds, the number of older cows and young heifers marketed is substantially reduced.

The level of past slaughter has a negative impact on current slaughter. If large numbers of cattle were slaughtered in previous periods, current market offerings would be reduced.

The final estimates presented in Table 3 are in logarithmic form, therefore direct elasticity estimates can be derived from the estimated structural form of the equation.

The short run rainfall index elasticity is given by

$$\frac{\partial Q_{st}}{\partial \text{Rainfall index}_t} = \hat{\beta}_1 = -0.64577$$

This shows that if range forage production increases by 10 percent in any given year, the number of cattle sent to slaughter in that year would be reduced by 6.4577 percent.

Similarly short run elasticities with respect to price, current inventory and past slaughter can be derived. Similar interpretation can be made about elasticities on these independent variables of the equation.

The long run elasticities for various exogenous variables can be calculated by using the following formula
where Q^*_{sl} and X^* are the equilibrium values of slaughter and an exogenous variable, with β_1 the coefficient specific to the exogenous variable. Calculating the long run price elasticity with respect to price

$$\frac{3Q^*_{sl}}{3P^*} = \frac{3.9651}{1.47215} = 2.69
$$

This means that after full adjustment has occurred a one percent change in the price of slaughter cattle would result in a 2.69 percent change in the number of cattle slaughtered. The long run elasticities for other independent variables can be derived in a similar manner.

The dynamic nature of slaughter can be viewed by following the time path adjustment resulting from an initial change of the variable under review. If we assume an initial change in price of cattle of one Pula, then the adjustment path could be presented in Table 4.

Quantity of Beef

The third equation is the identity equation giving annual quantity of beef produced in Botswana. The supply of meat in a given year can be viewed as determined in three stages. In the first stage is the number of animals to be slaughtered. This is determined after the
Table 4. RATE OF ADJUSTMENT IN CATTLE SLAUGHTER OVER TIME FROM A ONE PULA CHANGE.

<table>
<thead>
<tr>
<th>Number of years since Change</th>
<th>Actual Adjustment since Initial Change</th>
<th>Value of Dynamic Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(\Delta P)(\beta_2)$</td>
<td>3.97</td>
</tr>
<tr>
<td>1</td>
<td>$(\Delta P)(\beta_2)(1 + \lambda)$</td>
<td>2.09</td>
</tr>
<tr>
<td>2</td>
<td>$(\Delta P)(\beta_2)(1 + \lambda + \lambda^2)$</td>
<td>2.97</td>
</tr>
<tr>
<td>3</td>
<td>$(\Delta P)(\beta_2)(1 + \lambda + \lambda^2 + \lambda^3)$</td>
<td>2.38</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>$(\Delta P)(\beta_2) \left(\frac{1}{1 - \frac{1}{\lambda}} \right)$</td>
<td>2.69</td>
</tr>
</tbody>
</table>
demand for inventory changes is satisfied. In the second stage the weights of the slaughtered animals determine the total meat output. The third stage, not taken into account in this analysis, is the amount of carry over stocks from previous years. Without carry over stocks, total meat production is a function of the number of animals slaughtered and their average dressed weight. The ultimate usefulness of the identity equation is that it gives estimates of national beef supply available for domestic consumption and export.

Model Validation

The cattle inventory and slaughter equations were tested to see how well they predict. The first test was carried out by truncating the sample points and then letting the model predict the values of the omitted values. For both equations, the residuals were then compared with the estimated standard error of estimate. The criteria was that the residuals for each predicted sample point should not be greater than two times the standard error of estimate. In both equations the criteria held suggesting that the models had a good predictive capability. The equations were also tested by calculating the root mean squared errors (RMSE's).¹ Under this test it was found that RMSE's for

\[\text{RMSE} = \sqrt{\frac{\sum_{i=0}^{n} (Y_i - \hat{Y}_i)^2}{n}} \]
the cattle inventory and the slaughter equation were 2.8 and 2.1, respectively greater than their standard errors of prediction. Neither model stood this test because the RMSE's should have been less than the standard error of prediction. However, the results can be accepted because of the magnitude of the differences is relatively small. It can, therefore, be concluded that given the sample size, the model predicts fairly accurately. It should also be noted that the parameter estimates changed very little as the model was tested.

Policy Implications

Applications of the model include forecasting and economic analysis. Forecasts of future inventories and supplies would help decision makers, both in private and public sectors, in making short run and long run decisions. The ultimate purpose of forecasting and policy analysis is to obtain quantitative approximations to some of the underlying relations determining cattle inventory levels and quantity of livestock products produced and sold in Botswana each year. Accurate and reliable approximations to such relations provide useful information to both private and public policy. In the public policy case, the application of these models includes the planning of investment and disinvestment in the cattle industry. The analyst would also be interested in knowing producer response to price support, taxes and subsidies since these measures depend on the nature of the underlying economic and
technical relations. For the private sector better notions of the amounts of the various animals and products that would be forthcoming would undoubtedly make savings in processing costs possible. Readily available and accurate forecasts on cattle price and cost conditions would also facilitate efficient adjustment of production processes by cattle producers.

An immediate policy inference from the results would be the interpretation of the dynamic elasticities of a one time change in any of the independent variables through the joint dependency between cattle inventory and cattle slaughtered. Table 5 illustrated the recursive relationship between cattle inventories and slaughter numbers from a 10 percent change in cattle prices.

The 10 percent rise in price would induce, in the very short run, a 39.7 percent increase in slaughter numbers. However, after a full year, producers respond by increasing their herds by 6.1 percent. This expansion in herd size comes at a cost of a drop in the growth of current slaughter numbers. If perfect competition is assumed, the time path impact of a 10 percent rise in cattle prices could be analyzed over several years to evaluate its associated impact on domestic consumers and its influence on other competitive and complementary agricultural products. Knowledge of this nature would also be useful in planning slaughter plant capacity utilization in the country and investment and disinvestment in the cattle industry.
Table 5. IMPACT OF 10 PERCENT RISE IN CATTLE PRICES ON CATTLE INVENTORY AND SLAUGHTER NUMBER

<table>
<thead>
<tr>
<th>Exogenous Variable</th>
<th>Period Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cattle Inventory</td>
<td>3.3</td>
</tr>
<tr>
<td>Slaughter Numbers</td>
<td>39.7</td>
</tr>
</tbody>
</table>
Given the statistical results of this study, an increase in demand for Botswana beef in the World market or United Kingdom can also be analyzed. Particularly, it would be feasible to assess the industry's capacity to meet an exogenous shift in demand and to measure the length of period it would take to achieve the adjustment.

From the statistical results of this study producers are very responsive to external stimuli. This suggests that the government could manipulate prices to direct the industry toward desired goals. The results also suggest improved range management should be part of development policy.

Limitations

These results, though useful to policy makers, should not in themselves dictate policy decisions. This is particularly important because of the limitations of the study. The analysis presented was undoubtedly limited by a very short sample period. Fifteen years of data is not long enough in time series analysis to gain complete insight into the structural behavior of the cattle industry, particularly as it is complicated by biological economic and cultural factors. A second major limitation of this study was the high degree of aggregation. The study looked at aggregate industry response to external shocks while conceivably there could be differences in response between the traditional sector and the commercial sector.
Additional work needs to be done to generate more evidence on factors that affect producer responsiveness to external stimuli in both producing sectors if this type of analysis is to add to present tools in the policy-making process.
BIBLIOGRAPHY
BIBLIOGRAPHY

7 Dutta, M., Econometric Methods, Rutgers - The State University of New Jersey, South-Western Publishing Co., 1975.

10 Freebairn, J. W., "Some estimates of Supply and Inventory Response for Cattle and Sheep Sector of New South Wales, Review of Marketing and Agricultural Economics, 41 (2) pp. 53-90.

32 Tweeten, Luther, Foundations of Farm Policy. University of Nebraska Press, Lincoln, Nebraska, 1970.
APPENDICES
Appendix Table A. ORIGINAL DATA USED

<table>
<thead>
<tr>
<th>Year</th>
<th>Rainfall Index</th>
<th>Cattle Price/100 kg</th>
<th>Road Develop.</th>
<th>Cattle Numbers</th>
<th>Cost of Cattle Living Index</th>
<th>Slaughter Numbers</th>
<th>Average Dressed Weight/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>128.2</td>
<td>10.36</td>
<td>1067148</td>
<td>1237000</td>
<td>67.8</td>
<td>132232</td>
<td>185</td>
</tr>
<tr>
<td>1967</td>
<td>190.9</td>
<td>10.74</td>
<td>1078408</td>
<td>1490000</td>
<td>66.9</td>
<td>88535</td>
<td>214</td>
</tr>
<tr>
<td>1968</td>
<td>126.1</td>
<td>13.34</td>
<td>50071.6</td>
<td>1688000</td>
<td>68.0</td>
<td>103776</td>
<td>227</td>
</tr>
<tr>
<td>1969</td>
<td>131.8</td>
<td>12.15</td>
<td>125311</td>
<td>1945000</td>
<td>71.2</td>
<td>93074</td>
<td>228</td>
</tr>
<tr>
<td>1970</td>
<td>94.9</td>
<td>13.80</td>
<td>1615776</td>
<td>2017000</td>
<td>73.4</td>
<td>127317</td>
<td>209</td>
</tr>
<tr>
<td>1971</td>
<td>137.3</td>
<td>30.53</td>
<td>1265717</td>
<td>2092000</td>
<td>74.4</td>
<td>167130</td>
<td>197</td>
</tr>
<tr>
<td>1972</td>
<td>127.1</td>
<td>30.68</td>
<td>1066050</td>
<td>2177000</td>
<td>76.6</td>
<td>156510</td>
<td>207</td>
</tr>
<tr>
<td>1973</td>
<td>137.1</td>
<td>34.30</td>
<td>587135</td>
<td>2138000</td>
<td>81.1</td>
<td>209443</td>
<td>194</td>
</tr>
<tr>
<td>1974</td>
<td>193.5</td>
<td>49.17</td>
<td>3987378</td>
<td>2249000</td>
<td>95.9</td>
<td>186041</td>
<td>202</td>
</tr>
<tr>
<td>1975</td>
<td>182.3</td>
<td>65.00</td>
<td>8965663</td>
<td>2384000</td>
<td>100</td>
<td>188440</td>
<td>210</td>
</tr>
<tr>
<td>1977</td>
<td>137.2</td>
<td>69.32</td>
<td>14024106</td>
<td>2655000</td>
<td>126.3</td>
<td>196850</td>
<td>208</td>
</tr>
<tr>
<td>1978</td>
<td>182.3</td>
<td>75.41</td>
<td>13298974</td>
<td>2880000</td>
<td>143.6</td>
<td>149346</td>
<td>204</td>
</tr>
<tr>
<td>1979</td>
<td>104.1</td>
<td>70.47</td>
<td>15505229</td>
<td>2840000</td>
<td>158.6</td>
<td>228961</td>
<td>207</td>
</tr>
<tr>
<td>1980</td>
<td>146.4</td>
<td>82.51</td>
<td>14654828</td>
<td>2911000</td>
<td>181.8</td>
<td>140783</td>
<td>203</td>
</tr>
</tbody>
</table>
Appendix Table B. INVENTORY EQUATION WITH PRICE LAGGED TWICE

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>P_{t-1}</th>
<th>P_{t-2}</th>
<th>$E(Q_{cp_{t-1}})$</th>
<th>$E(Q_{cp_{t-2}})$</th>
<th>E_{t-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td>1.4765</td>
<td>.50591</td>
<td>-.12553</td>
<td>1.9843</td>
<td>-1.1081</td>
<td>-.79636</td>
</tr>
<tr>
<td>Std Err</td>
<td>.40565</td>
<td>.24636</td>
<td>.19316</td>
<td>.17682</td>
<td>.15641</td>
<td>.30151</td>
</tr>
<tr>
<td>"t" value</td>
<td>3.6398</td>
<td>2.0536</td>
<td>-.64988</td>
<td>11.222</td>
<td>-7.0848</td>
<td>-2.6412</td>
</tr>
</tbody>
</table>

Standard error of Estimate .012282

R^2 .99596

\bar{R}^2 .99193

d.f. 5

D.W. 2.717
Appendix Table C. INVENTORY EQUATION WITH PRICE AND TREND

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>P_{t-1}</th>
<th>Trend</th>
<th>E(Q_{cp_{t-1}})</th>
<th>E(Q_{cp_{t-2}})</th>
<th>E_{t-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td>18.954</td>
<td>0.33323</td>
<td>0.000796</td>
<td>1.8362</td>
<td>-0.98573</td>
<td>-0.74213</td>
</tr>
<tr>
<td>Std Err</td>
<td>1.2557</td>
<td>0.08557</td>
<td>0.0051844</td>
<td>0.21736</td>
<td>0.13515</td>
<td>0.30151</td>
</tr>
<tr>
<td>"t" value</td>
<td>1.5094</td>
<td>3.8948</td>
<td>0.15370</td>
<td>8.4476</td>
<td>-7.2938</td>
<td>-2.4614</td>
</tr>
</tbody>
</table>

Standard Error of Estimate .012867

\[r^2 \] .99557

\[\bar{r}^2 \] .99113

d.f. 5

D.W. 2.905
Appendix Table D. INVENTORY EQUATION WITH RAINFALL INDEX ONLY

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>R_t</th>
<th>R_{t-1}</th>
<th>$E(Q_{cp_{t-1}})$</th>
<th>$E(Q_{cp_{t-2}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td>-1.516</td>
<td>.20997</td>
<td>-.096228</td>
<td>2.2603</td>
<td>-1.2218</td>
</tr>
<tr>
<td>"t" values</td>
<td>2.4089</td>
<td>6.0705</td>
<td>-1.9165</td>
<td>9.1313</td>
<td>-5.568</td>
</tr>
</tbody>
</table>

$R^2 = .9973$

$\bar{R}^2 = .99596$

d.f. = 8
Appendix Table E. INVENTORY EQUATION WITH PRICE AND RAINFALL INDEX

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>R_t</th>
<th>R_{t-1}</th>
<th>P_{t-1}</th>
<th>$E(Q_{cp_{t-1}})$</th>
<th>$E(Q_{cp_{t-2}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1.1471</td>
<td>.20989</td>
<td>-.09645</td>
<td>.0011705</td>
<td>2.2616</td>
</tr>
<tr>
<td>Std Error</td>
<td>1.1146</td>
<td>.06869</td>
<td>.069464</td>
<td>.24704</td>
<td>.36571</td>
</tr>
<tr>
<td>"t" values</td>
<td>-1.0292</td>
<td>3.0556</td>
<td>-1.3885</td>
<td>.0047381</td>
<td>6.1841</td>
</tr>
</tbody>
</table>

Standard Error of Estimate | .011425

R^2 | .97730

\overline{R}^2 | .99538

d.f. | 8
Appendix Table F. RATE OF DYNAMIC ADJUSTMENT DUE TO PRICE CHANGE

<table>
<thead>
<tr>
<th>(T)</th>
<th>(Y(T))</th>
<th>(\text{SUM}Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.3304E+00</td>
<td>3.3304E+00</td>
</tr>
<tr>
<td>1</td>
<td>6.1752E+00</td>
<td>9.4729E+00</td>
</tr>
<tr>
<td>2</td>
<td>8.2506E+00</td>
<td>1.7730E+01</td>
</tr>
<tr>
<td>3</td>
<td>9.2699E+00</td>
<td>3.7000E+01</td>
</tr>
<tr>
<td>4</td>
<td>9.1079E+00</td>
<td>3.6108E+01</td>
</tr>
<tr>
<td>5</td>
<td>7.2898E+00</td>
<td>4.3897E+01</td>
</tr>
<tr>
<td>6</td>
<td>5.4876E+00</td>
<td>4.9385E+01</td>
</tr>
<tr>
<td>7</td>
<td>2.4978E+00</td>
<td>5.1883E+01</td>
</tr>
<tr>
<td>8</td>
<td>-7.9732E+01</td>
<td>5.1086E+01</td>
</tr>
<tr>
<td>9</td>
<td>-3.9780E+00</td>
<td>4.7108E+01</td>
</tr>
<tr>
<td>10</td>
<td>-6.6402E+00</td>
<td>4.0467E+01</td>
</tr>
<tr>
<td>11</td>
<td>-8.4495E+00</td>
<td>3.2017E+01</td>
</tr>
<tr>
<td>12</td>
<td>-9.1779E+00</td>
<td>2.2839E+01</td>
</tr>
<tr>
<td>13</td>
<td>-8.7378E+00</td>
<td>1.4102E+01</td>
</tr>
<tr>
<td>14</td>
<td>-7.1897E+00</td>
<td>6.9119E+00</td>
</tr>
<tr>
<td>15</td>
<td>-4.7348E+00</td>
<td>2.1771E+00</td>
</tr>
<tr>
<td>16</td>
<td>-1.6884E+00</td>
<td>4.8875E-01</td>
</tr>
<tr>
<td>17</td>
<td>1.5603E+00</td>
<td>2.0491E+00</td>
</tr>
<tr>
<td>18</td>
<td>4.5978E+00</td>
<td>6.6469E+00</td>
</tr>
<tr>
<td>19</td>
<td>7.0393E+00</td>
<td>1.3686E+00</td>
</tr>
<tr>
<td>20</td>
<td>8.5770E+00</td>
<td>2.2263E+00</td>
</tr>
<tr>
<td>21</td>
<td>9.0192E+00</td>
<td>3.1282E+00</td>
</tr>
<tr>
<td>22</td>
<td>8.3143E+00</td>
<td>3.9597E+00</td>
</tr>
<tr>
<td>23</td>
<td>6.5562E+00</td>
<td>4.6153E+00</td>
</tr>
<tr>
<td>24</td>
<td>3.9726E+00</td>
<td>5.0125E+00</td>
</tr>
<tr>
<td>25</td>
<td>8.9474E+00</td>
<td>5.1020E+01</td>
</tr>
<tr>
<td>26</td>
<td>-2.2844E+00</td>
<td>4.8736E+00</td>
</tr>
<tr>
<td>27</td>
<td>-5.1607E+00</td>
<td>4.3575E+00</td>
</tr>
<tr>
<td>28</td>
<td>-7.3701E+00</td>
<td>3.6205E+00</td>
</tr>
<tr>
<td>29</td>
<td>-8.6347E+00</td>
<td>2.7570E+00</td>
</tr>
<tr>
<td>30</td>
<td>-8.7976E+00</td>
<td>1.8773E+01</td>
</tr>
</tbody>
</table>
Supply response function for beef in Botswana