Identification of learning disabled students using a severe discrepancy model
by Charles Frederick Hideman

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Education
Montana State University
© Copyright by Charles Frederick Hideman (1985)

Abstract:
The area of concern in this study was to determine if the Child Study Team approach for identification of learning disabled students was independent of that identification process which utilized the Ohio Severe Discrepancy Model formula.

In order to look at the concern in greater depth, data were collected and analyzed as part of this study: 1. to determine if the number of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula was independent of the number of similar students using the Child Study Team approach alone, 2. to determine if gender or size classification of a school district from which students were classified as learning disabled or referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula was independent of the number of similar students using the Child Study Team approach alone, and 3. to determine if the gender of students classified as learning disabled and those referred for a perceived learning disability but not so classified was independent of the size classification of the school district.

The Ohio Severe Discrepancy Model formula was applied to ability and achievement test data collected from student record custodians for Montana public school students, 276 who were identified as learning disabled students and 110 who were referred for a perceived learning disability in Montana but were not classified.

Specifically, the results of this study led the investigator to conclude the following: 1. the deviation of two between achievement and ability appeared to eliminate far too many students from further consideration as learning disabled.

2. Class III School Districts, the smallest of the State districts, seemed more likely to classify referred students as learning disabled, and 3. the gender of the student did not seem to affect the outcome of the consideration for classification as learning disabled.
IDENTIFICATION OF LEARNING DISABLED STUDENTS.
USING A SEVERE DISCREPANCY MODEL

by
Charles Frederick Hideman

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Education

MONTANA STATE UNIVERSITY
Bozeman, Montana
June 1985
APPROVAL

of a thesis submitted by

Charles Frederick Hideman

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

18 July 85
Date
Chairperson, Graduate Committee

Approved for the Major Department

18 July 85
Date
Head, Major Department

Approved for the College of Graduate Studies

7-18-85
Date
Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted "the exclusive right to reproduce and distribute copies of the dissertation in and from microfilm and the right to reproduce and distribute by abstract in any format."

Signature

Date

July 18, 1985
ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Leroy Casagranda who provided me with a meaningful experience and gave so willingly of his time and expertise; to Dr. Donald Robson, Dr. Gerald Sullivan, Dr. Fred Abel and Dr. Henry Worrest for their assistance and encouragement in helping me to develop this thesis; to my friends and colleagues who gave me so much positive support, assistance and the little push just when I needed it; to the personnel in the Office of Public Instruction, Gail Gray, Dr. Kenneth Card, Robert Runkel and their staff for their assistance, support, and advice during this project; to the cooperative and special education directors and their staffs who took the time to provide the data for the study; and finally, to my family for the patience they showed during this past year.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STATEMENT OF PERMISSION TO USE.</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Significance of the Problem.</td>
<td>2</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>5</td>
</tr>
<tr>
<td>Questions</td>
<td>6</td>
</tr>
<tr>
<td>General Procedures</td>
<td>7</td>
</tr>
<tr>
<td>Limitations</td>
<td>8</td>
</tr>
<tr>
<td>Delimitations</td>
<td>8</td>
</tr>
<tr>
<td>Definitions</td>
<td>9</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>2 REVIEW OF THE LITERATURE</td>
<td>14</td>
</tr>
<tr>
<td>History of Learning Disabilities.</td>
<td>14</td>
</tr>
<tr>
<td>Characteristics of Learning Disabled</td>
<td>20</td>
</tr>
<tr>
<td>Identification and Assessment</td>
<td>22</td>
</tr>
<tr>
<td>Summary</td>
<td>27</td>
</tr>
<tr>
<td>3 PROCEDURES</td>
<td>28</td>
</tr>
<tr>
<td>Population Description and Sampling Procedures</td>
<td>28</td>
</tr>
<tr>
<td>Data Collection Method</td>
<td>32</td>
</tr>
<tr>
<td>Organization of the Data</td>
<td>33</td>
</tr>
<tr>
<td>Statistical Hypotheses</td>
<td>33</td>
</tr>
<tr>
<td>Analysis of the Data</td>
<td>35</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS—Continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precautions for Accuracy</td>
<td>35</td>
</tr>
<tr>
<td>Summary</td>
<td>35</td>
</tr>
<tr>
<td>4 DATA ANALYSIS</td>
<td>37</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>40</td>
</tr>
<tr>
<td>Inferential Statistics</td>
<td>42</td>
</tr>
<tr>
<td>Hypothesis Decision Summary</td>
<td>53</td>
</tr>
<tr>
<td>Summary</td>
<td>55</td>
</tr>
<tr>
<td>5 CONCLUSIONS AND RECOMMENDATIONS.</td>
<td>56</td>
</tr>
<tr>
<td>Conclusions</td>
<td>58</td>
</tr>
<tr>
<td>Summary of Conclusions</td>
<td>59</td>
</tr>
<tr>
<td>Additional Questions</td>
<td>60</td>
</tr>
<tr>
<td>Recommendations</td>
<td>61</td>
</tr>
<tr>
<td>Recommendations for Research</td>
<td>62</td>
</tr>
<tr>
<td>REFERENCES CITED</td>
<td>63</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>67</td>
</tr>
<tr>
<td>Appendix A — Letters</td>
<td>68</td>
</tr>
<tr>
<td>Appendix B — Survey</td>
<td>72</td>
</tr>
<tr>
<td>Appendix C — Data Request Letters</td>
<td>76</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Montana Student Enrollment and Learning Disability Populations</td>
<td>4</td>
</tr>
<tr>
<td>2. School Districts in Montana by Classification</td>
<td>30</td>
</tr>
<tr>
<td>3. Stratified Random Sample Population</td>
<td>30</td>
</tr>
<tr>
<td>4. Investigative Categories for Students Classified as Learning Disabled</td>
<td>31</td>
</tr>
<tr>
<td>5. Investigative Categories for Students Not Classified as Learning Disabled</td>
<td>31</td>
</tr>
<tr>
<td>6. Number and Percentage of District Responses</td>
<td>38</td>
</tr>
<tr>
<td>7. Number of Usable Returns Received for Classified Learning Disabled Students and for Returns Received for Non Classified Students</td>
<td>38</td>
</tr>
<tr>
<td>8. Number and Percentage of Usable Returns Received for Students Classified as Learning Disabled</td>
<td>38</td>
</tr>
<tr>
<td>9. Number and Percentage of Reported Classified Learning Disabled Students in Class I, II, and III Districts</td>
<td>40</td>
</tr>
<tr>
<td>10. Number and Percentage of Reported Non Classified Students in Class I, II, and III Districts</td>
<td>40</td>
</tr>
<tr>
<td>11. Number and Percentage of Classified Learning Disabled Students in Class I, II, and III Districts with a Severe Discrepancy Score of Two or More Points</td>
<td>41</td>
</tr>
<tr>
<td>12. Number and Percentage of Classified Learning Disabled Students by Gender with a Severe Discrepancy Score of Two or More Points</td>
<td>41</td>
</tr>
<tr>
<td>13. Number and Percentage of Students by District Classification with a Severe Discrepancy Score of Less Than Two Points</td>
<td>41</td>
</tr>
<tr>
<td>14. Number and Percentage of Students Classified Learning Disabled by Gender</td>
<td>42</td>
</tr>
<tr>
<td>15. Number and Percentage of Non Classified Learning Disabled Students by Gender</td>
<td>42</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Number and Percentage of Students by Gender with a Severe Discrepancy Score of Less Than Two Points</td>
<td>42</td>
</tr>
<tr>
<td>17.</td>
<td>Chi Square Analysis of Learning Disabled, Non Learning Disabled and Severe Discrepancy, Non Severe Discrepancy</td>
<td>44</td>
</tr>
<tr>
<td>18.</td>
<td>Chi Square Analysis of District Classification and Learning Disabled, Non Learning Disabled</td>
<td>46</td>
</tr>
<tr>
<td>19.</td>
<td>Chi Square Analysis of District Classification and Severe, Non Severe Discrepancy</td>
<td>46</td>
</tr>
<tr>
<td>20.</td>
<td>Chi Square Analysis of District Classification and Learning Disabled, Non Learning Disabled with a Discrepancy Score of Two or More Points</td>
<td>47</td>
</tr>
<tr>
<td>21.</td>
<td>Chi Square Analysis of District Classification and Learning Disabled, Non Learning Disabled without a Discrepancy Score of Two or More Points</td>
<td>48</td>
</tr>
<tr>
<td>22.</td>
<td>Chi Square Analysis of Gender and Learning Disabled, Non Learning Disabled</td>
<td>49</td>
</tr>
<tr>
<td>23.</td>
<td>Chi Square Analysis of Gender and Severe Discrepancy, Non Severe Discrepancy</td>
<td>50</td>
</tr>
<tr>
<td>24.</td>
<td>Chi Square Analysis of Gender and Learning Disabled, Non Learning Disabled with a Discrepancy Score of Two or More Points</td>
<td>50</td>
</tr>
<tr>
<td>25.</td>
<td>Chi Square Analysis of Gender and Learning Disabled, Non Learning Disabled without a Discrepancy Score of Two or More Points</td>
<td>51</td>
</tr>
<tr>
<td>26.</td>
<td>Chi Square Analysis of District Classification and Gender</td>
<td>52</td>
</tr>
<tr>
<td>27.</td>
<td>Null Hypothesis Summary Table</td>
<td>55</td>
</tr>
<tr>
<td>Figures</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1. Cochran formula for determining sample size of finite populations.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2. Mathematical derivation of a discrepancy score for WISC-R obtained</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>score of 98 and Woodcock Reading Score of 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Cochran formula to determine student sample size.</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>4. The Ohio Severe Discrepancy Model formula</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

The area of concern in this study was to determine if the Child Study Team approach for identification of learning disabled students was independent of that identification process which utilized the Ohio Severe Discrepancy Model formula.

In order to look at the concern in greater depth, data were collected and analyzed as part of this study:

1. to determine if the number of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula was independent of the number of similar students using the Child Study Team approach alone,

2. to determine if gender or size classification of a school district from which students were classified as learning disabled or referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula was independent of the number of similar students using the Child Study Team approach alone, and

3. to determine if the gender of students classified as learning disabled and those referred for a perceived learning disability but not so classified was independent of the size classification of the school district.

The Ohio Severe Discrepancy Model formula was applied to ability and achievement test data collected from student record custodians for Montana public school students, 276 who were identified as learning disabled students and 110 who were referred for a perceived learning disability in Montana but were not classified.

Specifically, the results of this study led the investigator to conclude the following:

1. the deviation of two between achievement and ability appeared to eliminate far too many students from further consideration as learning disabled.

2. Class III School Districts, the smallest of the State districts, seemed more likely to classify referred students as learning disabled, and

3. the gender of the student did not seem to affect the outcome of the consideration for classification as learning disabled.
CHAPTER 1

INTRODUCTION

According to Plisko (1983), enrollment has declined significantly in elementary and secondary schools in recent years. In the ten years, 1971 to 1981, public school populations declined from 46.1 million students to 40.2 million, which represented a decrease of 5.9 million or 13 percent. The enrollment decline in Montana during the same period was 14 percent. Tyler (1982) stated that elementary enrollments will continue to decline for the next few years, then increase again as the children of parents who made up the “Baby Boom” of the 1950s reach school age.

Ysseldyke and others (1983) discussed the fact that the number of special education students has grown at an accelerating rate. They reported that in one study figures were calculated for three years with the following results: four to five percent of the total population of students were referred and evaluated for some sort of special assistance. Three percent of those students were placed in special education programs. Wide variations were noted in the data supplied with some districts reporting an incidence as high as 21 percent of their student population being placed. Results such as these pointed out the need for close examination and evaluation of current special education growth rates.

One group of students whose special needs have received attention in recent years is the physically and mentally handicapped. A 1980 United States Office of Civil Rights survey reported in The Condition of Education: A Statistical Report that eight percent of the children enrolled in public elementary and secondary schools were classified as handicapped. Variations among states in the proportion of students reported as handicapped range from .14 percent in Delaware to three percent in the District of Columbia. This variation
may have been due in large measure to differences in diagnostic and classification pro-

Further evidence presented by Algozzine and others (1983) indicates that some four
million handicapped children, ages three through twenty-one, received special education
and related services under the combined programs of P.L. 89-313, Federal Assistance to
State Operated and Supported Schools for the Handicapped of 1965 and P.L. 94-142, The
Education of All Handicapped Children Act of 1975, during the 1979-1980 school year.
Based upon this figure, special education and related services were being provided to more
than nine and one-half percent of all school children. The number of youngsters under
P.L. 94-142 alone was nearly four million. The report also stated that in 1979-1980 the
largest percentage of these children between the ages of three and twenty-one were being
served in learning disability programs and represented 32 percent of the total special educa-
tion population in the United States.

Significance of the Problem

Educators have observed that certain students failed to profit from regular instruc-
tional practices. This lack of success has been attributed to specific sensory, motor, physi-
cal, cognitive, or emotional deficits within the student, and it has been presumed that the
students needed a program of special assistance. For decades, educators have attempted to
classify students primarily to determine their eligibility for special education assistance.
Educators were charged with the task of selecting, from among the large number of stu-
dents experiencing academic and behavioral difficulties in America's schools, those who
should receive this special education. It was decided that the way to determine precisely
the kind of special education needed was to sort the students into groups on the basis of
common characteristics. Relatively elaborate classification systems were established and
Extended levels of service provided for the handicapped by recent federal and state legislation have been established at great financial cost. Vasa and Wendel (1982) note that according to the National School Boards Association, local school district budgets increased twice as fast for special education as for regular instruction (about 14 percent yearly). Moreover, nationally the ratio of the cost of education for the handicapped to the overall cost of education was around two to one.

According to Algozzine and others (1983), special education is big business. The increase in numbers of students identified have been accompanied by increases in the amount of money spent in educating exceptional children. Public policy with regard to handicapped students has created a growing alternative educational system. Over four million students (nine and one-half percent of the school population) received special education in federally supported programs during the 1979-1980 school year at a cost to the federal government approaching one billion dollars. This cost represented about 12 percent of the average per-pupil expenditure for each handicapped child served.

In Montana, state and federal funds made available to educate handicapped students decreased from $2,732 per pupil in 1978-1979 to $1,898 in 1982-1983. In contrast, the average pupil expenditures for all students during this same time increased from approximately $2,000 to $2,700 per student. Considering inflationary factors, increases in fixed costs, and declining enrollments, most districts were faced with a financial dilemma with regard to funding special education (Hynes and Holmquist, 1984).

Table 1 illustrates the steady increase in the numbers of children identified as learning disabled in the State of Montana.

Lester Mann and others, as reported by Kirk (1983), claimed that practitioners have paid little attention to the numerous definitions of learning disabled. Instead, they have
Table 1. Montana Student Enrollment and Learning Disability Populations.

<table>
<thead>
<tr>
<th>School Year</th>
<th>Enrollment</th>
<th>Learning Disabled</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978-1979</td>
<td>164,326</td>
<td>4847</td>
<td>2.95</td>
</tr>
<tr>
<td>1979-1980</td>
<td>158,208</td>
<td>5145</td>
<td>3.25</td>
</tr>
<tr>
<td>1980-1981</td>
<td>155,073</td>
<td>5900</td>
<td>3.80</td>
</tr>
<tr>
<td>1982-1983</td>
<td>152,401</td>
<td>7113</td>
<td>4.67</td>
</tr>
<tr>
<td>1983-1984</td>
<td>153,646</td>
<td>7335</td>
<td>4.77</td>
</tr>
</tbody>
</table>

(Superintendent of Public Instruction, 1984).

identified many of these children simply because they did not perform at grade level. Many of these youngsters were slow learners, culturally or linguistically disadvantaged, or had inappropriate instruction.

According to Ysseldyke and others (1983), the development of a system for making decisions about the eligibility of children for participation in special education programs is a problem with which our nation must certainly be concerned. In a manner similar to the national experience, Montana has also experienced difficulties with regard to the identification of learning disabled students. According to Beck (1984), one of the major issues confronting both regular and special education is the inconsistency in diagnosing the learning disabled student. Montana’s Northwest Council of Administrators of Special Education recently identified this issue as a major concern; they noted the fact that many students may not be truly learning disabled, but are placed in resource rooms because of pressures due to low achievement in regular classrooms (Tintinger, 1984). The Federal Regulations for evaluating specific learning disabilities have not provided a clear definition of the means by which special education students throughout the nation should be identified. Schools have experienced difficulties in developing definitive evaluation criteria (Card, 1984).

Schools in Montana have typically employed the Child Study Team process for identifying learning disabled students. The process involves a group of people, including parents, as well as other professionals they may suggest, special educators, and other professionals.
who are charged with the responsibility of gathering all pertinent data regarding the child, who determine if a handicap exists. In addition, it is their purpose to determine the educational needs of the student and the options to best deliver services. The procedure that each team utilizes to gain information relating to a child will vary depending on the needs of that student, the organization of the agency or agencies providing the educational services, and the unique situations related to resource availability to school districts (Superintendent of Public Instruction, 1983).

While a specific procedure for determining the existence of a severe discrepancy between ability and achievement has not been specified at either the federal or state levels, methods for making this determination have varied widely across Montana. The use of a discrepancy formula as a part of the classification process is an attempt to remedy the inconsistencies among school districts in determining learning disability services eligibility by providing a concrete and universal method for deciding if a severe discrepancy between intellectual ability and achievement exists (Superintendent of Public Instruction, 1984).

Statement of the Problem

The problem addressed in this study was to determine if the number of students classified as learning disabled using the traditional methods employed by the Child Study Team to interpret achievement and ability test data was independent of the number of students classified as learning disabled by applying the Ohio Severe Discrepancy Model formula to the same data with a discrepancy score of two being the determining qualifying factor. Similar information was obtained and presented for students who were referred for learning disability testing, but because of a decision by the Child Study Team were not so classified.
Questions

The following questions were answered in this study:

1. Was the number of classified learning disabled students who had a severe discrepancy, when the Ohio Severe Discrepancy Model formula was applied, independent of the number of students classified as learning disabled using the Child Study Team approach alone?

2. In Class I, Class II, and Class III School Districts was the number of classified learning disabled students who had a severe discrepancy, when the Ohio Severe Discrepancy Model formula was applied, independent of the number of those classified as learning disabled using the Child Study Team approach alone?

3. Was the number of students referred for a perceived learning disability but not classified using the Child Study Team approach alone independent of those with a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied?

4. Based on gender, was the number of students classified as learning disabled with a severe discrepancy, when the Ohio Severe Discrepancy Model formula was applied, independent of those classified as learning disabled using the Child Study Team approach alone?

5. In Class I, Class II, and Class III School Districts was the number of students referred for a perceived learning disability who did not have a severe discrepancy, when the Ohio Severe Discrepancy Model formula was applied, independent of those not classified using the Child Study Team approach alone?

6. Based on gender, was the number of students referred for a perceived learning disability who did not have a severe discrepancy, when the Ohio Severe Discrepancy Model formula was applied, independent of those not classified using the Child Study Team approach alone?
7. Was the gender of students classified as learning disabled independent of those not classified as learning disabled based upon the size classification of the school district?

General Procedures

The student sample for this study was drawn from a population which included all public school students categorized as learning disabled during the 1983-1984 school year in the State of Montana and students who were referred and tested during the same year but were not classified. The student samples came from a random sample of school districts within the three Montana school classifications, I, II, and III. Cochran’s formula for finite populations, displayed in Figure 1, was used to determine the exact number to be sampled from each group. When appropriate information is calculated with the formula, its solution assured a 95 percent confidence that the sampling error was 5 percent or less. A Table of Random Numbers was used to select the sample.

\[
N = \frac{\frac{t^2 PQ}{d^2}}{1 + \frac{1}{Np} \frac{t^2 PQ}{d^2} - 1}
\]

Where
- \(t \) = confidence level
- \(PQ \) = proportion of the population
- \(d \) = error
- \(Np \) = population size
- \(N \) = sample size (Cochran, 1977).

Figure 1. Cochran formula for determining sample size of finite populations.

Ability and achievement test scores were requested for students from sampled school districts and that test data was applied to the Ohio Severe Discrepancy Model formula. A discrepancy of two between the ability and achievement test score deviations was the
determining qualifying factor as to whether or not a student would be classified as learning disabled. Ohio's formula, as described in the *Ohio Rules for the Education of Handicapped Children*, suggested that a discrepancy score of +2.00 between the two z or deviation scores was indicative of a severe discrepancy (Superintendent of Public Instruction, 1984).

In order to determine the independence of the number of students identified as learning disabled from the method of classification, the Chi Square Test of Independence at the .05 level of significance was used.

Limitations

1. Montana allows a variety of procedures to be employed in the identification of learning disabled. Specific tests and methods of determining discrepancies between achievement and ability are not specified by the State. Traditionally, the Child Study Team has made the final classification recommendation based on a variety of considerations.

2. The results of this study pointed out the differences in numbers which might have existed in classifying learning disabled children with and without the Ohio Severe Discrepancy Model formula being applied to their test data.

Delimitations

1. The study was limited to Montana students classified as learning disabled or referred for such testing during 1983-1984 and therefore, inferences can only be made in states with similar geographic and population characteristics.

2. The Ohio Severe Discrepancy Model formula was applied in this investigation.

3. Only students formally referred for learning disability evaluation had their test data applied to the Ohio Severe Discrepancy Model to confirm nonplacement.
4. The population consisted of all Montana Public School students in kindergarten through twelfth grade during the 1983-1984 school year who were classified as learning disabled and those students who were referred for testing because of a perceived learning disability but were not so classified.

5. School districts were randomly selected from within each of the three Montana school district classifications.

Definitions

1. Child Study Team—Child evaluation related to a process which involved a group of persons including the parents, as well as other professionals they may suggest, special educators, and other professionals who were charged with the responsibility of gathering and analyzing all the pertinent data possible regarding an individual child. The objective was to determine if the child was handicapped, what the child’s educational needs were, and what options might be best utilized to deliver educational services to the child (Superintendent of Public Instruction, 1983).

2. Ohio Severe Discrepancy Model—The formula for determining a severe discrepancy between student achievement and ability test scores as used in the State of Ohio, for purposes of identifying and classifying learning disabled students (Superintendent of Public Instruction, 1984).

The following formula was used when computing the discrepancy score. Figure 2 illustrates the mathematical derivation of the discrepancy score for a specific set of test data.

3. P.L. 89-313—A law enacted to provide funding to school districts through a state agency directly responsible for providing, on a non-school district basis, free public education for handicapped children for programs and projects (including the acquisition of
IQ Score — Mean of IQ Test
\[\frac{\text{Standard Deviation of IQ Test}}{\text{IQ Deviation Score}} \]
Achievement — Mean of Achievement Test
\[\frac{\text{Standard Deviation of Achievement Test}}{\text{Achievement Deviation Score}} \]
IQ Deviation — Achievement Deviation Score
\[\frac{\text{Discrepancy Score}}{\text{Telzrow and Williams, 1982}} \]

1. \[\frac{98 - 100}{15} = -.13 \] (I.Q. Deviation Score)

2. \[\frac{36 - 50}{10} = -1.4 \] (Achievement Deviation Score)

3. \[(-.13) - (-1.4) = +1.27 \] (Discrepancy Score)
(Telzrow and Williams, 1982).

Figure 2. Mathematical derivation of a discrepancy score for WISC-R obtained score of 98 and Woodcock Reading Score of 36.

equipment, and where necessary, the construction of facilities) which were designated to meet special education needs of such children (United States Statutes at Large, 1966).

4. P.L. 94-142—The Education for All Handicapped Children Act. Within the law, learning disabled children were defined as:

those children who have a disorder in one or more of the basic psychological processes involved in understanding or in using language, spoken or written, which disorder may manifest itself in imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations. Such disorders include perceptual handicaps, brain injury, minimal brain dysfunction, dyslexia, and developmental aphasia (Federal Register, 1976:52404).

5. Resource Room—Special classes for students in which a special education teacher is available to provide direct instruction to handicapped students who may not spend more than one-half time in this type of instruction. These students were concurrently enrolled in the school’s regular education program (Superintendent of Public Instruction, 1983).
6. Scatter Analysis—An analysis of the degree of relationship between two variables as shown on a scatter diagram (Ferguson, 1981).

7. School Classification System based on community population:
 a. First class — 6500 or more;
 b. Second class — 1000 to 6499;
 c. Third class — less than 1000.
 (Superintendent of Public Instruction, 1983).

8. Severe Discrepancy—A severe discrepancy was indicated when a difference of two or more points between a student’s ability level and achievement level as defined by scores on a variety of achievement and ability assessment instruments resulted from the solution of the severe discrepancy formula (Buescher, Ed., 1980).

9. Special Education—Specially designed instruction to meet the unique needs of a handicapped child (Superintendent of Public Instruction, 1983).

10. Specific Learning Disability—As defined in P.L. 94-142
 a disorder in one or more of the basic psychological processes involved in understanding or in using language, spoken or written, which may manifest itself in an imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations. It includes, but is not limited to such conditions as perceptual handicaps, brain injury, minimal brain dysfunction, dyslexia, and developmental aphasia. The term does not include children who have learning problems which are primarily the result of visual, hearing, or motor handicaps, mental retardation, or environmental, cultural, or economic disadvantages (Federal Register, 1976:52404).

11. Stratified Random Sample—A sample drawn from a group in which the numbers of members within the various groups were known (Ferguson, 1981).

Summary

Even though the population of schools in the United States has declined during the past few years, the number of special education children increased and continues to do so. One of the reasons for this increase appears to be the inconsistency which exists in the
methods of classifying children with special needs. Montana is no exception to this nationwide trend for it too has experienced an increase in the percentage of special education students from nearly three percent to almost five percent, while the overall student population during a six year period ending in 1984 declined by nearly six percent, or 10,680 students, according to the Montana Office of Public Instruction. The resulting financial burden became excessive.

Attempts were made to bring into line and make more consistent the classification process of learning disabled. One such attempt has been made in the State of Ohio. The use of a severe discrepancy formula for determining the discrepancy between ability and achievement has been applied in an effort to bring consistency to the classification process. It was this formula which this investigator used to determine if the numbers of children in Montana who were classified as learning disabled using the formula as opposed to those so identified using the Child Study Team approach with no discrepancy formula were independent.

The investigator sampled the entire population of learning disabled children from within the three classifications of school districts in the State. In order to determine the difference in the Ohio method of classification as opposed to the Child Study Team approach alone, test data was requested and applied to the formula for those youngsters who were referred because of a perceived learning disability, but for some reason were not classified as learning disabled. The independence between the numbers of students classified and the methods used formed the basis of this investigation. The Chi Square Test of Independence was used to analyze the data in order to determine the independence among the variables studied.

The first procedure in this study was to conduct a thorough review of the literature and research related to the history of learning disabilities, the characteristics that were
apparent in the learning disability population, and the procedures, past and present, used for the identification and assessment of learning disabled. This is found in Chapter 2.
CHAPTER 2

REVIEW OF THE LITERATURE

From the earliest times there have been instances in which individuals had problems writing or reading with the ease with which friends accomplished those same tasks. Numerous attempts were made to classify learning disabled and to identify the causes of these difficulties. Many of these trials have been discarded as unworkable or inaccurate, while others have remained to be used and refined in the task of classification of learning disabled so those identified may be given special programs of assistance in order to help them become functioning members of society (Grossman, 1978).

The presentation of the literature review will cover three general areas relating to the study of learning disabilities: (1) history, (2) characteristics of learning disabled, and (3) procedures used for identification and classification of youngsters who exhibit the characteristics of learning disabled.

History of Learning Disabilities

The term learning disability is relatively new, but the condition in youngsters and adults is not. More than a hundred years ago neurologists were concerned with disorders of language and reading in adults who had lost their ability to read or speak as a result of brain injury acquired during war, accident, or disease. In children, where no known neurological difficulty was present, the terminology, disability in writing, speaking, arithmetic, or oral language had been substituted for the earlier medical terms, although dyslexia was also used especially to describe certain children (Kirk, 1981).
Grossman (1978) indicated that there were three basic periods in the history of defining learning disabilities; medical, academic, and federal involvement. The first of these began in the early 1960s and continued until the middle of that decade. During that time the problem was discussed mostly in medical circles and as a result, definitions were expressed in anatomical language. Before the term learning disabilities became popular, the label of choice was usually “minimal brain dysfunction” or “minimal brain injury.” Minimal brain dysfunction was used to describe the child whose functioning was not quite that of his peers, but was still clearly above that of the retarded young person. The implications of brain involvement according to Hallahan and Bryan (1981) were found among several labels used to refer to learning disabled children. A major evolutionary development in the field of learning disabilities was the shift in attitude toward the causal status of neurological factors. This neurological orientation was due largely to the fact that the early theoretical and practical precursors to the field of learning disabilities were contained within the literature on presumably brain injured mentally retarded children. It appears that one of the first definitions of learning disability appeared in a 1962 textbook entitled Educating Exceptional Children. Kirk stated:

A learning disability refers to a retardation disorder, or delayed development in one or more of the processes of speech, language, reading, spelling, writing, or arithmetic resulting from possible cerebral dysfunction and/or emotional or behavioral disturbance and not from mental retardation, sensory deprivation, or cultural or instructional factors (Kirk, 1962:263).

According to Hallahan and Bryan (1981) the first definition from a cosponsored task force was developed by the National Society for Crippled Children and Adults and the National Institute of Neurological Diseases and Stroke of the National Institute of Health in 1966. That organization indicated that the term ”minimal brain dysfunction syndrome” referred to children with average or above average general intelligence with certain learning or behavioral disabilities ranging from mild to severe, which were associated with deviations of function of the central nervous system. These deviations manifested themselves
through various combinations of impairment in perceptions, conceptualization, language, memory, and control of attention, impulse, or motor function. The difference between this definition and learning disabled defined in P.L. 94-142 was apparent in one major area. The latter deemphasized the etiological role of neurological factors and emphasized the role of academic behaviors. While the 1966 definition labeled the condition "minimal brain dysfunction", the P.L. 94-142 definition simply included it as one of several labels used to refer to children falling into the category of learning disabled (Hallahan and Bryan, 1981).

During the latter half of the 1960s, a second group looked at these children from the perspective of the classroom. Their descriptions came from the terminology of the educator. They proposed to measure the disability now defined as the difference between a child's potential and actual performance. According to Kirk (1981), learning disabled were not mentioned in federal law. In spite of the omission, grants were made available in 1964 to colleges and universities to further educate teachers of learning disabled children. These grants were authorized under the caption in the federal law, "crippled or other health impaired required special education." Under this category learning disabled was included for both research and training purposes by the federal government. Any impetus for state legislation was due primarily to local parent associations in various states.

Grossman (1978) indicated that the third phase came about toward the end of the 1960s and dated to 1969 when legislation was enacted which placed upon the federal government the responsibility of assuring no child was deprived of an educational opportunity because of a handicap. The speculation as to what percentage of the school-age population might be learning disabled was translated into a budgetary problem for school administrators. It was also about this time that earlier certainties about cause and remediation began to dissipate, because neither remedial nor educational models had been able to demonstrate a clear superiority.
Grossman (1978) discussed the definition problem when he stated that because of the inability to clearly define and remediate the government stepped in to discharge its duty. The definition of learning disability was reworked until, for all practical purposes, it became “that disability which is manifest among some percentage of the population” (Grossman, 1978:122). When defined this way, the only remaining question, where should the line have been drawn to separate normal children from the learning disabled, became the percent for whom the government had to make financial provision, and those from whom it was freed of that responsibility (Grossman, 1978)?

It was in 1963 that Congress passed Public Law 88-164, which established the Division of Handicapped Children in the United States Office of Education. The definition of handicapped in use at that time included “mentally retarded, hard-of-hearing, deaf, speech impaired, visually handicapped, seriously emotionally disturbed, crippled, or other health impaired, who by reasons thereof, require special education” (Kirk, 1981:8). For nearly two decades, educators and committees of professionals had been trying to operationalize the definitions of learning disabilities within the three general classes of definitions which had or would be proposed: (1) ability/achievement discrepancies, (2) academic achievement deficits, and (3) scatter analysis (Ysseldyke, Algozzine, and Epps, 1983). Because of a fear that to include learning disabled in the 1963 law might divert attention from other classifications, Senators Wayne Morse of Oregon and Ralph Yarborough of Texas introduced an independent bill, that was enacted by Congress, titled The Learning Disabilities Act of 1969. That act provided federal funds for research and personnel preparation and created a national awareness of the problem which eventually caused each state to authorize programs for learning disabled children in the schools (Kirk, 1981).

In 1968, The National Committee for Handicapped Children, a citizens' group required by law, surveyed the existing situation and reported that: (1) seven states had enacted special legislation providing programs for learning disabled children; (2) it was
estimated that between one and three percent of school age children had severe problems in this area; and (3) learning disabilities could be defined as follows:

Children with special learning disabilities exhibit a disorder in one or more of the basic psychological processes involved in understanding or using spoken or written languages. These may be manifested in disorders of listening, thinking, talking, reading, writing, spelling, or arithmetic. They include conditions which have been referred to as perceptual handicaps, brain injury, minimal brain dysfunction, dyslexia, developmental aphasia, and so forth. They do not include learning problems which are due primarily to visual, hearing or motor handicaps, to mental retardation, emotional disturbance or to environmental disadvantage (Kirk, 1981:9).

It was this definition which served as the basis of the 1969 Learning Disabilities Act and which, with minor revision, became the definition of learning disabled in P.L. 94-142.

Special education educators generally agreed that there was little concensus as to what conditions could or could not be considered a specific learning disability for the following reasons:

1. It was not possible to identify all the components of each specific learning disability. The only accepted manifestation was a discrepancy between expected achievement and ability.

2. There was no hard research data collected on a large enough sample to state with certainty what the common characteristics of learning disabled were.

3. There were several theories about the causes of learning disabilities.

4. There seemed to be no generally accepted diagnostic instruments which could be used alone with all learning disabled children.

5. There were several theories about why or how learning disabled children learned. None of them were universally accepted. However, as Mykelbust (1983) stated, it was not difficult to distinguish learning disabilities from other handicaps, even though there were many differences of opinion regarding the definition. Few who had studied the extensive data available would deny or question the validity of this condition in children.
The Education for All Handicapped Children Act, Public Law 94-142, was enacted on November 29, 1975. Within the law, learning disabled children were defined as:

those children who have a disorder in one or more of the basic psychological processes involved in understanding or in using language, spoken or written, which disorder may manifest itself in imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations. Such term includes such conditions as perceptual handicaps, brain injury, minimal brain dysfunction, dyslexia, and developmental aphasia. Such term does not include children who have learning problems which are primarily the result of visual, hearing, or motor handicaps, of mental retardation, or emotional disturbance, or environmental, cultural, or economic disadvantage (Federal Register, Nov. 29, 1976:52404).

Although the definition excluded several specific handicaps, the global concept of learning disabilities encompassed a number of specific disabilities. It covered a heterogeneous group of developmental learning delays or disabilities in children including language, thinking, attention, memory, discrimination, and spatial orientation, as well as language and academic subjects (Kirk, 1981). This definition deemphasized the etiological role of neurological factors and emphasized the role of academic behaviors (Hallahan and Bryan, 1981).

The original formula for an ability/achievement discrepancy, \(CA = \frac{IQ}{300} + 0.17 - 2.5 \) = Severe Discrepancy Level, first appeared in 1976 in the “Education of Handicapped Children—Assistance to the States” Proposed Rulesmaking. This severe discrepancy was the level at or below which the child must have achieved in one or more of three areas listed in Public Law 94-142. A severe discrepancy between achievement and intellectual ability meant that achievement in one or more of the areas listed fell below 50 percent of the child’s expected achievement level, when intellectual ability, age, and previous educational experiences were considered (Federal Register, Nov. 29, 1976). Simply stated, this formula conceptually redefined learning disability to mean “underachievement” (Senf, 1978).

As a result of public hearings, the following changes were made in the proposed regulations published on November 29, 1976: (1) the formula was deleted, and (2) the 50 percent figure for determining “severe discrepancy” was also deleted. These deletions were made based on concerns voiced during the hearings which centered around four general...
areas: (1) the inappropriateness of trying to reduce behavior to numbers, (2) the psychometric and statistical inadequacy of the formula, (3) the fear that the use of the formula might lend itself to inappropriate use to the detriment of handicapped children, and (4) the inappropriateness of using a single formula for children of all ages, especially those of preschool age (Federal Register, Dec. 29, 1977).

For the purpose of this study the writer will use the learning disability definition above as contained in the Federal Register on November 29, 1976. This definition formed the basis for learning disability identification in the state of Montana (Superintendent of Public Instruction, December, 1983).

Characteristics of Learning Disabled

Learning disabilities could be classified under two broad categories. There were, according to Kirk (1983), developmentally and academically learning disabled. The developmental category included such characteristics as attention, memory, perception, perceptual-motor deficits, thinking, and language disorders. The academic disability centered around the subject areas of reading, math, spelling, and writing.

The criteria for determining a learning disability as set forth in the Federal Register (1977) stated that a child had a specific learning disability if: (1) he/she did not achieve commensurate with ability levels in one or more of the areas listed in the guidelines, when provided with learning experiences appropriate for the child's age and ability levels; and (2) the placement team found that the child had a severe discrepancy between achievement and intellectual ability in one or more of the areas of oral, listening, or written expression, basic reading skill, reading comprehension, mathematical calculations, or mathematical reasoning.

Kass and others (1982) discussed the fact that learning disabled children had common age-related deficits. For each of five age ranges, a developmental function was defined and
assumed to be the primary learning strategy for that age range. Under each developmental function, certain component deficits had been determined to be common in those with a specific learning disability.

The five age-related functions were as follows: (I) Sensory Orientation, from birth to 18 months, is the physiological or functional readiness of the human to respond to the environment; (b) Memory, from 18 months to 7 years, is the accurate imitation of stimuli when those are no longer present; (c) Re-cognition, from 7 to 11 years, is the internalization of, and flexibility in, semantic and structural meanings; (d) Synthesis, from 11 to 14 years, is the habituation of previously learned responses; and (e) Communication, 14 years and older, is reception of another's meanings and expression of one's meanings to another (Kass and others, 1982:173).

Within these developmental areas Kass and others (1982) identified the following deficits: Memory Function: (a) deficit in controlling reactions to stimuli, (b) deficit in practicing input for later recall, and (c) deficit in retrieving sensory input immediately; Re-cognition Function: (a) deficit in noting differences within muscle sensations, (b) deficit in noting differences in the sense of touch, (c) deficit in recognizing wholes from sensation of the parts, and (d) deficit in analyzing context into important and unimportant parts; Synthesis Function; (a) deficit in gaining meaning from auditory stimuli, (b) deficit in organizing oneself in time, (c) deficient in noting and correcting errors, and (d) deficit in automatically associating information from more than one sensory system; Communication Function: (a) deficit in gaining meaning from the printed page, (b) deficit in dealing with quantitative concepts, and (c) deficit in communicating meaning through the written word. The sensory orientation function was purposely omitted by the researchers because of difficulties in locating identified youngsters of the age required to participate in the study.

Sabatino (1983) commented on the characteristics of learning disabled children and stated that learning disabilities were indistinguishable from academic underachievement and could be found in children who ranged from mentally retarded to gifted. Disabilities
such as these often existed as a primary condition as long as there were no diagnosable sensory or cultural-linguistic problems or behavioral disorders.

Identification and Assessment

According to Kirk (1981), it has been a difficult task to determine who is and who is not entitled to learning disability services. Some believed that any child who needed extra help was learning disabled. Some said that learning disability classes had become dumping grounds for all problem children. In order to prevent children from being inappropriately classified as learning disabled, Congress decreed in 1976:

Children with specific learning disabilities may not constitute more than one-sixth of the children eligible to be counted as handicapped. A state may not count more than twelve percent of the number of children aged five through seventeen as handicapped. This means, at most, that only two percent of the children are specific learning disabled for allocation purposes (Federal Register, Nov. 29, 1976:52404).

Following this mandate by Congress, the U.S. Office of Education determined that the 1968 National Advisory Committee definition of learning disability be retained. It was to be left to the judgment of a multidisciplinary team to determine whether a child was eligible for learning disability services (Federal Register, 1979).

Swartz and others (1981) believed that even though a multidisciplinary staff approach employed an attractive group decision making process, it was probably better employed as a vehicle for planning student programs than as a method of identifying learning disabled children.

Placement team meetings were further analyzed by Ysseldyke and others (1982) relative to the kinds of data presented at such gatherings. The relationship between the final decisions and the amount of information presented was positive. There was a greater likelihood of disability identification at meetings in which more information was presented; however, little relationship existed between the type of information presented and the
applicability of a variety of current identification criteria. Eighty-three percent of the statements made were considered irrelevant. The data provided little evidence to suggest that teams used specific formal criteria when making eligibility decisions or that assessment results were used for purposes other than minimal professional credibility.

Kavale and Nye (1981) analyzed 307 research studies in order to determine the characteristics of learning disabled identification criteria. They were able to isolate four: (1) psychometric test data, (2) intact or established criteria—federal and state guidelines, (3) idiosyncratic—variety of identification variables, and (4) previous classifications.

Perlmutter and Parus (1983) reported on a Michigan study which included fourteen school districts. All the districts used standardized achievement tests and teacher referrals and communicated at some point with the child’s parents. However, except for certain tests which enjoyed popularity, districts did not agree on how to identify specific learning disabilities. Differences were found in the number of tests given, the use of tests and sub-tests, the use of intelligence tests, the choice of testing instruments, and cutoff points for determining learning disabilities as well as the point at which the parent was consulted during the diagnostic process. While all refused to diagnose as learning disabled a student with a tested IQ below seventy, some were willing to classify students in the seventy to eighty-five range.

Ames (1977) pointed out five problems within the area of identification:

1. Children who were simply having problems in school were being classified as learning disabled.

2. Many children thought to be learning disabled were actually overplaced. They were struggling in a grade ahead of which their level of maturity suited them.

3. The third area included those children who were in the IQ range from eighty to ninety. They were too intelligent for classes for retarded children, but could not keep up in the classroom. They often ended up in learning disability classes.
4. The fourth group included the children who had modest academic ability, but uneven endowment. They had strong points, but never excelled in the total academic setting.

5. There were also those who had minor physical difficulties such as poor vision, allergies, or inadequate behavior chemistry. They could often be helped in physical ways. There had been attempts to define officially the term learning disability to exclude these causes of learning difficulty. However, it seemed possible that perhaps half of the children classified as learning disabled and taught and treated accordingly, actually suffered from one of these difficulties.

Elliott (1981) reported that there was increasing concern within the federal, state, and local agencies to develop more objective and quantifiable classification systems for learning disabled.

Epps and others (1982) reported on a study designed to assess learning disability classification efforts. In the study, eighteen judges with backgrounds in assessment, decision making, and learning disabilities, were asked to use an array of information to differentiate learning disabled from non learning disabled students. Each was given forms with information on forty-two test or subtest scores of fifty school identified learning disabled students and forty-nine unidentified. The judges were inaccurate in their classifications and in little agreement with each other. It also appeared that different judges emphasized different factors in making their decisions. The results suggested that, given current definitions of the condition called learning disability, there was considerable doubt that school personnel would be able to accurately and reliably identify such statements.

Another study conducted by Oskamp (1965) investigated whether or not psychologists' confidence in their own clinical decisions were justified. Thirty-two judges and eight clinical psychologists individually read background information about a published case, which was divided into four sections. After each section, the judge answered twenty-five
questions involving personality judgments. Accuracy did not increase significantly with increasing amounts of information, but confidence did steadily and significantly increase. However, as Oskamp stated, “increased feelings of confidence were not a sure sign of increasing predictive accuracy about a case” (Oskamp, 1965:263).

Danielson and Bauer (1978) posed several questions in looking at the possibility of using a discrepancy formula for the identification/classification process. The first dealt with effectiveness. Did the procedure identify what might have been taken as appropriate criteria? Did the procedure identify those children who were the most severely handicapped given that criteria? A second area concerned impact, which was defined as a measure of the consequences of the proposed procedure which were not directly related to the explicit goals of the procedure. Implementation was the third area of interest. Could the process be implemented? Was the formula and its interpretation simple?

According to McLarty (1982), conceptually, the identification procedure was clear: (1) measure the students’ intellectual ability; (2) measure the students’ achievement level; (3) calculate the difference between the students’ ability and achievement; and (4) compare the difference to a standard representing “severity.” With 1 and 2 it was necessary to consider the reliability and validity of instruments. The instruments most often used were the Weschler Intelligence Scale for Children—Revised (WISC-R) or the Stanford Binet to measure intelligence. The Wide Range Achievement Test (WRAT), or the Peabody Individual Achievement Test (PIAT) were often used to measure student achievement. The Woodcock-Johnson Psycho Educational Battery tended to be the most widely used of all the achievement tests. In step 3, one needed to consider what the effects of differences in tests might be. In the 4th step, the question became whether or not the standard should be norm based or criterion referenced tests. It was also necessary to consider how to minimize Types I and II errors.
McLarty (1982) found that the identification models tended to cluster into three general categories: absolute difference, expected achievement, and proportional difference.

With the absolute difference method, the relationship between ability and achievement measures tended to be ignored. Characteristics of each were considered, but separately. The years below grade level standard where no adjustment was made for ability did not discriminate between slow learners and learning disabled.

McLarty (1982) discussed the more sophisticated absolute difference model. It was the standard score method which used the standard or z score approach. Ability and achievement scores were converted to a standard scale. Adjustments were made for characteristics of each test score, but not for changes in the variation of achievement scores conditional on increased ability, so more high than low ability students could be expected to be identified.

Swartz and others (1981) investigated the Myklebust expectancy formula: (learning quotient) \(LQ = \frac{\text{actual achievement level}}{\text{expected achievement level}} \), where actual achievement level was the grade level score for any achievement test or subtest and the expected achievement level was the average of chronological age, grade level, actual achievement level and mental age. The derived IQ or learning quotient was used as one basis for classifying learning disabled. Swartz discussed some of the reasons why this formula was inadequate. The LQ differed among grade levels and subject areas. An IQ of ninety was needed to use the formula. The inclusion of grade equivalent scores created a limitation to the validity of the LQ and variable criterion values and cut-off scores should have been used to guarantee fair selection.

McLarty (1982) reviewed and discussed a third identification model. She indicated that the proportional difference method considered the distribution of differences, rather than distribution of test scores. It focused on the variation (standard deviation) of the difference scores or on their error variation (standard error). In either case, the simplest
method compared the actual difference expressed on any convenient scale to a selected proportion of variations. It tended to identify students with unusually large differences between ability and achievement in comparison with the normative group.

Summary

A review of the current literature in the area of learning disabilities revealed the existence of a major problem relative to identification and classification of this population. The difficulty is not new; it has plagued educators since precisely identifying learning disabled became an issue in the schools and for the federal and state governments.

Inherent in this inconsistent and sometimes inaccurate identification process is the problem of overidentification. The expansion of programs to serve this group of handicapped people has caused a multitude of financial problems at the local, state, and national levels, not to mention the possible effect misidentification has on a youngster. No less a problem is the fact that in some cases these students are not being identified at all.

New and unique techniques for classifying learning disabled students are being continually introduced and presently used procedures are being refined. One of the processes which is gaining in popularity is the attempt to mathematically determine the discrepancy between ability and achievement. This mathematical process does respond to the federal guidelines concerning a deviation between ability and achievement and begins to bring needed objectivity to the process. Critics have addressed the issue of numerically categorizing people, but when this method is used on conjunction with other more subjective considerations it seems to have merit.
CHAPTER 3

PROCEDURES

The problem addressed in this study was to determine if the number of students classified as learning disabled using the traditional methods employed by the Child Study Team to interpret achievement and ability test data was independent of the number of students classified as learning disabled by applying the Ohio Severe Discrepancy Model to the same data with a discrepancy of two being the determining qualifying factor. Similar information was obtained and presented for students who were referred for learning disability testing, but because of a decision by the Child Study Team were not so classified.

The procedures used to conduct the study are outlined under the following categories:

1. Population Description and Sampling Procedures
2. Data Collection Methods
3. Organization of the Data
4. Statistical Hypotheses
5. Analysis of the Data
6. Precautions for Accuracy
7. Summary

Population Description and Sampling Procedures

The student sample for this study was drawn from a population which included all students categorized as learning disabled in the State of Montana and students who were
referred and tested but were not classified during the 1983-1984 school year. These student samples were taken from a random sample of school districts within the three Montana school classifications, I, II, and III. Cochran’s formula for finite populations was used to determine the number of students for each group. The application of the formula assures a 95 percent confidence that the sampling error will be 5 percent or less.

Figure 3 displays the solution of the Cochran formula (Cochran, 1977) as used to determine the number of students needed in the sample to assure the necessary confidence level.

\[
N = \frac{t^2 PQ}{d^2} \times \left(1 + \frac{1}{NP} \left(\frac{t^2 PQ}{d^2} - 1\right)\right)
\]

\[
N = \frac{(1.96)^2 \times (0.5) \times (0.5)}{(0.05)^2}
\times \left(1 + \frac{1}{7427} \left(\frac{(1.96)^2 \times (0.5) \times (0.5)}{(0.05)^2} - 1\right)\right)
\]

\[
N = \frac{384.16}{1 + .0516}
\]

\[
N = \frac{384.16}{1.05}
\]

\[
N = 365.86
\]

Figure 3. Cochran formula to determine student sample size.

Table 2 displays the number of school districts in the State of Montana by district size classification. It was from these districts that the sample for the study was selected.

Based upon the results of the Cochran formula, districts were randomly selected from each of the three Montana school district classifications using a Table of Random Numbers. The list of districts was obtained from School Administrators of Montana: 1983-1984
Table 2. School Districts in Montana by Classification.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>18</td>
</tr>
<tr>
<td>II</td>
<td>107</td>
</tr>
<tr>
<td>III</td>
<td>73</td>
</tr>
</tbody>
</table>

(School Administrators of Montana, 1984).

Salary Survey. Student selection was made from those students who were classified as learning disabled during the 1983-1984 school year. The student sample, \(N = 365.86 \) (Figure 2), was obtained using the Cochran formula; however, because 365.86 was not equally divisible by the number of school districts required for this study (162), three students were sampled from each district. Thus, of the total number of 7,427 Montana learning disabled students as identified by the Montana Office of Public Instruction 486 student samples were identified to participate in this study.

Table 3 displays the number of school districts sampled based on computation of the Cochran Formula for Finite Populations. The actual number of student samples requested is also included.

Table 3. Stratified Random Sample Population.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Districts</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>II</td>
<td>86</td>
<td>258</td>
</tr>
<tr>
<td>III</td>
<td>69</td>
<td>180</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>486</td>
</tr>
</tbody>
</table>

A second population for which test data were requested was for those students in perceived learning disability but who were not so classified by the Child Study Team. To the number within that population the Cochran formula was again applied and a sample drawn using a Table of Random Numbers. The test data for those students was applied to the Ohio Severe Discrepancy Model formula.
Table 4 displays the investigative categories for the student samples by gender and school district size classification. It includes the numbers of students classified as learning disabled.

Table 4. Investigative Categories for Students Classified as Learning Disabled.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>190</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
</tr>
<tr>
<td>Class I</td>
<td>25</td>
</tr>
<tr>
<td>Class II</td>
<td>144</td>
</tr>
<tr>
<td>Class III</td>
<td>107</td>
</tr>
</tbody>
</table>

Table 5 displays the investigative categories for student samples by gender and school district classification. It includes the numbers of students who were referred for a perceived learning disability but not so classified.

Table 5. Investigative Categories for Students Not Classified as Learning Disabled.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>82</td>
</tr>
<tr>
<td>Female</td>
<td>28</td>
</tr>
<tr>
<td>Class I</td>
<td>19</td>
</tr>
<tr>
<td>Class II</td>
<td>69</td>
</tr>
<tr>
<td>Class III</td>
<td>22</td>
</tr>
</tbody>
</table>

Figure 4 displays the Ohio Severe Discrepancy Model formula (Telzrow and Williams, 1982) which was used by the investigator in order to determine if a discrepancy of two or more exists between student ability and achievement test scores.
IQ Score - Mean of IQ Test
Standard Deviation of IQ Test = IQ Deviation Score

Achievement - Mean of Achievement Test
Standard Deviation of Achievement Score = Achievement Deviation Score

IQ Deviation - Achievement Deviation Score = Discrepancy Score

Figure 4. The Ohio Severe Discrepancy Model formula.

Data Collection Method

All data concerning the numbers of students classified as learning disabled and placed in resource rooms from all school districts were collected from the Montana Office of Public Instruction. In December and June of each school year school districts are required to submit such information to that office. Information concerning specific sample groups, such as the gender of the student, was gathered from the appropriate school district personnel. This information was requested by mail.

The necessary test data for the youngsters who were referred for a perceived learning disability but not classified were collected from the person responsible for maintenance of such records within each district. This information was also requested by mail.

For each student member of the total sample, reported test data were converted, where necessary, to standard scores. That was done using the test manuals and proper conversion tables corresponding to the tests reported. Those converted scores were then inserted into the Ohio Severe Discrepancy Model formula in order to determine if a discrepancy existed between the intellectual and achievement test scores. A two point discrepancy between ability and achievement, as recommended by the State of Ohio, was the criteria used by the investigator to determine a severe discrepancy.
Confidentiality was insured in all cases as the data for the study were reported by school district classification and gender of the student only.

Organization of the Data

The data were collected and displayed in the form of descriptive and contingency tables. Contingency tables may be composed of any number of rows and columns. The data obtained in the study were displayed in this format in order to show the observed frequencies and to determine if there was independence between the compared variables (Ferguson, 1981).

Statistical Hypotheses

The hypotheses which apply to this investigation follow. All null hypotheses were tested at the .05 level of significance.

NULL: 1. The number of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the number of students classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

ALTERNATIVE: 1. The number of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is dependent on the number of students classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

NULL: 2. The size classification of a school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the size classification
of a school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

ALTERNATIVE: 2. The size classification of a school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is dependent on the size classification of the school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

NULL: 3. The gender of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the gender of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

ALTERNATIVE: 3. The gender of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is dependent on the gender of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

NULL: 4. The gender of students classified as learning disabled and those referred for a perceived learning disability but not so classified within Class I, II, and III Districts is independent of the gender of those classified as learning disabled and those referred for a perceived learning disability but not so classified within Class I, II, and III Districts.

ALTERNATIVE: 4. The gender of students classified as learning disabled and those referred for a perceived learning disability but not so classified is dependent on the gender
of those classified as learning disabled and those referred for a perceived learning disability but not so classified within Class I, II, and III Districts.

Analysis of the Data

The hypotheses were tested using the Chi Square Test of Independence. According to Ellis, Chi Square analysis furnishes us with a technique for deciding whether the differences between population proportions and the proportion of a sample are significant, whether the difference between the two sample proportions is significant or whether the differences among the proportions in more than two samples are significant (Ellis, 1975:183).

All analyses were tested at the .05 level of significance. According to Kerlinger, the .05 level of significance has persisted with researchers—because it is considered a reasonably good gamble. It is neither too high nor too low for most social scientific research (Kerlinger, 1973:170).

Precautions for Accuracy

In order to insure the accuracy of the data presented in this study the investigator calculated all statistical data using the Statistical Package for the Social Sciences computer program at Montana State University.

Summary

The population from which the sample was drawn consisted of all learning disabled students in kindergarten through twelfth grade who were enrolled in Montana Public Schools during the 1983-1984 school year. The sample was selected from the 198 school districts within the three size classifications presently in effect. Three students were selected from each of the 162 participating districts. Achievement and ability test information was requested by mail for each student included in the sample. Seventy-five percent of the original number of 365.86 student samples needed were actually received. That test data
were then applied to the Ohio Severe Discrepancy Model formula in order to determine whether or not each individual had a two point discrepancy. Comparisons were then made between the Ohio Severe Discrepancy Model formula and the traditional Child Study Team approach, in order to determine if gender, and school district size were independent of the learning disability classification system. The Chi Square Test of Independence at the .05 significance level was used to make that determination. The analysis of those data follows in Chapter 4.
CHAPTER 4

DATA ANALYSIS

The problem addressed in this study was to determine if the number of students classified as learning disabled using the traditional methods employed by the Child Study Team to interpret achievement and ability test data was independent of the number of students classified as learning disabled by applying the Ohio Severe Discrepancy Model formula to the same data with a discrepancy of two being the determining qualifying factor. Similar information was obtained and presented for students who were referred for learning disability testing, but because of a decision by the Child Study Team were not so classified.

The data collection instrument, Appendix B, was mailed to all participants with a cover letter, Appendix C, and a stamped, self-addressed envelope on November 29, 1984. On December 13, 1984, a follow-up reminder, Appendix C, was mailed to those participants who had not responded as of that date. A personal telephone call was placed to the final group of nonresponding special education or special education cooperative directors on January 4, 1985 to ask that the data requested be forwarded to the investigator. All forms received by the investigator on or before January 19, 1985 were used in the preparation of the data.

Table 6 displays the number and percentage of school districts which responded to the investigator’s request. The percentage was based on the number of districts originally identified in the sample by the investigator.

Table 7 displays the number of usable returns received for students classified as learning disabled and those referred for a perceived disability but not classified.
Table 6. Number and Percentage of District Responses.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Number of Districts</th>
<th>Districts Responding</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16</td>
<td>12</td>
<td>75</td>
</tr>
<tr>
<td>II</td>
<td>86</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>III</td>
<td>60</td>
<td>47</td>
<td>78</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>119</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 7. Number of Usable Returns Received for Classified Learning Disabled Students and for Returns Received for Non Classified Students.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Samples Requested</th>
<th>Classified Students</th>
<th>Nonclassified Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>48</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>258</td>
<td>144</td>
<td>69</td>
</tr>
<tr>
<td>III</td>
<td>180</td>
<td>107</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>486</td>
<td>276</td>
<td>110</td>
</tr>
</tbody>
</table>

Table 8 displays additional information about the amount of data which were considered to be usable for the study. That table displays the number of returns for students who were classified as learning disabled and the percentage based on the number of samples originally requested by the investigator.

Table 8. Number and Percentage of Usable Returns Received for Students Classified as Learning Disabled.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Samples Requested</th>
<th>Samples Returned</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>48</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>II</td>
<td>258</td>
<td>144</td>
<td>56</td>
</tr>
<tr>
<td>III</td>
<td>180</td>
<td>107</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>486</td>
<td>276</td>
<td>57</td>
</tr>
</tbody>
</table>

It should be noted that the percentage of returns for classified learning disabled students was 57 percent as displayed in Table 8. The Cochran Formula for Finite Populations, which was applied to the total population of learning disabled in Montana, indicated that...
the investigator needed a sample of 366 students in order to assure 95 percent confidence that the sampling error would be 5 percent or less. The number of usable returns (276) represented 75 percent of the sample.

There were several reasons why information reported was not usable. In some cases the data were incomplete. There were other instances in which either the ability or achievement test information was not reported at all. In other situations the test data reported was not usable because the test company had not established means and standard deviations or the investigator was not able to convert the reported scores to a usable form so that the deviation could be determined.

A second population for which test data were requested was for those students who were referred during the 1983-1984 school year for a perceived learning disability, but who were not so classified by the Child Study Team. The number expected was unknown to the investigator because of the variety of record keeping procedures employed by school districts as well as the investigator’s inability to know how many students might have experienced difficulties in classrooms where the difficulty was attributed to a learning disability. The investigator did not apply the Cochran formula to that population as previously suggested because the sample returned was small and there was no way of knowing what the total population of referred students was in 1983-1984.

The method of organization of the remainder of this chapter is as follows:

1. Descriptive Statistics
2. Inferential Statistics
 Chi Square Tests of Independence
3. Hypothesis Decision Summary
4. Summary
Descriptive Statistics

Of the 386 samples received Table 9 displays the number and percentage of those classified as learning disabled.

Table 9. Number and Percentage of Reported Classified Learning Disabled Students in Class I, II, and III Districts.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>II</td>
<td>144</td>
<td>52</td>
</tr>
<tr>
<td>III</td>
<td>107</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>100</td>
</tr>
</tbody>
</table>

Of the 386 samples received Table 10 displays the number and percent of those in each of the three school district classifications who were referred for a perceived learning disability but were not so classified.

Table 10. Number and Percentage of Reported Non Classified Students in Class I, II, and III Districts.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>II</td>
<td>69</td>
<td>63</td>
</tr>
<tr>
<td>III</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 11 displays the number and percentage of classified learning disabled students in each of the three district classifications who had a severe discrepancy of at least two when their test data was applied to the Ohio Severe Discrepancy Model formula.

Table 12 displays the number and percentage of classified learning disabled students by gender with a severe discrepancy of at least two points when their test data was applied to the Ohio Severe Discrepancy Model formula.
Table 11. Number and Percentage of Classified Learning Disabled Students in Class I, II, and III Districts with a Severe Discrepancy Score of Two or More Points.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Sample</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>44</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>II</td>
<td>213</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>129</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>386</td>
<td>29</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 12. Number and Percentage of Classified Learning Disabled Students by Gender with a Severe Discrepancy Score of Two or More Points.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Sample</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>190</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>29</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 13 displays the number and percentage of students in each of the three district size classifications who had a severe discrepancy of less than two when their test data was applied to the Ohio Severe Discrepancy Model formula. This sample included both students who were classified as learning disabled and those who were not.

Table 13. Number and Percentage of Students by District Classification with a Severe Discrepancy Score of Less Than Two Points.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>39</td>
<td>11</td>
</tr>
<tr>
<td>II</td>
<td>203</td>
<td>57</td>
</tr>
<tr>
<td>III</td>
<td>115</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>357</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 14 displays the number and percentage of students classified as learning disabled according to gender.

Table 15 displays the number and percentage of students with a perceived learning disability but not so classified according to gender.
Table 14. Number and Percentage of Students Classified Learning Disabled by Gender.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>190</td>
<td>69</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 15. Number and Percentage of Non Classified Learning Disabled Students by Gender.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>82</td>
<td>75</td>
</tr>
<tr>
<td>Female</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 16 displays the number and percentage of students according to gender with a severe discrepancy of less than two when their test data was applied to the Ohio Severe Discrepancy Model formula. It includes both students who were classified as learning disabled and those who were not.

Table 16. Number and Percentage of Students by Gender with a Severe Discrepancy Score of Less Than Two Points.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>252</td>
<td>71</td>
</tr>
<tr>
<td>Female</td>
<td>105</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>357</td>
<td>100</td>
</tr>
</tbody>
</table>

Inferential Statistics

The following section reports the Chi Square analyses of the test data received as if it was applied to the Ohio Severe Discrepancy Model formula. These data answered the following questions:
1. Was the number of classified learning disabled students who also had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of the number of students classified as learning disabled using the Child Study Team approach alone?

2. Was the number of classified learning disabled students in Class I, Class II, and Class III School Districts who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of the number of those classified as learning disabled using the Child Study Team approach alone?

3. Was the number of students referred for a perceived learning disability but not classified using the Child Study Team approach alone independent of those who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied?

4. Based on gender, was the number of students classified as learning disabled who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those classified as learning disabled using the Child Study Team approach alone?

5. Was the number of students referred for a perceived learning disability in Class I, Class II, and Class III School Districts who did not have a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those not classified using the Child Study Team approach alone?

6. Based on gender, was the number of students referred for a perceived learning disability who did not have a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those not classified using the Child Study Team approach alone?

7. Based upon the size classification of the school district was the gender of the students classified as learning disabled independent of those not classified as learning disabled?
Special education and special education cooperative directors were asked to respond with test scores for a preselected sample of classified learning disabled students and also to present test data for students who were referred for learning disability testing, but not so classified. The data were analyzed on the basis of four variables: (1) district classification by size, (2) gender of the student, (3) identified learning disabled or not so classified, and (4) those having a discrepancy score of two or more points when their test data was applied to the Ohio Severe Discrepancy Model formula. Ten tables were used to display this part of the analysis.

Degrees of freedom (df), critical Chi Square values (χ^2), and calculated Chi Square values were reported for each set of data. Those data are presented in the form of frequency count rather than percent of frequency distributions in the Chi Square contingency tables that follow.

Table 17 displays the data of a Chi Square analysis to determine if the learning disabled, non learning disabled classification is independent of the severe discrepancy, non severe discrepancy classification of students, when their test data was applied to the Ohio Severe Discrepancy Model formula in order to show a discrepancy score of two or more points between ability and achievement. This table displays data for all students in the sample.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Severe Discrepancy</th>
<th>No Severe Discrepancy</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Disabled</td>
<td>24</td>
<td>252</td>
<td>276</td>
</tr>
<tr>
<td>Non Learning Disabled</td>
<td>5</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Column Total</td>
<td>29</td>
<td>357</td>
<td>386</td>
</tr>
</tbody>
</table>

df = 1
Critical Chi Square at .05 = 3.84
Calculated Chi Square = 1.40
An analysis of the information displayed in Table 17 showed an independence between the learning disabled, non learning disabled classification and the classification of students when their test data was applied to the Ohio Severe Discrepancy Model formula by discrepancy. Using Table 17, questions number one and three, which asked if an independence existed in the number of students classified as learning disabled when the Ohio Severe Discrepancy Model formula was employed, as opposed to the Child Study Team approach alone, and were there any students not previously classified as learning disabled who would be so identified using the Ohio Severe Discrepancy Model formulas, can now be answered.

NULL HYPOTHESIS: 1. The number of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the number of students classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

Table 17 indicated no dependence between the variables. Therefore, Null Hypothesis 1 is RETAINED.

Table 18 displays the data of a Chi Square analysis to determine if district classification by size is independent of the learning disabled, non learning disabled classification. This table includes all students in the sample.

An analysis of the information in Table 18 indicated a dependence between school district size and the classification of students as learning or non learning disabled. Of the 129 students in Class III Districts reported, 107 were classified as learning disabled. This figure represented a percentage of 83 as compared to 68 percent in Class II Districts and 57 percent in Class I Districts.
Table 18. Chi Square Analysis of District Classification and Learning Disabled, Non Learning Disabled.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Learning Disabled</th>
<th>Non Learning Disabled</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>II</td>
<td>144</td>
<td>69</td>
<td>213</td>
</tr>
<tr>
<td>III</td>
<td>107</td>
<td>22</td>
<td>129</td>
</tr>
<tr>
<td>Column Total</td>
<td>276</td>
<td>110</td>
<td>386</td>
</tr>
</tbody>
</table>

df = 2
Critical Chi Square at .05 = 5.99
Calculated Chi Square = 14.53

Table 19 displays the data of a Chi Square analysis to determine if, when student test data is applied to the Ohio Severe Discrepancy Model formula, school district classification by size is independent of the classification of students. A severe discrepancy score is a difference or discrepancy of two or more points between ability achievement. The table includes all students in the sample.

Table 19. Chi Square Analysis of District Classification and Severe, No Severe Discrepancy.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Severe Discrepancy</th>
<th>No Severe Discrepancy</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
<td>39</td>
<td>44</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>203</td>
<td>213</td>
</tr>
<tr>
<td>III</td>
<td>14</td>
<td>115</td>
<td>129</td>
</tr>
<tr>
<td>Column Total</td>
<td>29</td>
<td>357</td>
<td>386</td>
</tr>
</tbody>
</table>

df = 2
Critical Chi Square at .05 = 5.99
Calculated Chi Square = 5.44

An analysis of the information displayed in Table 19 indicated an independence between district size classification and severe discrepancy when test data was applied to the Ohio Severe Discrepancy Model formula.
Table 20 displays the data of a Chi Square analysis to determine if school district classification by size is independent of the learning disabled, non learning disabled classification. The analysis is controlled by variable four in that it only includes those whose discrepancy score was two or more points between ability and achievement when test data were applied to the Ohio Severe Discrepancy Model formula.

Table 20. Chi Square Analysis of District Classification and Learning Disabled, Non Learning Disabled with a Discrepancy Score of Two or More Points.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Learning Disabled</th>
<th>Non Learning Disabled</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>13</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Column Total</td>
<td>24</td>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>

df = 2
Critical Chi Square at .05 = 5.99
Calculated Chi Square = 2.87

An analysis of the information displayed in Table 20 showed an independence between district classification by size and the learning disabled, non learning disabled classification when the analysis included only those who had a discrepancy score of two or more points between ability and achievement when test data were applied to the Ohio Severe Discrepancy Model formula.

Table 21 displays the data of a Chi Square analysis to determine if school district classification by size is independent of the learning disabled, non learning disabled classification. The analysis is controlled by variable four in that each member of this population had a discrepancy score of less than two points between ability and achievement when their test data were applied to the Ohio Severe Discrepancy Model formula.

An analysis of the information displayed in Table 21 indicated a dependence between district classification by size and learning disabled, non learning disabled classification.
Table 21. Chi Square Analysis of District Classification and Learning Disabled, Non Learning Disabled without a Discrepancy Score of Two or More Points.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Learning Disabled</th>
<th>Non Learning Disabled</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>22</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>II</td>
<td>136</td>
<td>67</td>
<td>203</td>
</tr>
<tr>
<td>III</td>
<td>94</td>
<td>21</td>
<td>115</td>
</tr>
<tr>
<td>Column Total</td>
<td>252</td>
<td>105</td>
<td>357</td>
</tr>
</tbody>
</table>

df = 2
Critical Chi Square at .05 = 5.99
Calculated Chi Square = 11.93

when the population had a discrepancy score of less than two points between ability and achievement when test data were applied to the Ohio Severe Discrepancy Model formula.

Using Tables 18, 19, 20, and 21 questions number two and five, which asked if an independence existed between the numbers of students classified or those referred for a perceived learning disability but not so classified in Class I, Class II, and Class III School Districts when the Ohio Severe Discrepancy Model formula was employed as opposed to the Child Study Team approach alone, can now be answered.

NULL HYPOTHESIS: 2. The size classification of the school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the size classification of the school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

Tables 20 and 21 indicate that school district size and classification method were dependent. The calculated Chi Square values of 14.53 and 11.93 for the respective analyses were significant beyond the .05 level. Therefore, Null Hypothesis 2 is REJECTED in favor of the alternative which stated that the size classification of the school district from
which students are classified as learning disabled or referred for a perceived learning disabil­ity but not so classified using the Ohio Severe Discrepancy Model formula is dependent on the size classification of the school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

Table 22 displays the data of a Chi Square analysis to determine if the gender of a student is independent of the learning disability, non learning disability classification. The table includes all students in the sample.

Table 22. Chi Square Analysis of Gender and Learning Disabled, Non Learning Disabled.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Learning Disabled</th>
<th>Non Learning Disabled</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>190</td>
<td>82</td>
<td>272</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
<td>28</td>
<td>114</td>
</tr>
<tr>
<td>Column Total</td>
<td>276</td>
<td>110</td>
<td>386</td>
</tr>
</tbody>
</table>

$df = 2$
Critical Chi Square at .05 = 3.84
Calculated Chi Square = .97

An analysis of the information displayed in Table 22 showed an independence between the gender of a student and the learning disability, non learning disability classification.

Table 23 displays the data of a Chi Square analysis to determine if gender is independent of the classification of the student when the test data was applied to the Ohio Severe Discrepancy Model formula. A severe discrepancy score was a difference of two or more points between ability and achievement data. This table displays data for all students in the sample.
Table 23. Chi Square Analysis of Gender and Severe Discrepancy, Non Severe Discrepancy.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Severe Discrepancy</th>
<th>Non Severe Discrepancy</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>252</td>
<td>272</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>105</td>
<td>114</td>
</tr>
<tr>
<td>Column Total</td>
<td>29</td>
<td>357</td>
<td>386</td>
</tr>
</tbody>
</table>

df = 2
Critical Chi Square at .05 = 3.84
Calculated Chi Square = .03

An analysis of the information displayed in Table 23 showed an independence between gender and discrepancy when test data was applied to the Ohio Severe Discrepancy Model formula.

Table 24 displays the data of a Chi Square analysis to determine if gender is independent of the learning disabled, non learning disabled classification. The analysis was controlled by variable four in that it included only those whose discrepancy score between ability and achievement was two or more points when test data was applied to the Ohio Severe Discrepancy Model formula.

Table 24. Chi Square Analysis of Gender and Learning Disabled, Non Learning Disabled with a Discrepancy Score of Two or More Points.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Learning Disabled</th>
<th>Non Learning Disabled</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>16</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Female</td>
<td>8</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Column Total</td>
<td>24</td>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>

df = 1
Critical Chi Square at .05 = 3.84
Calculated Chi Square = .003

An analysis of the information displayed in Table 24 indicated an independence between gender and the learning disabled, non learning disabled classification when the analysis included only those who had a discrepancy score of two or more points between
ability and achievement when their test data were applied to the Ohio Severe Discrepancy Model formula.

Table 25 displays the data of a Chi Square analysis to determine if gender is independent of the learning disabled, non learning disabled classification. The analysis was controlled by variable four in that no member of this population had a discrepancy score of two or more points between ability and achievement when test data was applied to the Ohio Severe Discrepancy Model formula.

Table 25. Chi Square Analysis of Gender and Learning Disabled, Non Learning Disabled without a Discrepancy Score of Two or More Points.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Learning Disabled</th>
<th>Non Learning Disabled</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>174</td>
<td>78</td>
<td>252</td>
</tr>
<tr>
<td>Female</td>
<td>78</td>
<td>27</td>
<td>105</td>
</tr>
<tr>
<td>Column Total</td>
<td>252</td>
<td>105</td>
<td>357</td>
</tr>
</tbody>
</table>

df = 1
Critical Chi Square at .05 = 3.84
Calculated Chi Square = .74

An analysis of the information displayed in Table 25 showed an independence between the gender of a student and the learning disabled, non learning disabled classification when the analysis included those who did not have a discrepancy of two or more points between ability and achievement when their test data was applied to the Ohio Severe Discrepancy Model formula.

Using Tables 22, 23, 24, and 25 questions numbers four and six, which asked if there was an independence, based on gender, in the numbers of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula as opposed to the Child Study Team approach alone, can now be answered.
NULL HYPOTHESIS: 3. The gender of the students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the gender of the students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

Tables 22, 23, 24, and 25 indicated that there was no dependence between gender and the learning disability, non learning disability classification. The Chi Square values of .97, .03, .003, and .74 for the respective analyses were not significant beyond the .05 level. Therefore, Null Hypothesis 3 was RETAINED.

Table 26 displays the data of a Chi Square analysis to determine if the gender of the classified learning disabled student is independent of the size classification of the school district. This table includes all students in the sample.

Table 26. Chi Square Analysis of District Classification and Gender.

<table>
<thead>
<tr>
<th>District Classification</th>
<th>Male</th>
<th>Female</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28</td>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>II</td>
<td>155</td>
<td>58</td>
<td>213</td>
</tr>
<tr>
<td>III</td>
<td>89</td>
<td>40</td>
<td>129</td>
</tr>
<tr>
<td>Column Total</td>
<td>272</td>
<td>114</td>
<td>386</td>
</tr>
</tbody>
</table>

df = 2
Critical Chi Square at .05 = 5.99
Calculated Chi Square = 1.66

An analysis of the information displayed in Table 26 indicated an independence between district classification by size and gender of students. Using Table 26, question number seven which asked if there was an independence between the gender of students classified as learning disabled and those referred for a perceived learning disability but not so classified based upon the size classification of the school district can now be answered.

NULL HYPOTHESIS: 4. The gender of student classified as learning disabled and those referred for a perceived learning disability but not so classified is independent of
those classified as learning disabled and those referred for a perceived learning disability but not so classified in Class I, II, and III Districts.

Table 26 indicates an independence between these two variables. Therefore, Null Hypothesis 4 is RETAINED.

Hypothesis Decision Summary

The general research questions, the related statistical hypotheses and the decisions made relative to retention or rejection of each null hypothesis follow:

QUESTION 1. Was the number of classified learning disabled students who also had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of the number of students classified as learning disabled using the Child Study Team approach alone?

QUESTION 3. Was the number of students referred for a perceived learning disability but not classified using the Child Study Team approach alone independent of those who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied?

NULL HYPOTHESIS: 1. The number of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the number of students classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

DECISION: RETAINED

QUESTION 2. Was the number of classified learning disabled students in Class I, Class II, and Class III School Districts who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of the number of those classified as learning disabled using the Child Study Team approach alone?
QUESTION 5. Was the number of students referred for a perceived learning disability in Class I, Class II, and Class III School Districts, who did not have a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those not classified using the Child Study Team approach alone?

NULL HYPOTHESIS: 2. The size classification of a school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the size classification of a school district from which students are classified as learning disabled or referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

DECISION: REJECTED

QUESTION 4. Based on gender, was the number of students classified as learning disabled who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those classified as learning disabled using the Child Study Team approach alone?

QUESTION 6. Based on gender, was the number of students referred for a perceived learning disability who did not have a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those not classified using the Child Study Team approach alone?

NULL HYPOTHESIS: 3. The gender of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Ohio Severe Discrepancy Model formula is independent of the gender of students classified as learning disabled or those referred for a perceived learning disability but not so classified using the Child Study Team approach alone.

DECISION: RETAINED
QUESTION 7. Was the gender of students classified as learning disabled independent of those not classified as learning disabled based upon the size classifications of the school district?

NULL HYPOTHESIS: 4. The gender of students classified as learning disabled and those referred for a perceived learning disability but not so classified is independent of the gender of those classified as learning disabled and those referred for a perceived learning disability but not so classified within Class I, II, and III Districts.

DECISION: RETAINED

Summary

The data presented 75 percent based on the original request of 366 of the requested information received in usable form by the investigator. The majority of the data came from those districts which were identified as Class II in size. The fewest in number with a discrepancy score of two or more points also came from those districts. Students in the sample contained more than twice as many males as females. When the discrepancy formula was applied to their test data the gender difference remained about the same.

Based on the inferential statistical analysis, Null Hypotheses 1, 3, and 4 were retained, while Null Hypothesis 2 was rejected. It was apparent from the analysis of the data that the classification of school districts by size and the method used to classify learning disabled were dependent.

Table 27. Null Hypothesis Summary Table.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Decision</th>
<th>Analysis Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null 1</td>
<td>Retained</td>
<td>17</td>
</tr>
<tr>
<td>Null 2</td>
<td>Rejected</td>
<td>18, 19, 20, 21</td>
</tr>
<tr>
<td>Null 3</td>
<td>Retained</td>
<td>22, 23, 24, 25</td>
</tr>
<tr>
<td>Null 4</td>
<td>Retained</td>
<td>26</td>
</tr>
</tbody>
</table>
CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

A review of the literature in the area of learning disabilities revealed the existence of a major problem relative to identification and classification of this population. The difficulty was not new, but one which plagued educators since pinpointing learning disabilities became an issue in the schools and to the federal and state governments.

Inherent in the inconsistent and sometimes inaccurate identification process was the difficulty of overidentification. The expansion of programs to serve the learning disabled had caused a multitude of financial problems at the local, state, and national levels; not to mention the possible effect that inaccurate identification has had on a youngster. No less a problem was the fact that in some cases these learning disabled students were not being identified at all.

New and unique techniques for classifying learning disabled students are being continually introduced and presently used procedures are being refined. One of the processes which gained in popularity was the attempt to mathematically determine the discrepancy between ability and achievement. This mathematical process responded to the federal guidelines concerning a deviation between ability and achievement and began to bring needed consistency to the identification procedure. Critics addressed the issue of numerically categorizing people, but when this method was used in conjunction with other more subjective considerations it seemed to have merit.

In order to look at this classification problem in greater depth, data were collected and analyzed around seven specific questions:
1. Was the number of classified learning disabled students who also had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of the number of students classified as learning disabled using the Child Study Team approach alone?

2. Was the number of classified learning disabled students in Class I, Class II, and Class III School Districts who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of the number of those classified as learning disabled using the Child Study Team approach alone?

3. Was the number of students referred for a perceived learning disability but not classified using the Child Study Team approach alone independent of those who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied?

4. Based on gender, was the number of students classified as learning disabled who had a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those classified as learning disabled using the Child Study Team approach?

5. Was the number of students referred for a perceived learning disability in Class I, Class II, and Class III School Districts, who did not have a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those not classified using the Child Study Team approach alone?

6. Based on gender, was the number of students referred for a perceived learning disability who did not have a severe discrepancy when the Ohio Severe Discrepancy Model formula was applied independent of those not classified using the Child Study Team approach alone?

7. Was the gender of students classified as learning disabled independent of those not classified as learning disabled based upon the size classification of the school district?
The student sample for this study was drawn from a population, which included all students categorized as learning disabled in the State of Montana and students who were referred and tested, but were not classified during the 1983-1984 school year.

Data were analyzed in two ways: (1) For each student member of the total sample, reported test data were converted, where necessary, to standard scores. Those converted scores were then applied to the Ohio Severe Discrepancy Model formula in order to determine if a discrepancy existed between measured intelligence and achievement test scores. (2) The Chi Square Test of Independence was used to analyze the data.

Conclusions

The following conclusions were drawn based on the statistical analysis of the data reported in Chapter 4:

1. An arithmetical difference did exist in the number of students in Montana public schools classified as learning disabled when the Ohio Severe Discrepancy Model formula was employed, as opposed to the Child Study Team approach alone. The difference was quite large, which may have indicated that a discrepancy of two or more in the Ohio Severe Discrepancy Model formula, when used as the determining factor, was too large. A majority of the students who were identified as learning disabled in the traditional fashion would not have been so classified if the formula alone was used.

2. A statistical difference did exist in the numbers of students classified as learning disabled in Class I, Class II, and Class III School Districts when the Ohio Severe Discrepancy Model formula was employed, as opposed to the Child Study Team approach alone. It appeared that Class III Districts classified as learning disabled most of the students referred for such consideration.

3. There was not a statistical difference based on gender in the number of students classified as learning disabled using the Ohio Severe Discrepancy Model formula as opposed
to the Child Study Team approach alone. The data would indicate that even though the majority of learning disabled students in this survey were male there did not appear to be any dependence between the Ohio Severe Discrepancy Model formula and Child Study Team method with respect to the gender of the students. It was also indicated that the Ohio Severe Discrepancy Model formula was not biased on the basis of gender even though more males than females had a discrepancy score of two or more points.

4. There were some students referred for a perceived learning disability but not so classified who, when their test scores were applied to the Ohio Severe Discrepancy Model formula, were found to have a discrepancy score of two or more points. Because of the rigidity of the discrepancy and the fact that it tended to identify so few students this group was of special concern.

5. There was no apparent statistical difference, based on gender, in the number of students referred for a perceived learning disability but not so classified when the Ohio Severe Discrepancy Model formula was employed, as opposed to the Child Study Team approach alone.

6. There was no statistical differences noted in the gender of students classified as learning disabled and those not so classified based on the size classification of the school district.

Summary of Conclusions

There appeared to be a problem with the use of the Ohio Severe Discrepancy Model deviation score in that the vast majority of students presently identified as learning disabled would not qualify if the formula became a vital part of Montana's identification procedure. The discrepancy score used in this investigation was too high for the majority of learning disabled students to be so classified as only 11 percent of the identified learning disability sample had a discrepancy score of two or more points. Perhaps a deviation
less than two would be more appropriate. Another consideration might lead one to
examine the rigidity with which Child Study Teams consider test data that leads to learn­
ing disability identification. Those groups may be too lenient in their standards.

Additional Questions

1. What results would one find if the discrepancy score were reduced in \(\frac{1}{2} \) point
intervals? At what discrepancy score will a percentage of presently classified learning dis­
able students be so identified which would agree with the national average?

2. What information do Child Study Teams perceive as necessary for consideration
of a learning disability? Is there a difference between districts in the sophistication of the
assessment information used for decision making?

3. Are larger school districts better able to progress through the learning disability
identification process? Are they more accurate in their assessment of students?

4. Do smaller districts do a superior job of preassessing students because of their
ability to work on a more individual basis with students?

5. Do persons charged with the task of assessing for learning disabilities vary in their
qualifications among districts of differing size?

6. Is achievement in the classroom affected when a student is referred but not classi­
fied through the traditional process, when in fact that student would have been considered
learning disabled using the discrepancy approach?

7. Was there any reason why the largest percentage with a discrepancy between
males and females classified was shown in the Class II districts?

8. Was there a reason why more males than females who had a discrepancy score of
two or more points were not classified as learning disabled?

9. Does the fact that a district has a Director of Special Education contribute to
greater accuracy on the part of the assessment team?
10. Was there some reason why students not classified as learning disabled by a Child Study Team would have a severe discrepancy score as high as two points?

Recommendations

As this study related only to data from within the State of Montana the recommendations can only relate to what is taking place there. However, it would seem that inferences could be made to populations which are similar to those in Montana relative to geographic location, composition of population, and learning disability identification procedures.

Because of the vast variations occurring in the identification of learning disabled across Montana it would seem appropriate that an objective mathematical formula be further tested for use as a part of the procedure for identifying these students. The Ohio Severe Discrepancy Model formula would only seem to be appropriate if the discrepancy score of two points was reduced to a more appropriate deviation. In order to do this it would be necessary to further evaluate student test data with the formula so that an appropriate deviation could be determined which would identify the approximate four percent of the population, as is the case nationally. Inservice in the appropriate use of the formula and the place it has in the entire Child Study Team process would be essential should it be adopted as a part of the identification process in Montana.

In order to have usable test data for such a procedure specific evaluation instruments need to be identified and state psychologists need to be instructed in their use. A procedure for record keeping and a process for maintaining those records from district to district is absolutely essential.
Numerous questions were raised earlier in this chapter relative to the conclusions based on the statistical analyses. Those questions provided the basis for the following recommendations:

1. This study should be replicated in other states that use the Child Study Team approach with no discrepancy formula to classify learning disabled students.

2. Further research needs to be conducted to determine the quality of the Ohio Severe Discrepancy Model formula and other mathematical attempts to identify a discrepancy between ability and achievement.

3. A study should be conducted in order to determine what a realistic severe discrepancy for the Ohio formula ought to be.

4. There is a need to determine what happens to the individual’s achievement when that student is returned to the “regular classroom” after having been referred for learning disability testing and found not to have learning disability characteristics.

5. A study to determine the characteristics of Child Study Teams in varying sized districts would seem appropriate.

6. A study is needed to determine the most appropriate assessment instruments for assessing the potential of learning disabilities.

7. A study is needed to consider the preliminary activities which take place before a child is referred to the Child Study Team for evaluation of a perceived learning disability.
REFERENCES CITED
REFERENCES CITED

dence of Special Class Placement: The Masses Are Burgeoning." *The Journal of Special Education* 17 (February 1983), 141-147.

Card, Kenneth. Executive Assistant, Department of Special Services, Office of Public Instruction, Helena, Montana, Personal Communication. (April 10, 1984).

Danielson, Louis C. and Bauer, Jane N. "A Formula-Based Classification of Learning Dis­

Epps, Susan, McGue, Matthew, and Ysseldkye, James. E. "Interjudge Agreement in Classi­

_____. *L. D. Evaluation: Determining Severe Discrepancy (Draft)* Department of Special Services (February 1984), 2-C2.

Tintinger, Kenneth R. Assistant Director of Special Services, Kalispell, Montana, Personal Communication (April 24, 1984).

Tyler, Ralph W. "Dynamic Response in a Time of Decline." *Phi Delta Kappa* 63 (June 1982), 655.

APPENDIX A

LETTERS
April 10, 1984

Charles Hideman
6 West Babcock, #23
Bozeman, MT 59715

Dear Chuck:

I was pleasantly surprised to find that your idea of examining the area of learning disabilities is a possibility for your dissertation. As I discussed with you earlier this is a major problem, not only within Montana but nationally as well. There is little agreement among the experts regarding the identification and placement of these youngsters.

One of the major issues confronting the field of both regular and special education is the inconsistency in diagnosing the learning disabled. For example, a recent study showed that in a normal population of 248 students, nearly 80% were diagnosed learning disabilities using one of seventeen alternative practices. I believe that if someone could investigate such things as the "Ohio Instrument" we might get a better handle on this major problem.

I discussed with you that our district would be more than willing to assist in your dissertation effort. Please get in touch with me once your plan has been approved.

Sincerely,

Ray Beck
Director
Special Education

RBIs
April 10, 1984

Dr. Leroy Casagranda
School of Education
Montana State University
Bozeman, Montana 59717

Dear Dr. Casagranda:

I have had several meetings with Chuck Hideman regarding his selection of a dissertation topic.

One area that has merit is the evaluation of students with specific learning disabilities. The Federal Regulations for evaluating specific learning disabilities have created concern throughout our state and the nation. Schools have experienced difficulties in developing definitive evaluation criteria.

Federal Regulations are structured around the concept of determining the existence of a severe discrepancy between ability and achievement in specified areas. Montana schools determine the existence of severe discrepancy using a variety of procedures.

On February 27, 1984, the Office of Public Instruction mailed a draft guidelines for determining severe discrepancy in evaluating specific learning disabilities to special education directors and to other interested persons. Persons receiving the guidelines were asked to evaluate them for possible consideration for use in Montana. The guidelines provide the process which the State of Ohio has been using for several years. They report favorable results.

A dissertation to help us clarify the procedures in evaluating students with specific learning disabilities would certainly be appropriate at this time.

Please contact me if I can be of assistance as Chuck's plan is formulated.

Sincerely yours,

KEN CARD
Executive Assistant
Department of Special Services

cc: Chuck Hideman

Affirmative Action — EEO Employer
April 24, 1984

TO WHOM IT MAY CONCERN:

Re: Dissertation Topic By:
Mr. Charles Hideman

During the time he was an elementary principal in this District, Mr. Hideman has worked closely with the Special Services Department. He is aware of the dilemma we have in properly identifying students with learning disabilities (L.D.).

Special Education Directors across the country are still wrestling with the problem of: (1) what constitutes a learning disabled child, (2) how do you measure this problem from the normal or expected learning process, and (3) what educational models can correct or remediate the problem.

Montana's Northwest Council of Administrators Special Education recently addressed this issue as being a concern, especially in the fact that many students may not be truly learning disabled, but are placed in resource rooms because of pressures due to low achievement in regular classrooms.

A dissertation in this area could be a valuable resource to Montana's public schools.

I, therefore, strongly support Mr. Hideman's dissertation topic.

Sincerely,

[Signature]

Kenneth R. Tintinger/Assistant Director of Special Services
Chairperson of NNCASE

KRT:cvc
APPENDIX B

SURVEY
TEST DATA SHEET

STEPS:

A. Please list the title, form/level, copyright date, and subtests of the achievement/diagnostic instruments utilized in the identification process.

A.1 Please list standard scores or percentiles and specify which norms were utilized (age/grade). If these scores are not available furnish grade equivalent information.

B. Please list the same information requested in Steps A and A.1 for measures of intellectual capabilities.

C. Please list other tests used in the last column such as: Bender Gestalt, VMI, G-F-W Auditory Discrimination Test, etc.

<table>
<thead>
<tr>
<th>STUDENT IDENTIFICATION</th>
<th>PROGRAM LINE</th>
<th>DIAG./ACH. TESTS</th>
<th>STAND. IQ/Capacity</th>
<th>STAND.</th>
<th>SCAL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Sex</td>
<td>Date</td>
<td>Sex</td>
<td>NUMBER</td>
<td>Title</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WJAT</td>
</tr>
<tr>
<td>9-12-70</td>
<td>F</td>
<td>0987</td>
<td>14</td>
<td>Key</td>
<td>Math</td>
</tr>
<tr>
<td>Johnson</td>
<td>Read</td>
<td>86</td>
<td>Read</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>83</td>
<td>Math</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written</td>
<td>72</td>
<td>Written</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Know.</td>
<td>99</td>
<td>Know.</td>
<td>93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEST DATA SHEET

District Name

Cooperative

Steps:

A. Please list the title, form/level, copyright date, and subtests of the achievement/diagnostic instruments utilized in the identification process.

A.1 Please list standard scores or percentiles and specify which norms were utilized (age/grade). If these scores are not available furnish grade equivalent information.

B. Please list the same information requested in Steps A and A.1 for measures of intellectual capabilities.

C. Please list other tests used in the last column such as: Bender Gestalt, VMI, G-F-W Auditory Discrimination Test, etc.

<table>
<thead>
<tr>
<th>SUBJECT IDENTIFICATION PROGRAM LINE</th>
<th>DIAG/ACH. TESTS</th>
<th>STAND.</th>
<th>IQ/Cognitive</th>
<th>STANDARD</th>
<th>SCALED</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Date</td>
<td>Sex</td>
<td>NUMBER</td>
<td>Title</td>
<td>Form</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>

Notes:

- Please fill in the table with the appropriate information for each student.
- Use additional columns if necessary for more detailed information.
TEST DATA SHEET

Nonclassified Students

Steps:
A. Select students on whom a referral was made during the 1983 - 1984 school year because of a perceived learning disability, but for some reason that student was not classified as such by the Child Study Team.
B. Please select three students, one each from the beginning, middle, and end of the alphabet.
C. Provide test information as requested on the reverse side for each of these students.

<table>
<thead>
<tr>
<th>STUDENT IDENTIFICATION PROGRAM</th>
<th>LINE</th>
<th>DIAG/ACH. TESTS</th>
<th>STAND.</th>
<th>IQ/Cognitive</th>
<th>STANDARD</th>
<th>SCALED</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial B. Date</td>
<td></td>
<td>Title Level</td>
<td>Date</td>
<td>Subtest SCORE</td>
<td>G.E. Title</td>
<td>SCORE Date Subtest</td>
<td>SCORE TO Title</td>
</tr>
</tbody>
</table>
APPENDIX C

DATA REQUEST LETTERS
November 7, 1984

TO: Participants Selected to Respond to LD Research Study

FROM: Gail Gray, Director of Special Education
 Department of Special Services

RE: Enclosed Request for Information

As many of you know, there exists a need to provide consistency in the identification of learning disabled children and youth in the state of Montana. Experience from our monitoring of local districts suggests wide variations in use of criteria and procedures for determining the existence of a learning disability.

The requested information will provide a better understanding of current practices as well as information that will help us predict the impact of policies that would clarify the criteria for learning disability identification.

We support this study and look forward to the information we will gain from it. I wish to thank you in advance for your efforts in gathering the needed information.

Enc
Dear Mr. Barkell:

As part of a doctoral program at Montana State University, I'm conducting a research study to test the feasibility of applying specific student test data to the Ohio Severe Discrepancy Formula to assess whether students presently classified as learning disabled would be identified if the formula was used as a part of the identification procedure. Test information and study conclusions will be provided to the Office of Public Instruction for their use as they continue to examine various identification/classification procedures. Confidentiality will be maintained as the conclusions and recommendations will be reported by school district classification and sex of the student only.

Your district was one of 161 randomly selected; therefore, appropriate and accurate data from you is essential. I would appreciate your taking a few minutes to complete and promptly return the attached form. A stamped envelope is enclosed for that purpose. The information requested is based upon test data you have on file. The student samples on the attached form were taken from the Special Education Child Count you filed with DPI in May or June of 1984. For purposes of the study, youngsters will be identified by program number, school district, line number, student initials, and birthdate. Please provide the requested test information for each of those students.

As a second part of the study, test information is being requested for students on whom a referral was made during 1983-1984 because of a perceived learning disability, but for some reason that student was not classified as such by the Child Study Team. Please select three students, one each from the beginning, middle, and end of the alphabet. On the back of the accompanying form please provide test information as requested.

Your cooperation is most important to the study and I shall be most grateful for your prompt response.

Sincerely,

Chuck Hideman
Dear Mr. Smith:

Approximately two weeks ago you received a survey which requested test data on identified learning disabled students in your district or cooperative. At this time that information has not been returned to me for processing. In order to complete the study, it is imperative that I receive a complete return of the surveys circulated throughout the state. If you have the information ready would you please return it in the envelope which was provided with the original request. If, for some reason, you have been unable to comply, and feel that you will be unable to do so before December 21, would you please correspond with me prior to that date by mail or call me collect at 257-0018 in Kalispell so that I can make arrangements to collect the necessary information.

I would be happy to be in your area and personally gather the data during the period between December 26 and December 28 if someone will be in your office. If it meets with your approval, please use the number above so that proper arrangements can be made.

Thank you for your consideration of this request. Your cooperation and prompt attention will be greatly appreciated.

Sincerely,

Chuck Hideman