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Abstract:

A field study of in situ soil hydraulic conductivity was conducted in the Flathead Valley of
northwestern Montana. Of special interest was interpretation of soil properties in terms of suitability for
on-site sewage treatment systems. Thirteen sites were selected, soil profiles described and sampled, and
the gypsum crust method used to determine hydraulic conductivity at saturation and in the
near-saturation range. Multivariate statistical techniques were employed for data analysis.

Results suggest that soil water movement is strongly influenced by the vertical variability (textural
stratification) often noted in soil profiles in the study area. Complex glacial and proglacial depositional
environments are responsible for this variability, which is. also strongly expressed horizontally as
lateral variation across the landscape. Soils formed from similar parent materials (and/or with similar
textural properties) generally exhibit similar hydraulic characteristics in the saturated and
near-saturated range. Substantial variability within these groups is not uncommon. This variability
requires that determination of site/soil suitability for septic systems include on-site observations of soil
profile characteristics. The implications of textural stratification within the soil profile need to be
considered for proper design and long-term operation of individual on-site sewage treatment systems.
Multivariate statistical techniques were employed in analysis of the physical and chemical properties of
the soil horizons studied. Principle component analysis was shown to be an effective tool for graphical
expression of soil profile variability. Cluster analysis demonstrated the ability of such methods to group
horizons with similar properties.

Aquifer assessment should be included as an integral component of the site evaluation process for
on-site sewage treatment systems. A simple model has been proposed that is designed to assist local
regulatory officials in their efforts to minimize the environmental impacts of sewage treatment from
suburban and rural housing developments. The model demonstrates that it is important to estimate the
nitrogen load to the receiving aquifer (including the potential for denitrification), evaluate the diluting
capacity of the aquifer* and also assess the relative importance of the particular ground-water system.
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ABSTRACT

A field study of in situ seoil hydraulic conductivity was conducted

in the Flathead Valley of northwestern Montana. 0f special interest
was interpretation of soil properties in terms. of suitability for on-
site sewage treatment systems. Thirteen sites were selected, soil
profiles described and sampled, and the gypsum crust method wused to
determine hydraulic conductivity at saturation and in the near-
saturation range. Multivariate statistical techniques were employed
for data analysis. '

Results suggest that soil water movement -is strongly influenced by
the vertical variability (textural stratification) often noted in soil
profiles in the study area. Complex glacial and proglacial
depositional environments are responsible for this variability, which
is. also strongly expressed horizontally as lateral variation across the
landscapes Soils formed from similar parent materials <(and/or with
similar textural properties) generally exhibit similar hydraulic
characteristics in the saturated amd near-saturated range. Substantial
variability within these groups is not uncommon. This wvariability
requires that determination of site/soil suitability for septic systems
include on—-site observations of soil profile characteristics. The
implications of textural stratification within the soil profile need to
be .considered. for proper design and long-term operation of individual
on—-site sewage treatment systems. Multivariate statistical techniques
were employed in analysis of the physical and chemical properties of
the soil horizons studied. Principle component analysis was shown to

be an effective tool for graphical expression of soil profile -

variability. Cluster analysis demonstrated the ability of such methods
to group horlzons with similar properties.

Aquifer assessment should be included as an integral component of
the site evaluation process for on-site sewage treatment systems. A
simple model has been proposed that is designed to assist local
regulatory officials in their efforts to minimize the .eﬁvironmental
impaets = of sewage treatment from suburban and rural Thousing
developments. The model demonstrates. that it is important to estimate
the nitrogen load to the receiving aquifer (including the potential for
denltrlflcatlon) evaluate the diluting capacity of the aquifer, .and
also assess the relatlve 1mportance of the particular ~ground-water
system. : -




INTRODUCTION

Many Americans are attracted to the amenities provided by low—
density housing developments in subutrban and rural locales. Through
the early part of this century, high~density development was the rule,
but with the advent of modern transportation systenms, rural
electrification, and .steadily rising disposable income, millions of
families have taken up ‘residence in  non-urban, iow—density
developments. This segment of thé population of the ﬁnitéd States has
been growing rapidly. ~Extension of municipal sewerage to such low-
density housing areas is econbmically frohibitive,‘ necessitating the
use of on-site soil treatment methods for the purification and disposél
of sewage (U.S. Environmental Protection Agency, 1977).. As the numbef

of households employing on-site methods of sewage treatment has

increased over the yeafs, concerns have been raised regarding the
potentiai for pollution of both surface and ground-water sources
(Wgodward et al., 1961).

Generally, the national housing trends outlined above hold true
for Montana (U.S. Census Bureau figures for increases in the number of
septic systems in Montana counties for the period 1960-1980 are
contained in Appendix 1. Specifically, a notable example is the
‘Flafhead Valley area in northwestern Montana, which has experienced
rapid development in the last 15 years. 1In this area almost half of

~all homes employ septic systems as their means of wastewater treatment




(U.S. Bureaﬁ of the Census, 1980). Previous to the work described in
this report, there has been no scientific examination‘of ‘the soil
properties " of this region in relation to hydraulic conductivity and
septic system operation. E

The primary focus of this study was to .evaluate the physical and
chemical properties of a vériety of soil series in the Flathead Vailey;
obtain some sﬁecific ig_ﬁi&g'hydrauiic conductivity data (saturated and
unsaturated flow), and analyze this information in terms of septic
system performance. The véstheés éﬁé variability of the geographical
area preclude a comprehensive, basin-wide characterization of soil
water movement. However, this study does establish a data base of
Hydraulic conductivity values in this regibn of the state.

An underlying -goal of this study was tql‘emﬁlOy multiVariate
statistical techniques to examine the similarities and differences
between sites énd horizoﬁs. Such methods as principle component
analysis, cluster analysis, and discriminant analysis have been widely
used as classification tools in the earth scienceé, but .have only
rarely been used to analyze énd classify daté‘from soil profiles. The
intent was to evaluate their utility in distinguishing grqups,of soil
horizons. |

In the past decade there has beén increasing concern‘regardiﬁg the
environmental consequenceés of éeptic sytems, especially in terms of
their dimpact on ground-water quali;y.- This problem is also addressed
in this thesis tﬂrough‘aﬁ examinatidﬁ of the interactiﬁns of septic
systeﬁs, soils, and ground watef. The findings of a numberfof research

studies concerning soil treatment of septic tank effluent and = ground-




water nitrate contamination from septic systems have been eévaluated.

This information is used to develop a simple model - that illustrates

relative impact of different environmental parameﬁérs on resultant

nitrate  concentration of ground " water. This~ 'discussion  also

demonstrates the importance of aquifér assessmeﬁt.aS‘an(integral part

of ' the site evaluation process, and provides a list of factors to be

considered for aquifer assessment.

During research into these topics, much was learned about the

status of on-site sewage treatment systems in . Montana. Summary

information = concerning the increase of septic systems in Montana
counties over the last 20 years is presented in Appendix 1, along with
a discussion of .regulation of this form . of . sewage. treatment, ‘aﬁd

suggestions for improvement in state regulation..

(/




SOIL PERMEABILITY, VARIABILITY, AND SEPTIC SYSTEMS
IN THE FLATHEAD VALLEY, MONTANA  ©

INTRODUCTION

The typical on-site waste treatment method used in the United

States 1is the septic system, consisting of a septic tank and soil

absorption field. The tank serves as a settling basin, providing
primary wastewater treatment. Effluent from the tank flows‘to the soil
absorption field, where secondary treatment‘occurs as the effluent
percolates through the'soil‘and geologic strata to the water table
(Figure 1). Several soil properties play important roles in determining
the efficiency of treatment of septic system effluent. Perhaps ' the
most important is hydraulic conducti#ity, the rate of water movement
through the soil. Accurate assessment of the hydraulic properties’ of
the soil is necessary for proper septic system design. Improper design
increases the likelihood of sysfem faiiure, p@tentially caﬁsing
contamination of surface and ground-waters (Bouma, 1971).

In the spring of 1981, a field study was initiated in the Flathead

Valley of northwestern Montana, whose focus was to characterize the

physical, chemical, and hydraulic properties of a variety' of soil.

series in the area. This information was to be interpreted in terms of

suitability of these soils for on-site sewage treatment systems. .

The wuse of multivariate statistical analyses as a tool for interpreta—

tion of soil profile data was also investigated with this data set.

1<;7
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Soil treatment of wastewater by a typical septic system.
(after U.S. Environmental Protection Agency, 1978).



LITERATURE REVIEW

\

Site Evaiuation for On-Site Sewage Treatment

Soil Properties .

| The suitability of. any pafticular parcel of land for on—site
wastewater 'treatment is la:gely controlled by thé physical properties
of the soil at that location (Tyler et al., '1977). Successful
operation of septic 'systems requires that‘ two conditions must be
fulfilled. | First, the liquid effluent must move through the séil at a
rate slow enough for it to be properly tréated. Second, the soil must
be capable of accepting the effluent at a rate that is greater than
that at which it is produced by the household. If either of these two
conditions are not met, the system is said to have failed. A failure
éf' the first typé is called a 'treatment' failure, and'of the latter,

an {hydraulicf failure (U.S. Environmental Prqtéction Agency, 1978).

Design criteria for determining the capability of an individuai_

soil to properly accept and treat effluent are based ‘both on external
and internal properties of the soil (Baker, 1978). External factors
have been well defined for a number of years, and have been incorpor-—
ated into the staﬁdard procedures for determing site suitability. They
include: depfh to bedrock; depth to the_seasonal water table; surface
slope; and susceptibility to flooding (U.S. Public Health Service,

1967). While different states have required,different criteria for
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these factors, general limitations are: 1) a2 minimum of one meter
“(three feet) between the bottom of the drainfield trench and ground
water or bedrock; 2) maximum allowable slopes of 15-25 percent; 3) no
sites permissible in floodplains (Parker et al., 1977){

Another important external factor is the relat;onship of the
proposed drainfield site to the locai surface hydrologye. Sites on
concave slopes or below slopés of poor permeability“will receive
‘additional water during precipitation and runoff events. This 1is
especially true during periods (e.g. early spriﬁg) when the soil
surrounding the frost—-free drainfield may $till be frozen (Mellon,

1967). Runoff of this nature increases the total hydraulic load the

drainfield area would receive, potentially causing intermittent-:

failures, and may lead to permanent hydrauli¢ failure (Andersomn, 1981).

Internal factors which influence site suitability £for septic
systems are those characteristics and properties of the soil that
influence its ability to transmit water through its profile (i.e. the
permeability or hydraulic coﬁductivity of the so0il). . Morphological
attributes of the soil that should be considered include: 1) soil
texture of particle size distribution; 2) soil structure; 3) bulk
dénsity; 4) porosity; 5) pore size distribution; 6) stratification of
different soil textures within the profile (Bouma, 1973; Anderson,
1977; Parker et al., 1977).

Soil texture; structure, and bulk density are characteristics that
determine the.porosity and pore size distribution of the soil. matrix.
Soils with higher fractions of silt and clay-sized particles will

generally  have lower permeabilities than soils containing abundant
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sand. Similarly, Well—developed soil structﬁre aﬁd low bulk‘densitiés
generally result in higher porosity and large nﬁmbers of. larger pores,
progoting faster movement of water through. the éoil'(Horn, 1971).

Textural stratification influences water movement in that both a
coarser soil layer wunderlying a finer textured laye;, or a fipe—
textured soil horizon below a coarser horizon, will retard the downward
flow of water to varying dégrees. " In thg‘former case (e.g. silt loam
over saﬁd),_ the matric tension of the sand material is initialiy not
great‘ enough to attract the water held relativelyﬁtightly by the silt
loam soil above. Gradually, as water content increases in the finé—
tegtured layer, matric tension will drop sufficiently to allow movement‘

‘bétween layers (Millér, 1969). 1In the latter case, it is simpl§ the
lower hydraulic éonductivity of the underlying horizon'that inhibits

water movement. Both types of stfatification wil; result in decreased
floﬁ from a septic system drainfield.

In addition to these physical properties, soil morphologicél
characteristics are. used to evaluate site suitability for septic
systems. Soii color patterns (mottles) and: general soil color have
been wused as indicators of the géneral year—long moisture regime of a
soil (Simonson and Boersma, 1972). -Brighter, reddish colors suggest a
Well—dréiﬁed soillthat allows water to move through it freely. Dull,
gray colors are indicative of poorl&—drained séils that remain‘:in a
near—saturated céhdition for long periods of time (Soii Sﬁrvey Staff,
1960). Septic systems installed in poorly-drained soils may be subject
to premature hydraulic failufe, and/or provide inadequate treatment of

effluent (Wisconsin Bureau of Enviroﬁmental Health, 1979).
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The presence of mottles in' a soil profile has‘also been used as an
indicator of the upper boundary of a seasonal water table (Simonson and
Boersma, 1972). As noted earlier, most statés require that at least
one meter (three feet) of separation between‘ the ©bottom of the
drainfield trench and the seasonal maximum high water .table.' However
other researchers have found that mottles do not always. occur in soils
that are subjegt to saturation for even exteﬁdgd" periods of time
(Vepraskas and Wilding, 1983; Ffanzmeier et al., 1983; Piékering énd
Veneman, 1984), and sometimes they occur in _soils. that do not

experience saturated conditions (Fredrickson, 1980).

Measurement of Hydraulic‘Characteristics‘

While there are many factors which influence site suitability.for
septic systems, traditionally the most important haé been spil
permeability as determined by the per;olation test (Anderson et al.,
1977). The results of this test have been used to defermine both site
suitability and the size of the dfainfield required for the projected
wastewater flow. The wuse of the percolation test (perc test) as a
predictive tool for- sife suitability ‘has its roots in the work
performed by Henry Ryon in 1929. He developea a curve (later converted
to. tabular form) which used the perc test to determine the rate at
which effluent should be applied to the soil (ﬁcGauhey and Krone,
1967). The relationships defined by Ryén were adopted by many public
health officials and over a period of time.became .thé‘ standard for
detérmining "both the suitability of a site"of‘wastg‘disposal and for

determining the size of the drainfield needed.
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. 8lightly modified by subsequent research, the perc test ' has-
remained the most widely used tool for sizing sepfic tank ‘drainfieids
throughout the U.S. This in spite of the fact that it has been widely
critized by many researchers in tﬁe field of on-site waste disposal
(Winneberger, 1967; Bouma, 1971; Anderson, 1973; Healy, 1973; Baker,
1977; U.S. Envirommental Protection Agency, 1978). _The“focqs of most
of the criticism of thé test is that results are inherently ‘variable,‘
and that it tends to underestimaté the absorption fiéld aréaf-requiréd
for some soils (especially coarse-textured soils with high perc ratesj.

Winneberger (1967) found that a series  of peréolation. tests
performed within a small area of uniform soil yiélded pe?c fates
varying from 9-33 minutes/cm (23-83 minutes/inch). In a study of 1560
perc tests“on'250 Pennsylvania ;oils, Derr et al. (L969) reported an
average coefficient of variatioﬁ (CV = standard deviatioﬁ/average)' for
the 4-8 tests performed at eagh site was 73 percent. Over 20 percent
of the sites had a GV greater fhén_lOO ﬁercent. iDéta'from Bouma (19715
fér six Wisconsin. soils showed and averagée CV' of 50 pergent,’ and
ﬁarbarick et al. .(1976) found a range of 7-48 percent for‘niﬁe Arizona
soils.

"While this range of values demonétrates the variability of data
obtained from the perc test, suéh values pfobably represent as.accufgte‘
a détermination as can be made witﬁ this method. In-each- case the ﬁerc
test. was conducted by scientists‘attempting to minimiie‘ény Variation-
in _procedufe.between successive tests. It has been éfguéd that suéh ‘
care ‘is ';arely taken by those who . routinely perform ‘perc‘ fests

(Winneberger, 1974). Winnebergerv (1974) reported the results of a
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study in which fieldmen (employees who regularly performed perc teéts)
from three engineering firms were asked to ﬁérférm perc tests at each
of nine locations on a single 1/4 acre lot. _The range in rates

obtained in this experiment for all tests over the entire lot was 1-100

minutes/cm (2-259 minutes/inch), and for any one of the nine locations

on the lot, 1.2-90 minutes/cm (3-229 minutes/inch). Allowing for some

inherent . error due to soil variability, he concluded that the values

obtained from perc tests depended more on the procedures of the

particular fieldman than on soil characteristics. Potential sources of

variability in the perc test have been shown to be hole diameter and
geometry, length of presoak period, amount of hydraulic head during the
testing period, and soil anisotropy and heterogeneity (Healy and Laak,
1973; Barbarick, 1976).

Further criticism of the perc test comes from those who state that
it is a measure of saturated flow ;hrough soil, while it is the process
of unsaturated flow that actually occurs under mature septic tank

drainfields. A study by the U.S. Public Health Service (1950) revealed

that the equilibrium loading rate (the,amoﬁnt of effluent actually"

percolating into the soil) under the drainfields evaluated represented

a 98 percent reduction in the flow rate compared to the saturated flow:

. rate determined by the perc test. The. study suggested that some sort

of barrier to flow had developed in the soil.
Further research by Thomas et al. (1966), and McGauhey and Krone

(1967), demonstrated that a hydraulically resistant layer forms at the

bottom of the drainfield trench. - Years‘earlier, (Allison, 1947) had‘

shown in a laboratory study that soils kept saturated  fox extended
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periods of time developed a clogging zone at the infiltrative surface
that was formed ffom the by-products of anaerobic bacterial actiVities.
Other researchers (Jonmes and Taylor, 1965; de Vries, 1972; Kristiansen,
1981) have reported similar results; This clogging zone (also referred
to as a mat, biomat, or crust) is a complex mixture of micro-organisms,
the by-products of their metabolic processes (primafily polysac-
charides, which adhere to the soil particles), and otﬁervorganic matter
frbm' suspended solids filtered out of the'septic tank- effluent. The
result of the formation ofvthis biomat is a reduction in the effective
porosity (and thus the permeability) of the soil infiltrative’surface.
This creates a limiting barrier to infiltration, reducing effluent flow
from the drainfield trench. Importantly, it also creates conditions of

unsaturated flow in the soil beneath the absofption field (Bouma et

e

al., 1972).

Bouma et al. (1972) determined that such a mat usually develops
during the first year of operation»of a drainfiéld. Organic matter
continues to accumulate and further reduce infiltration wuntil an
equilibriuﬁ situation is reached, where tﬁe rate of crust_formatidn at
the anaerobic soil infiltrative surface is matched by tﬁe‘ rate of
destruction in the aerobic zone severél cgntimetefs belowvthe bottom of"
the drainfield trench.:  In an extensive evaluation .of ‘géptic SySfem
opération in Wisconsin (Bouma et él., 1972), ‘measurements Were‘ﬁade of
soil matric tensions existing under drainfields with clogging méts.
fensions were found to be .in the range of -20 to 100 cm water,

indicating unsaturated conditions in the soil below the mat.










































































































































































































































































































































































































































































































































































































