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Abstract:

The subject of this thesis is the development of an algorithm and a computational procedure for
optimization of multidimensional, nonlinear, discrete and dynamic processes. The algorithm is based
on dynamic programming, but it is free of the dimensionality problems usually associated with
dynamic programming. Bounds on both state and control variables are accounted for.

The contents of the thesis are summarized as follows: First, a review of several techniques, which are
described in literature and which use the method of dynamic programming, is made. Second, a
description of the method of region-limiting strategies together with that of functional approximation to
represent the minimal cost function is given. Third, a procedure is presented to reduce the computing
effort when a quadratic polynomial is used as the approximating function. Fourth, a computer program
to implement the present method is described, and the results obtained by applying the method to
several different trajectory optimization problems are given. Fifth, some parallel-processing and
array-processing systems are reviewed, and procedures to adapt the method of region-limiting
strategies for implementation on such machines are described. And Sixth, recommendations are made
to further develop the technique for a wider range of optimization problems.
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ABSTRACT

The subject of this thesis is the development of an algor-
ithm and a computational procedure for optimization of mmitidimen-
sional, nonlinear, discrete and dynamic processes. The algorithm is
based on dynamic programming, but it is free of the dimensionality
problems usually associated with dynamic programming. Bounds on both
state and contrel variables are accounted for.

The contents of the thesis are summarized as follows:
First, a review of several technigues, which are described in liter-
ature and which use the method of dynamic programming, is made. Se-
cond, a description of the method of region-limiting strategies to-
gether with that of functional spproximation to represent the mini-
mal cost function is given. Third, a procedure is presented to reduce
the computing effort when & quadratic polynomial is used as the ap-
proximating function. Fourth, a computer program to implement the
-present method is described, and the results obtained by applying .
the method to several different trajectory optimization problems are
given. Fifth, some parallel-processing and array-processing systems
are reviewed, and procedures to adapt the method of region-limiting
strategies for implementation on such machines are described. And
Sixth, recommendations are made to further develop the ‘technique for
a wider range of optlmlzatlon problems.
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OF PERTTNENT LITERATURE
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- Introduction

|I—’
i

The theory of optimization is a result of efforts by de-

signers to obtaln the best possible performance from thelr systems.

Optimization is a three-~step process, the first of Which is'the con-

struction of a mathematical model of the system, ‘the -second is the

rational specification of a measure of performance, and the -last, the

optimization proper, is the specification of variables to obtain opti- .

mum performance.

In the last two decades, significant advances have beenrmade*‘

in the development of optimiZation.theorywand'its appiications; ’Many
of these have been motivated by the need to design optimalhcontrol L-
systems; in the process, control system de51gn has been transformed
into an engineering seience. The earlier cut-and-try approaches 1o '
the;designaof feedback"eompensatlon Were adequate toisettle eertaln

questlons of stablllty, overshoot ;" and steady=state response . These

approaches were augmented in the l950's by Wlener s approach to mini~

mization of mean-squared and 1ntegral-squared error in linear constant- :

coefficient systems. The early techniques relied heavily-on Laplace

and Fourier transform theory. To effect control system optimization

]

directly in the time domain, classical methods of the calculus of vari-

ations [1,2] have been applied with limited success.because of the dis-

continuities encountered in most centrol problems.
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Some of the difficulties associated with classical variation-

al methods have been éurmounted by Pontryagin's maiimum principle [1],
.8 generalization‘of the classical #érigtional‘caiculus, which gives
necessary conditions for Optimality; but cOﬁpﬁtationai schemes for
solving these nécessary conditions‘ére génerally unsﬁitable for on¥”
1ine control Pontryagin's pr1nc1ple was orlglnally developed for
continuous-time systems, systems with dynamics characterized by dlf-
ferential equatlonso It was later extended for discrete-time process—
es described by difference equétionéa.jSeveral‘authors‘[35ﬁ,5] have
discussed the necessary conditionﬁ to solve discfete-timg.ppoblems us;
ing the maximum principle. Theée Qénditions héve beeh'suﬁmariZed by

 Athans [6].

To optimize discrete-time control proéessés, Beliman applied
~what he termed dynamic programmin%v[7]c The method is conceptuélly
straightforward and is based on th?zprinciple of éaﬁsality and on what -
R
has come to be known Qs theipﬁiﬁéiple‘qf 0ptimality, ‘The‘fo;mer assureS‘
that the contiol‘at a stage’does nq? afféct the resuits‘of preceding
stages, while the latter specifies the mode‘bf selection of optimum
controls. In the dynamic programming-ﬁrocess, a sequénce'of eptimam
controls is generated by minimizing‘a‘sequence of nonlinear cost‘fﬁnc-
tions. The equivalent problem in‘éoﬁtinuous-time systems involves the

solution of a nonllnear partlal dlfferentlal equatlon as an initial-

value problem [8]




,_h-
If the solution of an optimal control problem results in c&n-
trol actions which are determined at each instant‘on the bésis of thé—
system state at that instant, the control is called a control law, and .
it yields a closed-loop solution. This is very desirable. If,'howéver,
a sequence of control actions is generated in terms of an initial system
stéte, and is gpplied without regard to subsequent statefand disturbance
information, the control is called a control function and it yields an

open-1oop solution.

The earliest control problem solved analytically‘using dyna-
mic programming was thé linear-quadratié probiem t9], i.e., é problem
with linear dynamics and a quadratic performance criteriéno‘ In that
case, the optimal closédwloop control follows;from a S6lutioﬁ of the so-
called discrete Riccati‘equation; For nonlinear prqceéses or.probléms
with nonquadratic perf@rmance criﬁeria,'numerical solutioné are gener;

ally requiréda

Developménts in the field of'éomputationél algériﬁhﬁs for
numerical optimization tend to parallel developmen%s in the field,of
computers. Soﬁe computationél schemes based on the'maximum.érihgiple
have been described for discreteftime'pfoblemsv[lO],' ﬁut these approaéh%
es -have not been favered becauéeléf the difficulty of ;mblém;nting |
bounds on state and control variables énd because of the sensiti§i£y~af

of solutions to the terminal boundary values.
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Dynamic programming, because 6f its concepfual'simplicity‘and.
generality, is applicable in thé solution of a.large class of optimgl
design problexﬁs° One attractive'féatufe.of the method ‘is fhé ease-with
which constraints on variables can be handled. ,There'afe‘difficultieé
associateqlwith,its apﬁlication to feedback qdnprolz howéver, and most
developments héve-been to obbain 6ptimal.§pén-;oop contfols‘and trajec-

tories. which start from g single point in state épace f11].

Iﬁ this chapter a mathematical formulation'of a di$cr¢te,;
dynamic, trajectory optimization problem ié-gifen (Sgétioﬁs if2 and
1.3). The methods currently avéilable to solve this prbblém-aré'reﬁ
viewed (Section 1.4). The reason for ﬁavingla mﬁltiplicit& of solution.
techniques iskthat oﬁe‘procedure_is really not suitable,for-freating
all nonlinear problems. ForAeach_class of probleﬁs seVe?al teChnique§
may be tried before tﬁe most appropriate one ié selected. A summary
of some of the work leading up to this dissertation is given in Section
1,5, and an outline of thezemaindefof.the_thesis is given:iﬁ Sectieﬁ_

lo6v

~

.2 The Problem Statement
A K-1 stage, discrete, deterministic, dynamic precéssumay'be .

characterized by a vector difference equation of the form

Bop = 0o o k), k=12, okl 0 0 @)
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The state vector X is an n x 1 vector at the k_th 'stage, g-is an n-di-
mensional vector function, and o isanrx 1l veét.of controel action at
the k stage. el is a fun_c:j::-l.on of X, and m, and mayv.be an explicit
function of time which is represented by the integer k. Elements of )
.. .k _k .k kK k- k |
X and m,  are dgnoted,as X0 xg,‘ oo oy xn-, and W5 My, eees Wy ?gs-
pectively. '
The performance criterion of this K-1 stage proceés‘ is given
by

=2 £ (% | S 1.2
7 gz 1 Fyer Byep) - o . ( ).

where fk’s are given real-valued stage costs. Given :_gl,'a ée@uence‘ of

controls m,, m,, rers me ; is des1r§d,‘such that. (102?'15 m:ljnimlz‘e.d‘.--

In addi'bion‘ to state-equatioh constraints (ll), the Stafe
variables and control actions may be subject.to constraints of th_é ﬁy’pe

k < -xk Sxk

k k. ! o
Xi,m:inj_ 5 X. end x; . = constants. . | '(1,3)

i T Timax? Ti,min U i,max

fOI‘i:l, 2,‘0005 n, aIldk-l, 29 n,oe,»K;;‘

and

k k_ _k k ok ‘ : NPT
m, . < m < mnm, sm, . -and m, . = constants ' ' (L)
i,minT Ui i.,max’ "i,min i,max ' A - -

for i =1, 2, co0, T, and k =1, 2, ..., K-1. OF those control se- .
quences that satisfy (1.1), (1.3), and .(1.4), the optimum one yields a _

minimum of J in (1.2).
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1.3 " The Dynamic Programming Formulafion

" The prineiple of thimality, when applied to the discrete-

time system of Section 1.2 , yields a recurrence'relationl:

By () = gkm%nﬂi{fk+l[i(§k’ m > k), m |

* Bgx-1 [E(Ek’ oy > k)] } | .5)
By is the optimal cest of K-k stages of the process, from the (k+l)th
to K@h; and By o is.the optimal cost of K-k-1 stages, from'the (k+2)th'

to the final stage. The set U, is characterized by (i:h). The mini-
mization in (1.5), for k = 1, 2, ..., K-1, yields a sequence of optimal

controls.

For a process with linear dynamics and a,@uadratic performance

criterion, B can be obtained as a quadratic function;ofuthe‘state

K=k

vector at the kth

stage, provided that constraints (1.3) and (17h)‘do |
not,appl&, and an anaiytipallsolutioﬁ_can bé-obtainédtfor:a contrél iaw;
Othefwiée; for s mmeirical sgluﬁion to‘the prbblem; with a étréightw
forward appiicétion‘of the dynamic prégramming technique, a knowlédge
of B at all‘the stages. of the process is required. Because a giyen'

é?gﬁélvariable can assume any value between its specified bouhds, an -

analytiecal expression for B would be very helpful for the minimization

lThis is derived in Chapter 2.




S S
indicated in (1.5). B may, however, be diseontinuous'or'at besf é non-
linear function of the state vector. B is, thérefore, evaluated at a-
number of points at each stage, and theﬂinfofmation so obtained is msed

to find approximate values of B at other points.

The number of peints at which B must be_eyaluatéd fér aceur-
ate spproximations depends on the number of state vgriables. - If the
state vector has 4 or more components, difficultiesvaié'éncoﬁntered
which Bellman refers te a#‘the "cursF‘of.diménsionality”, if B.is ev-.
aluated at the points fofmed by‘quanéizing each state.vari#bie;atiﬁhe '

OB stage, the total number N of points at which B must be evaluated

at the kth stage is

1 | ‘
Me = JIN; o @.6)
i=1
where Ni Xk is the number of pbints‘associated with the ith variable.
, .
The number N, increases exponentially with. the number of state varigbles, . .

k

and therefore; rapid-access core memory requirements_ﬁeﬁdzﬁo be very;
large for multi-dimensional problems. The execirbion-time tehnds to .

be, very large. too. In genéral, three is‘gonsidered to be the maiimum
size of state vector for which optimization.using straightfo;Ward dy-
‘namic programming is realistic‘[lz]° Several methods have been devised-

to circumvent these dimensibnality problems.
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1.k A Review of Dynamic Programming Methods‘

In this section, the relative merits’of previéusly developed
dynamic programming approaches to the problem of Seétions.l,z and 1.3
are examined. Tﬁese numerical technigues are.designed to do one dr‘ '
more of the following:.
1. To find an alternative to solving a twofpoint'boundarydva;ue

problem obtained by applyingfthe-maxiﬁﬁm‘prineiple.

2. To reduce rapidwacé38$z@&mory-ieqpiremenﬁs. |
3. To re&uee:a.ﬁrdﬁIem?wiﬁh$a largs state?vector‘to ornie ofv

manageable dimensions.

In all methods, an initial trajectdryasatisfying the gifen
constraints is‘the starting point. Mbét‘methéds,helong‘inﬁéﬁeféf,the
following categories: | |
1. The Methods of Successive Approximations
2. Quasilinearization

3. Discrete Methods

The first twe eategofies.contain iterative pfécédures to ob-
taiﬁ an optimal solubtion. The methods. of succeséiVe'é@pfoximations en-
compass several different algorithms. Among-these are the decomposition

methods and the methods employing second variations of the coSt;funéﬂipn,
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1.401 The Second Variation Methods

The successive sweep method, due to McReynolds [13], end |
Mayne's differential dynamlc programming'[lh 15] botheemploy second
varidtdOns and reSembme éaoh(othenuémosely A development of: the Q-
ter is given in this Subseotion. ‘Because these algorlthms were devel-
oped for discrete eppfoiiﬁations to:continuous—time\systeme, the per-
formance.critehion used is éiven esh(See Subsection 2.2.2):

K-1

T=PE) + I A lx, m) | . (1.7)
k=0 o | e

A‘second—order‘Tayior series expeneionoof‘the cost function
is used as an epproximationvin a small‘region'arOUnd'a‘nominal trajec;
tory; third and higher-order terms are aseﬁmed to be negligible for the
calculation.of incremental cost'in.thié.region._ {gk}‘is used‘to de—
-note a.controi sequence, {x } to denote a state trajectorj; both starting

"at stage k, and V. (x ) denotes the cost for a tragectory startlng at x

k( _k

With‘a,contro1 sequence {Ek}} When both subscripts‘and superscripts are
used, the superscript indicates the stage, and the subscript indicates
partial ddfferentiationo

A nominal traJectory {X } is obtalned u51ng a control sequence:

{i%}. The follow1ng relatlons hold for points on the traJectory

Vk(zk) = 1y (xs ﬁk)+ Ve Bea) | . N (1.8)




bl

Vi () = Flge).

(1.9)

Let {Ek} denote another policy which generates‘a trajectory -

{gk} in the neighborhood of {g%}, where

m, = B + omy
:ng é‘gk.+ @i 6§k

and .

A
oy T o

- Then

Ve ) = fk(ﬁ-_.’_“%k)'* Ve @ep1)

where

SE ot + B
Lo =y + & + By Ox
‘Also, let

v G B &) + o

(1.10)

(1.11)

(1.12)

(lils)

C(L1.14)

. (1.15)

The superscript T signifies a matrix franspose. By using a Taylor

series expansion in the neighberhood of {g%}g Vk(Ek) for a point gk

can be written as

V) = @) + [eE) T ex) + 5T [V ED] (Br)s L (126)

where Vk(g%) is the cost function which results from éontrol {é%} and
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state tra,jectory { } startlng from xk, while V (xk) is the cost funcw . |
tion obtained by using a control sequence {m } and initial cond.ltlon
--k’ then, within secqnd-order variations, equations (1. 15) and (l 16) :

are used to obtain

| Vl;(gk) = V() + ay [Vk(xk)] (6x, ) + “(ka) [V (xk)] (ﬁxk) (a7

The rlght-hand. member of (1.13) can be expa,nded in a Taylor serles-: .

£y (> W)+ Yk—tl(jﬁlﬂl) =Ty + Vk+1(-’5k+1) + ak+l -\ |
AT [ ] @es)
AT [ ] e

o,z 1, L
+ 56, ) B(6x, ) + 5(bm, ) F(fm, )

+ (bm, ) G(8x,) | S (1a8)
where | .
T _ _ T | .
E = f}l:x + (g,i) Vzl(:xm;).(gi) + \:V?l.(ggml)] (ﬁx) . (2.19) -
T , T |
F e+ (20 Ve G ) (@) + [ Gy ] () (2.20)
and
G=f + (gm) Vk+l(xk+l)(gc) + [Vk (xk+1):| (gmx) o o (1.e1)
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" The unspecified arguments are g&,.éﬁ, k=1, 2, coes Kri@

As given by (1.13), the right-hand members of (1.17) and
‘ . T : ‘and co-
(1.18) are equal. If ng is replaced by o +.ék'65k in (1.}8) and co-
efficients of like powers of ng in (1.17) and‘(l.l8)'sre equated, vec-
tor-difference equations for‘ak, Vi,’and‘V§x'are obtained. The termi-

nal conditions on these are:

aK =0 | . . o o @ee2)
{CREEN R N
and |

) = P B B @

Expressions for o, and ék for k =1, 2, ..., K~1 are obtained by mini-
mizing the right-hand side of (1.18) with respect tovﬁgk. These are
used to generate a new trajectory within a.sﬁall region of the eld tra-

jectory. The new control is obtained using

o | - o o , | | | .
m o= + € l:gk +‘§k(ﬁ'{ - %):I 5 .O.<€‘.sl . ' o (1725)
The actual algorithm consists of the follewing steps:

1. For the given initial condition and‘ajcoﬁtrol sequence {é%}, a nomi-

nal trajectory {g&}‘is obtained. -
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2y VX(S_c—k)", and vxx(}zk) are ‘calcula'téd‘.‘, ‘s‘t,artizig‘fa,t k = K-1, for
k = K-1, K2, ..., Q. '

The change in the value of the performance criterion is calculated :

as

K-1 : _ _‘ | _ - | L
& =T [l m) - 5 8]+ T -TE)  (L26)
If AV is positive, i.e., the cost has increased, or if AV 'is nega-
tive but I-€V(l“"/2)ao‘l. <e,0Lecxgl,

the procedure is repeated with a smaller value of €; ¢ is, in ef-
fect, the limiting ratio of change in performance measure to the
estimated value for the specified value of € (aO is calculated for

€ =1)., A value of ¢ = 0.5 is recommended.iby Mayne.

v
|€(l-€/2)a

tory and control sequence are stored.

However, if V is negative and

| 2 ¢, the new trajec-
O‘ .

Computgtions are halted when | ao(z_c_o){ <7), where 77‘is a small

positive quantity.

Tt is to be noted that in the case of problems with linear

dynamics and quadratic performance criteria, the algofithm is quadratic

convergent, which is not the case if the adifferent::.al cé,lculus approach

[16] is used. The latter also involves the solution of a larger.number

of difference equations. Problems involving bounds on state and con- .

trol variables are not treated by this ﬁethod except as they may be in-

corporated by use of Lagrange maltipliers or penalty functions.
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1.4.2 Decomposition Methods

In an effort to solve optimizatién problems With étate vec—
tors of very large dimensions, Collins [17] presented récently the
method of diagonal decomposition. This was followed by the stfuctural
decomposition method by Collins.and Lew [18].

Both of the'methods deal with problems in Which'both §;and}E

are n x 1 vectors. The state equations are assumed to be of the form

Ep T Ag tOm - (1.27)
where A and C both are n x n matrices. Matrix A is decomposed as
A=T+0D | | | , | (1.28)

in the diagonal decomposition method,_T includes only the di-
agonal elements of A; while in structural decomposition, T also‘includes
some other dominating elements. D is composed of‘the remaining elements
of A, and C is‘assumed'to bé a diagonal matrix., The following presenta~
tion assumes structural decoﬁposition of A. |

If {x, } is a nominal trajectory, the minimization is effected

k&

around this trajectory using a pseudo-state equation:

ea1 = Tt Omy + DR o (1.29)

At each stage, the minimization is effected for'onchomponent of x at
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a time. If the method of diagonal decompositioh were to be used, T
would be a diagonal matrix, and the state eQuations would be effective-
1y decoupled for all components of x. In thelmethod of structural de-
composition, this decoupling effect can be éﬁtained by rewriting (1.29),

~in the form

(1) (1) k
= +
X =0 xR tems + 4 (1.30)
where the length of the n, x 1 vectors'(l)x:,.c., and d. varies with
. 1 ) _k ._1- - ‘

the index niq n:.L is the numbér of ﬁdnzero elements in the ith row of
T3 the n, x ni_matrix_Ti has rows that corréspond to these nonzero
elements. The matrix Ti is constructed like an identity matrix ex-
. . . .th . .th

cept in the row which corresponds to the i nonzero element in 1
row of T. This row consists of ni nonzero elements in that row of T.
(1) s ) .th

X and Sy consist of those elements in Ek and 1 column of C, res-—
pectively, which correspond to the n, nonzero elements in ith row of
T. The only nonzero element of gi is the Trow in which Ti differs
from an identity matrix, and this element is the ith element- in the
product D§£°

To simplify notation, relation (lw3Q) is written as

-4 k | .
K = 905 o Tpe ) | (2.31)

R e R : k .
The recurrence relation for minimization with respect to m, is then




-17-

. »k+1,[ ko -k]
S AR PR A o

+‘B§_'k‘—‘l [ﬂi.(}-ci,k’ mﬁ’ k)]} |  (1.32)

By (% 5) =

I-"Bﬁf

Interpolation in n, componeﬁts of x is. required to'calculate the value
of Bi at the next stage; fhﬁs'offSetting‘thé,preblem ofrdimensioﬁality
to some.extént, If diagonal decomposition were possible, only scalar

interpolation would be necessary.

The precediﬁg‘methods can be extended for applicatien to cer- -
tain nonlinear processes. A similar method, the dynamic:programmihg
successive apprbximatiohs technique.[l9], has been desqriﬁéd by Larson
and'Korsak, who also give}convérgénce proofs for some speciél classes
of problems [20]. Yet another decomposition procedﬁre'using the state_.
transition operator as.a shift oﬁeraﬁor has been presented by Wong [21].
He_claims that the number of degiees‘of-freedom in theﬁétaté transi- o

tions of an nth

' order sysﬁem‘is?mbre neaflyvthe dimension- of the con-
trol vector fhan of the state vector [22]‘and; therefOre, £hat the high-“
speed memory requireﬁenté‘één be reduced. In all of these mefhods;

bounds on state and control varigbles:caﬁ‘be trested by using Lagréngei

multiplier or penalty function techniques..

1.4.3 Quasilinearization Methods

The technigque of successive approximations in policy space is

used in this method. Baldwin and Sims-Williams [23] describe an al-
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gorithm which is applicable when systemuéquafions arevnothexplicitly
time-dependent and‘the criterion fuﬁcfion is’q_uadratice The éYstem of-
state equations (1.1) is*used‘tolgenerate ég=initial trajectori {2%}.

The system equations are then decomposed as

X = AX *Om o+ g (x ?r_?k, k) | | | . (1.33)

where Ak is an n x n matrix and C. is an n x r matrix. The nonlinear.

k
terms are iﬁcluded in gi. 'The linearized model (1.33) is used to ob-
tain a new nominal control”sequeﬁce; a solution of discrete Riccatil
equations is used to‘geperate this control sequence. This procedure is
repeated iteratively to ébtéin én:opﬁimal"control sequence. But‘con—
straints of the form (1.3) and {i.h) are not'réadily incorporated in the
method. The authors state ﬁhat the.practicability"Of theﬁscheme in_iﬁw -
dividual cases must be inveéﬁigated. .

Another quasilineariiation approach,.based.on“the fact that a
closed form of solﬁtion‘of.a'systeﬁ:of.linear~differenée-equations is
readily generated, has been described by Lee‘[2hlo Iﬁ this method, the
points on a trajectory, obtained after i+l iterations, are related to

those on the previous trajectory by

i+1 T

£k+l - &(_921];’ Ei: k) + (_g_x)

(QX)T(§i+l

i+l
- X

)+ {alg, m, k) - (g
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where higher-order terms are ignored in this approximation. This can

alsc be written as,
By = At ‘ (1.35)
Initially, a nominal control sequence is assumed. Then, ét
each iteration, the point gchan,be obtained as a sum of a vector in-
dependent of control and a convolutionesummation_vectof:wﬁich varies
with control. At each stage, the changeuinfthe-lattergis.éalculated
as a‘functionuof,the_ééntrél action. Thus,~if the perférménceicriterr
ien is only.a,f?nction of nP of the n state variablés5-the_dimensioﬁA
ality'problemzcén be overcome in. many cases. The éohstraints.On con-
trol Variables can be treated ea§ily, but notlﬁhqse,on the'staﬁe Vari-~
ables which lose their‘identity‘in the proecess of ﬁransférmaﬁions;in;‘
volved. The author reportedly‘ébtaiﬁed‘cbnvergenCe‘fdr.sevéral chem-

ieal engineering problems.

| 1.4.4 Direct.Methods

"The direct ﬁethods; while using the dynamic programming tech-
nique ofxéetermining the optimal cost at a numbér~of:points,iﬁ;stétg
space, seeklto-ﬁaiiorjthé;rapid-aceessfcore]memory requiregents7to the
.available faci;itiesu In_the‘method.of_étatg inereément dynamic‘prd-
gramming [éj], the system~dynamic equatiohs:are discretized,ﬁsing a

variable sampling interval. The allowed stateQBpace region is divided
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into a number of hyper-rectangular blocks. Time constitutes one co-
ordinate of these bloecks, and the length of. each block is At in this
direction. To compute the minimum cost at a given point, the time in-
~ terval, for each control, is chosen,suchfthat,oné\orlmore‘variablesg
incIuding time, change by one increment,‘ané ne variables change by
more than one increment. Therefore, only valﬁeéiof”theﬂoptimal cost
at points adjacent to a block are required for interpélatibn; thevﬁum;

ber of points and the size of the block“areprea'ssignéd°

In & paper by Wong and Luenberger [26], a slightly different
approach is used. ' The state space is divided.into‘fegiéﬁs.  While cal- .
culating the bptimél cost at points withim a régién,[onIy tﬁosé con- .
trols which keep the point at. the next stage Within.a preferred region
are allowed. Thus, thisumethod‘also-eliminates?the neeé to store the
optimal cost in the'whole.of'allowed state‘space‘at,the next stage in

rapid-access memory.

Ip both the metheds, once the optimal ¢ost at the selected
poiﬂts has-beenICalculated_at all the stages, the optimal solution can.
be bbtained, for any initial point, in one iteration. = However, the
interpolation between neighboring‘points‘entails repeated calculati0n
of the coéffigients qf_tne approximating functiOn~ rAlso, the optimgl
eost.is calculatgd‘over ali of the admiSsible'state-3paqeﬁ Thus, though
the rapid-access core memory requlrements are not exéeésive, computation

time can be.
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1.4.5 A Cemparison

The second-variation methods by-pass the problem of dimen-
sionality in an effective ménnero In the case of direct methods, while
the rapid-access nemoery reéuirements are manageable, the metheds are
not autqmatieally appliecable ts problems‘with largejstate vectors. Sav-
.ings in:computation time depend on pr§per division of the state space’
into regions and proper ordering of the regions for processing. In both
of the diréet metheas,-no solutions‘tb.probléms with statéuﬁectqr di- |

mension lafger than four have been cited.

. The decompoéitionJgethods are applicable to a special class =

of prbblemé.in which.thé;matrix ¢ of (1.29) is diagonal. .If Cis a
square“matrix:wiﬁh distinet éigenvalues, it 1s possible to trénsform
the‘sysﬁem_éﬁuations-int¢‘this_sPecial mold. If C; too, is'ﬁgrtitiéned ‘
into twofﬁatfices; one with diagénal elements apd the othér With Off~
diagonal elements of C,‘tﬁe‘matrix ccntaininé off-diagonal elements of
- C céuld be grouped with the néminal control’sequehce during‘%he itera-
.tive‘minimization, but the eonvergénee of thistméthod.to an optimal
solution is-questionéble.. In.faét, this latter method was uéed'by this
Writer-to solve a second-erder tWo4stage optimization prqblem that has .
been solved by Kuo [33] using discrete matrix Ricéati equations. Con;

vergence 1o the given solution was not possible for this'prob;em.
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The first quasilinearizatien method also is hindered by”ﬁrob—
lems of convergence and has, therefore, limited épplic’:a,tion° It does
not appear to have been applied to practical multidimensionsl ﬁroblemsq
For systems with linear dynamics, Lee's method seemé-highly appliecable
and gpparently suffers from no convergence‘problems. None of these
Quasi;inearization methods, however, attémpt_to.deal directly with the
problems of bounds-on the state variables;'thng@-some problems with -

bounds on control variables have been solved.

1.5 Other Related Research

_ An early alarm about the ciimeri_sior;ality difficulties, and
possible excessive computation reguirements wheﬁ-dynamic‘programming
is used for dynamical optimization, Wés.souﬁded by Bellman [8,12]. For _
computational feasibility, the technique-of:polynomial approximatien‘
and successive spproximations were advocated by him. Larson's state ,‘
increment dynamic programming was one éttempt at a systematic procedure
for application ef dynamic programming to multidimensional pfoblems.
But_it‘hés limited use for the soluﬁion_of'probléms having more than
. four variables [25]. Among the methods -employing sucéesaive approxi-
mations, differential dynamic programming-has-been successfully aﬁplied-
[527 to solve a third-order orbit transfer problém. -The only related
technlque to be applied to a problem w1th a large state vector, one of

eighth-order, is that of functlonal approx1matlon descrlbed by Durllng
[27]. He uses Legendre polynomlals for the funetional approx1matlon
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The optimization of co@tinuousetime coﬁtrol.problems with
state-variable inequality constraints has received considerable atten-
tion [53,54,55]., In one such-problem [53], ‘the‘co'nstra;in’bs aré,on. the
state vériabies that do:not‘explicitl& involve the éontrol.variable°
The necessary conditions for an extremal solution to-the general qth
order inequality constraint problem, wheré éonstraints;are adjoined to
the performance index are:given:in [537; selutions'to_tﬁe_analytical
exemples are pres;nted° "Another method is that of éonveiting ;he prob-
lem to an unconstrained one by'adjoiﬁing the,stéteuvariable éonstraints
tbgethér With,respecti§e penalty:functionS‘to‘the perfdrménée.indexol
A transformgtion technigque involving slaék variables, which effectively

,ihereases the problem dimension;-is*gi#en by‘JaéobsQn,and-Lele [5hj,
However,‘the econtrol variablevis,aSSumed to be unconstragined. Lee [24],
in a treatment of the diserete-time problém, uses the'quaSilineariza—.
tion>technique‘to,overcome,dimensionality difficultigs;fhe has noted

at the samé_ﬁime:the difficulty of accounting fornineQualityjconstraints'

on state variables.

;ﬂs - This Work--An Outline

In.this work, the task:of-devising an oPtimizatieﬁ technigue
for multidimensional systems withyinequality_COnstraiétsfisxundertaken;
The técﬁniQue—isfﬁaéed on.?rincipiesyéf dyngnie prqgrammingi No»eQui_

valent-prpeeduje of this type: is known- to the author.
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In concurrence with current advantes .in array-processing com-

puting [45,50], it is desirable that appropriate algorithms bé.devgloped

to take«a&vantage.of parallelism in solutién approaches for difficult
computational problems. The algorithms ‘that are developed along these:
linesrmay‘eyén make possible the.reai—time‘on-line ebmbutation of gen-
eral optimal control. An evaluabion:oflthenpresentvméthod for this

purpose is part of this. work.

The main‘emphasis-is,placed~0p'résolving the‘difficulties“
relating to dﬂmensionélity.and stateeV;riable constraints, which are
encountered when the method of dynamic:prog?amminghié used. To impart
computational feasibility to the ﬁeth@d, thé cost function at éaeh stage
is aﬁproximated by a quadratic‘polynomial. iIt_is realized that one
' quadratic polynomial eénnotsuin genefél, be pfescribed to accqrétély
approximate the cost fﬁnetiqn_ihtwhole of’ stateISPace; the methodlef
region-limiting strategies is, therefdre,iemployed. The regions in
" which a partlcular p@lynemlal should be. used can ‘be restricted to be
of a siuze judged approprlate to reduce the error. in the approx1matlon,_
.The detalls of the. technlque are presented in Chapter 2¢ The strategy
to be used when the state~var1ables~are bqunded 1syalso-descr1bed in
Chap'he'ré° |

- The essence of the technlque is the approxxmatlon seheme,

the sallent features’ of which are covered in:Appendix A. The number
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of points ‘at which the cost function must be éValuated‘is‘only'of the
order -of the squsre of the state vector dimension° These points are
‘so selected that a minimal ameunt of cémputation is.negessary to eval~-
uate thevcoeffiéientsuof the approximating polyngﬁial;

A computer program to effect the optimizatioﬁ-has been writ-
ten,'-The;detai}s'of the computer routines. are sét.foffhfin Chapter 3.

The routlnes, as listed in Appendlx B, are. appllcable for third- to

tenth-order problemsa But there is no such restrlctlon on the use of

the technlque itself.

The.eharacteristics.of‘someiarraysproeessing and paTallel«
processing systems are brlefly described in Chapter 4. Ways of ex-
pl@lting parallellsm in the technlque of reglon-llmltlng strategles,
and poss1ble reductlons in the process1ng tlme,,fq:m:part.of the sub-.

ject matter in Chapter k4.

It should be.noted that certain limitations are imposed on

the problem as formulatgd in Section 1.2. These relate to control

action--it is assumed to be scalar and is necessarily bounded. Also,

only discretized values of the control are used in_theu¢omputation.
. And finéliy,‘the‘céntrql;ﬁrajectories‘obtained forwnonlineér-problems
are éuboPti@al in the sense-that;all‘such tfajeétoriesﬂbﬁtaihed By
iterative cpmputatibnél_ﬁrocedures are_subobtimal when a terminatienl
crlterlon is establlshed to.discontinue the optlmlzatlon process if

1mprovements 1n performance become nominal.

L1l
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CHAPTER 2

FONCTIONAL- APPROXTMATION AND '

| THE, MEYHOD OF REGION-LIMITING STRATEGIES
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2.1 Introductlon

A combinatlon of’ the dlrect method of dynamic. programmlng
~and the technlque of functional approxlmatlon [27] is presented .in the
_method of this chapter. The approach retains:much of the advantage

. of the direct-method‘of dynamic programming in dealing With‘problems

Wlth bounds on the state and control Varlables, the functlonal approx-<

1mat10n technlque allev1ates the dlmens1onallty problems that hlnder

other dlrect methodsq A polynomlal 1n the normallzed state vector %

is chosen as the approx1mat1ng functlon for the optlmal cost. functlon,j

For accuracy, an approx1mat1ng polynomlal should 1nclude terms up to
the order of s1gn1f1cant partlal derlvatlves of the orlglnal functlon
'-[28]- However, in the absence of knowledge ‘about the derlvatlves of
the optlmal -cost functlon, a quadratlc polynomlal sufflces as the
approx1mat1ng functlon 1f the domaln of approx1matlon 1s llmlted to a
"sultably small reglon of state space The approxlmatlon is used in '
.the nelghborhood of a nomlnal trajectory about whlch the 1ncremental.

cost is accurately approx1mated by terms of flrst- and second-order

Emphasis is placed on an:orderly and‘simple.method to.obtain
the approx1mat1ng polynomlal At the same tlme, any bounds 1mposed on

the state varlables are 1ncorporated dlrectly in the. method. These

bounds must be satlsfled by an" 1n1t1al tragectory Whlch is requlred tom































































































































































































































































































































































































































































































































