Humoral and cellular aspects of immunity to Trypanosoma musculi in mice
by Bradford Oldham Brooks

A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in MICROBIOLOGY
Montana State University
© Copyright by Bradford Oldham Brooks (1979)

Abstract:
Congenitally athymic (nude) mice were not capable of clearing Trypanosoma musculi parasitemia while their normal, thymus-bearing littermates (NLM) cleared their parasitemia by day 20-24 post-infection (PI). Both nude and NLM mice exhibited an early nonspecific resistance to T. musculi infection when compared to irradiated (550rads, 60Co), T. musculi-infected mice. Use of trypan blue, in vivo, to alter the macrophage function of nude and NLM mice was found to abrogate early nonspecific resistance to T. musculi. Nude mice that received immune or normal spleen cells, immune or normal thymus cells, or thymus gland grafts were capable of eliminating T. musculi parasitemia. Passive transfer of immune serum into T. musculi-infected nude mice lowered both the level of parasitemia and the level of parasite reproduction, but did not generate elimination of the parasitemia. T. musculi elimination was thus determined to be due to a thymus-dependent cellular mechanism and not due to a direct antibody effect. Nude mice were shown to be a reliable in vivo model for the assay of ablasic (parasite reproduction inhibition) activity in immune serum.

A T. musculi population enriched for dividing forms (35%-50% dividing forms) was found to absorb ablasic activity from Immune serum, while absorption with a nondividing parasite population (<S% dividing forms) did not appreciably alter the ablasic activity of immune serum. The absorption experiments provide the crucial evidence needed to substantiate the antibody-nature of ablasin.

Plaque-forming cell (PFC) responses of NLM mice to T-dependent (sheep erythrocytes = SE) or T-independent (polyvinylpyrrolidone = PVP) antigens were found to be significantly inhibited during T. musculi parasitemia. PVP-PFC responses of T. musculi-infected nude mice were also significantly inhibited. However, if NLM mice were primed with SE prior to parasitemia, subsequent development of SE-specific memory cells and expression of secondary PFC responses to SE were not altered by T. musculi infection. T. musculi parasitemia was not found to alter delayed hypersensitivity responses of mice to 1-fluoro-2,4-dinitrobenzene. The data imply that the Immune dysfunction of T. musculi infected mice is at the B cell level and does not require T-cell participation for its development or expression.

At least one host component requisite for T. musculi elimination was found to have a radiosensitivity between 350rads and 550rads 60Co. Although 60Co irradiation was found to prevent the development of acquired immunity to T. musculi, once developed, acquired immunity was found to be radioresistant. NLM that received immune spleen cells 5 days post-irradiation did not exhibit early control over parasitemia, but were repaired in their ability to eliminate T. musculi parasitemia.

x i NLM that received immune spleen cells on day 25 post-irradiation exhibited a marked resistance to T. musculi infection resulting in elimination of parasitemia 10 days earlier than unirradiated controls. The adoptive transfer data suggest that the action of immune spleen cells in irradiated mice is not direct (cytotoxic) but is dependent on collaboration with a minimally radiosensitive host component(s).

Experiments designed to explore the immune status of postirradiation mice revealed that 30 days
following 550 rads °Co the RFC responses of mice to SE were recovered completely whereas RFC
responses to PVR were <20%, of unirradiated controls. Furthermore, doses as small as lOOrads °Co
were found to significantly inhibit the PVP-PFC responses of mice 30 days following irradiation. The
30-day post-irradiation PFC responses of mice to DNP-Ovalbumin, a T-dependent hapten-carrier
conjugate, were found to be >97% of unirradiated controls, while 30-day post-irradiation responses of
mice to DNP-Ficoll, a T-independent hapten carrier complex, were found to be only <39% of
unirradiated controls. In additional experiments, PFC responses of 30-day post-irradiation mice to
T-independent type 2 antigens (PVP and Type III pneumopolysaccharide= SSSIII) were inhibited
whereas, post-irradiation PFC responses to a T-independent type 1 antigen E. coli Lipopolysaccharide or T-dependent antigen (SE) were within normal control values.

Adoptive repair of mice that received 550 rads °Co, 7 days following irradiation with either bone
marrow, spleen, or thymus cells revealed that bone marrow cells completely repaired 30 day
postirradiation PFC responses to PVP whereas, spleen and thymus cell repaired mice had PVP-PFC
responses of 72.8% and 57-9% of normal controls respectively. Collectively these data suggest that B
cell populations can be differentiated by their ability to recover following °Co radiation; B cell
populations responsive to T-dependent antigens (SE) and T-independent type 1 antigens (E. coli Lipopoly-saccharide) recover functionally whereas B cells responsive to T-independent type 2 antigens
(PVP and SSS III) do not recover functionally.
HUMORAL AND CELLULAR ASPECTS OF IMMUNITY
TO *Trypanosoma musculi* IN MICE

by

BRADFORD OLDHAM BROOKS

A thesis submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

MICROBIOLOGY

Approved:

Normand Reed
Chairman, Examining Committee

Normand Reed
Head, Major Department

Henry L. Parsons
Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana

May, 1979
I wish to express my sincere appreciation to Dr. N.D. Reed for his advice, consultation and especially for his empathy and guidance throughout the duration of this study. I would also like to thank Dr. N.D. Reed, Dr. J.E. Cutler, and Dr. J.W. Jutila for the fine professional examples they have provided. Thanks are also extended to Dr. Jacques Chiller for supplying the DNP-Ovalbumin and DNP-Ficoll used in portions of this study.

This research was supported by United States Public Health Service Grants No. AI 12854 and CA 24443.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vita</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>8</td>
</tr>
<tr>
<td>Animals</td>
<td>8</td>
</tr>
<tr>
<td>Parasites</td>
<td>8</td>
</tr>
<tr>
<td>Evaluation of Parasitemia</td>
<td>10</td>
</tr>
<tr>
<td>Immune Sera</td>
<td>11</td>
</tr>
<tr>
<td>Thymus Gland-Grafting of Nude Mice</td>
<td>12</td>
</tr>
<tr>
<td>Irradiation of Mice</td>
<td>12</td>
</tr>
<tr>
<td>Adoptive Transfers</td>
<td>13</td>
</tr>
<tr>
<td>Trypan Blue Treatment</td>
<td>14</td>
</tr>
<tr>
<td>Antigens and Immunizations</td>
<td>14</td>
</tr>
<tr>
<td>Plaque Assays</td>
<td>16</td>
</tr>
<tr>
<td>Cellular Immunological Assays</td>
<td>17</td>
</tr>
<tr>
<td>Statistics</td>
<td>17</td>
</tr>
<tr>
<td>Results</td>
<td>18</td>
</tr>
<tr>
<td>Thymus Dependency of T. musculi Elimination From Mice</td>
<td>18</td>
</tr>
<tr>
<td>Effect of Trypan Blue on the Early Control of T. musculi Infection in Nude and Normal Mice</td>
<td>23</td>
</tr>
<tr>
<td>Adoptive Repair of T. musculi Elimination Potential in Nude Mice</td>
<td>28</td>
</tr>
<tr>
<td>Effect of Passive Transfer of Immune Sera on T. musculi Parasitemia in Nude and Normal Mice</td>
<td>34</td>
</tr>
<tr>
<td>Absorption of Ablastic Activity from Immune Serum</td>
<td>42</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Hemagglutination Assay for T. musculi Specific Serum Antibody</td>
<td>52</td>
</tr>
<tr>
<td>Effect of T. musculi Parasitemia on Direct and Indirect PFC Responses to SE and Direct PFC Responses to PVP in Mice</td>
<td>54</td>
</tr>
<tr>
<td>Effect of T. musculi Parasitemia on Direct PFC Responses to PVP in Nude Mice</td>
<td>61</td>
</tr>
<tr>
<td>Effect of T. musculi Parasitemia on Delayed-Type Hypersensitivity Responses in Mice</td>
<td>62</td>
</tr>
<tr>
<td>Effect of Varying Doses of γ-irradiation on T. musculi Parasitemia in Mice</td>
<td>64</td>
</tr>
<tr>
<td>Effect of γ-irradiation on Acquired Immunity to T. musculi</td>
<td>69</td>
</tr>
<tr>
<td>Effect of γ-irradiation and Selective Reconstitution on Subsequent T. musculi Infection in Mice</td>
<td>71</td>
</tr>
<tr>
<td>Post-irradiation PFC Responses of Mice to SE and PVP</td>
<td>78</td>
</tr>
<tr>
<td>PVP-PFC Responses of Mice 30 Days Following Varying Doses of 60Co Irradiation</td>
<td>82</td>
</tr>
<tr>
<td>Post-irradiation PFC Responses of Mice to DNP on a T-dependent or T-independent Carrier</td>
<td>84</td>
</tr>
<tr>
<td>Post-irradiation PFC Responses of Mice to T-independent type 1 or T-independent type 2 Antigens</td>
<td>86</td>
</tr>
<tr>
<td>PVP Optimal-Day Titration in 30-day Post-irradiation Mice and Normal Mice</td>
<td>88</td>
</tr>
<tr>
<td>PVP-PFC Responses in Irradiated and Selectively Reconstituted Mice</td>
<td>89</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>93</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>107</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. SE-specific PFC responses of nude, NLM and Nu-TG mice</td>
<td>24</td>
</tr>
<tr>
<td>II. Absorption of anti-SE mouse antiserum with DP or NDP</td>
<td>51</td>
</tr>
<tr>
<td>III. Utilization of T. musculi antigen-coated mouse erythrocytes in a passive hemagglutination assay</td>
<td>53</td>
</tr>
<tr>
<td>IV. Effect of T. musculi parasitemia on direct PFC responses of mice to PVP and SE</td>
<td>56</td>
</tr>
<tr>
<td>V. Effect of T. musculi parasitemia on direct and indirect PFC responses of mice to SE F(day 14 Pl)/F(day 35 Pl)</td>
<td>58</td>
</tr>
<tr>
<td>VI. Effect of T. musculi parasitemia on direct and indirect PFC responses of mice to SE F(day-7 Pl)/F(day 14 Pl)</td>
<td>59</td>
</tr>
<tr>
<td>VII. Effect of T. musculi parasitemia on direct and indirect PFC responses of mice to SE F(day 0)/F(day 21 Pl)</td>
<td>60</td>
</tr>
<tr>
<td>VIII. Effect of T. musculi parasitemia on direct PFC responses of nude mice to PVP</td>
<td>63</td>
</tr>
<tr>
<td>IX. Effect of T. musculi parasitemia on delayed-type hypersensitivity to 1-fluor-2,4-dinitrobenzene in mice</td>
<td>65</td>
</tr>
<tr>
<td>X. Effect of 550rads 60Co irradiation on the protective immunity of mice to T. musculi</td>
<td>70</td>
</tr>
<tr>
<td>XI. Direct PFC responses of mice to PVP and SE 30 days following varying doses of 60Co radiation</td>
<td>83</td>
</tr>
<tr>
<td>XII. Direct and indirect PFC responses of mice to DNP on a T-dependent or T-independent carrier 30 days following 550rads 60Co radiation</td>
<td>85</td>
</tr>
<tr>
<td>XIII. Direct PFC responses of mice to SSS-III, LPS, PVP, or SE 30 days following 60Co irradiation</td>
<td>87</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>XIV. PVP optimal day titration in 30-day post-irradiation mice and normal mice</td>
<td>90</td>
</tr>
<tr>
<td>XV. Direct PVP-PFC responses of adoptively repaired mice. 30 days following 60Co radiation</td>
<td>92</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>T. musculi parasitemia in the blood of NLM, nude, Nu-TG, and irradiated mice (550 rads ^{60}Co)</td>
</tr>
<tr>
<td>2.</td>
<td>Percent dividing forms in T. musculi parasitemia in NLM, nude, Nu-TG, and irradiated (550 rads ^{60}Co) mice</td>
</tr>
<tr>
<td>3.</td>
<td>T. musculi parasitemia in the peripheral blood of NLM, NLM/Trypan blue, Nude, Nude/Trypan blue, and irradiated (550 rads ^{60}Co) mice</td>
</tr>
<tr>
<td>4.</td>
<td>T. musculi parasitemia in nude mice receiving immune thymus cells (NU/ITC), normal thymus cells (NU/NTC), immune spleen cells (NU/ISC), normal spleen cells (NU/NSC), or no cells (NUDE)</td>
</tr>
<tr>
<td>5.</td>
<td>T. musculi parasitemia in NLM mice receiving immune thymus cells (NLM/ITC), immune spleen cells (NLM/ISC), or no cells (NLM)</td>
</tr>
<tr>
<td>6.</td>
<td>The effect of Abl on T. musculi parasitemia in nude and NLM mice</td>
</tr>
<tr>
<td>7.</td>
<td>The effect of Abl on the reproductive activity of T. musculi in nude and NLM mice</td>
</tr>
<tr>
<td>8.</td>
<td>The effect of immune recovered serum on T. musculi parasitemia in nude and normal mice</td>
</tr>
<tr>
<td>9.</td>
<td>The effect of immune recovered serum on the reproductive activity of T. musculi in nude and NLM mice</td>
</tr>
<tr>
<td>10.</td>
<td>T. musculi parasitemia in nude mice maintained on a regimen of Abl, DP-Abs-Abl, NDP-Abs-Abl NMS, or no serum</td>
</tr>
<tr>
<td>11.</td>
<td>Percent dividing forms in T. musculi parasitemia in nude mice that received a regimen of Abl, DP-Abs-Abl, NDP-Abs-ABL, NMS, or no serum</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>12. T. musculi parasitemia in normal mice that received either 750rads, 550rads, or 350rads 24 hrs prior to T. musculi infection.</td>
<td>68</td>
</tr>
<tr>
<td>13. T. musculi parasitemia in normal and irradiated (550rads 60Co) mice that received adoptive transfer of either ITC, ISC, NTC, NSC, or no cells.</td>
<td>73</td>
</tr>
<tr>
<td>14. T. musculi parasitemia in normal mice and in irradiated (550rads 60Co) mice that received adoptive transfer of either ISC, NSC, ITC, NTC or no cells on day 25 post-irradiation.</td>
<td>77</td>
</tr>
<tr>
<td>15. Post-irradiation responses of mice to PVP or SE on various days following 550rads 60Co.</td>
<td>80</td>
</tr>
</tbody>
</table>
A B S T R A C T

Congenitally athymic (nude) mice were not capable of clearing Trypanosoma musculi parasitemia while their normal, thymus-bearing littermates (NLM) cleared their parasitemia by day 20-24 post-infection (PI). Both nude and NLM mice exhibited an early nonspecific resistance to T. musculi infection when compared to irradiated (550 rads, 60Co), T. musculi-infected mice. Use of trypan blue, in vivo, to alter the macrophage function of nude and NLM mice was found to abrogate early nonspecific resistance to T. musculi. Nude mice that received immune or normal spleen cells, immune or normal thymus cells, or thymus gland grafts were capable of eliminating T. musculi parasitemia. Passive transfer of immune serum into T. musculi-infected nude mice lowered both the level of parasitemia and the level of parasite reproduction, but did not generate elimination of the parasitemia. T. musculi elimination was thus determined to be due to a thymus-dependent cellular mechanism and not due to a direct antibody effect. Nude mice were shown to be a reliable in vivo model for the assay of ablasic (parasite reproduction inhibition) activity in immune serum.

A T. musculi population enriched for dividing forms (35%-50% dividing forms) was found to absorb ablasic activity from immune serum, while absorption with a nondividing parasite population (<5% dividing forms) did not appreciably alter the ablasic activity of immune serum. The absorption experiments provide the crucial evidence needed to substantiate the antibody-nature of ablasin.

Plaque-forming cell (PFC) responses of NLM mice to T-dependent (sheep erythrocytes = SE) or T-independent (polyvinylpyrrolidone = PVP) antigens were found to be significantly inhibited during T. musculi parasitemia. PVP-PFC responses of T. musculi-infected nude mice were also significantly inhibited. However, if NLM mice were primed with SE prior to parasitemia, subsequent development of SE-specific memory cells and expression of secondary PFC responses to SE were not altered by T. musculi infection. T. musculi parasitemia was not found to alter delayed hypersensitivity responses of mice to l-fluoro-2,4-dinitrobenzene. The data imply that the immune dysfunction of T. musculi infected mice is at the B cell level and does not require T-cell participation for its development or expression.

At least one host component requisite for T. musculi elimination was found to have a radiosensitivity between 350 rads and 550 rads 60Co. Although 60Co irradiation was found to prevent the development of acquired immunity to T. musculi, once developed, acquired immunity was found to be radioresistant. NLM that received immune spleen cells 5 days post-irradiation did not exhibit early control over parasitemia, but were repaired in their ability to eliminate T. musculi parasitemia.
NLM that received immune spleen cells on day 25 post-irradiation exhibited a marked resistance to T. musculi infection resulting in elimination of parasitemia 10 days earlier than unirradiated controls. The adoptive transfer data suggest that the action of immune spleen cells in irradiated mice is not direct (cytotoxic) but is dependent on collaboration with a minimally radiosensitive host component(s).

Experiments designed to explore the immune status of post-irradiation mice revealed that 30 days following 550 rads 60Co the PFC responses of mice to SE were recovered completely whereas PFC responses to PVP were <20% of unirradiated controls. Furthermore, doses as small as 100 rads 60Co were found to significantly inhibit the PVP-PFC responses of mice 30 days following irradiation. The 30-day post-irradiation PFC responses of mice to DNP-Ovalbumin, a T-dependent hapten-carrier conjugate, were found to be >97% of unirradiated controls, while 30-day post-irradiation responses of mice to DNP-Ficoll, a T-independent hapten carrier complex, were found to be only <39% of unirradiated controls. In additional experiments, PFC responses of 30-day post-irradiation mice to T-independent type 2 antigens (PVP and Type III pneumopolysaccharide=SSIII) were inhibited whereas, post-irradiation PFC responses to a T-independent type 1 antigen E. coli Lipopolysaccharide or T-dependent antigen (SE) were within normal control values.

Adoptive repair of mice that received 550 rads 60Co, 7 days following irradiation with either bone marrow, spleen, or thymus cells revealed that bone marrow cells completely repaired 30 day post-irradiation PFC responses to PVP whereas, spleen and thymus cell repaired mice had PVP-PFC responses of 72.8% and 57.9% of normal controls respectively. Collectively these data suggest that B cell populations can be differentiated by their ability to recover following 60Co radiation; B cell populations responsive to T-dependent antigens (SE) and T-independent type 1 antigens (E. coli Lipopolysaccharide) recover functionally whereas B cells responsive to T-independent type 2 antigens (PVP and SSIII) do not recover functionally.
INTRODUCTION

Parasitic diseases affect up to one quarter of the world's population, represent a significant human burden and are a major obstacle to world development (21). Despite recent concern directed toward the developing nations and current attitudes of national interdependence, parasitic diseases represent a disparagingly neglected area of infectious disease (64). The current explosion of biomedical knowledge has yet to benefit parasitic disease control (21). In fact, in some areas certain parasitic diseases are recrudescent due to the development of drug-resistant strains of parasites and insecticide-resistant vectors (21). The excruciatingly slow progress in the treatment and control of parasitic diseases is especially frustrating in that most of the causative agents are relatively simple organisms that in most cases are incapable of independent life and are restricted to highly specialized environments provided by two or more successive hosts (21,64). It is entirely possible that only when the mechanisms of the host immune response to parasites are determined and placed into perspective with the biology of the parasite itself, that control of parasitic diseases may become a reality (17).

In recognition of the global economic and medical importance of tropical disease the World Health Organization (WHO) has selected six diseases as initial targets of intensive research efforts: malaria, schistosomiasis, trypanosomiasis, filariasis, leprosy, and leishmaniasis.
Trypanosomiasis, included in the WHO Special Programme, affects some 10 million people, 8 million in the western hemisphere (21). The African form of the disease, sleeping sickness, is estimated to be endemic over 12 million square kilometers of land, most of which is fertile, but abandoned to the ravages of the disease (21). The South American form of the disease, Chaga's disease, is usually fatal and may persist for 20 years or more (21).

Current knowledge of mechanisms of immunity to trypanosomes remains fragmentary and poorly understood (60). In those models which have been studied most extensively, conclusions have frequently been contradictory (17,21,60). The number and complexity of antigens of individual trypanosomes, their ability to undergo cyclic antigenic variation, and the lack of adequate in vitro correlates have contributed to the paucity of knowledge concerning the host immunological responses to trypanosomes (60). Constraints on human and veterinary clinical immunoparasitology have elicited an emphasis on laboratory animal host-parasite systems for immune response characterizations (69).

The use of these animal models along with recent advances in immunology has provided an approach to understand the complex mechanisms of antitrypanosome resistance. The availability of the Trypanosoma musculi-mouse model provides a tool for the extension of
knowledge of immune mechanisms involved in trypanosome elimination from mice (44). It should be emphasized that this is a natural host-parasite relationship. Passage of trypanosomes through an abnormal host frequently results in a disproportional increase in virulence (35) which can significantly affect the host immune response (11). Furthermore, studies on artificial systems often prove difficult to extrapolate to natural situations (69). The mouse model offers the possibility of applying the most current and innovative techniques in immunology to the investigation of immunity to trypanosomes. In addition, these techniques can be greatly enhanced by the substantial number of inbred mouse strains available (69).

Trypanosoma musculi is a nonpathogenic stercorarian trypanosome infective to mice only (72). It is closely related to and morphologically indistinguishable from Trypanosoma lewisi, the type-species of small rodent trypanosomes (72). Leptopsylla segnis (27) and Nosopsyllus fasciatus (27) are the arthropod vectors that transmit this infection in nature. Transmission by way of cannibalism has also been proposed, but not adequately investigated (69). Laboratory maintenance is achieved by direct injection of infected blood intraperitoneally (i.p.) (69). Parasites divide in the peripheral blood primarily by multiple fission of epimastigotes (12), but the most active sites of multiple fission of epimastigotes are the vasa recta of the kidney (69) and the placenta (45). These protozoan hemofla-
cells produces a self-limiting parasitemia which is characterized by a series of distinct phases. A prepatent period of 3 to 5 days post-inoculation (Pl) is followed by a phase of rapidly increasing parasitemia in which dividing forms are present in the peripheral blood (72). The level of parasitemia becomes stabilized, usually between days 8 to 10 Pl with the concomitant clearing of divisional forms of the parasite from the peripheral blood. This is an immunological event that has been referred to as the "1st CRISIS" (72). The 1st CRISIS is theoretically mediated by at least two distinct types of serum factors (72): (1) Trypanocidal Antibody— a thymus-independent antibody that purportedly sensitizes trypanosomes to clearance by the reticuloendothelial network and (2) Ablastin— a thymus-dependent reproduction-inhibiting serum factor first described by Taliaferro (66) in 1938. Ablastin has the physicochemical characteristics of an immunoglobulin, specifically IgG1 (23). However, in the T. lewisi-rat model, ablastin can not be absorbed from serum using homologous trypanosomes (18). Investigation of the absorbability of ablastin in the T. musculli-mouse model has not been reported. The inability to absorb out ablastin activity from serum using homologous trypanosomes has raised questions as to the antibody nature of this serum factor (18). Reviews of ablastin and its properties are available elsewhere (8,18,23,56). Kendall (44), in his original description of
T. musculi, noted the lack of detectable agglutinating antibody responses to T. musculi. Subsequent investigations of the existence of an agglutinating antibody response to T. musculi have produced conflicting results (12,69). Precipitating antibodies to both exo-antigens and cellular antigens of T. musculi have been recently reported (24).

By days 14 to 16 Pl a "2nd CRISIS" occurs which results in the elimination of the parasite from the peripheral blood by days 20 to 24 PI. Although the 1st CRISIS is antibody mediated (72), the mechanism responsible for the 2nd CRISIS does not depend on a direct (trypanocidal) antibody effect, but appears to be dependent on a cellular mechanism (71). The immunity that follows recovery from infection was thought by most investigators to be absolute (69). However, the recent report of multiplicative infective parasites in the vasa recta of kidneys of 12 month-recovered mice which were immune to homologous challenge has raised interesting questions about the nature and maintenance of the resistance to reinfection shown by these mice (70).

T. musculi is generally considered nonpathogenic; parasitemias seldom exceed 1x10^5/ml. This low level of parasitemia can be dramatically increased by irradiation (37), RES blockade (38), splenectomy (38), pregnancy (45), and T cell deprivation (68). Sublethal
doses of bacterial endotoxin (23) or corticosteroids (56) also enhance *T. musculi* infection. Furthermore, recent work indicates that the attachment of *T. musculi* antigens to the surface of erythrocytes of infected mice results in increased erythrophagocytosis and subsequent anemia (39). It may be appropriate to question the nonpathogenic classification of *T. musculi* and other rodent trypanosomes.

Transfer to mice of resistance to *T. musculi* has been reported using immune cells (69) or immune serum (69). Adoptive or passive transfer of immunity is more efficient in normal mice than in adult-thymectomized mice (68). Those components of the host immune response requisite to protect nude mice or irradiated mice against *T. musculi* infection have not been investigated.

Trypanosome infections lead to a suppression of host immune responses to various antigens (2) or mitogens (2). Spleen cells from *T. musculi* infected mice have been reported to be hyporesponsive to sheep erythrocytes (2) and to the mitogens phytohemagglutinin, concanavalin A, and *E. coli* lipopolysaccharide (2). Suppression was maximal during peak parasitemia and waned as the donors recovered from infection (2). Recent work implies that soluble substances derived from *T. musculi* act directly on B-lymphocytes rather than by activating suppressor T cells or macrophages (3). The effect of *T. musculi* induced suppression on antigen priming, development and
function of memory cells and on secondary immune responses to various antigens has not been investigated.

In order to further define those mechanisms responsible for the control and elimination of *T. musculi* in mice, it has been my approach to characterize the host response to *T. musculi* in nude mice (nu/nu), their phenotypically normal, thymus-bearing littermates (NLM: nu/+ or +/+), irradiated mice (60Co), and trypan blue-treated mice. These models were also utilized in selective reconstitution experiments designed to determine those cellular and humoral components of the host immune response that are requisite for the control and elimination of *T. musculi* parasitemia.

In addition to those studies described above, immunological studies suggested by results obtained from, but not pertaining directly to, the *T. musculi*-mouse model have been presented. The background literature pertinent to these studies will be presented in an abbreviated form in the results and discussion sections of this thesis. These data were included due to their provocative nature and cogency to the field of immunology.
MATERIALS AND METHODS

Animals

BALB/c mice of both sexes raised in our laboratory or purchased from Cumberland View Farms (Clinton, TN) were used for most experiments. Congenitally thymus-deficient mice (nu/nu), hereafter designated nude, and their normal, thymus-bearing littermates (NLM: nu/+ or +/+), hereafter designated NLM, were produced from heterozygous stock obtained from a line being made congenic with BALB/c mice by cross-intercross mating. Nude and NLM mice used in these studies were derived from heterozygous parents of the 12th and 13th generation.

All mice were 6 to 10 weeks old at the beginning of experiments. Groups of mice were carefully age and sex matched within each individual experiment.

All mice were maintained on Wayne Lab-Blox (Allied Mills, Inc. Chicago, IL) and acidified water. Sanicell bedding (Paxton Processing Co., Paxton, IL) was routinely sterilized before use.

Parasites

The Partinico II strain of T. musculi (American Type Culture Collection, Rockville, MD) was used throughout these studies. Parasites originally received were transported in a Diphasic Blood Agar Culture. Culture supernatant fluid and cells were removed and subpassaged twice through sublethally irradiated (550 rads, 60Co) mice.
On day 8 PI of the second subpassage, mice were bled into chilled Alsever's citrate via the retro-orbital plexus. Infected blood was centrifuged at 450g at 4°C, for 10 minutes, the supernate discarded and the pellet resuspended 1:3 in Alsever's glycerol (51). Infected glycerolized blood was then transferred into 1 ml or 5 ml ampoules, the ends of which were flame sealed, and quick-frozen in a methanol-dry ice bath. *T. musculi* stabilate material was maintained at -70°C until used. All cryopreservation procedures were carried out under aseptic conditions.

To produce a standard inoculum of 3×10^4 *T. musculi*, an ampoule of *T. musculi* stabilate was allowed to thaw at room temperature. Sub-lethally irradiated mice received 0.2 ml of thawed stabilate via i.p. injection. On days 6 to 7 PI these mice were bled into chilled Alsever's citrate. *T. musculi* infected blood was washed three times in chilled phosphate buffered saline supplemented with 2% normal mouse serum. The concentration of trypanosomes in the preparation was determined using a Neubauer-ruled counting chamber and a formalized diluting buffer (73). The suspension was adjusted to a concentration of 3×10^5 trypanosomes/ml of buffered saline. Mice were infected with a standard inoculum of 3×10^4 *T. musculi* in 0.1 ml of buffered saline via i.p. injection. Injections were performed using a 1 ml disposable syringe and a 23 ga needle.
To produce a preparation of *T. musculi* suitable for use in the
absorption of various *T. musculi*-specific antisera, stabilates were
subpassaged into sublethally (550 rads, ^{60}Co) irradiated mice. On
days 12 to 14 PI, infected mice were bled into chilled heparinized
saline (74). Trypanosomes were separated from the blood components
by differential centrifugation (25). Parasite populations obtained
from the blood of irradiated mice contained 35% to 50% dividing forms.

Evaluation of Parasitemia

Each mouse in each experimental group was bled from the tail on
various days after *T. musculi* infection. A single drop of blood was
used to make a thin-blood smear using a bevel-edged microscope slide
(VWR Scientific). Thin-blood smears were allowed to air dry and were
fixed in methanol for five minutes. Fixed smears were then Giemsa-
stained for 20 minutes using a 10% Giemsa solution (20 ml of stock
Giemsa solution/200 ml distilled H$_2$O). Slides were then dipped in
distilled water and blotted dry. Slides were evaluated on a Zeiss
light microscope using the 40x objective. Thirty high power fields
were examined for each mouse for each day the parasitemia was moni-
tored. Levels of parasitemia for each mouse were recorded as the
number of organisms per high power field (O/HPF).

Parasite reproduction was also monitored throughout the duration
of parasitemia. The trypanosome population was classified into two
groups: 1) Nondividing parasites (Trypomastigotes); 2) Dividing parasites (parasites less than 25 μm in length, epimastigotes, or trypomastigotes with multiple organelles). Reproductive activity was reported percent dividing forms (\(\%DF = \frac{\text{no. of dividing trypanosomes counted}}{\text{total no. of trypanosomes counted}} \times 100\)). Parasitemias were monitored every 2 to 5 days for the duration of the infection.

Immune Sera

To obtain various specific immune sera or normal control sera, \(T.\) musculi-infected, \(T.\) musculi-recovered, or normal mice were bled via the retroorbital plexus. All blood was left to clot at room temperature for 1 hr, stored at 4°C for an additional 12 hrs, and centrifuged for serum collection. Unless otherwise stated, all sera were inactivated at 56°C for 30 minutes before final storage at -70°C. Three different types of \(T.\) musculi-specific antisera were prepared and used in these studies: (1) Ab1- "Ablastic" antiserum obtained on day 18 PI from mice that had received \(3 \times 10^4 T.\) musculi i.p.; (2) IRS- Immune recovered serum obtained on day 28 PI from mice that received \(3 \times 10^4 T.\) musculi i.p.; (3) HIS- Hyperimmune serum from mice that received an initial injection of \(3 \times 10^4 T.\) musculi and two additional injections of \(3 \times 10^4 T.\) musculi, at one week intervals, subsequent to recovery from the initial injection of parasites.
When absorption of antisera was necessary, a concentration of 1x10^9 trypanosomes was added per ml of antisera, and incubated at 4°C for 30 minutes. Antisera were recovered following centrifugation and absorbed two more times.

In passive transfer experiments utilizing antisera, recipients (nude and NLM mice) received 3x10^4 T. musculi i.p. at the initiation of the experiment and were maintained on an antiserum regimen of 0.25 ml of appropriate antiserum intravenously (i.v.) every five days for the duration of the experiment. As controls, some mice received normal mouse serum in place of immune serum.

Thymus Gland-Grafting of Nude Mice

Nude mice 4 to 6 weeks old were anesthesized with sodium pentobarbitol (Abbott Laboratories), grafted with thymus glands from 4-day-old BALB/c mice using the technique established by Dukor et al. (22), and allowed to convalesce at least 42 days before their use in experiments. To assess thymic function representative NLM, thymus gland-grafted nude (Nu-TG) and nude mice were assayed by the localized-hemolysis-in-gel assay (53) 5 days after immunization with sheep erythrocytes (SE).

Irradiation of Mice

Mice received varying doses of γ-irradiation in certain experi-
ments described in these studies. A Picker V4-M60 with a 60Co source was utilized in these experiments. Approximate delivery rate of the source was 70 rads/minute. Plastic holders with individual compartments were used to immobilize mice during exposure to the 60Co source. Skin to source distance was 70 cm.

Adoptive Transfers

Single cell suspensions were prepared from the spleen or thymus of T. musculi-recovered or normal mice (74). In addition, single cell suspensions of bone marrow were prepared from normal mice (74). All cells were washed once in chilled phosphate buffered saline, resuspended to the appropriate concentration, and injected i.v. in a total volume of 0.5 ml to 0.75 ml depending on the nature of the cell preparation.

Certain experiments required thymus cell-reconstituted nude mice. Dispersed thymus cells were obtained from thymus glands of 5-day-old BALB/c donors by forcing the glands through 80 mesh stainless steel screens (Ambac Industries, Inc., Detroit, MI) in chilled phosphate buffered saline containing 2% normal mouse serum. Cells were enumerated and assayed for viability by a trypan blue exclusion test (10); subsequently, 1×10^8 viable thymus cells were injected i.v. into each recipient nude mouse. Thymus cell-reconstituted nude mice (Nu-TC)
were used in experiments 21 days after cell transfer.

Recipients of cells prepared in this manner were nude mice, NLM, or NLM which had received sublethal irradiation (550 rads, ^{60}Co) 24 hrs previously. In some experiments, mice received 3×10^4 T. musculi at the time of cell transfer.

Trypan Blue Treatment

In experiments designed to determine the role of macrophages in the early control and final elimination of T. musculi, trypan blue was utilized to alter macrophage function (30-34, 46) of NLM and nude mice. All mice received an initial i.p. injection of 4.0 mg of trypan blue in saline 24 hrs before T. musculi infection and 1.0 mg of trypan blue in saline i.p. 3 hrs before T. musculi infection. After receiving 3×10^4 T. musculi i.p. trypan blue-treated mice were maintained on a regimen of 1.0 mg trypan blue in saline, subcutaneously (s.c.), every 72 hrs for the duration of the experiment.

Antigens and Immunizations

Sheep erythrocytes (SE) and burrow erythrocytes (BE) were obtained from the Colorado Serum Co., Denver, CO. Mice were given a primary (1^{st}) injection of 0.25 ml of a 10% suspension of washed erythrocytes (SE or BE) via the lateral tail vein. When secondary (2^{nd}) injections were required, a similar injection of erythrocytes was given 21 days
following the 1° injection.

Polyvinylpyrrolidone (PVP) used for immunization (GAF Corporation, New York, NY) had an average molecular weight of 360,000 (designated PVP K90 by manufacturer). PVP K90 was dissolved in phosphate buffered saline at a concentration of 1 μg/ml and 0.25 μg was injected in 0.25 ml.

Type III pneumococcal polysaccharide (SSS-III) was kindly donated by Dr. Phillip J. Baker, Laboratory of Microbial Immunity, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD. In those experiments requiring the induction of low dose tolerance (7) to SSS-III, mice were primed with 0.01 μg SSS-III i.p. in saline and subsequently challenged with 0.5 μg SSS-III i.p. in saline. In other experiments mice received only a P dose of 0.5 μg of SSS-III i.p. in saline. SSS-III specific antibody responses were determined 5 days after the last SSS-III injection.

Lipopolysaccharide (LPS) extracted from E. coli was supplied by Dr. J.A. Rudbach, Department of Microbiology, University of Montana, Missoula, MT. Mice were given 1.0 μg LPS in saline i.v. and the magnitude of the LPS-specific antibody response was determined five days following immunization using the slide modification of the Jerne plaque technique.

Both 2,4-dinitrophenol-ovalbumin (DNP-Ova) and 2,4-dinitrophenol-
Ficoll (DNP-Ficoll) were generously provided by Dr. Jacques Chiller, Department of Medicine, National Jewish Hospital and Research Center, Denver, CO. Mice received a 1° dose of 400 μg of DNP-Ova in 0.2 ml of Complete Freund's Adjuvant (Gibco) i.p. Other mice received a 5 μg 1° dose of DNP-Ficol I in 0.2 ml of saline i.p. Eight days after immunization with DNP-Ova or five days after immunization with DNP-Ficoll, PFC responses were determined using TNP-linked SE (41).

Plaque Assays

Plaque forming cells (PFC) specific for BE, SE, PVP, SSS-III, LPS, or TNP were detected by a slide modification of the localized hemolysis-in-gel technique (53). Routinely, the magnitude of the PFC response to each antigen was determined five days following the last immunization with the exception of DNP-Ova. DNP-Ova antibody responses were determined eight days following immunization.

The procedure for coating SE with PVP has been described elsewhere (48). To detect the magnitude of PFC responses after immunization with DNP-Ova or DNP-Ficoll, 2,4,6-trinitrobenzene sulfonic acid (Eastman Kodak) was linked to SE using the Rittenberg-Platt technique (40). Mostly indirect (IgG) plaques were obtained with DNP-Ova while mostly direct (IgM) plaques were obtained with DNP-Ficoll using this technique.

In those plaque experiments that required the detection of in-
direct plaque (IgG) formation, rabbit anti-mouse immunoglobulin was used to facilitate indirect plaque formation (48). Counts of indirect plaques were recorded as the difference between the total number of plaques and the number of direct plaques.

Cellular Immunological Assay

Cell-mediated immune competence of *T. musculi*-infected (day 14 PI) mice was determined by measuring delayed-type hypersensitivity responses to 1-fluoro-2,4-dinitrobenzene. Individual responses of infected and uninfected mice were evaluated using an ear swelling assay described by Moorehead et al. (58). Measurement of ear swelling was made with a Schnelltaster micrometer (H.C. Kroeplin GMBH, Hessen, Germany) and was reported as percent increase over appropriate controls (58).

Statistics

Results of experiments in which PFC responses were determined were presented as the arithmetic mean of PFC/spleen or PFC/10^6 spleen cells. Results of ear swelling assays were presented as the mean percent increase over appropriate normal controls. In both instances, differences between arithmetic means were judged to be significant only if p values were < .05 as assessed by the Student's t test.
RESULTS

Thymus dependency of *T. musculi* elimination from mice

As a preliminary step in the elucidation of the mechanisms involved in *T. musculi* elimination from mice, the importance of thymus competence in the immune response to *T. musculi* was determined.

Groups of nude mice, thymus gland-grafted nude mice (Nu-TG), NLM mice, or irradiated (550 rads, 60Co) NLM mice were infected by i.p. injection of $3 \times 10^4 T. musculi$. Evaluation of 0/HPF and %DF was begun on day 4 PI and reported as an arithmetic mean for each treatment group for each day and parasitemia was monitored. The results (Figure 1) show that by day 4 PI all mice demonstrated detectable parasitemias, with a remarkably high parasitemia being observed in irradiated mice. Irradiated mice were dead by day 10 PI, exhibiting parasitemia as high as 350 0/HPF. As early as day 10 PI there was a discernible difference between thymus-bearing (NLM and Nu-TG) mice and nude mice. NLM and Nu-TG mice cleared the parasitemia from the blood by day 24 PI. In marked contrast, nude mice not only maintained a higher parasitemia, but also sustained this higher parasitemia for as long as day 85 PI, the extent of experimental observation. Dividing parasites were observed throughout nude infections (Figure 2) while in NLM and Nu-TG mice, %DF was markedly reduced by day 16 PI (Figure 2).

In order to assess the generation of thymus function in Nu-TG
Figure 1. *T. musculi* parasitemia in the blood of NLM, nude, Nu-TG, and irradiated mice (550 rads, 60Co). Each value represents the arithmetic mean of two experiments with no fewer than six mice in any experimental group.
ORGANISMS PER HIGH POWER FIELD

Irradiated

Nude

Nu-TG

NLM

DAYS POST-INOCULATION

4 6 8 10 12 14 16 18 20 22 24 40 50 60 70 80
Figure 2. Percent dividing forms in *T. musculi* parasitemia in NLM, nude, Nu-TG, and irradiated (550 rads, ^{60}Co) mice. Each value represents the arithmetic mean of two experiments with no fewer than six mice in any experimental group.
% DIVIDING FORMS

DAYS POST-INFECTION

IRRADIATED

NUDE

NLM

NU-TG
mice, representative NLM, Nu-TG, and nude mice were assayed for their ability to respond to the thymus-dependent antigen, sheep erythrocytes (SE). Five days following immunization with SE, spleens were assayed for SE-specific PFC using the localized-hemolysis-in-gel assay (53). The PFC responses (Table I) of nude and NLM mice were 345 PFC/spleen and 25,562/spleen respectively. Thymus gland-grafted nude mice responses with 16,000 PFC/spleen. These observations established that thymus function was generated in Nu-TG mice.

These data support the concept that the clearance of T. musculi parasitemia from the blood of mice is a thymus-dependent event. Although nude mice were not capable of eliminating T. musculi parasitemia, they were capable of exerting some control over the early parasitemia when compared to irradiated (550 rads, 60Co) mice.

Effect of Trypan Blue on the Early control of T. musculi Infection in Nude and Normal Mice

Because nude mice are known to exhibit a paradoxically high level of activated macrophage activity (13) and demonstrate an early nonspecific control of T. musculi infection (Figure 1), the possibility was investigated that early nonspecific control of T. musculi in mice may be due, at least in part, to macrophages.

The use of trypan blue to alter macrophage function (30-34,46) of nude mice and NLM mice allows an evaluation of the importance of macro-
Table 1. SE-specific PFC response of nude, NLM and Nu-TG mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Direct SE-PFC/Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nude</td>
<td>345</td>
</tr>
<tr>
<td>NLM</td>
<td>25,562</td>
</tr>
<tr>
<td>Nu-TG</td>
<td>16,000</td>
</tr>
</tbody>
</table>

a Mice were immunized with 0.25 ml of a 10% suspension of SE i.v. Mice were assayed for SE-PFC five days after immunization. Results are expressed as the number of direct (IgM) PFC/Spleen.

b Nu-TG mice were immunized 10 weeks after thymus grafting.
phages in the early nonspecific control of *T. musculi* parasitemia.

Groups of nude mice and NLM mice were injected i.p. with 4.0 mg of trypan blue in saline 24 hrs before *T. musculi* infection and 1.0 mg of trypan blue i.p. in saline 3 hrs before *T. musculi* infection. These trypan blue-treated mice, as well as irradiated mice (550 rads, 60Co) and appropriate controls were infected by i.p. injection of 3×10^4 *T. musculi*. Trypan blue-treated mice were maintained on a regimen of 1.0 mg of trypan blue s.c. every 72 hrs for the duration of the experiment. Evaluation of 0/HPF for each mouse in each group was begun on day 4 PI and data were recorded as group means (arithmetic) for each day the parasitemia was monitored.

By day 4 PI all mice were found to have detectable parasitemias. The results (Figure 3) show that as early as day 6 PI trypan blue-treated nude mice (Nude/Trypan blue) exhibited a high level of parasitemia that was strikingly similar to the high level of parasitemia observed in irradiated mice (Figure 3). Untreated, *T. musculi*-infected nude mice (Nude), while maintaining an early control over parasitemia, eventually developed high levels of parasitemia that culminated in their death by day 30 PI. Trypan blue-treated, uninfected nude mice were observed to live up to 45 days while maintained on the trypan blue regimen described. Furthermore, by day 8 PI there was a marked difference between trypan blue-treated NLM mice (NLM/Trypan blue)
Figure 3. *T. musculi* parasitemia in the peripheral blood of NLM, NLM/Trypan blue, Nude, Nude/Trypan blue, and irradiated (550 rads, 60Co) mice. Each value represents the arithmetic mean of two experiments with no fewer than six mice in each experimental group.
and their untreated, infected controls (NLM). NLM/Trypan blue mice exhibited a loss of early control characterized by an acute rise in levels of parasitemia by day 8 PI. However, by day 12 PI there was an equally acute decrease in parasitemia followed by a 10 day delay in the final clearance of parasites from the peripheral blood of NLM/Trypan blue mice.

These data support the hypothesis that the early nonspecific control of *T. musculi* parasitemia in mice may be due, at least in part, to macrophages. Treatment of both nude and NLM mice with trypan blue was found to ablate the early control over *T. musculi* parasitemia. Trypan blue treatment did not prevent the development of acquired immunity and the subsequent decrease in parasitemia in NLM/Trypan blue mice.

Adoptive Repair of *T. musculi* Elimination Potential In Nude Mice

With the thymus-dependency of *T. musculi* elimination from mice firmly established, adoptive transfer experiments were designed to identify those cell populations capable of repairing elimination potential in nude mice. Previous investigations involving adoptive transfers in normal mice (71) and in adult thymectomized mice (68) were complicated by the recipient's own thymus competence making interpretation of the results difficult. The availability of nude mice
allowed a more critical evaluation of the influence of various cell populations on *T. musculi* parasitemia.

Groups of *T. musculi* infected nude and NLM mice were injected with either immune (see materials and methods) or normal spleen cells (1x10^8, i.v.) at the time of infection. Other *T. musculi* infected nude mice received immune or normal thymus cells (1x10^8, i.v.) at the time of infection. NLM controls were also given immune thymus cells at the time of infection. Evaluation of 0/HPF was begun on day 4 PI. The results (Figures 4 and 5) show that all cell populations investigated were able to generate *T. musculi* elimination potential in nude mice. Nude mice that received no cells exhibited early control over the initial parasitemia, but eventually developed an increasing parasitemia that culminated in their death by day 13 PI. Immune spleen cells were more efficient in generating *T. musculi* elimination potential in nude mice than any other cell population investigated. Nude mice that received immune spleen cells were able to eliminate the parasitemia by day 20 PI, 20 days earlier than nude mice receiving either immune thymus cells or normal thymus cells, and 15 days earlier than nude mice that received normal spleen cells. NLM controls that received immune spleen cells (Figure 5) also showed a dramatic decrease in levels of parasitemia with elimination of *T. musculi* by day 9 PI.
Figure 4. *T. musculi* parasitemia in nude mice receiving immune thymus cells (NU/ITC), normal thymus cells (NU/NTC), immune spleen cells (NU/ISC), normal spleen cells (NU/NSC), or no cells (NUDE). Each value represents the arithmetic mean of two experiments with no fewer than six mice in any experimental group.
Figure 5. *T. musculi* parasitemia in NLM mice receiving immune thymus cells (NLM/ITC), immune spleen cells (NLM/ISC), or no cells (NLM). Each value represents the arithmetic mean of two experiments with no fewer than six mice in any experimental group.
These data clearly indicate that nude mice are incapable of eliminating *T. musculi*, but that adoptive transfer of immune or normal populations of cells obtained from the spleen or thymus of NLM mice are capable of generating *T. musculi* elimination potential in nude mice.

Effect of Passive Transfer of Immune Sera on *T. musculi* parasitemia in Nude and NLM mice

It has been suggested that the initial immune control of *T. musculi* parasitemia is antibody mediated (72). This event, referred to as the 1st CRISIS, is thought to be the result of the cooperative action of a thymus-independent trypanocidal antibody and a thymus-dependent ablasic serum factor (67-72). Previous reports have indicated that both ablastin and trypanocidal antibody are found in the serum of mice 18 days after *T. musculi* infection. Day 18 PI serum will hereafter be designated ablasic antiserum (Abl). Other reports indicate that by day 28 PI only the trypanocidal antibody can be detected in mouse serum (69). Day 28 PI mouse serum will hereafter be designated immune recovered serum (IRS).

In order to define those mechanisms responsible for the initial immune control of *T. musculi* by the host, passive transfer experiments were designed to examine the effects of immune sera on *T. musculi* parasitemia in nude mice and their NLM controls.
Groups of *T. musculi* infected nude mice and NLM controls received 0.25 ml of either Abl or IRS (i.v.) at the time of infection. Mice infected with normal mouse serum (NMS) served as controls. Mice were maintained on a regimen of 0.25 ml of appropriate antiserum (i.v.) every five days for the extend of experimental observation. The results (Figure 6) show that as early as day 8 PI there was a difference between nude mice that received Abl (Nude/Abl) and nude mice that did not receive Abl (Nude, Nude/NMS). The effect of Abl was especially noticeable in *T. musculi* infections of nude mice; both 0/HPF and %DF were markedly reduced throughout the infection. In spite of this conspicuous reduction in parasitemia and reproductive activity, Nude/Abl mice were dead by day 26 PI. Abl also produced alteration of *T. musculi* infections of NLM mice. 0/HPF was reduced and overall clearance was delayed by 10 days. Furthermore, Abl had a dramatic effect on %DF in NLM mice; reproductive activity was not detected after day 8 PI (Figure 7).

Nude mice that received an IRS regimen also showed a restricted parasitemia as early as day 8 PI (Figure 8), but in spite of this reduction in parasitemia, Nude/IRS were dead by day 20 PI. NLM mice that received an IRS regimen exhibited a decreased level of parasitemia accompanied by a 10 day delay in *T. musculi* clearance from the peripheral blood. In marked contrast to Nude/Abl and NLM/Abl mice (Figure
The effect of Abl on \textit{T. musculi} parasitemia in nude and NLM mice. Each value represents the arithmetic mean of two experiments with no fewer than six mice in each experimental group.
Figure 7. The effect of Abl on the reproductive activity of *I. musculi* in nude and NLM mice. Each value represents the arithmetic mean of two experiments with no fewer than six mice in each experimental group.
Figure 8. The effect of immune recovered serum on *T. musculus* parasitemia in nude and NLM mice. Each value represents the arithmetic mean of no fewer than six mice in each experimental group.
7), Nude/IRS and NLM/IRS mice did not exhibit an obvious restriction of parasite reproductive activity (Figure 9).

These data confirm the usefulness of the nude mouse as an *in vivo* model for the assay of ablastin activity. The lack of ablastic activity in IRS is in agreement with earlier observations using different techniques (69). It is noteworthy that Abl or IRS regimens were able to profoundly modify *T. musculi* parasitemia in nude mice, but were not able to provide *T. musculi* elimination potential to nude mice, nor prevent their death. This observation is in general agreement with the concept that final elimination of *T. musculi* from the peripheral blood of mice is dependent on a cellular mechanism and that this mechanism is nonfunctional in nude mice.

Absorption of Ablastic Activity from Immune Serum

The ablastic factor produced by *T. musculi*-infected mice has been a historically perplexing compound. Ablastin has been reported to be physicochemically similar to immunoglobulin, specifically IgG1. However, its nonabsorbability with homologous trypanosomes (8) and the lack of characterization of its eliciting antigens have cast doubt on the antibody-nature of ablastin. Since ablastin is proposed to inhibit reproduction without destroying trypanosomes (23), the possibility that dividing trypanosomes were the source of the eliciting
Figure 9. The effect of immune recovered serum on the reproductive activity of *T. musculi* in nude and NLM mice. Each value represents the arithmetic mean of two experiments no fewer than six mice in each experimental group.
antigen seemed plausible. If this is the case, a population of *T. musculi* enriched for dividing forms should present a more efficient antigen preparation for absorption of ablasic antiserum. Dividing parasite populations (35%–50% DF) were obtained from irradiated (550 rads, 60Co), *T. musculi*-infected mice on day 16 Pl (this parasite population was designated DIVIDING POPULATION=DP). Nondividing parasite populations were obtained from *T. musculi*-infected NLM on day 16 Pl (this parasite population was designated NONDIVIDING POPULATION=NDP). Serum containing ablasic activity was obtained from *T. musculi*-infected NLM on day 18 Pl (Abl). Nude mice were used as an in vivo assay of ablasic activity (see previous section).

Groups of *T. musculi*-infected nude mice received 0.25 ml of Abl, Abl absorbed with DP (DP-Abs-Abl), Abl absorbed with NDP (NDP-Abs-Abl), NMS, or no serum at the time of infection. Nude mice were then maintained on a regimen of 0.25 ml of appropriate antiserum every five days for the duration of experimental observation. Quantitation of O/HPF and %DF was begun on day 4 Pl. The results (Figures 10 and 11) show that as early as day 8 Pl there was a dichotomy between groups of nude mice that received Abl or NDP-Abs-Abl and groups of nude mice that received DP-Abs-Abl, NMS or no serum regimen. Abl and NDP-Abs-Abl treated mice exhibited low parasitemias (Figure 10) and remarkably low levels of parasite reproductive activity (Figure 11) throughout
Figure 10. *T. musculi* parasitemia in nude mice maintained on a regimen of Abl (Abl/Nude), DP-Abs-Abl (DP-Abs-Abl/Nude), NDP-Abs-Abl (NDP-Abs-Abl/Nude), NMS (NMS/Nude, or no serum (Nude). *T. musculi* infected NLM controls were also monitored (NLM). Each value represents the arithmetic mean of three experiments with no fewer than six mice in each experimental group.
Figure 11. Percent Dividing Forms in *T. musculi* parasitemia in nude mice that received a regimen of Abl (Abl/Nude), DP-Abs-Abl (DP-Abs-Abl/Nude), NDP-Abs-Abl (NDP-Abs-Abl/Nude), NMS (NMS/Nude), or no serum (Nude). *T. musculi*-infected NLM controls were also monitored. Each value represents the arithmetic mean of three experiments with no fewer than six mice in each experimental group.
the infection. After day 20 PI Abl and NDP-Abs-Abl treated nude mice
displayed gradual increase in parasitemia and %DF that eventually re-
sulted in their death by day 26 PI. In marked contrast, nude mice
that received DP-Abs-Abl, NMS, or no serum regimen maintained con-
spicuously high levels of both O/HPF and %DF throughout experimental
observation. Nude mice that received NMS were dead by day 20 PI,
while nude mice that received either DP-Abs-Abl or no serum regimen
were dead by day 26 PI. Control NLM mice exhibited a typical T.
musculi parasitemia with extensive reduction in %DF by day 14 PI and
elimination of the parasite from the peripheral blood by day 20 PI.

As an additional control, either DP or NDP parasite preparations
were used to absorb mouse anti-sheep erythrocyte (SE) antiserum. Ab-
sorption of this unrelated antiserum with either DP or NDP had no
appreciable effect on hemagglutination titers obtained against SE
(Table 11).

These data present direct evidence that a dividing form-enriched
preparation (35%-50%DF) of T. musculi can be used to absorb ablastic
activity from day 18 PI antiserum (Abl). Furthermore, absorption of
Abl with a nondividing parasite population (<5%DF) did not appreciably
diminish ablastic activity. These observations suggest that ablastin
is an antibody that can be adsorbed onto homologous trypanosomes. In
addition, these results provide indirect evidence that antigens re-
sponsible for the induction of ablastin production are found more
Table II. Absorption of anti-SE mouse antiserum with DP or NDP

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>HA titer<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-SE (1<sup>st</sup> response)<sup>a</sup></td>
<td>256</td>
</tr>
<tr>
<td>Anti-SE (1<sup>st</sup> response)<sup>a</sup> DP-absorbed</td>
<td>256</td>
</tr>
<tr>
<td>Anti-SE (1<sup>st</sup> response)<sup>a</sup> NDP-absorbed</td>
<td>256</td>
</tr>
<tr>
<td>NMS</td>
<td>0</td>
</tr>
<tr>
<td>Anti-SE (2<sup>nd</sup> response)<sup>b</sup></td>
<td>1,024</td>
</tr>
<tr>
<td>Anti-SE (2<sup>nd</sup> response)<sup>b</sup> DP-absorbed</td>
<td>1,024</td>
</tr>
<tr>
<td>Anti-SE (2<sup>nd</sup> response)<sup>b</sup> NDP-absorbed</td>
<td>1,024</td>
</tr>
</tbody>
</table>

^a Six mice received 0.25 ml of a 10% suspension of SE i.v. and were bled seven days later. Serum was pooled and split into three aliquots: one aliquot was absorbed with DP; a second aliquot was absorbed with NDP; the third aliquot was not absorbed.

^b Six mice received 0.25 ml of a 10% suspension of SE i.v. on day 0, day 14, and day 21. Mice were bled five days after the last immunization. Serum was pooled and split into three aliquots: one aliquot was absorbed with DP; a second aliquot was absorbed with NDP; the third aliquot was not absorbed.

^c Reciprocal of the highest dilution of serum showing clearly recognizable agglutination patterns. Identical 2-fold serial dilutions in PBS were made in microtiter plates.
readily in a dividing parasite population than in a nondividing parasite population.

Hemagglutination Assay for T. musculi-specific Serum Antibody

To measure T. musculi-specific antibody, a passive hemagglutination assay using microtiter plates was developed. Red cells coated with T. musculi antigen were obtained in the following manner. NLM mice received 550 rads, 60Co irradiation 24 hrs prior to i.p. injection of 3×10^4 T. musculi. On day 12 PI mice were bled into chilled Alsever's citrate via the retroorbital plexus. Concentration of contaminating trypanosomes was reduced to <10% using differential centrifugation (25). Erythrocytes were washed two times in chilled PBS and then resuspended to a 2% concentration. 25 μl of this antigen-coated erythrocyte preparation was placed in each well of a microtiter plate. Serum to be tested was subjected to a series of 2-fold dilutions in PBS. 200 μl of each dilution was pipetted into separate wells. After the addition of erythrocytes and sera to the wells, microtiter plates were gently agitated to insure thorough mixing of erythrocytes and serum. Plates were allowed to incubate for 24 hrs at room temperature after which easily distinguishable agglutination patterns were apparent.

The results (Table III) show that highest serum titers were
Table III. Utilization of *T. musculi* antigen coated mouse erythrocytes in a passive hemagglutination assay.

<table>
<thead>
<tr>
<th>Source of antigen-coated erythrocytes</th>
<th>PHA titer(^a)</th>
<th>Source of antiserum</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLM/D-18 Pl</td>
<td>256</td>
<td>Irradiated, T. musculi infected mice (D-12 Pl)</td>
</tr>
<tr>
<td>NLM/D-18 Pl, DP-absorbed</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NLM/D-28 Pl</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>NLM/D-28 Pl, DP-absorbed</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NLM/Hyperimmunized</td>
<td>1,024</td>
<td></td>
</tr>
<tr>
<td>Nude/D-18 Pl</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nude/D-28 Pl</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nu-TC/D-28 Pl</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NMS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NLM/Hyperimmunized</td>
<td>0</td>
<td>Irradiated, uninfected, mice</td>
</tr>
<tr>
<td>NLM/Hyperimmunized</td>
<td>0</td>
<td>T. musculi-infected mice</td>
</tr>
<tr>
<td>NLM/Hyperimmunized</td>
<td>0</td>
<td>Normal mice</td>
</tr>
</tbody>
</table>

\(^a\) Reciprocal of the highest dilution of serum showing a clearly recognizable agglutination pattern. Identical 2-fold serial dilutions were made in microtiter plates of each pool of serum.
achieved with serum obtained from mice that had received a total of three *T. musculi* infections (NLM/Hyperimmunized). Serum obtained from *T. musculi*-infected NLM mice on day 18 PI (NLM/D-18 PI) and day 28 PI (NLM/D-28 PI) had titers of 256 and 512 respectively. In noteworthy contrast, *T. musculi*-infected nude mice did not produce a detectable agglutinin response at day 18 PI (Nude/D-18 PI) or day 28 (Nude/D-28 PI). Furthermore, thymus cell-reconstituted (see Materials and Methods section), *T. musculi*-infected nude mice (Nu-TC/D-28 PI) produced barely detectable titers on day 28 PI.

To investigate the specificity of this assay, some antisera were absorbed with a dividing population of *T. musculi* (DP) before being tested. Absorbed Ab1 (NLM/D-18 PI, DP-Absorbed) and absorbed IRS (NLM/D-28 PI, DP-Absorbed) showed a dramatic reduction in titer after absorption. No agglutination was observed with erythrocytes from irradiated uninfected mice, unirradiated mice that were *T. musculi*-infected (day 12 PI), or normal mice (Table 111).

Effect of *T. musculi* Parasitemia on Direct and Indirect PFC Responses of Mice to SE and Direct PFC Responses to PVP in Mice

Many parasitic infections lead to the depression of the host's ability to respond to various antigens and mitogens (1,15,26,52,65). During *T. musculi* parasitemia the ability of mice to respond to un-
related antigens is dramatically depressed. Recent investigations indicate that soluble, parasite-derived substances act directly on B cells to produce this hyporesponsive immune status \((2,3)\). The effect of *T. musculi*-induced hyporesponsiveness on antigen priming, development and function of memory cells and on the secondary immune response has not been characterized.

In order to better understand the immune system dysfunction in *T. musculi*-infected mice, experiments were designed to evaluate the direct PFC response to a T-independent antigen, PVP \((48)\), and a T-dependent antigen, SE \((14)\) in *T. musculi*-infected NLM mice. *T. musculi*-infected NLM received an optimally immunizing dose of either PVP or SE (see Materials and Methods section) i.v. on day 14 PI. Uninfected NLM received similar immunizations on the same day. The results (Table IV) show that *T. musculi*-infected NLM mice (Group I; Table IV) had a significantly lower number of direct PVP-specific and direct SE-specific PFC when compared to normal controls (Group 2; Table IV). These data show that *T. musculi* parasitemia induces hyporesponsiveness to both a T-independent (PVP) and T-dependent (SE) antigen in mice.

Additional experiments were designed to determine the effect of *T. musculi* parasitemia on SE-priming, development of SE-memory cells, and on secondary immune responses to SE. Three different experimental designs were used: (1) Mice received a primary injection of SE during
Table IV. Effect of T. musculi parasitemia on direct PFC responses of mice to PVP and SE.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>PVP-Specific PFC</th>
<th>SE-Specific PFC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PFC/Spleen</td>
<td>PFC/10</td>
</tr>
<tr>
<td>1. T. musculi-infected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (day 14 PI)</td>
<td>3,987</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2. Uninfected control</td>
<td>9,270</td>
<td>41.6</td>
</tr>
</tbody>
</table>

* Indicates a significant (p < .05) difference between infected and uninfected groups using the Student's t test.

a. Mice were immunized with 0.25 ug of PVP i.v.
b. Mice were immunize with 0.25 ml of a 10% suspension of SE i.v.
c. Arithmetic mean for 12 mice determined five days after immunization.
I. musculi parasitemia (day 14 PI) and a secondary injection of SE after I. musculi elimination (day 35 PI) (Table V); (2) Mice received a primary injection of SE before I. musculi infection (day -7 PI) and a secondary injection of SE during I. musculi infection (day 14 PI) (Table VI); (3) Mice received a primary injection of SE on the same day as I. musculi infection (day 0 PI) and a secondary injection of SE after I. musculi elimination (day 21 PI) (Table VII). In each experimental design, similarly immunized uninfected NLM mice served as controls.

The results (Table V) show that I. musculi-infected NLM that received SE injections on day 14 PI and day 35 PI (Group 1; Table V) had significantly lower (P<.05) direct and indirect SE-specific PFC responses than uninfected controls (Group 2; Table V). In addition, I. musculi-infected mice that received a single priming dose of SE on either day 14 PI or day 35 PI (Groups 3 and 5; Table V) had significantly (P<.05) lower direct PFC responses to SE than uninfected NLM controls (Groups 4 and 6; Table V).

However, if mice were SE-primed before I. musculi infection (day -7 PI) and then received a second injection of SE on day 14 PI (Group 1; Table VI), their direct and indirect SE-specific PFC responses did not significantly (P>.05) differ from uninfected NLM controls (Group 2; Table VI). These results suggest that I. musculi parasitemia does
Table V. Effect of T. musculi parasitemia on direct and indirect PFC responses of mice to SE\(^a\) 1\(^{st}\) (day 14 Pi)/2\(^{nd}\) (day 35 Pi)

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>SE-specific PFC/Spleen(^b)</th>
<th>SE-specific PFC/10(^6)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
</tr>
<tr>
<td>1. T. musculi-infected 1(^{st}) (day 14 Pi)/2(^{nd}) (day 35 Pi)</td>
<td>79,225</td>
<td>188,025</td>
</tr>
<tr>
<td>2. Uninfected control</td>
<td>22,754</td>
<td>414,871</td>
</tr>
<tr>
<td>3. T. musculi-infected 1(^{st}) (day 14 Pi)</td>
<td>637</td>
<td>ND</td>
</tr>
<tr>
<td>4. Uninfected control</td>
<td>2,009</td>
<td>ND</td>
</tr>
<tr>
<td>5. T. musculi-infected 1(^{st}) (day 35 Pi)</td>
<td>185,125</td>
<td>ND</td>
</tr>
<tr>
<td>6. Uninfected control</td>
<td>220,875</td>
<td>ND</td>
</tr>
</tbody>
</table>

\(^a\) Mice were immunized with 0.25ml of a 10% suspension of SE i.v.

\(^b\) Arithmetic mean for 12 mice determined five days after immunization.

* Indicates significant (p < .05) difference between infected and uninfected groups as determined by Student's t test.
Table VI. Effect of T. musculi parasitemia on direct and indirect PFC responses of mice to SE $^{a}1^{0}$ (day -7 PI) / 2^{0} (day 14 PI).

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>SE-specific PFC/Spleenb</th>
<th>SE-specific PFC/106b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
</tr>
<tr>
<td>1. T. musculi-infected $^{T_{0}}$ (day -7 PI) / 2^{0} (day 14 PI).</td>
<td>15,051</td>
<td>507,173</td>
</tr>
<tr>
<td>2. Uninfected control</td>
<td>15,554</td>
<td>561,045</td>
</tr>
<tr>
<td>3. T. musculi-infected $^{T_{0}}$ (day -7 PI)</td>
<td>530</td>
<td>ND</td>
</tr>
<tr>
<td>4. Uninfected control</td>
<td>1,624</td>
<td>ND</td>
</tr>
<tr>
<td>5. T. musculi-infected $^{T_{0}}$ (day 14 PI)</td>
<td>19,062</td>
<td>ND</td>
</tr>
<tr>
<td>6. Uninfected control</td>
<td>38,359</td>
<td>ND</td>
</tr>
</tbody>
</table>

a Mice were immunized with 0.25ml of a 10% suspension of SE i.v.

b Arithmetic mean of 12 mice determined five days after immunization.

* Indicates a significant (p < .05) difference between infected and uninfected groups as determined by Student's t test.
Table VII. Effect of T. musculi parasitemia on direct and indirect PFC responses of mice to SEa 10 \textdegree (day 0 PI)/20 (day 21 PI).

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>SE-specific PFC/Spleenb</th>
<th>SE-specific PFC/106b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
</tr>
<tr>
<td>1. T. musculi-infected T\textdegree (day 0 PI)/2\textdegree (day 14 PI)</td>
<td>44,500</td>
<td>308,593</td>
</tr>
<tr>
<td>2. Uninfected control</td>
<td>77,624</td>
<td>207,890</td>
</tr>
<tr>
<td>3. T. musculi-infected T\textdegree (day 0 PI)</td>
<td>555</td>
<td>ND</td>
</tr>
<tr>
<td>4. Uninfected control</td>
<td>1,380</td>
<td>ND</td>
</tr>
<tr>
<td>5. T. musculi-infected T\textdegree (day 21 PI)</td>
<td>118,000</td>
<td>ND</td>
</tr>
<tr>
<td>6. Uninfected control</td>
<td>271,875</td>
<td>ND</td>
</tr>
</tbody>
</table>

a Mice received 0.25ml of 10% suspension of SE i.v.

b Arithmetic mean for 12 mice determined five days after immunization.

* Indicates a significant (p < .05) difference between infected and uninfected groups as determined by Student's t test.
not significantly alter SE-specific development or subsequent expression of secondary immunity to SE if SE-priming occurs before infection.

If mice received a priming injection of SE on the day of *T. musculi* infection (day 0) and then received a second injection of SE after elimination of parasitemia (day 21 PI), direct SE-specific PFC responses are diminished (Group 1; Table VII) when compared to uninfected controls (Group 2; Table VII), while indirect SE-specific PFC responses are augmented when compared to uninfected controls. Direct reduction in PFC responses or augmentation of indirect PFC responses (Groups 1 and 2; Table VII) was not determined to be significant (p > .05). These results also indicate that if SE-priming occurs prior to parasitemia, SE-specific memory cell development and expression of secondary immunity is not significantly altered.

Collectively these data (Tables IV-VII) provide evidence that *T. musculi* parasitemia significantly (p < .05) inhibits antigen priming. If mice are primed before or on the same day of *T. musculi* infection, memory cell development and expression of secondary immunity are not significantly altered.

Effect of *T. musculi* Parasitemia on Direct PFC Responses to PVP in Nude Mice
Recent investigations propose that *T. musculi* induced alterations of the immune system of mice are due to a direct effect on B cells rather than the activation of suppressor T cells or macrophages (2,3). To rule out the possibility of T-cell participation in *T. musculi*-induced hyporesponsiveness, experiments were designed to investigate direct PFC responses to a T-independent antigen (PVP) in *T. musculi*-infected nude mice. Previous studies have shown that PVP induces a vigorous immune response in both artificially T-cell deprived mice (4,5) and nude mice (47). *T. musculi*-infected nude mice received an optimally immunogenic dose of PVP on day 14 PI. Similarly immunized uninfected nude mice served as normal controls.

The results (Table VIII) indicate that *T. musculi*-infected nude had a significantly (p < .05) lower direct PVP-specific PFC response than uninfected nude controls. These data provide direct evidence that T cell participation is not requisite for the induction or expression of the hyporesponsive status of *T. musculi*-infected mice.

Effect of *T. musculi* Parasitemia on Delayed Hypersensitivity Responses in Normal Mice

Although the humoral immune dysfunction of *T. musculi*-infected mice has been reported (2,3), the integrity of cell-mediated responses of *T. musculi*-infected mice had not been investigated to date. Experiments were designed to assess the cell-mediated immune responses
Table VIII. Effect of *T. musculi* parasitemia on direct PFC responses of mice to PVP.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>PFC/Spleen<sup>b</sup></th>
<th>PFC/10<sup>6</sup><sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. T. musculi-infected nude mice (day 14 PI)</td>
<td>4,451</td>
<td>10.4</td>
</tr>
<tr>
<td>2. Uninfected nude mice</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>11,799</td>
<td>58.7</td>
</tr>
</tbody>
</table>

^a Mice were immunized with 0.25 μg of PVP i.v.

^b Arithmetic mean for six mice determined five days after immunization.

* Indicates a significant (p < .05) difference between infected and uninfected groups as determined by Student's t test.
of T. musculi-infected mice by measuring delayed-type hypersensitivity responses to 1-fluor-2,4-dinitrobenzene (DNFB). Individual responses of T. musculi-infected were determined on day 14 PI using an ear swelling assay that has been previously described (58). Mice were painted with 0.2 ml of DNFB (0.5%) on the abdomen on each of two consecutive days. Thickness of both ears of all mice was measured and recorded four days after the last painting. After baseline measurements were performed, mice were challenged with 0.2 ml of DNFB (0.2%) on the dorsal side of each ear. Ear thickness was measured 24 hrs after challenge and expressed as the mean % increase in ear thickness for 12 mice determined on day 18 PI. The results (Table IX) show that T. musculi-infected mice produced delayed-type hypersensitivity responses that were not dramatically different from uninfected controls. These data provide evidence that cell-mediated immunity (e.g. delayed-type hypersensitivity) remains intact during T. musculi parasitemia in mice. Furthermore, these observations are consistent with the concept that the immune system dysfunction in T. musculi-infected mice is due to a direct effect on B cells and does not involve T cells or macrophages.

Effect of Varying Doses of γ-irradiation on T. musculi Parasitemia in Mice
Table IX. Effect of *T. musculi* parasitemia on delayed-type hypersensitivity to 1-fluoro-2,4-dinitrobenzene in mice.\(^a\)

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>% Increase over baseline thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. T. musculi-infected (day 14 PI), DNFB-treated</td>
<td>69.6 %</td>
</tr>
<tr>
<td>2. T. musculi-infected (day 14 PI), vehicle alone</td>
<td>2.0 %</td>
</tr>
<tr>
<td>3. Uninfected, DNFB-treated</td>
<td>86.4 %</td>
</tr>
<tr>
<td>4. Uninfected, vehicle alone</td>
<td>6.6 %</td>
</tr>
</tbody>
</table>

\(^a\) Mice were painted with 0.02 ml of DNFB (0.5%) on the abdomen on each of two consecutive days. Thickness of both ears of all mice was measured and recorded four days after the last painting. After baseline measurements were performed, mice were challenged with 0.02 ml of DNFB (0.2%) on the dorsal side of each ear.

\(^b\) Ear thickness was measured 24 hrs after challenge and expressed as the arithmetic mean % increase in ear thickness for 12 mice determined on day 14 PI.
Previous studies have shown that X- or neutron irradiation can dramatically increase subsequent T. musculi parasitemia. This observation implies that there are radiosensitive components involved in the host immune response to T. musculi. Experiments were designed to test this hypothesis and to establish the lower threshold dose of 60Co irradiation necessary to induce this aberration. Balb/c mice received either 750rads, 550rads, or 350rads 60Co irradiation (whole body) 24 hrs prior to infection with 3×10^4 T. musculi. T. musculi-infected, unirradiated mice served as controls. Evaluation of parasitemia (0/HPF) was initiated on day 4 PI. The results (Figure 12) show that mice that received either 750rads or 550rads 60Co irradiation developed fulminant T. musculi parasitemia by day 6 PI. By day 10 PI, 750rads or 550rads mice were dead. Control mice which received 750rads or 550rads of 60Co irradiation, but were not infected lived 14 days post-irradiation and 200 days PI (extent of experimental observation) respectively. Mice that received 350rads 60Co irradiation did not develop fulminant parasitemias, but cleared their parasitemia by day 27 PI; 7 days later than T. musculi-infected normal controls.

These data imply that there is a radiosensitive host component requisite for the immune elimination of T. musculi parasitemia from mice. Furthermore, the radiosensitivity of this component was determined to lie between 350rads and 550rads.
Figure 12. *T. musculi* parasitemia in normal mice that received either 750rads, 550rads, or 350rads 25 hrs prior to *T. musculi* infection. Each value represents the arithmetic mean of 8 mice.
THE EFFECT OF 60Co IRRADIATION ON
T. MUSCULI INFECTION IN MICE

- 750 RAD
- 550 RAD
- 350 RAD
- NORMAL CONTROL

ORGANISMS / HIGH POWER FIELD

DAYS POST- INOCULATION
Effect of Irradiation on Acquired Immunity to *T. musculi*

After documenting the dramatic effect of γ-irradiation on the development of acquired immunity in the *T. musculi*-mouse model, experiments were designed to investigate the effects of γ-irradiation on established immunity to *T. musculi*. In addition, the effects of γ-irradiation on those mechanisms responsible for the sequestration of *T. musculi* in the vasa recta of the kidneys of mice were also investigated. Mice were infected with 3×10^4 *T. musculi* and were allowed to develop a normal parasitemia. All mice cleared parasitemia by day 21 PI. Some mice received 550 rads ^{60}Co on day 30 PI. *T. musculi*-recovered mice that did not receive γ-irradiation served as controls. One group of *T. musculi*-recovered mice that received 550 rads ^{60}Co (day 30 PI) received a second inoculum of *T. musculi* (3×10^4, i.p.) on day 31 PI, while another group that received 550 rads (day 30 PI) but did not receive a second *T. musculi* inoculum served as controls. Mice undergoing a primary *T. musculi* parasitemia were also included as controls.

The results (Table X) show that over 58% of the mice that had eliminated *T. musculi* parasitemia from the peripheral blood on day 21 PI, retained *T. musculi* in the vasa recta of the kidneys for at least 50 days post-elimination. Subsequent γ-irradiation of these mice did not cause a relapse of *T. musculi* parasitemia in the peripheral blood.
Table X. The Effect of 550 rads Co irradiation on the protective immunity of mice to *T. musculi*.

<table>
<thead>
<tr>
<th>1° T. musculi Challenge</th>
<th>2° T. musculi Challenge</th>
<th>No. of Mice Positive for T. musculi in Peripheral Blood Between Days 31–71</th>
<th>No. of Mice Positive for T. musculi in Kidney Between Days 31–71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>Day 30</td>
<td>0</td>
<td>3/5</td>
</tr>
<tr>
<td>Day 0</td>
<td>—</td>
<td>Day 31</td>
<td>0</td>
</tr>
<tr>
<td>Day 0</td>
<td>Day 30</td>
<td>Day 31</td>
<td>0</td>
</tr>
<tr>
<td>Day 31</td>
<td>—</td>
<td>—</td>
<td>6/6</td>
</tr>
</tbody>
</table>

a 3x10⁴ *T. musculi* i.p.

b Arithmetic mean of 90 high power fields of Giemsa-stained thin blood smears.

c Arithmetic mean of 90 high power fields of Giemsa-stained kidney impression smears.

= 550 rads Co irradiation.
Mice that received a secondary *T. musculi* challenge after γ-irradiation were refractile to reinfection.

These data provide direct evidence that γ-irradiation does not alter those host mechanisms responsible for the sequestration of *T. musculi* in the vasa recta of the kidney. In addition, these data imply that acquired immunity to *T. musculi*, once developed, is quite radio-resistant.

Effect of γ-irradiation and Selective Reconstitution of Mice on Subsequent *T. musculi* Infection

In order to further define those components requisite for the immune elimination of *T. musculi* from mice, experiments were conducted in which *T. musculi* parasitemia was monitored in mice that had received sublethal γ-irradiation followed by selective reconstitution with various syngeneic cell populations. Mice received 550 rads ⁶⁰Co irradiation whole body. Five days after irradiation, groups of mice received i.v. injections of either 1x10⁸ immune spleen cells, normal spleen cells, immune thymus cells, normal thymus cells or no adoptive transfer. In addition, mice received 3x10⁴ *T. musculi* i.p. the day of adoptive repair. Unirradiated, *T. musculi*-infected mice were included as controls. Evaluation of parasitemia (0/HPF) was begun on day 4 Pl.

The results (Figure 13) show mice that received 550 rads ⁶⁰Co and
Figure 13. *T. musculi* parasitemia in normal and irradiated (550 rads, 60Co) mice that received adoptive transfer of either immune thymus cells (D5-ITC and Normal control-ITC), immune spleen cells (D5-ISC and Normal control-SC), normal thymus cells (D5-NTC), normal spleen cells (D5-NSC), or no cells. NLM and irradiated mice received adoptive transfer on day 5 post-irradiation. Each value represents the arithmetic mean of at least six mice.
IRRADIATION DELAY 5-
ADOPTIVE REPAIR

ORGANISMS/HIGH POWER YIELD

DAYS POST-INOCULATION

NORMAL CONTROL

D5-NSC

D5-ISC

NORMAL CONTROL-SC

IMMUNE CONTROL

D5

D5-NTC

D5-ITC

NORMAL CONTROL-ITC
were injected five days later with either immune thymus cells, normal thymus cells or normal spleen cells could not control *T. musculi* parasitemia; these mice developed extremely high levels of parasitemia by day 6 PI and were dead by day 10 PI. Irradiated mice that received immune spleen cells exhibited a loss of early control over parasitemia, but by day 10 PI initiated a vigorous immune response that culminated in the elimination of *T. musculi* from the peripheral blood by day 18 PI, the same day as elimination of *T. musculi* in normal controls.

These data provide direct evidence that adoptive transfer of immune spleen cells five days after irradiation (550 rads, *Co*) can effectively repair *T. musculi* elimination potential, but not early control potential in irradiated mice. Furthermore, immune thymus cells, normal thymus cells, or normal spleen cells were not capable of repairing the irradiation-induced defect in *T. musculi* elimination potential in mice.

Additional experiments were designed to investigate the possibility that donor immune spleen cells may act in collaboration with host components in the post-irradiation repair of *T. musculi* elimination potential in mice. To determine the validity of this proposal mice were allowed to recover 25 days following irradiation (550 rads, *Co*) before adoptive transfer of various cell populations and subsequent *T. musculi* parasitemia. Mice received i.v. injection of either 1×10^8
immune spleen cells, normal spleen cells, immune thymus cells, normal thymus cells, or no cells on day 25 post-irradiation. Mice also received 3×10^4 *T. musculi* i.p. the day of adoptive repair. Normal *T. musculi*-infected mice were included as controls. Quantitation of parasitemia was begun on day 4 PI.

The results (Figure 14) indicate that *T. musculi* parasitemia in mice adoptively repaired with immune thymus cells, normal thymus cells or normal spleen cells 25 days following irradiation did not differ from *T. musculi* parasitemia in irradiated controls that received no adoptive transfer of cells. Conversely, mice that received immune spleen cells 25 days post-irradiation not only exhibited a profound reduction in levels of parasitemia early in the infection, but also exhibited a dramatic decrease in the duration of parasitemia when compared to *T. musculi*-infected normal controls.

These data clearly indicate that immune spleen cells adoptively transferred into mice 25 days post-irradiation can produce a state of enhanced resistance to *T. musculi* parasitemia when compared to *T. musculi*-infected normal controls. Both early control mechanisms and elimination mechanisms appeared to be enhanced by adoptive transfer of immune spleen cells 25 days post-irradiation. In addition, these data are in agreement with the proposal that donor immune spleen cells may collaborate with a minimally radiosensitive population of host cells.
Figure 14. *T. musculi* parasitemia in normal mice and in irradiated (550 rads, 60Co) mice that received adoptive transfer of either immune or normal thymus cells or immune or normal spleen cells on day 25 post-irradiation. Each value represents the arithmetic mean of at least six mice.
that have regained function by day 25 post-irradiation.

Post-irradiation PFC Responses of Mice to PVP and SE

To further investigate the immune status of mice after receiving whole body 60Co irradiation, PFC responses to PVP and SE were determined on various days post-irradiation. Mice received 550 rads, 60Co irradiation whole body. On days 10, 15, 20, 25, 30 and 60 post-irradiation mice received an optimally immunogenic dose of either SE or PVP. PFC responses were determined five days post-immunization.

The results presented in Figure 15 clearly indicate a conspicuous dichotomy in recovery of PFC responses to SE and PVP post-irradiation. By day 30 post-irradiation, SE-specific PFC responses of 60Co irradiated mice were over 100% of unirradiated normal control SE-PFC responses. Conversely, on day 30 post-irradiation PVP-specific responses were only 18% of unirradiated normal control PVP-PFC responses. Furthermore, this difference between SE and PVP responsive B cells in ability to recover function after irradiation was still apparent 60 days following 550 rads 60Co irradiation.

These data imply that distinct subpopulations of B cells might be characterized by their ability (or lack of ability) to recover from the effects of sublethal irradiation. Heterogeneity of B cells and their classification into discrete subpopulations has received a great
Figure 15. Post-irradiation responses of mice to PVP or SE on various days following 550 rads, \({^{60}}\text{Co} \). Each value represents the mean of at least 12 mice determined five days following immunization with optimal doses of either antigen.
PFC RESPONSE OF MICE VARYING DAYS AFTER 550\(^{r}\) (WHOLE BODY)\(^{60}Co\)

% OF NORMAL CONTROL
PFC/10\(^6\)

\(\Delta\) SRBC Specific PFC/10\(^6\)
\(\bullet\) PVP Specific PFC/10\(^6\)

DAYS POST-IRRADIATION

5 10 15 20 25 30 35 40 60
deal of attention in the past two years \((29,40,43,49,50,54,55,62)\).

Gershon and Kondo \((28)\) demonstrated that some B cells require T cells to become tolerant, while a second subclass of B cells become tolerant without T cell participation. Playfair and Purves \((59)\), utilizing adoptively transferred cells in limiting dilutions, found that synergy between thymus and spleen or bone marrow cells was not proportional to the reactivity of either spleen or bone marrow cells in the absence of T cells. From this observation they proposed two subpopulations of B cells, one of which, \(B_1\), did not require T cell help to generate an immune response, whereas the second subpopulation, \(B_2\), did require T cell help to generate an immune response. In other studies, Gorczynski and Feldman \((29)\) have used velocity sedimentation to separate B cells into two populations which showed discernible differences in their ability to respond to thymus-dependent and thymus-independent antigens. Jennings and Rittenberg \((41)\) have used several thymus-independent and thymus-dependent hapten carrier complexes in addition and synergy experiments to further substantiate the existence of distinct B cell subpopulations. In addition, Quintans and Kaplan \((62)\) have shown a difference between adult and newborn B cells of mice in their ability to quickly recover from the effects of sublethal irradiation.
Based on our initial observation (Figure 15) and recent investigations by others (29, 40-43, 49, 50, 54, 55, 62), experiments were designed to further investigate B cell subpopulations that differ in their ability to recover following sublethal 60Co irradiation. To determine the threshold amount of 60Co irradiation required to induce this dichotomy in recovery, Balb/c mice received either 550 rads, 350 rads, or 100 rads of 60Co irradiation. Mice received 0.25 μg of PVP or 0.25 ml of a 10% suspension of SE i.v. 30 days following irradiation. PVP-specific and SE-specific PFC responses were determined five days post-immunization. The results (Table XI) show that as little as 100 rads 60Co can significantly ($p < .05$) lower PVP-PFC responses of mice immunized 30 days after irradiation. Conversely, SE-specific PFC responses were above normal control responses 30 days following either 550 rads, 350 rads, 200 rads, or 100 rads 60Co.

These data imply that relatively low doses (100 rads) of 60Co are capable of inactivating cells and induce a defect in the recovery of B cells capable of responding to the T-independent antigen, PVP. In marked contrast, even after 550 rads 60Co, B cells capable of responding to SE fully recover function by day 30 post-irradiation.
Table XI. Direct PFC responses of mice to PVP\(^c\) and SE\(^d\) 30 days following varying doses of \(^{60}\)Co radiation\(^a\).

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Direct PVP-PFC/10(^6) ± SD(^b)</th>
<th>Direct SE-PFC/10(^6) ± SD(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>312.00 ± 48.7</td>
<td>200.96 ± 48.6</td>
</tr>
<tr>
<td>550rads</td>
<td>11.46 ± 5.0 (^*)</td>
<td>106.90 ± 65.3</td>
</tr>
<tr>
<td>350rads</td>
<td>34.60 ± 16.1 (^*)</td>
<td>204.00 ± 36.5</td>
</tr>
<tr>
<td>200rads</td>
<td>40.90 ± 21.0 (^*)</td>
<td>298.90 ± 6.9</td>
</tr>
<tr>
<td>100rads</td>
<td>165.70 ± 68.4 (^*)</td>
<td>318.50 ± 87.4</td>
</tr>
</tbody>
</table>

\(^a\) Mice received \(^{60}\)Co radiation whole body

\(^b\) Arithmetic mean of five mice determined five days after immunization

\(^c\) Mice received 0.25 \(\mu\)g of PVP i.v.

\(^d\) Mice received 0.25 ml of a 10\% suspension of SE i.v.

\(^*\) Indicates significant (\(p < 0.05\)) difference from normal control values as determined by Student's \(t\) test.
Post-irradiation PFC Responses of Mice to DNP on a T-dependent or T-independent Carrier

Additional experiments were conducted in which a single hapten, DNP, linked to either a T-dependent carrier (DNP-Ovalbumin) or a T-independent carrier (DNP-Ficoll) was used as an immunogen to investigate the differential effect of 60Co irradiation on B cell subpopulations. Mice received 550 rads 60Co whole body. Mice received an optimal dose of either DNP-Ficoll or DNP-Ovalbumin 30 days following irradiation. Similarly immunized unirradiated mice served as controls. Direct and indirect PFC responses of DNP-Ovalbumin immunized mice and direct PFC responses of DNP-Ficoll immunized mice were determined on day 8 and day 5 post-irradiation respectively. The results (Table XII) provide evidence that mice recovered their ability to respond to DNP-Ovalbumin 30 days post-irradiation. In marked contrast, the DNP-Ficoll response of mice had not recovered 30 days following irradiation. There was a significant ($p < .05$) reduction of DNP-Ficoll PFC responses of irradiated mice when compared to unirradiated controls.

These data suggest that B cells can be classified into distinct subpopulations based on their ability to functionally recover after in vivo exposure to 550 rads 60Co. Furthermore these data are in agreement with the $B_1 B_2$ hypothesis (59) and suggest the possibility that B_1 cells are impaired in their ability to functionally recover.
Table XII. Direct and indirect PFC responses of mice to DNP^a on a T-independent carrier 30 days following 550 rads 60^{Co} radiation.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Direct PFC/10<sup>6d</sup></th>
<th>Indirect PFC/10<sup>6d</sup></th>
<th>% Normal control</th>
</tr>
</thead>
<tbody>
<tr>
<td>60<sup>Co</sup>/DNP-Ovalbumin</td>
<td>101.64</td>
<td>140.34</td>
<td>97.95 %</td>
</tr>
<tr>
<td>Normal control/DNP-Ovalbumin</td>
<td>67.45</td>
<td>143.36</td>
<td></td>
</tr>
<tr>
<td>60<sup>Co</sup>/DNP-Ficoll</td>
<td>139.40<sup>*</sup></td>
<td>ND</td>
<td>38.70 %</td>
</tr>
<tr>
<td>Normal control/DNP-Ficoll</td>
<td>358.71</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

^a 2,4-dinitrophenol

^b DNP-Ovalbumin- 400 μg in 0.2 ml of Freund's Complete Adjuvant i.p.

^c DNP-Ficoll- 5 μg in saline i.p.

^d Arithmetic mean of five mice determined either 5 days (DNP-Ficoll) or eight days (DNP-Ovalbumin) following immunization.
following ^{60}Co irradiation, whereas B$_2$ cells are not.

Post-irradiation PFC Responses of Mice to T-Independent 1 and T-Independent 2 Antigens

Mosier, Mond and Goldings (54) have shown that thymus-independent antigens can be divided into two major subsets based on their ability to stimulate early neonatal or CBA/N B cells (T-independent type 1 antigens) or their capacity to stimulate only more mature B cells in ontogeny, which cells are absent in the CBA/N strain (T-independent type 2 antigens). Because previous experiments (Table XII) have shown that B cells responsive to PVP and DNP-Ficoll, both T-independent antigens, have an altered ability to functionally recover following ^{60}Co irradiation, experiments were designed to investigate post-irradiation PFC responses of mice to T-independent type 1 antigens and T-independent type 2 antigens. Mice received 550 rads ^{60}Co irradiation whole body. Mice then received optimal doses of either LPS (T-independent type 1 antigen), PVP (T-independent type 2 antigen, SSS-III (T-independent type 2 antigen), or SE (T-dependent antigen). PFC responses to these antigens were measured five days post-immunization. The results (Table XIII) show that PFC responses to either SSS-III or PVP were significantly ($p < .05$) lower in 30-day post-irradiation mice than in unirradiated controls. Conversely, post-irradiation PFC responses to LPS were not found to be significantly ($p < .05$) different.
Table XIII. Direct PFC responses of mice to SSS-IIIa, LPSb, PVPc, or SEd 30 days following 60Co irradiatione.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>PFC/Spleenf</th>
<th>PFC/106f</th>
<th>% Normal control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 60Co/SSS-III [T-1 (2) Ag]</td>
<td>1,604</td>
<td>16.45</td>
<td>15.6 %</td>
</tr>
<tr>
<td>2. Normal control/SSS-III</td>
<td>17,625</td>
<td>105.18</td>
<td></td>
</tr>
<tr>
<td>3. 60Co/LPS [T-1 (1) Ag]</td>
<td>10,374</td>
<td>57.86</td>
<td>122.0 %</td>
</tr>
<tr>
<td>4. Normal control/LPS</td>
<td>23,487</td>
<td>47.40</td>
<td></td>
</tr>
<tr>
<td>5. 60Co/PVP [T-1 (2) Ag]</td>
<td>5,459</td>
<td>62.40</td>
<td>21.1 %</td>
</tr>
<tr>
<td>6. Normal control/PVP</td>
<td>45,436</td>
<td>295.70</td>
<td></td>
</tr>
<tr>
<td>7. 60Co/SE [T-D Ag]</td>
<td>24,000</td>
<td>164.30</td>
<td>94.0 %</td>
</tr>
<tr>
<td>8. Normal control/SE</td>
<td>59,875</td>
<td>174.80</td>
<td></td>
</tr>
</tbody>
</table>

a Mice were immunized with 0.5 µg of SSS-III i.p. in saline.
b Mice were immunized with 1.0 µg of LPS i.v. in saline.
c Mice were immunized with 0.25 µg of PVP i.v. in saline.
d Mice were immunized with 0.25 ml of a 10% suspension of SE in saline i.v.
e Mice received 550 rads 60Co irradiation 30 days prior to immunization.
f Arithmetic mean of six mice determined five days following immunization.
from LPS-PFC responses of unirradiated controls. Furthermore, post-irradiation SE-specific PFC responses in mice did not differ significantly from SE-specific PFC responses of unirradiated controls.

Mosier et al. proposed that T-Independent type 1 and T-independent type 2 antigens addressed different subpopulations of B cells. Post-irradiation experiments (Table XII) presented here provide evidence that the B cells subpopulation addressed by T-independent type 2 antigens fails to functionally recover 30 days following irradiation, whereas the B cell population addressed by T-independent type 1 antigens recovers functionally by day 30 post-irradiation.

PVP Optimal-Day Titration in 30-day Post-irradiation Mice and Normal Mice

Because one of the ways in which ionizing radiation affects antibody synthesis is to lengthen the lag phase of antibody production (5), experiments were designed to exclude this possibility as a mechanism of the observed post-irradiation recovery dichotomy between B cell subpopulations responding to T-dependent antigens or T-independent type 1 antigens and T-independent type 2 antigens. Mice received 550 rads 60Co irradiation, whole body. Groups of mice received an optimal dose of PVP i.v. on days 30, 31, 32, or 33 post-irradiation. Similarly immunized groups of unirradiated mice served as normal controls.
The results (Table XIV) show that optimal PVP-specific responses were obtained on day five post-immunization in both post-irradiation groups. Furthermore, optimal PVP-PFC responses of post-irradiation mice were dramatically lower than optimal PVP-PFC responses of unirradiated controls.

These data imply that peak PVP-specific PFC responses of mice were not observed after day five post-immunization in post-irradiation mice. Therefore, the post-irradiation recovery dichotomy between B cell populations responding to either T-dependent and T-independent type 1 antigens or T-independent type 2 antigens is not simply due to an increased lag phase in antibody production.

PVP-specific PFC Responses in Irradiated and Selectively Reconstituted Mice

Experiments were designed to determine what cell populations, adoptively transferred, could restore PVP-specific PFC responses in post-irradiation mice. Mice received 550 rads 60Co, whole body. On day 7 post-irradiation mice received either 1×10^8 spleen cells, thymus cells, or bone marrow cells i.v. Unirradiated mice receiving similar adoptive transfers of cells were included as controls. On day 30 post-irradiation, groups of irradiated-selectively reconstituted mice and unirradiated controls that received similar cell populations were immunized with an optimal dose of PVP i.v. Day 30 post-irradiation
Table XIV. PVP optimal day titration in 30-day post-irradiation mice and normal mice.\(^a\)

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Direct PVP-specific PFC/10^6(^b)</th>
<th>%Normal control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Normal control</td>
<td>151.00</td>
<td></td>
</tr>
<tr>
<td>2. Day 30 post-irradiation day 5 PVP response</td>
<td>58.80</td>
<td>38.9 %</td>
</tr>
<tr>
<td>3. Day 30 post-irradiation day 7 PVP response</td>
<td>41.50</td>
<td>27.48 %</td>
</tr>
<tr>
<td>4. Day 30 post-irradiation day 8 PVP response</td>
<td>0.89</td>
<td>0.20 %</td>
</tr>
<tr>
<td>5. Day 30 post-irradiation day 8 PVP response</td>
<td>3.12</td>
<td>2.06 %</td>
</tr>
</tbody>
</table>

\(^a\) Mice received 550rads \(^{60}\) Co irradiation on day 0. Mice were immunized on either day 30, 31, 32, or 33 with 0.25 \(\mu\)g of PVP i.v.

\(^b\) Arithmetic mean for six mice determined on day 38 post-irradiation.
mice that were not selectively reconstituted and normal mice also received an optimal dose of PVP i.v. and were included as controls.

The results (Table XV) show irradiated mice that were reconstituted with either spleen cells, thymus cells or bone marrow cells had much higher PVP-specific PFC responses than irradiated mice that received no cells, but not different from normal mice that received adoptive transfer of similar cell populations. It was interesting to note that adoptive transfer of thymus cells impaired the PVP-PFC responses of normal mice (51% of normal control). Bone marrow cells appeared to be the most efficient cell population in repairing post-irradiation PFP-PFC responses of mice (155% of normal control).

These data imply that adoptive transfer of either 1×10^8 spleen cells, thymus cells, or bone marrow cells into irradiated mice is capable of repairing post-irradiation PVP-specific PFC responses of mice.
Table XV. Direct PVP-PFC responses of adoptively repaired mice 30 days following 60Co irradiation.a

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>PVP-specific PFC/10^6 b</th>
<th>% Normal control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Irradiation control</td>
<td>30.90</td>
<td>12.02 %</td>
</tr>
<tr>
<td>2. Normal control</td>
<td>257.00</td>
<td></td>
</tr>
<tr>
<td>3. Day 30 post-irradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus cell repaired</td>
<td>149.00</td>
<td>57.97 %</td>
</tr>
<tr>
<td>4. Normal control/Thymus cells</td>
<td>131.00</td>
<td>50.97 %</td>
</tr>
<tr>
<td>5. Day 30 post-irradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone marrow repaired</td>
<td>397.00</td>
<td>154.47 %</td>
</tr>
<tr>
<td>6. Normal control/Bone marrow</td>
<td>187.00</td>
<td>72.76 %</td>
</tr>
<tr>
<td>7. Day 30 post-irradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spleen cell repaired</td>
<td>187.14</td>
<td>72.81 %</td>
</tr>
<tr>
<td>8. Normal control/Spleen cells</td>
<td>281.95</td>
<td>109.70 %</td>
</tr>
</tbody>
</table>

a Mice received 550 rads 60Co 60Co 1-radiation on day 0. Mice received 1x10^6 thymus cell, spleen cells, or bone marrow cells i.v. on day 7 post-irradiation. Mice were immunized with 0.25 \mu g of PVP i.v. on day 30 post-irradiation.

b Arithmetic mean of five mice determined five days after immunization.
DISCUSSION

Results presented in figures 1 and 2 provide direct evidence for the thymus dependency of _T. musculi_ elimination from mice. Furthermore, because dividing forms were observed throughout nude infections while dividing forms were dramatically limited after day 12 PL in both Nu-TG and NLM mice, these data suggest the thymus-dependency of the ablastic phenomenon.

Although nude mice were incapable of clearing _T. musculi_ parasitemia, they were observed to exert some control over parasitemia when compared to mice that had received sublethal irradiation prior to _T. musculi_ infection (Figure 1). Early investigations of the _T. musculi_ mouse model led to the proposal that macrophages may be involved in early innate immunity to _T. musculi_ (37,38). Because nude mice have paradoxically high levels of activated macrophage activity (13) and demonstrate early control over _T. musculi_ parasitemia (Figure 1), the possibility that early control over parasitemia was investigated. Studies using trypan blue to alter macrophage activity (9, 30-34,46) in nude and NLM mice (Figure 3) revealed that macrophages may not only play an important role in early nonspecific immunity, but may also participate in the final clearance of _T. musculi_ from the peripheral blood of mice. Macrophage participation in immune elimination of _T. musculi_ has also been proposed by Vlens et al. (61,71), who have reported that trypanosomes are frequently seen adhering to and being
rapidly killed by blood monocytes during the terminal stages of _T. musculi_ infection. Paradoxically, these data imply that the _in vivo_ administration of trypan blue, which has been reported to have trypanocidal activity (75), can under certain conditions actually enhance _T. musculi_ infections of mice.

The thymus dependency of _T. musculi_ elimination does not distinguish between the role of cell-mediated or humoral factors in mechanisms of immunity to _T. musculi_. Previous work has suggested that initial acquired immunity to _T. musculi_ is due to the combined action of a thymus-dependent ablastin and a thymus-independent trypanocidal antibody. Final clearance of _T. musculi_ from the peripheral blood of mice has been hypothesized to be dependent on a cell-mediated mechanism rather than a direct antibody effect (72). The data (Figures 4-9) confirm and extend these theories. Nude mice that received adoptive transfers of immune or normal populations of spleen or thymus cell prior to _T. musculi_ infection were able to generate _T. musculi_ elimination potential (Figure 4). Conversely, nude mice that received passive transfer regimens of either Abl or IRS serum demonstrated a marked reduction in parasitemia but were not able to generate _T. musculi_ elimination potential (Figures 6-9). It was interesting to note that passive transfer of Abl in nudes did generate a remarkable reduction in %DF and parasitemia (Figures 6 and 7) while passive transfer of IRS had little
effect on %DF yet reduced parasitemia dramatically (Figures 8 and 9). These data are in agreement with the hypothesis proposed by early investigators (69) that day 18 Pl mouse serum contains both ablastin and trypanocidal antibodies while day 28 Pl mouse serum contains only trypanocidal antibodies.

Since the original description of ablastin (66), the concept of a serum factor that controls reproduction without killing parasites has intrigued many investigators. Experimental evidence accrued in physico-chemical and immunosuppressant studies (23) indicates that ablastin is an immunoglobulin, possibly IgG1. However, the nonabsorbability of ablastin activity from antiserum with homologous trypanosomes and the inability to isolate its eliciting antigen(s) (23) has presented a historically perplexing problem in understanding the nature of ablastin and the mechanisms of its action. One of the problems in the study of ablastin has been the lack of dependable in vivo assays for ablastic activity. Previous data have shown that nude mice are not capable of producing ablastin (Figure 1 and 2) but that passively transferred Ab1 has a profound effect on T. musculi parasitemia in nude mice. These observations suggest the utility of the nude mouse as an in vivo assay of ablastin activity. Data presented in figures 7 and 8 confirm this proposal and demonstrate the reliability of this in vivo assay of ablastin activity.
Because ablastin is supposedly interacting with dividing forms of T. musculi (23), it seemed that divisional forms might be a primary source of antigen(s) that elicits the production of ablastin. If this supposition were true a dividing form-enriched population of T. musculi should result in a more appropriate antigen preparation for the absorption of ablastic antiserum. To test this hypothesis, a dividing form-enriched (35%-50%DF) population of T. musculi was obtained from irradiated, T. musculi-infected mice and was used to absorb Abl antiserum. The data (Figures 10 and 11) clearly indicate that a dividing form-enriched population of T. musculi can absorb ablastic activity from mouse antiserum, while a nondividing population of T. musculi (<5%DF) can not. These data provided the crucial evidence needed to establish the antibody nature of ablastin. Furthermore, these data suggest that ablastin is a "normal" antibody that can be absorbed from antiserum with homologous trypanosomes. Previous attempts to absorb ablastin activity from antiserum with homologous trypanosomes have probably failed due to a low %DF in the trypanosome preparations used. The results of these experiments also confirmed the hypothesis that antigens eliciting production of ablastin are present in appreciable amounts in a dividing parasite population.

Kendall, in his original description of T. musculi (44), noted another surprising aspect of T. musculi serology; the lack of a specific
detectable agglutinating antibody response to the parasite. Subsequent investigations have further abfuscated the issue. Viens et al. report their failure to detect a specific agglutinating response to *T. musculi* (72), while Chang and Dusanic (12) report a detectable agglutinating response to *T. musculi*. The ability of *T. musculi* antigens to passively absorb onto the surface of mouse erythrocytes had been well documented. It seemed to me that these antigen-coated erythrocytes might provide an ideal indicator system for the detection of *T. musculi*-specific agglutinating antibodies in mouse serum. However, due to the rapid rate of erythrophagocytosis observed in *T. musculi*-infected mice most antigen-coated erythrocytes are rapidly cleared from the circulation. I proposed that irradiated mice that had been allowed to develop a fulminant *T. musculi* parasitemia might be a more appropriate source for *T. musculi* antigen-coated erythrocytes. The data presented in table III confirm this hypothesis and clearly demonstrate that *T. musculi* antigen-coated erythrocytes obtained from irradiated mice are capable of being agglutinated with *T. musculi*-specific antisera. These observations suggest that agglutinating antibodies are produced by mice in response to *T. musculi* infection. Furthermore, appropriate erythrocyte and serum controls (Table III) show this system to be a sensitive and specific assay for the detection of anti-*T. musculi* agglutinating antibodies. Therefore I conclude that
this hemagglutination technique provides a new and useful technique for the quantitation of *T. musculi*-specific antibodies in mouse serum.

The ability of parasitic infections to suppress host immune responses to various antigens and mitogens has been well documented (2,3,16,26,52). However, little is known about the mechanisms by which immune responses are affected (2,3). Recent speculation has centered on parasite activation of suppressor T cells (26) and suppressive macrophages (3). It is certainly reasonable to assume that, through trial, error and adjustment, parasites have evolved more than one method for the evasion of host immune responses. *T. musculi* infection strongly depresses the ability of mice to respond to antigens or mitogens *in vivo* or *in vitro* (3). Furthermore, spleen cells from infected mice severely suppress the *in vitro* responses of spleen cells from non-infected mice when the two populations of cells are co-cultured. Elegant work recently reported by Albright et al. (3) suggests that *T. musculi*-induced hyporesponsiveness in mice is not due to suppressor T cells or suppressive macrophages, but rather to soluble parasitic components acting directly on B cells or their precursors. However, studies to date have not addressed the effect of *T. musculi*-induced hyporesponsiveness on antigen priming, development and function of memory cells, or on secondary immune responses. I have approached these questions by examining direct and indirect PFC responses to SE
and direct PFC responses to PVP of mice at various times during *T. musculi* parasitemia. The data (Tables IV-VIII) confirm and extend earlier observations (3). Studies conducted in *T. musculi*-infected nude mice (Table VIII) provide direct evidence that T cells are not required for the induction or expression of *T. musculi*-induced hypo-responsiveness in mice. These observations are in agreement with the concept that the immune defect observed in *T. musculi* infected mice involves B cells, primarily. Furthermore, studies using SE and PVP as immunogens (Table IV) suggest that *T. musculi* parasitemia inhibits primary PFC responses to either T-dependent (SE) or T-independent (PVP) antigens. The results also suggest that secondary immune responses to SE are affected if antigen priming was attempted during *T. musculi* parasitemia (Table V). However, the data (Tables VI and VII) clearly indicate that once antigen priming has occurred, memory cell development and subsequent secondary immune responses are not altered by *T. musculi* infection.

Having previously shown that irradiated mice are more impaired in their ability to control *T. musculi* parasitemia than nude mice (Figure 1), I examined the effects of 60Co irradiation on several parameters of *T. musculi* parasitemia. Data presented in figure 12 suggest that at least one component of the host immune response requisite for *T. musculi* elimination in mice has a radiosensitivity that lies between 350 and 550
Conversely, these data indicate that although the development of acquired immunity to *T. musculi* is radiosensitive (Figure 12), once developed, acquired immunity to this parasite is quite radioresistant (Table X).

Recent investigations have shown that multiplicative forms of *T. musculi* can persist in the *vasa recta* of the kidneys of 12 month-recovered mice that are refractile to challenges of homologous trypanosomes (69). As a result of these observations it has been hypothesized that the *vasa recta* of the kidney represents an immunologically privileged site and that immune mechanisms are responsible for limiting parasites to this anatomical location (65,70). I studied the effects of 60Co on the sequestration of *T. musculi* in the *vasa recta* of kidneys of *T. musculi*-recovered mice (Table X). The data clearly show that the finely balanced host-parasite relationship maintained in the *vasa recta* of *T. musculi*-recovered mice is not interrupted by 60Co irradiation. These observations suggest that if an immune mechanism is indeed responsible for the sequestration event, then this mechanism is quite radioresistant (as one might expect).

My attention was subsequently directed to the investigation of what populations of syngeneic cells might be able to repair *T. musculi* elimination potential in irradiated mice. The data (Figure 13) show that only immune spleen cells restore *T. musculi* elimination potential to
mice if adoptive transfer is performed five days post-irradiation. There was evidence that immune spleen cells were not able to repair early control of parasitemia, but in spite of this, elimination of *T. musculi* was accomplished within the same time period as normal controls (Figure 13). The kinetics of *T. musculi* parasitemia in irradiated mice that received immune spleen cells five days post-irradiation (Figure 13) suggested that there might be a collaboration occurring between a minimally radiosensitive host component and the adoptively transferred immune spleen cells. If this were the case, waiting a longer period of time after irradiation before adoptive transfer of immune spleen cells should enhance *T. musculi* elimination in that the proposed minimally radiosensitive host component(s) should be functionally recovered and able to collaborate with donor immune spleen cells. The data (Figure 14) support this hypothesis; mice that received immune spleen cells 25 days following 60Co irradiation were greatly enhanced in their ability to eliminate *T. musculi* even when compared to unirradiated controls. The observation that the action of transferred immune spleen cells was demonstrable only after six days post-transfer excluded the possibility of any direct cytotoxic effect on the parasite and further reinforced the hypothesis that transferred immune spleen cells collaborate with host components in the restoration of *T. musculi* elimination potential in irradiated mice. A particularly intriguing aspect of these data was
the observation that the action of adoptively transferred immune spleen cells in 30 day post-irradiation mice (Figure 14) was strikingly different from the action of adoptively transferred immune spleen cells in normal mice. Viens et al. (71) have shown that the simultaneous transfer of immune spleen cells and inoculation of parasites did not result in elimination of the parasite but merely in a slight and transient quantitative inhibition of parasitemia. In view of reports that indicate the exquisite radiosensitivity of cells that provide negative regulation of the immune response (5, 20, 43) it is tempting to propose that host negative regulation of donor immune spleen cells is impaired in mice 25 days following 60Co. However, data presented earlier (Figure 5) show that immune spleen cells are capable of accelerating *T. musculi* elimination in NLM mice. Another possibility is that once early control mechanisms have been reestablished as in the day 25 post-irradiation mice (Figure 14), immune spleen cells are able to function in cooperation with host early control mechanisms (possibly macrophages) and bring about an accelerated elimination of the parasitemia.

In subsequent attempts to characterize the immunological status of post-irradiation mice an interesting observation was made. The data (Figure 15) indicate a conspicuous dichotomy in the recovery of PFC responses of mice to SE or PVP following whole body 60Co irradiation. SE-PFC responses were totally recovered by day 30 post-irradiation,
whereas PVP-PFC responses of mice were still dramatically impaired. This differencial recovery of PFC responses of mice to different antigens was still apparent as long as 60 days following 60Co irradiation (Figure 15). Ionizing radiation induces a vast and complex array of sequelae in mammals (5); components of the immune response have been shown to be exquisitely radiosensitive (5). Because of the multiple effects of irradiation in vivo, numerous mechanisms could be postulated to explain the dichotomy of post-irradiation PFC responses of mice to SE and PFP (Figure 15). Recent investigations by Playfair and Purves (59) have suggested two subpopulations of B cells one of which, B_1, did not require T cell help to generate an immune response, whereas the second subpopulation, B_2, did. Jennings and Rittenberg (41) present evidence for separate subpopulations of B cells responding to T-independent and T-dependent antigens. Other investigators have also described B cell heterogeneity using a variety of techniques that will not be discussed here (20,28,29,36,40,42,50,55,62). In light of these observations (20,41,59), one engaging explanation for the data in figure 15 might be that subpopulations of mature B cells not only respond to different classes of antigens, but also show a differential radiosensitivity. Consequently, I conducted a series of experiments to further define the nature of the PFC response dichotomy in post-irradiation mice. If the data in figure 15 were revealing a true differen-
tial radiosensitivity in B cell subpopulations one might expect even low doses of 60Co irradiation to inhibit the radiosensitive B cell subpopulations. Mice that received as little as 100 rads 60Co were significantly (p<.05) impaired in their ability to respond to PVP 30 days following irradiation, whereas their ability to respond to SE was actually augmented (Table XI).

Since there was a possibility that these data (Figure 15; Table XI) were influenced by the nature and complexity of the T-dependent (SE) and T-independent (PVP) antigens chosen, it was decided to examine the post-irradiation PFC responses to a single hapten (DNP) linked to either a T-dependent carrier (ovalbumin) or a T-independent carrier (Ficoll). The results (Table XII) clearly demonstrate that 30 day post-irradiation responses of mice to DNP-Ficoll were significantly (p<.05) impaired, whereas 30 day post-irradiation PFC responses to DNP-Ovalbumin were not significantly altered. From these results (Figure 15; Tables XI and XII) I conclude that there is a differential radiosensitivity between B cell subpopulations that respond to T-dependent antigens and B cell subpopulations that respond to T-independent antigens.

Mosier, Mond, and Goldings (54) have reported that thymus independent antigens can be divided into two major subsets based on their ability to stimulate early neonatal or CBA/N cells (T-independent Type I antigens) or the capacity to stimulate only mature B cells in onto-
geny, which cells are absent in the CBA/N strain (T-independent type 2 antigens). Because experiments to this point had only addressed post-irradiation PFC responses of mice to T-independent type 2 antigens, it was decided to examine postirradiation PFC responses of mice to T-independent type 1 antigens as well. The data (Table XIII) clearly indicate that post-irradiation PFC responses of mice to SSS-III (T-independent type 2) and PVP (T-independent type 2) were severely impaired, whereas post-irradiation responses of mice to LPS (T-independent type 1) and SE (T-dependent) were not dramatically altered. I conclude that T-independent B cell subpopulations (B1 cells) can be further dissected into smaller subsets based on their post-irradiation PFC responses in mice, as well as their differential ability to respond to T-independent type 1 or T-independent type 2 antigens.

Because of the ability of ionizing radiation to severely slow the kinetics of antibody production (5) it was possible that post-irradiation inhibition of PFC responses of mice to T-independent type 2 antigens was primarily due to an alteration in the length of time required to generate a peak PFC response. The data presented in table XIV rule out this possibility and strengthen the argument that B cell subsets responding to T-independent type 2 antigen are exquisitely radiosensitive.

If these data (Figure 15; Tables XI-XIII) do distinguish a post-
irradiation defect in a B cell subset one might expect the adoptive transfer of either syngeneic bone marrow cells or spleen cells to be more efficient in repairing post-irradiation PFC responses of mice to a T-independent type 2 antigen (PVP) than the adoptive transfer of syngeneic thymus cells. Data presented in table XV confirm this supposition, although not as dramatically as I had expected. The possibility of parathymic lymph node cells contaminating injected thymus cell preparations may in part explain the ability of thymus cells to partially repair post-irradiation PFC responses to PVP.

Collectively, these data (Figure 15; Tables XI-XV) suggest the technique of allowing mice to recover 30 days following 550 rads 60Co irradiation before measuring PFC responses to various classes of antigens is a new and useful technique for dissecting B cell subsets. Use of this technique has resulted in the identification of two different B cell (B$_1$ cell) subsets that are responsive to T-independent type 1 or T-independent type 2 antigens.
LITERATURE CITED

47. Lake, J.P. and N.D. Reed. 1976. Regulation of the immune response to polyvinylpyrrolidone: Effect of ALS on the response

Humoral and cellular aspects of immunity...