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Abstract:

A methodology is presented from which a general purpose computer code for determining the
kinematics (position, velocity, and acceleration) of spatial mechanisms may be generated. This
methodology permits the equations which describe the mechanism kinematics to be assembled and
solved by a program which only needs to read a concise data base describing the mechanism and type
of solution desired.

The inherent flexibility in this method permits modification of the mechanism configuration and
characteristics by altering the data base describing the mechanism. Changing relatively few parameters
in the data base makes possible the synthesis of motion. That is, for a given desired path or
configuration of the mechanism, the values of the mechanism parameters (coordinates) can be
determined without alterations in computer code. The method presented is well suited for
multi-positional kinematic analysis and synthesis of complex spatial mechanisms with multiple degrees
of freedom.

Two examples of kinematic analysis using this method are presented. The first is a three degree of
freedom closed loop mechanism. The second is the robot arm used on the space shuttle, which is a
six-degree-of freedom mechanism. Examples of position, velocity, and acceleration solutions are given
for both mechanisms.
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NOHMENCLATURE
L iptior

column matrix contalnlng second tlme
derivative of {PA}

second time derivative of {PAj}
(Equation 2.12)

3 X 4 acceleratlon coeff1c1ent array for
vector I (Equation 2.11) .

4 X1 cosine squared constraint coefflclent
array (Equation 2.5)

first time derivative of ¢y (Equation 2.9)
second time derivative of cy . (Equation 2.13)

3X4 dlsplacement coeff1c1ent array’ for.
vector I (Equation 2.2)

'n X m assembled»displacement matrix for model
_(Equation 3.1)

number of vectors in model

'array used to 1dent1fy known and unknown
accelerations

array used to identify known and unknown
geometry parameters

array used to identify known and unknown
velocities . . . -
number of véctor paths in tﬁe model'*\V*
path information matrix, stores information
as to which vector is in which path and its
direction

number of kinematic equatlons, m lS equal to
3 tlmes three plus i




np
{PA}
" {PA[}

{PD}

{va}

{VA[}

[VI]

viii
r {pt
number of parameters defining model, np is

equal to i times four

column matrix containing all known and unknown
geometry parameters

12 X)4 parameter array for vector I (Equation
.3

path displacement matrix, contains X, Y, and
Z displacement from beginning to end of each
vector path ‘ ¢

column matrix containing first time derivative

~of {PA}"

time derivative of {PA;} (Equation 2.8)

3 X 4 velocity coefficient array for vector I
(Equation 2.7) '

Subscripts
denotes parameter in direction angle
coordinate system

denotes parameter in direction cosine

- coordinate system

corresponding to vector I
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ABSTRACT

A methodology is presented from which a general
purpose computer code for determining the Kkinematics
(position, velocity, and acceleration) of spatial mechanisms
may be generated. This methodology permits the equations
which describe the mechanism kinematics to be assembled and
solved by a program which only needs to read a concise data
base describing the mechanism and type of solution desired.

The inherent flexibility in this method permits
modification of the mechanism configuration and character-
istics by altering the data base describing the mechanism.
Changing relatively few parameters in the data base makes
possible the synthesis of motion. That is, for a given
desired path or configuration of the mechanism, the values
of the mechanism parameters (coordinates) can be determined
without alterations in computer code. The method presented
is well suited for multi-positional kinematic analysis and
synthesis of complex spatial mechanisms with multiple
degrees of freedom. )

Two examples of kinematic analysis using this method
are presented. The first is a three degree of freedom closed
loop mechanism. The second is the robot arm used on the
space shuttle, which is a six-degree-of freedom mechanism.
Examples of position, velocity, and acceleration solutions
are given for both mechanisms. ; . -




CHAPTER I
INTRODUCTION

Rapid advances in robotics and automated equipment for
industrial, ﬁndérwater,‘and space applications have placed
demands on -engineers to design and analyze increasingly
sophisticated three-dimensional mechanisms. While the use of
vector mechanics to generate the-equations necessary for
the kinematic analysis of three-dimensional mechanisms is a
‘well known procedure, the derivation and solutio; of the
resulting equations is a lengthy process which typically has
required a probleﬁ specifié computer code for solution.

This thesis does not enlarge on the body of knowledge
‘related to mechanism theory, but describes a methodoiogy by
which a three-dimensional, rigid body mechanism can be
described with a relatively concise data base. This data.
'‘base is used as input to a computer code which can assemble
and solve the equations which determine the position
-velocity, and acceleration of each parameter‘used to
represent the mechanism model. The computer .code is not

problem dependent and can be used for either anaiysis or
synthesis by‘changing the data base. Synthesis as used in
this thesis refers to determining the configuration of the
mechanism required to obtain a given position, velocity, of

acceleration of some member or point in the mechanism. This




2

computer code frees the designer from the necessity of
developing programs which are only useful for a single
mechanism and difficult to modify.

‘ In application the method presented resembles the
finite element tedhnique.[l] in the way mechanisms are
modeled and the governing équations assembled. Matrix
eqﬁations for the position, velocity, and acceleration
relafions of an arbitrary vector are derived usi;g vector
mechanics. The overall mechanism equations are assembled
from these blocks of equations using information fromla data
base which describes the mechénism confiquration and type of
solution desired.

Kinematic problems are tjpically formulated as problems
in vector analysis. However, a variety of solution
£echniques can be applied to the resulting vector equations.
Some of the most commonly used solution techniques include
graphical solutions, vector algebra, ahd‘complex number
methods. While these techniques are methods of vector
anaiysis, each methgd of.solution has inherent advantageé 
and disadvantages.

Historicélly, graphical techniqués [2,3] have been the
'predominating technique for solution of the kinematics .of

planar mechanisms. Since solution by graphical methods
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requires drawing of the position, velocity and acceleration
-polygons, its.accuracy,is limited. Also, graphical methods
‘become very tedious when multiple position solutions are
desired.Graphiéal methods are difficult to use on spatial
mechanisms.

Solutions by. algebraic methods, whether based on
complex numbers [2,3] or vecfor algebra [2,5], have several
advantages 6ver graphical techniques. Accuracy is limited
only by the accuracy of the probiem data and the numerical
evaluation of the solution. Once the problem has been put in
an algeéebraic form, a kinematic solution can be obtained at
different positions of the'mechanism by‘solving sets of
simultaneous equations. However, an algebraic solption
usually requires- tedious mathemétical manipdlations to
obtain a solution. Algebraic methods are also applicable to
spatial .mechanisms [3], although the algebra is more
complicated than for plandf mechapiéms.

Chace, at the University of Michigan, was one of the
first to use vector notation to obtain closed form solutions
to three-dimensional vector equations [4]. The Chace
aéproach consists of defining. solutions to a vector
tetrahedron equation in spherical coordinates acbofding to

the unknowns in the equations. The résulting nine possible
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solutions are reduced to explicit closed-forms and can
be quickly evaluated. Chace used this technique to develop
the ADAMS (Automatic Dynamic Analysis of MechahicaI’Systems)
computer code, one of the more widely used industrial

programs® for analysis of fhreé—dimensional mechanisms.
Garcia de Jalon, Serna, and Viadero [5] have offered a
new technique using matrix methods and Lagrangian
coordinates to solvé_the kinematics of spatial meéhanisms.
In this technique the members of a mechanism are represented
by three or more points which are the Lagrangian coordinatés
"for the member. Geometric constraint equations requiring
constant distance between points, constant area of planar
surfaces, and constant volume of solids are specified. Time
derivatives of these equations are uséd for kinematic
analysié. However, this method requires a previously known
position which limits it's use for multi-position analysis.
The purpose of this thesis is to present a method using
classical vector mechanics from which a general purpose
. computer code may be developed to perform‘kinematic analysis

and synthesis of spatial mechanisms.




CHAPTER II1
DEVELOPHENT OF VECTOR EQUATIONS
An arbitrary vector in a three-dimensional Cartesian
coordinate system will bé defined in terms of four
parameters. One parameter is the length of the vector and
the other three parameters define its diréctibn. Direction
can be dgfined using either direction angles or cosines.

The three direction parameters are not independent as any
. ) &

one can be calculated given the other two. Equations -

defining the position, vglocity, and acceleration
relationships for an arbitrary vector will be developed in
terms of these four paraﬁeters and their derivatives. One or
more vectors can be used to define a member or locate points
of interest in a mechanism.

With vectors defined in this manner, one has the
option of developing the kinematic equations in tefms of
either the direction angles or the directién cosines. These
two coordinate systems yield different forms of the vector
path equations. Use of direction cosine coordinates to
define vector direction results in nonlinear élgebraic
equations while use of direction angle coordinates to
define vector direction results in nonlineér transcendéntal
equations. Use of the direction angles also causes

convergence problems when an iterative method is used to
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. ‘

solve the nonlinear equations for the geometry of the
mechanism. The time derivatives of the cosine squared
constraint equations expressed in direction angle
coordinates are identically satisfied when a vector is
parallel to one of the éxes.,This can result in singular
matrices for the velocity and acceleration relations at
certain positions of a mechanism. Using direction cosines as
parameters results in equations which take less éomputer
time to construct, show better convergence characteristics
when using an iterative technique to solve them, and their
derivatives dé not yield a sinéular set of equations when a
véctor is parallel to 6ne of the axes. However, usge of
cosine variable parameters can result in problems when
attempting to convert known and unknown angular velocities
and accelerations into and out of the cosine variable
coordinates from more commonly used units in other
coordinate systems. Due to the advantages-of using cosine
variables, all equations were developed using the direction
’¥cosines. | o

. For convenience and. eése of programming, the
parameters defining the arbitrary vector I shown in Figure 1
are stored in a parameter array {PA}, and subscripted in the

following manner:
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