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Abstract:
Nuclear magnetic resonance and electrical conductivity-measurements were used to study the motions
of hydrogen nuclei in deuterated sodium trihydrogen selenite crystals.

From electrical conductivity measurements, deuteron spin-lattice relaxation time measurements and
direct deuteron interbond jump time measurements, an activation energy of 0.73 £ 0.07 eV for deuteron
interbond jumping was obtained. This motion provides the dominant contribution to the spin-lattice
relaxation time above 40°C. In the temperature region from about 10°C to the ferroelectric transition
temperature (-25°C to -35°C in the crystals studied) a high frequency motion, such as deuteron
intrabond motion, was found to dominate the spin-lattice relaxation process.

The activation energy for this motion was found to be 0.055 £ 0.01 eV. Below the ferroelectric
transition, the deuteron spin-lattice relaxation time was found to be too short to be due to spin diffusion
to paramagnetic impurities. This implied the presence of some molecular motion in which the
deuterons are involved below the transition temperature, and a possible explanation was found in
considering the contribution of torsional oscillations of Se03 groups to the spin-lattice relaxation time
of the deuterons. The temperature and frequency dependence of the spin-lattice relaxation time of Na23
nuclei were similar to thgse of the deuterons over the same temperature and frequency ranges. The
possibility of deuteron motion contributing to Na23 relaxation was therefore considered. In the 30°C to
80°C range, where deuteron interbond jumping is the dominant deuteron relaxation mechanism, it was
found that the Na23 relaxation showed too small an activation energy (0.35 eV) to arise from deuteron
interbond jumping. The indication of deuteron intrabond motion in the paraelectric phase is indicative
of a dynamic order-disorder type ferroelectric phase transition. Evidence that the transition is not
exclusively of this type, however, was found in the fact that the suppression of intrabond motion with
the onset of polarization cannot explain the decrease in the deuteron spin-lattice relaxation time
observed in the temperature region below the transition.
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ABSTRACT

Nuclear magnetic resonance and electrical conductivity
measurements were used to study the motions of hydrogen
nuclei in deuterated sodium trihydrogen selenite crystals.
From electrical conductivity measurements, deuteron spin-
lattice relaxation time measurements and direct deuteron
interbond jump time measurements, an activation energy of
0.73 £ 0.07 eV for deuteron interbond jumping was obtained.
This motion provides the dominant contribution to the spin-
lattice relaxation time above 40°C. In the temperature
region from about 10 C to_the ferroelectric transition
temperature (—ZSOC to -35°C in the crystals studied) a
high frequency motion, such as deuteron intrabond motion,
was found to dominate the spin-lattice relaxation process.
The activation energy for this motion was found to be 0.055
* 0.01 eV. Below the ferroelectric transition, the deuteron
spin-lattice relaxation time was found to be too short to
be due to spin diffusion to paramagnetic impurities. This
implied the presence of some molecular motion in which the
deuterons are involved below the transition temperature,
and a possible explanation was found in considering the con-
tribution of torsional oscillations of Se0O., groups to the
spin-lattice relaxation time of the deuterdns. The tempera-
ture and fggquency dependence of the spin-lattice relaxation
time of Na nuclei were similar to those of the deuterons
over the same temperature and frequency ranges. The possi-
bility of deuteron motion contributing to Na relaxation
was therefore considered. In the 30°C to 80°C range, where
deuteron interbond jumping is the dominaag deuteron relaxa-
tion mechanism, it was found that the Na relaxation showed
too small an activation energy (0.35 eV) to arise from
deuteron interbond jumping. The indication of deuteron intra-
bond motion in the paraelectric phase 1is indicative of a -
dynamic order-disorder type ferroelectric phase transition.
Evidence that the transition is not exclusively of this type,
however, was found in the fact that the suppression of intra-
bond motion with the onset of polarization cannot explain the
decrease in the deuteron spin-lattice relaxation time ob-
served in the temperature region below the transition.




CHAPTER 1I: fNTRODUCTION

The alkali.trihydrogen selenite crystals are primarily
of interest because of their dielectric propertiesgl) of
the crystals in this family, the ferroelectric properties
of sodium trihydrogen selenite (NaHs(SeOS)2 ﬁereafter ab-
breviated STSe) and thelcontrastihg properties of the deu-
terated énalpgue of this crystal-(NaDs(SeOS)2 or DSTSe) are
most unusual. A? 47§0C, STSe.undergdes a transition of
second order from its paraelectric o phase to a ferro-
eléctric B phase.(z) Af -172.50C, STSe exhibits another
phase transition(s) to a second ferroelectric v phase.

This transition exhibits a thermal hysteresis of iO.SOC

: and is therefore of first order. The péraele;tric a ﬁhaSes
of STSe and DSTSe are isomorphic but DSTSe exhibits only
one phase trans;tion, at —Z.SOC,(4) to a ferroqlectric

(7)

phase(s’é) which is appérently isomofphic to the lower
ferroelectric y phase of STSe. 1In DSTSe; there is no
phase analagous to the B phase of STSe. These crystals
are-hydrogen-bonded, and the important changes in proper-
ties upon deuteration imply that the hydrogen-bonding plays

an important role in the ferroelectric behavior.

Nuclear magnetic resonance (NMR) techniques have




proved useful in determining the electrical environment
of nuclei with electric quadrupolar moments, and in de-
tecting motions executed by various nuclei. The electric
field gradients in a hydrogen bond can be studied by
measuring the splitting of the deuteron Zeeman levels by
the interaction of the deuteron's electric quadfupolar
moment with the electric field gradient tensor. Changes
in the electric environment of deuterons, and other

23, caused by

nuclei with quadrupolar moments, such as Na
ferroelectric phase changes, can be detected from NMR
spectra of these nuclei. Furthermore, motions of nuclei,
such as.hindered rotations of molecular grbups, single
deuteron interbond and intrabond jumps, and random
fluctuétions of latfice modes of vibration may cause
changes of magnetic fields or electric field.gradients of
fhe proper frequency to cause nuclear relaxation. Nu-
clear spin-lattice relaxation time measurements there-
fore provide a means of studying nuclear motions in
crystals. For nuclei with I > %, an electric quadrupolar
iﬂteraction is usually more effective in causing nuclear
'relaxation than is a magnetic dipolar interaction.

It was the intent of this investigation to study the

environment and motions of hydrogens in a hydrogen-bonded

' material by NMR techniques. Sodium trihydrogen selenite




was chosen because of the possibility that some of the
motions which might be detecfed could be related to the
important ferroelectric properties of this material.
Deuterated crystals were used because of the possibiii—
ties ofladditional informafipn obtainable.from inter-
actions‘with the deutéron.quadrupolar moment. Various
experiments (to'be discuséed in the next chapter) have
indicated that fhe phase transitions in STSe and DSTSe
involve both ordering of the hydrogens and atomic dis-
placement. Measurements of the NMR spectra‘of various

2

nuclei (Hl, H", Nazs).in these Crystals_héve been reported

(8,9,10,11) and will Be discussed in Chapter III. These
studies provided additional ciéar'evidence for the pres-
ence of-both elements in the nature of ?he frangitions.
This investigation dealé_primarily with spin-lattice
relaxation‘time (Tl) measurements and measuremepts in- .
tended to clarify the interpretation of the deuteron

T, measurements, which are discussed in Chapters IV and V.

1
They reflect the presence of deuteron interbond and intra-
" bond motion in the temperature range between the melting

point and the ferroelectric transition. Below the .transi-

tion, no effects of interbond motion are oBserved; and

the dominant mechanism for deuteron spin relaxation seems




to arise from lattice vibration fluctuations and/or SeO3
motion rather than single particle (deuteron) motions.
This does not mean that all deuteron motion stops below

T but it indicates that other motions become more im-

C’
portant than individual deuteron motions in causing spin-

lattice relaxation below the phase transition tempera-

ture.




CHAPTER II: KNOWN PROPERTIES OF STSe and DSTSe

Three x-ray investigations of tﬁe crystal structure
of STSe in the paraelectric phase have been made.(s’ll’lz)
Unterleitner claims that the space group of this phase is
P21/a, class Z/m, while Chou and Tang* claim that the Na
and Se atoms conform to spacg.group Pzi/a but to include
the oxygens, the space group Pn, class m, is applicable.
In P21/a, all SeO3 are related by the symmetry oper;tiong

of the space group, while they are not in Pn. (Fdr com-

parison, LiHS(SeOS)2 is of class m, and two types of SeO3

groups have been identified by Pepinsky.andeedam(z) in

this crystal.) Detailed structural analyses of the lower

. temperature phases to locate all atomic positions have not
" been made on STSe, but approximate cell dimensions and sym-
' metries have been determined. These results, based pri-

marily on Unterleitner's work**, are summarized in Tables

I and II. To date, no structure studies have been done on

either phase of DSTSe,.but the paraelectric phase is

E3
This translation of Ref. 11 is from Roger P. Kohin, Clark -
University, Worcester, Mass.

o :
Anderson(9) found that these results were more consistent

with the directions of O—H...0 bonds implied by his efg
tensor measurements of deuteron sites than the results of

Chou and Tang.




TABLE I: CELL PROPERTIES OF NaH, (Se0 )

2
Paraelectric Ferroelectric Ferroelectric
PhaseO ghase I o Phase II

T > -79% - -79°C to -172°¢ T < -172%
Crystal Symmetry Monoclinic 2/m -Triclinic 1 Monoclinic¢ m
Space Group , P Zl/c C
a cell dimension 10.36 A° .20.60 A° , 10.4 A°
b cell dimension 4.84 A° 9.57 A° 9.57 A°
c cell dimension 5.80 A° 5.76 A° 5.75 A9
Cell angle 90° 89936 ' 90°
Cell angle : 91°10" 91°

Cell angle | 90° | 90°18" 90°




TABLE II: ATOMIC COORDINATES

(Dimensions in Fractions of Unit Cell Dimensions)

Atom X y z
Na 0.0 0.0 0.500
Se 0.170 0.380 0.0
0; 0.051 0.159 0.860
O11 0.145 0.281 0.290
0III 0.301 0.185 0.951

265.05

(079%,04)
NO H3(5903)2

(STANDARD DEVIATION OF ANGLES«%5%) |

Figure 1: SeO3 Pyramid in NaH3(8e03)2
(2),

(after Vedam, Okaya, & Pepinsky




assumed to have the same symmetry, space group, and inter-
atomic distances as the o phase of STSe. Most evidence
indicatés that the structure of the lower temperature
phase of DSTSe is similar to that of the .y phase of STSe.
Figures 2 and 3 illustrate the hydrogen-bonding of
the crystal. Of the three hydrogen bonds per molecule,
two (N and N', Fig. 2-— length 2.56 AO) are identical.
This is not evident from the figure bat is from the x-ray
studies and NMR spectra.. The third bond (S - 1enéth
2.61>A°) is special in that its center -is also a center
of symmetry in the unit cell! We therefore useufhe fol-
lowing designations in réferring to the two types of

. bonds:

TABLE III: BOND PROPERTIES (PARAELECTRIC PHASE)

length, A° designation number/cell
2.56 N (non-symmetric) : 4
2.61 S (symmetric) ' 2

From Fig. 3, it is evident that there are physically two
types of N bonds and two types of S bonds, each having
different directions. From‘x—réy studies.by Pepinsky;(z)
or from the atomic coordinates listed in Table 2, the di-

.meﬁsions of the SeO3 pyramid are obtained. Fig. 1 sum-

‘marizes these interatomic parameters.
















































































































































































































































































































































































































