MONTANA

STATE UNIVERSITY

A register-transfer descriptive language and simulator for digital networks
by William Platt Crane

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
in Electrical Engineering

Montana State University

© Copyright by William Platt Crane (1977)

Abstract:

A computer hardware descriptive language was developed to describe digital networks at the
Register-Transfer level. This language was then implemented into a computer program to allow
simulation of the network.

The description language defines a digital network in terms of the hardware components and the
interconnections among the components. Bused and directly-connected transfers are available. A wide
array of data operations are available. Control branching capability is provided. Very few restrictions
are placed upon the design; such quantities as the sizes of components, their interconnections, and data
types are left entirely up to the designer.

The simulation of a network consists of the step-by-step execution of each transfer and branch
operation. Values of components may be displayed as often as desired. Real-time interrupts may be
simulated.

STATEMENT OF PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the
requirements for an advanced degree at Montana Sfate University,
I agree that the Library shall make this‘fhesis freely available
:'for ihspecfion. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be grantéd by
my majér professor. If is uﬁderstood that any.copying or publication
of this thesis for financial gain shall not be allowed without my

~

written permssion.

Yo —_—
Signature: 5;:;2¢222¢41‘,/49 >, éf%;’

‘Date: ’ :ff7 A, ;22;7

" A REGISTER-TRANSFER DESCRIPTIVE LANGUAGE AND
~ SIMULATOR FOR DIGITAL NETWORKS
by

WILLIAM PLATT CRANE II

A thesis submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Electrical Engineering

Approved:

Rz 4 0. 050

Chairperson, Graduate Cmeittee

ol L L Ll

Aead, Major Départment

Blriney ot T

Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana

June, 1977

iii
Acknowledgments
I wish to thank Prof. Dona1d Rudberg who, as Chairman of my

,graduéte cq@mittee, provided many helpful suggestions leading to

the completion of this project.
I Wéu]d also Tike to thank Jim Anderson for answering my
: ethess stream of questions concerning the Sigma - 7 computer'g
opérating sy;tem. .

. . Many other people contributed ideas and criticism of this
project as it evolved. A‘speciaf thanks goes out to Bonﬁie
E11fn§hausen, Tim Estle, Dan Poole, Cheryl Schmidt, and John

Campbell for their contributions.

TABLE OF CONTENTS.

VITA
ACKNOWLEDGMENTS | |
TABLE OF CONTENTS

LIST OF FIGURES . . ~~ . . . o . . .

(LIST OF TABLES .

LIST OF PROGRAMS

ABSTRACT .

I.

11.
111.
Iv.

 CHAPTER

INTRODUCTION

1.1. Current Status of Simu]ation.systems '{.
1.2. Scope of Work . . _
FEATURES OF THE SMALL ﬂIGITAL SYSTEM SIMULATQR:
A COMPLETEVDESIGN.EXAMPLE IN SDSS .

SUMMARY AND CONCLUSIONS . |

APPENDICES ..

A.

SMALL DIGITAL SYSTEM SIMULATOR LANGUAGE REFERENCE MANUAL

Al. Notation to be Used

A2. Character Set, Statement Format, and Operators

L

- A3. Symbd]ic Names

Ad. Constants .
A1, Unsigned Integer Constants .

A4.2. Constants Formed by A]phé Generator .

iv
.ovii
.oviit o

. ix

LT

29

T
.'1;34”.
. i_36
36
39
I
.40
Sa”

A5.

v

A4.3. Constants Formed by Omega Generator ..

A4.4. Constants Formed by Epsi1dn Generator

A4.5. Constants Formed by Encode Generator

Types of SDSS Statements .

A5.1. System Definition Statements

A5.
A5.
A5.

- A5,
A5,

A5,
A5.
A5.1.

1

1.
1.3.

1.

™

0 ~N ey O BoWw

Registers . e e

Scalars

_Panel Switches .

Panel Lights .

. . Random Acesé Memory .

Read-Only Memory. .

Logfca] Functions .
 Data Paths |

A5.1.8.1. Connéct Statementi’.

A5.1.8.2. Bus Statement

A5.2. Memory Initialization

A5.3. Control Sequence Statements ‘-.

A5.3.1.

- pB.3.2.
A5.3.3.
A5.3.4. -

Compression .
Bit Se]ection
Reduction

Transfer Statements . .

A5.3.4.1. Directly Connected -

Transfers .-

A
a2
43 -

.. 46
47
-"748 ‘,.

.
573.
S
54
. 56
57
lsJ |
.63 .
68 -
73<Af
;76.

77
79

. - 80
81 -

. 83"

vi

A5.3.4.2. Bused Tfansfefé ;
+A5.3.5. Branch Statements ; : e . ‘104'
R5.3.5.1. Unconditional Branch . . 105
A5.3.5.2." Three-way Conditional . _
_ Branch . .‘ ‘106
A5.3.6. Halt Stafement .. -. ;.:‘; 107
'A5.4. Housekeeping Statements . .-
.A5.4L1; Print Statement 109
| A5.4.2.. End Statement. 112
AS.#;B. Interrupt Statement 112.
A5.4.4, Return Statement L :;ik, 1147
A6. Cohpilation and Simulation Procedures ';“ 15
: BfA RESULTS‘FROM A SIMULATION WITH THE COMPUTER OF'CHAPTER III‘ 118
C: SOME NOTES ON THE SDSS COMPILER S, . 129
136

REFERENCES

95

108

1.
2.
AT
n2.
A3.
A4
B1.

vii

LIST OF FIGURES

HARDWARE DIAGRAM OF EXAMPLE coMPUTER.;

MACHINE INSTRUCTION SET Q"1f15
DIRECTLY-CONNECTED DATA PATHS . 61
BUS-CONNECTED DATA PATH-

VALID SOURCE SYNTAX FOR DIRECTLY-CONNECTED DATA TRANSFERS . 87
HARDWARE DIAGRAM FOR BUSED TRANSFERsf.~'.".::,'..- L 51103 _

R PR

ASSENBLY PROGRAM TO SUM THREE VALUES .- 119

At.

viii

"~ LIST OF TABLES

DEFINITION OF TERMS USED IN FIGURE A3. .

ix

LIST OF PROGRAMS

1. COMPLETE DESCRIPTION OF A COMPUTER IN SDSS .

17

X

ABSTRACT

A computer hardware descriptive 1anguage was deve1oped to describe
digital networks at the Register-Transfer level. This language was
then implemented into a computer program to a]]ow simulation of the
network.

The descr1pt1on language defines a d1g1ta1 network in terms of
the hardware components and the interconnections among the components.

Bused and directly-connected transfers are availabhle. A wide array of .

data operations are available. Control branching capability is pro-
vided. Very few restrictions are pTaced upon the design; such quan-
tities as the sizes of components, their interconnections, and data
types are left entirely up to the designer. - '

The simulation of a network consists of the step- by step execution
of ‘each transfer and branch operation. Values of components may be

‘displayed as often as desired. Real-time interrupts may be simulated.

I. INTRODUCTION

1.1 Current Status of Simulation Systems

The use of simulation as a design aid-in the construction of
digital systems has seen.a 1arge Tncrease'in recent years. A o

major cause of this increase has been the decrease in the time and

cost of developing d1g1td1 systems when s1mu1at1on is emp]oyed G1ven Co
an adequate description of the system, it is possible to perform tests -

“on the simulated system to determine such qhantities as timing

estimates, behavior of the system Underihéevy or unusuat cohdjfiens,ﬂ‘

and possible problems such as a bottleneck along'a data hus. |
The.crhi of the éfmu]affon‘prob1emhfé 1hp11ed_by fhe terh{

adequate description. Prior to performing a simuiation; one ‘must j

decide what information he wishes to gain from the simulation. " The

choice of cqmputer hardware descriptive language (JCHDL_) to be used

to describe the digital system depends upon-this Qecision("
Bell and Newell (2) indicate four major TeveTé at thch‘dfgitaT
systems may be described: |

1) the electronics Tevel

2) the Tlogic level

w

)
) the programming level
)

Eay

the processor-memory-switch level

2
At the electronics level, all hardware is described in terms of

basic e]ectroniq components, such as resistors and capacitors. The
result of a simulation at this level is a record of the voltages and
currents of the circuit as a function of time. Any circuit mdy be
described at this level; however, virt&a]]y all of the discrete
‘hature of digital circuits is lost, as the voltages and currents vary
continuously (although perhaps very rapidly). Another disadvantage
is that a‘1arge number of components is necessary to even simple
digital networks. A simufation at this level would produce a very
1aége amount of information, most of which would be of Tittle use.
Clearly, chh a level of description is useless for describing

' dig{tg1 systems.

The logic level defines digital systems in terms of logic
functions. A simulation at this level produces the results of the
:1ogica1 operations specified as a function of time. fhese results are
descrete values corresponding to the final state of the system after an
operation4has been performed, and are not continuous functions of time.

| This Togic Tevel is loosely divided into several sublevels. The
lowest defines a network in terms of primitive logic gates and flip-
flops. Moving upwards networké evolve from simple combinationa]
circuits into synchronous and asynchronous circuits containing
memory. Thé top level of the logic Tevel is commonly called the

Register-Transfer (RT) Tevel, Here, -networks are described in terms

3

of larger mémory elements, such as registers and random access
memories, and the data paths used to connect these elements and pérform
,operatjohs.upon the data during transit. Individual flip-flops and
iogic gates are relatively rare ai the RT level, although occasionally
they are used. |

: The programming Tevel marks é large change in the description of

_ digita] systems. Below this level, the description is based upon the
existence qf specific hardware elements, be they registers or resistors.
_ At the programming level, the'description is not-concerned with the
hardware necessary to pefform,an operation; that is; a result.is

- desired; and the hardware necessary to compute that result is irrele-
vant.

. The programming level is associated with computers; that 15,
macﬁines that interpret stored programs. Many digital systems, such as
instrumentation systems, do not operate under stored programsl Thus,
they have a 1dgic Tevel, but no program level of description. .

, The programming Tevel specifies operations.on specific data types,
such as integer or floating point va]ugs. Programs are able td define
data structures as collections of values, and to manibufate these
structures to produce other .structures. The logic level aoes not have
'this capab%]ity; it is concerned with boolean operations (and perhaps
simple arithmetic operations) upon bit strings. The interpretation

of the bit strings is Teft up to the designer.

4
The processor-memory-switch (PMS) level Tooks at the inter-

connectioné.of the major units of a computing system. These units
include devices such as entire processing units (CPU's), mass

storage devices, and input / output devices. These units are connected

together by data Tinks. Description at this Tlevel conveys how the

data is to be transfered and manipu1ated'at an information processing

basis. Items such as transfer rates and band widths of data channels

‘are considered. For a complete description of PMS, see Bell and

Newell (2).

The majority of the CHDL's have been developed .at the logic]evef.
A brief description of a number of these languages, along with an
extensive bibliography, was presented by Su (6). 'Ai1 of the Tanguages
described by Su have been developed into comp]eté simulation systems.
Several havé beeh adapted to produce hardware diagrams from the CHDL.

For examples, see Barbacci and Siewiorek (1), Knudson (5), and

Gentry (3).

b .
1.2 'Scope of Work

" At the time that this project was undertaken; there was no means

available 'at Montana State-University to simulate digﬁ£a1 systems.' As

a 1apge-amount-of.digita] désign‘is done at Montana State, a simu]atoF

was felt to be highly desirable. This project épnsistéd of the speci-

fication and implementation of a simuTation system, called the.'Small
Digital System Simu]atdr'. | | A
The Small Digital System Simulator Tanguage had to:meéﬁ_severa1’:
goals. The language must be able to describe a widé class ofsdigita1‘
system§ in a reasonable concise manner. The describtfon_must'have a'_:
direct correspondence with the hardware necessary to implement the

design. The language must be as free as possible from such restrictions

as data formats, hardware component sizes and configurations, and the

sequence of operations. It must provide facilities to’a116w the
designer to observe and control the behavior of the diéita] system
during the actual sihu]ation. Finally, the 1anguage-héd.fo Bé'easi]y.f
translatable into a form which w6u1d allow simulation on the hoStllnﬂ

computer, a Honeywell Sigma 7.

I1. FEATURES OF THE SMALL DIGITAL.SYSTEM SIMULATOR:

‘The Small Digital System Simulator (SDSS ') is bésedjupoh the =

CHDL ' A Hardware Programming Language', developed by Hill and

Peterson (5). SDSS is a Register—Transfer language. Its major-comp0;~:"
nents are memory elements, such as régisters and.raﬁdom écceésAmemofﬁes}‘
and the data paths along which transfers are made. : " ‘ _ ;

A complete description of SDSS is presented in Apﬁeﬁdix:A. It.js '
recommended that the reader be familiar with.thg contghts o%_Aépendix A
before proceeding. Only a brief descriptian‘of théimajér féa{urés-bfn"
SDSS will be given here. :

- SDSS reguires that all hardware-eiements fhat are to be present
in the digital system be explicitly defined. SymboTié‘hames are .
assigned to each element, and are used to réfer:to the:éfémgnt tﬁefe; _
after. Eaéh element has a specifié size, givenlin.bits.: Nitﬁ the"
exception of scalar elements, which by their ﬁéture cphtaingon1y one l.”'
bit, elements may contain up.to 32 bits, 1nc1Usive;.-“‘ : |

. One random access membry.anq one re§d~on1y memory1may_be defined\:
for each digital system. A memory definition speéifies:f(])‘fhé qua;
size of the memory, (é) the number of Wdrds in the-hemory; (3) the',‘
name of thé regfster wh%ch will contain fhe.address 6f the desfred
Tocation within the mémory whenéver a ﬁemory reference 1s:made,-and

(4) the namz of the register to or from which data will be tfahsfered

7

when a memory reference operation is made. Of course, data can not be

stored into a read-only mermory.

Another class of hardwafe elements which finds much usége is the

" logical function. A logical function is essentially a Togic network

which- performs some operation not easily handled by the primitive ope-

rations aliowed within SDSS.. Such .operations are addition and multi-

" plication. Since these operations are generally quite simple concep-

tually (and ré]atiyg]y easy to implement in hardwafe') it is reason~

'abie to treat them as individual operations in the description. Each

function must be defined to SDSS by specifying jts'symbo11c name, the

number of arguments supplied to the function, and the size of the result

returned by the function, in bits. SDSS includes several commonly used

. i
- Togical functions as primitive operators, and allows the inclusion of

Fortran function subprograms for arbitrary functions.

Data paths are those routes along which data may be transfered
between hardware elements. Transfers are allowed only along defined

péths. Ahy transfer may.specify some operation upon the data, such as

"~ a boolean. operation, a logical function, or rotation. A transfer may

speéify which bits of a memory element are to be used as a data source
or data destination in a given transfer. Generally, any selection of
bits from an element is valid.

Data buse§ may be defined in a digital system. .A bys is defined

by giving the‘symbo11c name, the size (in bits) of the bus, and all

8

~connections to and from the bus. Operations may be performed upon the

data values either prior to their being placed upon the bus, or after

the data has been picked off of the bus, or both. It is clear that a

bus is a special case of a data path.

A set of control sequence statements is used to describe the
sequence of operations to be performed by the system. These statements
speﬁify the individual transfers to be made, and the order in which
they are'fg be made.. From two to ten transfers may be specified. as
océuring sfmu1taneous1y. In such a case, any or all of the transfers
may'specify a given element as a data source. Only one transfer may
specify a given element as its data destination.

in every set of simultaneous transfers, the original values of all
elements will pot be modified until after the data sources for all of
the-trahsfeks have been computed.

A bused transfer must be specified as a set of two or more simul-
taneous transfers. - Each of these transfers must specify a bus as its
data source §r data destination, or both. The bus will retain any
value placed upon it for the duration of the set of transfers; thus,

two or more transfers may specify a given bus as their data source.

A bus will not maintain its. value beyond the transfer period.

The sequence of operations may be altered by branch statements.

Branch statements allow both conditional and unconditional branching.

9

Conditional-ﬁranching depénds upon the current values of the elements
of the digital system. | -

A number of pseudo-statements are available. These statements are '
used to spe;ify actions that are not part of the control sequence, and"
to convey 1nforma£idn to tHe SDSS compiler. These statements include
,définihg 1nterrupf-hand11ng.routines and requesting a display of the
cuﬁrent.v&]ué of hardwafe elements.

An 1hterfupt routine is a hardware routine described by a set of
-lc0ntr01 séquence statements. This routine will be entered upon reciept
of a réa]Ttime interrupt from outside the digital system. Up to 256 .
interrupt routines may be defined;

SDSS does not assume -any data types of forhats. The designer is
free to implement any data types he desired. The only exceptions to
this rule are the 1ogiéa1 functions defihed within SDSS. These
funcﬁions 6perate assuming their arguments are in 2's complement form.
Thejusage of any other data types will require that arithmetic opera-
tions be done either with a series of control sequence statements, or
by an external logical function.

SDSS'doeé not maintainfany timing 1nformat10nr It is not possible
to speéffy how much time a particular operation will cqnsuméT ATl
transfers are done asynchronously; each transfer is initiated immedi-

ate]& fo]Towing completion of ‘the previous statement. For the case of

10
several simultaneous transfers, the time required by the set of

transfers will be the time required by the slowest transfer.

I1I. A COMPLETE DESIGN EXAMPLE IN SDSS

A comp1éte design example 1s presented here. A siﬁg1é

accumulator computer is described in SDSS. The hardwafe arrangement :

for this computer is shown in Figure 1. Note tha£ both bused ahd,.-

directly-connected tran%fers are included. The data paths are shown as 5

unidirectional paths. The data paths connecting the random access

memory 'M' with its data register 'MD' and its memory addressing

. register 'MA' are not explicitly defined as- data paths; they are - .

inplicitly included by the 'RAM' statement.

_Observe in Figure 1 there are no paths shown for either. the

assignment of constants to elements, or for the éhifting.and‘rotatibn ‘

hardware associated with thé elements 'AC' and 'L'. These paths were
omitted for clarity. There are no paths cqnnécting ihe‘functjons'
'FUNZ2' and '"WAIT' with their arguments and destinaticns. These -

functions, strictTy-speaking, are not part of the hardware of the |

computer. Function 'FUN2' permits communication from‘the‘operatof to

the computer, and function 'WAIT{ executes a call to the Sigma - 7 -
monitor to enter a waif—state;“ In é rea1'computer,‘these funttions
would not be present or necessary. | |
The machiﬁe wordsize is 18 bits. = Six basic instruttions a}é.‘
available in the computer, along with fourteen operatelinstruétiong.

Thé'operate instructions do not require a memory reference for their

MDLG - 18 ACLG - 18
N] $AND
8194 W X [———yp _ 1g AC:S: 18] L-1
18 Ao AN i e
MALG - 13 F IR £ 18 IA - 18
L I I
SWS - 18 H4MA - 13 BUS3 < BUSA
L__’ e ADD
PC - 13 —> :['—'I_[~
‘[| BUS5 T
|] !
PCLG - 13 & BUS
INC
BUS2
l L
FIGURE 1

HARDWARE DIAGRAM OF EXAMPLE- COMPUTER
(Numeric values give number of bits / component)

13

execution. The instruction set is defined in Figure 2.

A memory reference instruction may specify either 1ﬁd1rect address-
ing or'index1né, or both, to form the address of its opérand. If both
afe requested, the indirect addressing is resolved first.

The machine will test the value of 'RFLAG' (Run-Flag) prior to
eacﬁ instruction fetch. If the value of 'RFLAG' is 1, the next
machine instruction will -be fetched from memory and executed. If the
vaiuelof 'RFLAG' is 0, control will branch to the routine to request
operdtbr interventipn via the front panel.

_ 'RFLAG' may be reset to 0 by executing a 'HALT' instruction, or by
recieving an external interrupt. An external interrupt indicates that
the operator wishes to communicate with the computer through the front
panel. |

The front panel contains the following controls:

—_

Run / halt switch

)
2) Load program counter from switches
3) Load memory address from switches
4) Store the contents of the switches into the.memory

Tocation given by the contents of the memory address
register, and increment the memory address register

5) Display the contents of the memory location specified by

14

the contents of the memory address register, and
increment the contents of the memory address register.

. 6) Single step through the next machine instruetion.

. The front panel 5156 contains lights to display the contents of
the memory address register, the memory data register, the program
counter, and the accumulator. The contents of all four registers will
bé displayed following each front panel operation.

‘The SDSS description of this computer is given in Program 1.

An example of the results produced by a simulation of this computer

jé given in Appendix B. The simulation consists of entering a short

program into the computer through the front panel and then executing

the.program.

Observe that the front panel could have been implemented by

deffning separate interrupt routines for each panel control. While

" this method may present more realism in terms of the hardware of the

computer, it causes a lack of realism in terms of interaction with
the computer. With several interrupt routines, it would be necessary

to cause an interrupt, request the particular interrupt routine, and

. then enter the value of the switches (if hecessary) to request one

panel function. It appears to be a toss-up as to which method is more

realistic.

17

Op code

000

001
010

011

100

101
110

15

Machine instrucfion word

Operand addfess

- Indexing bit; perform 1ndex1ng 1f

b1L.4 1

Indirect addressihg bit; perform
indirect addressing if bit 3 =1

Operation code

Instruction

1S8Z

LAC

AND

TAD

JMS

DAC

JMP

Intrement memory operand and skip the
fo110w1ng 1nstruct1on if the result
is zero.

Load accumulator from memory.

. And the accumulator with the memory

operand. Put result into the
accumulator.

Two's complement add1t1on of the
contents of the accumuTator:with the -
memory operand. Result is placed in
the accumulator. .
Jump to subroutine. Increment the program
counter and store value in memory loca-
tion. Increment memory location value,
and fetch next instruction from th1s
Tocation.

Deposit accumulator into memory
location.

- Fetch next 1nstruct10n from memory
- Tocation. .

FIGURE 2

* MACHINE INSTRUCTION SET

16

11 . OPR - operafe instruction.

Operate instructions utilize bits 0-6 for their operation code.

Bits 0-2 are always 1's. No memory reference is necesséry, .Bits 7-17

are ignored. The operate instructions perform the following actions: .

Op code - Thstruction

1110000 Halt .
1110007 IA <= AC

11100100 . IA<= INC(IA)
1110011 AC <= IA
1110100~ L,AC <= $SL(1) L,AC -
1110101 L,AC <= $sr(1) L,AC
1110110 L,AC <= $RL(1) L,AC
1110171 L,AC <= $RR(1) L,AC
1111000 L <=0

1111001 © L<=

1111010 - L <= $NOT L

1111011 AC <=0 .

1111100 AC <=

1111101 AC <= $NOT AC
1111110 ~ NOP

111711 " ONOP

FIGURE 2 (Continued)

17

PROGRAM 1

COMPLETE DESCRIPTION OF A COMPUTER IN SDSS.-

- am we e e e me ae ae e e Em mm am am wm ma wn em we wm wr e em e e mm o we

DEFINE THE HARDWARE ELEMENTS OF THE MACHINE AND
DATA TRANSFER PATHS. '

- aw mm am ww wm me wm e mm e am wy me e em e am o e e o e ma wm ewe

REGISTER IAC18)s MDC18)s ACC18), IRC1B) s MA(13),
1 PCC13)s OPER(3)

SCALAR Ly RFLAG INITIAL (O

RAM M{18,8192)3MAR = MAy; MDR = MD

FUNCTION INC (1,18), WAIT(143)y FUN2(2,21),

1 ADD (25,19)

BUS BUS1(18),(IN=MA,PCs;MDsTIA);COUT=INC)

BUS BUS2C18), CIN=INC)s(DUT=PCoMD,IA,MA)

BUS BUS3(18)yCIN=IA;MD), (DUT=ADD)

BUS RUS4C18),CIN=AC,IR);(OUT=ADD)

BUS BUSSC19)y {IN=ADD) s COUT=CLsAC) 3 IR)

CONNECT (MD3AC)p(ACIMDIo(TASAC)CACSTIAd,(MD3IRD
1 CIRSPCIS (PCIMA) s (SUSSMD) o (OPERSWALIT),
(WAIT3O0PER) s (COPERIFUN2) 5 {SHS3FUN2),

(MD SAND AC3AC)s C(PC3PCLG); CHAZMALG),
(MD3MOLG s COSRFLAG)» COSAC), CACSAC) s CL3L) s
($SLCIDLACSLLAC) s (SSRCLDILSACSLSACYS
CSRLCIILSACILoAC) s CO3L) 5 (SHSSMAD s (SHSSPL)Yy
(IR3MA) s CACSACLG) ,(FUN23OPER;SHS)y

- N S W

18

PROGRAM 1 (CONTINUED)

8_' - (FRRC1IILLACSL,AC) - COPERSOPER)
C CURRENT IMPLEMENTATION OF SDSS DOES NOT ALLOW
C SETTIMG THE SWITCHES BY THE PRUGRAM OR BY AN OPERATDR.
C'T0 GET ARQDUND THISs DEFINE THE SWITCHES AS AN ORDINARY
L REGISTER.

REGISTER SWS{18)
LTGHTS PCLGC13)y ACLG(18)s MDLGC1B)y MALGL13)

C —————————— e e e v we e e e e m e = e
c CONTROL SEQUENCE STEPS FOLLOW.

o i B i T I
c IF RFLAG = 1, THEN FETCH AND EXECUTE THE

c

INSTRUCTfDS'PUINTED TO BY THE PROGRAM COUNTER. ELSE,

10 RFLAGI0 > 12, 500, 12
12 MA < PC
MD < M ¢DCD MA
IR < HD ,
PRINT PG, MAsMD,AC, IRyLs 1A, RFLAG
C LOOK FOR OPERATE INSTRUCTION
$AC3)/IRST > 15, 125, 15

C . LDOK FDR 1 LEVEL OF INDIRECT ADDRESSING

15 IR(3) : 1 > 25, 20, 25

20

25
30.

.35

44

45 -

50

55
60

65

c

19

PROGRAM 1 (CONTINUED)
MA < $WC13)/7IR

MD < M $DCD MA

$WC13)/TIR < $W{13)/MD

LODK FOR INDEXING

IRC4)Y 3+ 1 > 35, 30, 35

BUS3 < IA3 BUS4 < IRs ADD < BUS3: aADD <€ BUS4;
1 BUSS5 < ADD$ $W(13)/IR < BUSS

SEPARATE REMAINING INSTRUCTIONS

IRCO) & 0 > 404 45, 40
IRC1Y 2 0 > 120, 45, 120
MA < $WC13)/IR

IRCO) ¢ 1 > 509 909 50
MD < M $0CD MA

$AC33/IR 2 0 > 55, 80, 55
$AC3)/IR 2 1 > 60, 755 60
$AC3)/IR 2 2 > 659 T0s 65

TAD INSTRUCTION
RUS3 < MD; B8US4 < AC3 ADD < BUS33
1 BUS5 < ADD3 L,AC < BUSS

> 115

AND INSTRUCTION

ADD < BUS43

70

15

80

"85

90

95

20

N

PROGRAM 1 (CONTINUED)

-AC < MD $AND AC
> 115

LAC INSTRUCTION

CAC <MD
> 115

ISZ INSTRUCTION

. BUS1 < #MD3
1 INC < BUS1:
2 BUS2 < INC3
3 WD < BUS2
¥ $DCD MA < MD
$OR/MD t 0 > 115, 85, 115
BUS1 < PC3 INC < BUS1 BUS2 < INC: PC < BUS2
> 115

SEPARATE JMS FROM DAC
IRC2) ¢ 0 > 95, 1005 .95
DAC INSTRUCTION

MD < AC
> 105

JAS "INSTRUCTION

100

105

110
115

120

\

C

125

130
135
140
145
150

155

160

OPERATE INSTRUCTIONS

21
PROGRAM 1 (CONTINUED)

BUS1 <€ PC3 INC < BUS1$ BUS2 < INC3 MD < BUS2
M $DCD MA < MD :
TRC2) 2 0 > 115, 110, 115

PC < $WC13)/IR |
BUS1 < .PC3 INC < BUS13 BUS2 < INC3 PC < BUS2

> 10
JHP INSTRUCTION
PC < $WC13)/1IR

> 10

DECODE OP CODE AND BRANCH

[2

$WC4)LBACTI/IR
SUC4)/SACT I/ IR
$WC4IISACTI/IR
$WC4I/$ACTI/ZIR 2
$WC4) 7$ACT /IR
$WC4DI/SACTI/IR
$WC4)I/$ACTIZIR

230, 2255 130
220y 215, 135
2105 205, 140
200, 195, 145
190, 185, 150
11> 180, 1759 155
170, 165, 160

ao T
O o=~ W e
vV V Vv Vv

85
[o
W
v

‘NG OPS

> 115 ' - .

COMPLEMENT &C

22

" PROGRAM 1 CONTINUED)
165 AC < $NOT AC
> 155
SET AC TO 1°%

170 AC < $EC18)
L > 155

SET-AC 70 0O

175 AC < $ECDC0518)
> 115

COMPLEMENT L

180 - L < $NOT L
2 115

SET L 70 1

185 L < $ECD(1,1)
> 115 '

. C CSET L TO O

190 L < $ECDCO,1)
> 115

23

PROGRAM 1 ¢ CONTINUED)
_RDTATE (L,AC) RIGHT 1 BIT

195 LyAC < $RRC1D LoAC
> 115

ROTATE (L,AC) LEFT 1 BIT

200 LsAC € $RLCI) L,AC
> 115 '

SHIFT (LsAC) RIGHT 1 BIT

205 LyAC < 8SL{1,0) L,AC’
> 115 '

SHIFT (LsAC) LEFT 1 BIT

210 LoAC < $SLC1,0) LsAC
> 115

LOAD IA INTO AC

215 AC < IA
> 115

INCREMENT IA

220 BUS1 < IA3 INC < BUS1; BUS2 < INC: IA < BUS2
> 115

