Endogenous opioids and feeding in the male rat, a learning approach
by Gregory Lee Burns

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Psychology
Montana State University
© Copyright by Gregory Lee Burns (1987)

Abstract:
The role of endogenous opioid peptides (EOP's) in the ingestion of highly palatable solutions in the male rat was investigated in three experiments. In Experiment 1 acquisition of taste preference for sucrose or saccharin was blocked by the opiate antagonist naloxone. Following removal of the drug, preference quickly recovered; with intake levels surpassing that of controls. In Experiment 2 preference for a sucrose solution was enhanced with a low dose of the kappaopiate receptor agonist U 50,488H. The high level of intake for this group was maintained for five days following removal of the drug. In Experiment 3 the release of EOP's in response to actual, or expected, intake of a palatable solution was assessed with an analgesia test. No decrease in pain sensitivity was observed when a delay was included between ingestion (or expected ingestion) and the analgesia test. However, testing without delay demonstrated significant analgesia effects following intake. These effects were reversible by administration of naloxone, suggesting that the analgesia was the result of EOP release. Taken together, the results of these experiments suggest that one of the functions of EOP's is the reinforcement of preference learning.
ENDOGENOUS OPIOIDS AND FEEDING IN THE MALE RAT: A LEARNING APPROACH

by

Gregory Lee Burns

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Psychology

MONTANA STATE UNIVERSITY
Bozeman, Montana

June 1987
APPROVAL

of a thesis submitted by

Gregory Lee Burns

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

6/12/87
Date

Chairperson, Graduate Committee

Approved for the Major Department

6-18-87
Date

Head, Major Department

Approved for the College of Graduate Studies

6-23-87
Date

Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission; provided that accurate acknowledgement of source is made.

Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his absence, by the Dean of Libraries when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature

Date 4/9/80
ACKNOWLEDGMENTS

I would like to express my sincere gratitude to everyone who has been involved, both directly and indirectly, in this project. In particular, the members of my committee have been of invaluable assistance and have helped to make this thesis a most valuable learning process. Dr. Wesley Lynch, the chairman of my committee, is the person who stimulated my interest in this area of psychology. Of course, he also happened to be the person who provided the lab space, animals, drugs, and countless hours of consultation so that I might know a bit about the physiology involved. To him I will always be grateful. Dr. Robert Patterson arrived late on the scene yet he agreed to be a member of my committee; as such he worked diligently to ensure that the writing and flow of ideas contained herein was of an acceptable quality. I am not implying that he is to blame if the writing is not up to par; instead I am trying to thank him for the time and effort he invested in this project. To Dr. Richard Horswill...thanks for all you have shared with me over the last couple of years.

Finally, thanks is due to my office partner and fellow graduate student, Roberta Winters. Without her unconditional support, interest, caring, and neverending stream of bad jokes, I may not have made it through this program with my sanity intact...assuming of course that I did. Thanks to you all.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENT 1</td>
<td>13</td>
</tr>
<tr>
<td>Method</td>
<td>13</td>
</tr>
<tr>
<td>Results</td>
<td>15</td>
</tr>
<tr>
<td>Discussion</td>
<td>20</td>
</tr>
<tr>
<td>EXPERIMENT 2</td>
<td>23</td>
</tr>
<tr>
<td>Method</td>
<td>23</td>
</tr>
<tr>
<td>Results</td>
<td>24</td>
</tr>
<tr>
<td>Discussion</td>
<td>27</td>
</tr>
<tr>
<td>EXPERIMENT 3</td>
<td>29</td>
</tr>
<tr>
<td>Method</td>
<td>29</td>
</tr>
<tr>
<td>Results</td>
<td>32</td>
</tr>
<tr>
<td>Discussion</td>
<td>33</td>
</tr>
<tr>
<td>GENERAL DISCUSSION</td>
<td>37</td>
</tr>
<tr>
<td>REFERENCES CITED</td>
<td>43</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Treatment Conditions for Experiment 1</td>
</tr>
<tr>
<td>2</td>
<td>ANOVA for Experiment 1, Days 1-10</td>
</tr>
<tr>
<td>3</td>
<td>ANOVA for Experiment 1, Days 10-15</td>
</tr>
<tr>
<td>4</td>
<td>ANOVA for Experiment 1, Days 15-20</td>
</tr>
<tr>
<td>5</td>
<td>Treatment Conditions for Experiment 2</td>
</tr>
<tr>
<td>6</td>
<td>ANOVA for Experiment 2, Days 1-10</td>
</tr>
<tr>
<td>7</td>
<td>ANOVA for Experiment 2, Days 10-15</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naloxone Effect on Sweet Intake</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Effect of Drug History on Preference</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Agonist Effects on Sucrose Intake</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Schematic of Tail-Flick Device for Experiment 3</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Effect of Delay and NAL on Analgesia</td>
<td>35</td>
</tr>
</tbody>
</table>
The role of endogenous opioid peptides (EOP's) in the ingestion of highly palatable solutions in the male rat was investigated in three experiments. In Experiment 1 acquisition of taste preference for sucrose or saccharin was blocked by the opiate antagonist naloxone. Following removal of the drug, preference quickly recovered, with intake levels surpassing that of controls. In Experiment 2 preference for a sucrose solution was enhanced with a low dose of the kappa-opiate receptor agonist U50,488H. The high level of intake for this group was maintained for five days following removal of the drug. In Experiment 3 the release of EOP's in response to actual, or expected, intake of a palatable solution was assessed with an analgesia test. No decrease in pain sensitivity was observed when a delay was included between ingestion (or expected ingestion) and the analgesia test. However, testing without delay demonstrated significant analgesia effects following intake. These effects were reversible by administration of naloxone, suggesting that the analgesia was the result of EOP release. Taken together, the results of these experiments suggest that one of the functions of EOP's is the reinforcement of preference learning.
INTRODUCTION

Morphine (a derivative of the opium poppy) has long been known to possess analgesic and euphoric properties and has been used medicinally for more than a century. A number of opioid compounds have been developed that either mimic or block the effects of morphine; this has led to the proposal that specific opioid receptors exist within the nervous system that are the site of action for the opiate drugs (Reid, 1985). In a classic study, Pert and Snyder (1973) demonstrated the existence of specific opioid receptors in the nervous system, leading to the conclusion that there might be naturally produced neurotransmitters within the brain which bind with these receptors. In the last 15 years efforts have been directed towards identifying these substances (e.g., Goldstein, 1976) with a number of researchers reporting successful identification of endogenous peptides that possess opiate activity (Hughes, Smith, Morgan, & Fothergill, 1975; Terenius, & Wahlstrom, 1975; Pasternak, Goodman, & Snyder, 1975). For example, Hughes, Smith, Kosterlitz, Fothergill, Morgan, and Morris (1975) isolated and described two pentapeptides (enkephalins) which possessed opiate activity, such activity being blocked by the effects of the opiate antagonist naloxone. The discovery of these and other endogenous opioid peptides (EOP's) was important since such peptides have been implicated in the regulation of certain behaviors, such as ingestion.
In the present study, the role of the endogenous opioid peptides in ingestion is further investigated.

One approach for studying the effects of endogenous opioids on ingestion is to administer opioid antagonists (which occupy the receptors, thus blocking the action of EOP's) and then measure consequent intake of various substances. This approach has clearly implicated the opioid system in ingestion although the mechanism of the regulation of ingestion by opioids is unclear (Reid, 1985). Since the pioneering work of Holtzman (1975), in which decreases in ingestion were reported following single exposures to the opiate antagonists naloxone (NAL) and naltrexone (NALT), there have been numerous reports that opioid antagonists decrease the intake of food and water (e.g., Levine, Morley, Gosnell, Billington, & Bartness, 1985; Reid, 1985). These effects are both robust and reliable. For example, antagonists effectively inhibit intake of food and water when administered peripherally (Hemmer, Olson, Kastin, McLean, & Olson, 1982), when injected directly into specific brain regions (Siviy, Bermudez-Rattoni, Dargie, & Reid, 1981), and under stressful conditions such as mild deprivation (Jalowiec, Panskepp, Zolovich, Najam, & Herman, 1981). McCarthy, Dettmar, Lynn and Sanger (1981) demonstrated that these effects are not restricted to rats: NAL will also disrupt intake in cats and rabbits.

Yet the most intriguing findings point to the antagonists' abilities to affect the intake of preferred (e.g., sweet) substances. Reliable antagonist effects include the decrease in intake of sweetened water (Levine, Murray, Kneip, Grace, & Morley, 1982) and
the blocking of the normal development of preference for saccharin solutions (Lynch, 1986). The suppression of the ingestion of a highly palatable cafeteria diet has also been reported (Apfelbaum & Mandenoff, 1981). Interestingly, naloxone's effect on the intake of a 20% sucrose solution decreases over time (Olson, Delatte, Kastin, McLean, Phillpott, & Olson, 1985), an effect that has been interpreted as due to the development of tolerance to the NAL.

Since the effects of the EOP's are more pronounced for preferred ingestables than for standard laboratory chow and water, it seems that EOP's may function to regulate taste-motivated behavior. That is, the EOP's seem particularly involved when animals are feeding because they prefer the taste of a substance, rather than because they are hungry. This idea originated with a study by Rockwood and Reid (1982) in which rats with open gastric fistulas significantly reduced intake of a sucrose solution following NAL injections. This was a very important discovery since the fistulas drained off the sucrose before it could be absorbed in the digestive tract, thus the primary feedback the animals received regarding the sucrose was gustatory. This finding implies that the change in the drinking as a result of NAL administration was due to some modification of the taste by the drug. The implication of these results is that NAL may disrupt eating or drinking by modifying the palatability of foods.

In support of this conjecture is the finding that genetically obese rats who increase their intake of preferred foods to a greater degree than their lean counterparts (presumably because the obese rats find the food more palatable than the lean rats) are even more
sensitive to the suppressant effects of NAL (Cooper, Jackson, Morgan, & Carter, 1985). In a related study, Lynch and Libby (1983) found that NAL suppresses intake of a wider range of saccharin solutions when rats are deprived than when they are sated. Here, one interpretation is that since deprived rats find a wider range of substances palatable, a wider range of substances will be affected by the antagonists in deprived rats than in nondeprived rats.

If the EOP's are involved in taste preferences then the administration of opiate agonists should increase the intake of some substances. Indeed, such facilitation of intake has been reported when morphine is injected into the hypothalamus (Tepperman, Hirst, & Gowdey, 1981), and when dynorphin (an endogenous kappa agonist) is injected into the ventricles of rats' brains (Morley & Levine, 1981). These effects are less robust, however, than those found with the antagonists (Levine, et al., 1985). Reid (1985) noted that many variables may influence the responses to opiate agonists, including type of agonist, dose, time of test, and the nature of the test environment.

These variable effects can be partially explained by the fact that there exist at least three types of opioid receptors (Cooper & Sanger, 1984) which probably bind different opioid peptides. In support of this are studies investigating the effects of morphine (a putative mu-receptor agonist) on ingestion that have reported inconsistent changes in intake (Jalowiec et al., 1981; Morley, Levine, Grace, & Kneip, 1982), and those which have found more consistent increases in intake when kappa-receptor agonists are
employed. For instance, Morley and associates (Morley, Elson, & Levine, 1982; Morley, Levine, Grace, Kneip, & Zeugner, 1983; Morley & Levine, 1983) have demonstrated that kappa agonists, such as the highly selective U-50,488H and the kappa benzodiazepine, tifluadom, consistently stimulate intake of standard laboratory chow. Thus, the kappa receptor subtype may be more important than other opioid receptors in the regulation of normal feeding patterns (Cooper, Jackson, & Kirkham, 1985).

As with the antagonist effects, there is currently a great deal of interest regarding the effects of kappa agonists on the intake of preferred substances. In one study, Lynch (1983) reported that the mixed kappa/mu agonist ketocyclazocine stimulated intake of a saccharin solution in comparison to a control (saline) group in nondeprived rats, while Jackson and Cooper (1985) and Cooper et al. (1985) found that the kappa agonist U-50,488H significantly heightened rat intake of highly palatable solid food mixtures. These studies and others (e.g., Leander & Hynes, 1983; Kavaliers, Teskey, & Hirst, 1985) suggest that the kappa opioid receptor system is important for the expression of taste preferences in addition to the more general regulation of feeding patterns. Thus, the effects of both mu and kappa agonists on the intake of preferred sweet solutions in nondeprived animals should be investigated. Such studies would provide evidence concerning the differential effectiveness of agonists which bind with these receptor subtypes.

In order to understand the functions of the opioid system in the regulation of feeding and drinking, it is important to elucidate the
cause and timing of the release of the opioids. One approach for investigating these questions has been to assess actual changes in brain opioid levels in response to various stimulus events through the use of radioimmunoassay techniques. For example, Morley, Elson, Levine, and Shafer (1982) found increased cortical levels of dynorphin-like immunoreactivity in response to stressful events like deprivation and tail-pinch. In another study (Vaswani and Tejwani, 1986) it was reported that food deprivation results in increased and/or decreased levels of B-endorphin in different brain regions, which return to normal following intake. A related study looked at the locations of kappa receptors in nonstressed, nondeprived rats and found high concentrations in a number of gustatory and feeding sites (Lynch, Watt, Krall, & Paden, 1985). Of particular importance is the finding by Dum, Gramsch, and Herz (1983) that ingestion of sweet foods results in higher levels of B-endorphin (an endogenous opioid) in the hypothalamus.

Other researchers have provided less direct evidence for release of opioid peptides by showing that increased feeding behavior resulting from stress is blocked by the administration of opiate antagonists. Lowy, Maickel, and Yim (1980), for example, reported that stressors such as deprivation and tail-pinch induced rats to eat and such feeding behavior was blocked by NAL. A more recent study (Bertiére, Sy, Baints, Mandenoff, and Apfelbaum, 1984) demonstrated that stress-induced feeding is blocked not only by NAL, but also by injections of B-endorphin (an opiate agonist) into the ventricles. The authors employed learning principles as a framework for
understanding this apparently contradictory finding: the antagonist interfered with the rewarding properties of the food while the agonist made ingestion unnecessary because it produced satiation.

A related series of studies by Lieblich and associates have shown that rats which are genetically selected for high rates of self-administered brain stimulation also tend to consume large amounts of saccharin. After repeated ingestion of saccharin they demonstrate decreased analgesic responses (i.e., tolerance) to morphine (Lieblich, Cohen, Ganchrow, Blass, & Bergmann, 1983; Cohen, Lieblich, & Bergmann, 1984; Bergmann, Cohen, & Lieblich, 1984). These researchers suggest that repeated saccharin consumption stimulates release of EOP's as the result of activation of sweet receptors in the gustatory system, leading to tolerance development.

The results cited above are poorly integrated and it remains unclear what events (either physiological or environmental) are associated with endorphin release. One explanation for the role of the opiates in the regulation of feeding and drinking is derived from drive theory. This theory suggests that EOP release directly motivates, or "drives", the organism to ingest nutrient-rich materials (Leibowitz, 1985). This idea fails, however, to explain why agonist drugs enhance ingestion only under certain circumstances or how antagonists reduce intake which is motivated purely by taste (Lynch, 1983; Jackson & Cooper, 1985).

An alternative explanation is that certain behaviors are reinforced by the release of endorphins and it is this property that accounts for the establishment and/or maintenance of taste
preferences. In support of this view, Mucha and Iversen (1984) have shown via a conditioned place preference paradigm that morphine is rewarding and NAL is aversive (since it leads to conditioned place aversion). Additional support for the idea that opiates are rewarding comes from studies demonstrating that animals will self-administer opiates (e.g., Belluzzi & Stein, 1977). Finally, although opioid agonists sometimes stimulate intake, they do so for only certain concentrations (Lynch and Libby, 1983), a result which suggests that opiate receptor stimulation does not directly induce intake.

The involvement of the opioid receptor system in taste preferences is particularly well suited to a conditioning explanation since preference can be conceptualized as a learned behavior. For instance, if an animal has no physiological need to ingest, but does so nonetheless, it may be concluded that the animal is being reinforced in some manner for engaging in the ingestive behavior. Since EOP's appear to be involved in the acquisition of taste preferences, it seems reasonable to suggest that these peptides might normally act as reinforcers for the learning of preferences. To test this idea, the EOP's should be studied within an operant conditioning paradigm so as to investigate whether the relationship between these endogenous peptides and preference acquisition is one involving direct motivation, inspired by a drive, or instead involves reinforcement for learning a preference.

Support for this notion of learned preferences comes from a study by Dum and Herz (1984) which provided evidence for the release
of EOP's in response to the anticipation of receiving highly palatable substances. In this experiment, rats which had been taught to expect a sweet substance apparently released opioids since these animals demonstrated a NAL-reversible decrease in sensitivity to painful stimuli as compared to control animals.

To summarize, the opioid antagonists decrease intake and agonists sometimes increase intake. These effects, however, do not demonstrate a degree of reliability across situations that would be expected if there were a direct connection between receptor stimulation and ingestion. Since agonists do not directly stimulate intake it may be that they act indirectly by reinforcing behaviors which are conducive to ingestion. In other words, EOP's may be released in response to environmental cues that indicate the presence of appropriate foods, and this release may signal an organism to increase intake. If opioids are inherently rewarding, and if they encourage ingestion in the absence of physiological need, then it may be that the mechanism of opiate action involves operant conditioning rather than strictly motivation (i.e., drive).

In order to investigate that possibility, the timing and extent of opioid release should be examined. This could be accomplished by examining the events which cause the release of EOP's and the temporal pattern of such release. Specifically, it would be important to assess whether gustatory stimulation and/or the environmental cues that predict such stimulation (i.e., expectancy) result in maximal EOP release.
In addition to the operant conditioning idea outlined above, there are several subsidiary issues that deserve attention. For instance, the role of EOP's in regulating ingestion may be different for nutritive vs non-nutritive substances. This idea is indirectly supported by the results of studies showing that the blockade of preference acquisition by NAL does not decrease over time for saccharin (Lynch, 1986) but that it does decrease over time for sucrose (Olson et al. 1985). It is, therefore, also important to directly investigate both saccharin and sucrose within the same study to see if such a difference does exist.

Another important question concerns the permanence of the NAL effects. Lynch, Krall, Fernandez, and Paden (1985) showed, using autoradiographic receptor assays, that chronic blockade of opioid receptors caused an increase in the number of these receptors (upregulation). An upregulation of receptors could result in long-lasting alterations in taste preference. A logical next step is to investigate the effects of repeated exposure to NAL by first blocking the normal preference acquisition, then measuring the recovery of preference following removal of the antagonist. This type of study would provide additional data suggesting how the EOP's may be involved in the acquisition and maintenance of taste preferences.

The following experiments were designed to provide answers to the questions raised above. In Experiment 1 the intake of animals who were drinking for taste was blocked by administration of the opiate antagonist naloxone. Such blockade has been reported previously. The purpose of Experiment 1 was to extend these results
by reversing the order of the conditions so as to measure the recovery of preference in the NAL-treated animals and to investigate the effect NAL would have on animals which had already acquired a taste preference. It was expected that the antagonist would have a dramatic effect on the latter group, but that their drinking behavior would not be totally eliminated because of the strength of the learned response. In addition, it was thought that the animals which started out receiving NAL injections would, consequently, acquire preferences at an elevated rate based on reports that antagonist treatments cause receptor upregulation which would, presumably, result in extreme sensitivity of the rats to any subsequent taste-motivated EOP release.

In Experiment 2, the differential effects of mu and kappa-receptor agonists on intake of a sucrose solution was investigated. Based on previous reports that kappa agonists generally yield more reliable effects than agonists of other opioid receptor subtypes, it was expected that the kappa agonist would increase intake to a greater degree than would the mu agonist. What was new in this design was the addition of a recovery period during which all drugs were removed while the animals were allowed to continue their drinking of the sweet solution. It was predicted that, if any of the groups showed elevated intake, these levels would consequently decrease and approach that of the control group once the agonist drug was removed.

In Experiment 3, the idea that endogenous opioids may serve to reinforce ingestive behavior was investigated by attempting to
determine the time course of release of these compounds in response
to feeding behavior. In this experiment, a NAL-reversible increase
in analgesia (i.e., increased latency to tail-flick in response to a
heat stimulus) was taken as an indication that an increase in the
release of EOP's had occurred within the brain. The magnitude of the
analgesic response is presumably proportional to the amount of the
release. It was expected that both the actual ingestion of a sweet
solution and the learned anticipation of such intake would result in
opioid release, as indicated by increased tail-flick latency. This
hypothesis is based on reports in the literature which indicate that
both ingestion of preferred substances and the anticipation of
ingesting preferred foods cause EOP release (Dum & Herz, 1984).

Taken together, these experiments should provide additional
evidence concerning the role of endogenous opioids in the regulation
of ingestion. One function of the EOP's may be to reinforce
anticipatory as well as ingestive behaviors. Since these
anticipations would be learned responses reinforced by the release of
EOP's, a learning approach is an appropriate framework for
investigating the relationship between ingestive behavior and these
endogenous compounds.
EXPERIMENT 1

The purpose of Experiment 1 was to replicate and extend the work of Lynch (1986), who found that NAL interferes with the acquisition of taste preferences, by comparing the intake of sucrose or saccharin solutions in rats given NAL for 10 days to rats who received saline. After this period the antagonist was removed and all animals received injections of saline in order to investigate the long term effects of opioid receptor blockade (see Table 1). Both sucrose and saccharin were used to see if NAL has differential effects on these two sweeteners.

Table 1. Treatment Conditions for Experiment 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Solution</th>
<th>Days 1-10</th>
<th>Days 11-15</th>
<th>Days 16-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sucrose</td>
<td>NAL</td>
<td>SAL</td>
<td>SAL</td>
</tr>
<tr>
<td>2</td>
<td>saccharin</td>
<td>NAL</td>
<td>SAL</td>
<td>SAL</td>
</tr>
<tr>
<td>3</td>
<td>sucrose</td>
<td>SAL</td>
<td>SAL</td>
<td>NAL</td>
</tr>
<tr>
<td>4</td>
<td>saccharin</td>
<td>SAL</td>
<td>SAL</td>
<td>NAL</td>
</tr>
</tbody>
</table>

Method

Subjects

Forty male Holtzmann Sprague Dawley albino rats, each weighing approximately 150-200g upon arrival, were purchased from Sasco Inc. for use in this experiment. The animals were housed in groups of five and had free access to food and water except during testing.
Apparatus

Intake tests occurred in ten individual test cages each of which was fitted with two standard 100 ml volumetric drinking bottles. One of these bottles contained water and the other either 20% sucrose (w/v) or 0.1% sodium saccharin (w/v) dissolved in water.

Procedure

The animals were randomly assigned to the four treatment conditions. Each day the animals were brought into the experimental room and given subcutaneous injections of either NAL (1mg/kg) or SAL (1ml/kg). Twenty minutes after injection, each animal was placed into a test cage where it was presented with two bottles, one containing water and the other the sweet solution. The rat was then allowed to drink ad lib. for a period of 30 minutes, after which it was returned to the home cage and the total volume of water and sweet ingested was recorded.

The experiment was run for a total of 20 days. During the initial preference acquisition phase (days 1-10) the intake of all animals was monitored following daily injections of either naloxone or saline. This phase was followed by five days of recovery (days 11-15) during which the NAL was removed and all animals received SAL injections while still experiencing the same procedures outlined above. The final five days of the experiment (days 16-20) involved a crossover of the initial drug treatments such that the animals who began the experiment with NAL (but had been receiving SAL for five days) continued to be injected with SAL, while the others (which had
been injected with SAL up to this point) received NAL (1 mg/kg, sc).

Results

Figure 1 illustrates the effect of NAL on group mean intake volume over the 20 days of testing. It is apparent that the antagonist had a strong effect on the intake levels of the animals, in that naloxone suppressed intake of both sucrose and saccharin regardless of whether it was administered before, or after, a taste preference had been learned. Also of interest is the elevated intake of the group which originally was treated with NAL and offered sucrose, at day 20 of the experiment.

A 2 x 2 x 10 three-way Analysis of Variance (ANOVA) for split-plot designs was calculated on the data for days 1-10 (the acquisition period, see Table 2). The analysis revealed that drug type did reliably affect intake, F(1, 36) = 74.22, p < .001. Here, NAL reliably blocked ingestion. The analysis also revealed that solution type reliably affected intake, F(1, 36) = 7.75, p < .01. Here sucrose was ingested in larger amounts than saccharin. A significant interaction between drug and solution type was found to be present, F(1, 36) = 7.88, p < .01. This indicated that the animals which were injected with SAL consumed more sucrose than saccharin while the NAL-treated animals drank very little of either solution. The analysis also revealed that days reliably affected intake, F(9, 324) = 15.45, p < .001. Here, the amount of sweet ingested by the SAL groups increased over days. Also there was a
FIGURE 1. Naloxone Effect on Sweet Intake

TREATMENTS

SAL - ALL

CROSS

NAL-Suc

NAL-Sacc

SAL-Suc

SAL-Sacc

Group Mean Intake (ml)

Days of Testing

NAL-Sacc + Nal-Suc ○ SAL-Sacc △ SAL-Suc
significant interaction of days and drug, $F(9, 324) = 14.79, p < .001$. This confirms that the SAL-treated animals increased consumption over days while the NAL-treated animals did not. There was also a significant interaction of days and solution, $F(9, 324) = 2.03, p < .05$. This finding reveals that the SAL-treated animals ingested more sucrose than saccharin over days.

Table 2. Analysis of Variance for Experiment 1, Days 1-10.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>39</td>
<td>2167.08</td>
<td>55.57</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>1</td>
<td>1278.06</td>
<td>1278.06</td>
<td>74.22***</td>
</tr>
<tr>
<td>Solution</td>
<td>1</td>
<td>133.40</td>
<td>133.40</td>
<td>7.75**</td>
</tr>
<tr>
<td>Drug X Solution</td>
<td>1</td>
<td>135.72</td>
<td>135.72</td>
<td>7.88**</td>
</tr>
<tr>
<td>error</td>
<td>36</td>
<td>619.89</td>
<td>17.22</td>
<td></td>
</tr>
<tr>
<td>Between</td>
<td>360</td>
<td>556.85</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>9</td>
<td>158.08</td>
<td>17.61</td>
<td>15.45***</td>
</tr>
<tr>
<td>Days X Drug</td>
<td>9</td>
<td>151.71</td>
<td>16.86</td>
<td>14.79***</td>
</tr>
<tr>
<td>Days X Solution</td>
<td>9</td>
<td>20.77</td>
<td>2.31</td>
<td>2.03*</td>
</tr>
<tr>
<td>Days X Drug X Solution</td>
<td>9</td>
<td>14.35</td>
<td>1.59</td>
<td>1.39</td>
</tr>
<tr>
<td>error</td>
<td>324</td>
<td>370.02</td>
<td>1.14</td>
<td></td>
</tr>
</tbody>
</table>

* $p < .05$
** $p < .01$
*** $p < .001$

A $2 \times 2 \times 6$ three-way ANOVA for split-plot designs (see Table 3) was performed on the intake volume data from days 10-15 (the recovery period). This analysis revealed a reliable overall difference between groups due to drug history, $F(1, 36) = 28.15, p < .001$. This indicates that the groups which had received SAL all along continued to ingest more sweet than the groups which began the experiment with NAL injections. The analysis also revealed a significant effect of solution type, $F(1, 36) = 19.49, p < 0.001$. Here, sucrose was ingested in greater amounts than saccharin in all groups. Again, as
in the previous analysis, there was a significant effect of days,
\(F(5, 181) = 22.33, p < .001 \). This indicates that the amount ingested increased over the five days. A significant interaction was revealed between days and drug history,
\(F(5, 181) = 10.28, p < .001 \). This indicates that the NAL-treated animals (now treated with SAL) increased intake over days while the intake of the SAL-treated animals changed very little. Finally, a significant interaction of days, drug and solution was revealed,
\(F(5, 181) = 6.68, p < .001 \). This indicates that the groups which were changed from NAL to SAL increased intake and drank progressively more sucrose than saccharin over days.

Table 3. Analysis of Variance for Experiment 1, Days 10-15.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>39</td>
<td>2083.96</td>
<td>53.43</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>1</td>
<td>683.44</td>
<td>683.44</td>
<td>28.15*</td>
</tr>
<tr>
<td>Solution</td>
<td>1</td>
<td>473.20</td>
<td>473.20</td>
<td>19.49*</td>
</tr>
<tr>
<td>Drug X Solution</td>
<td>1</td>
<td>53.20</td>
<td>53.20</td>
<td>2.19</td>
</tr>
<tr>
<td>error</td>
<td>36</td>
<td>874.12</td>
<td>24.28</td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>201</td>
<td>652.76</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>5</td>
<td>265.74</td>
<td>53.15</td>
<td>22.33*</td>
</tr>
<tr>
<td>Days X Drug</td>
<td>5</td>
<td>122.34</td>
<td>24.47</td>
<td>10.28*</td>
</tr>
<tr>
<td>Days X Solution</td>
<td>5</td>
<td>19.97</td>
<td>3.99</td>
<td>1.68</td>
</tr>
<tr>
<td>Days X Drug X Solution</td>
<td>5</td>
<td>79.47</td>
<td>15.89</td>
<td>6.68*</td>
</tr>
<tr>
<td>error</td>
<td>181</td>
<td>430.98</td>
<td>2.38</td>
<td></td>
</tr>
</tbody>
</table>

* \(p < .001 \)

A 2x2x6 three-way ANOVA for split-plot designs, was calculated on the intake volume data for days 15-20 (the crossover period). This analysis revealed that reversal of the drug treatments reversed the drinking patterns of the groups (see Table 4). Specifically, the former NAL-treated group (now treated with SAL) drank significantly more than the former SAL group (now treated with NAL),
\(F(1, 36) = \)
37.05, \(p < .001 \). As in the previous analyses, there was a significant effect of solution, \(F(1, 36) = 30.65, p < .001 \). Here, all groups ingested more sucrose than saccharin. The analysis also revealed a reliable drug and solution interaction, \(F(1, 36) = 15.90, p < .001 \). This result indicates that the enhanced intake of sucrose, as compared to saccharin, was even more pronounced for the animals which had begun the experiment with NAL treatments than it was for those animals which began with SAL but later were treated with NAL.

Table 4. Analysis of Variance for Experiment 1, Days 15-20.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>39</td>
<td>1896.92</td>
<td>48.64</td>
<td>-</td>
</tr>
<tr>
<td>Drug</td>
<td>1</td>
<td>589.07</td>
<td>589.07</td>
<td>37.05*</td>
</tr>
<tr>
<td>Solution</td>
<td>1</td>
<td>487.35</td>
<td>487.35</td>
<td>30.65*</td>
</tr>
<tr>
<td>Drug X Solution</td>
<td>1</td>
<td>248.07</td>
<td>248.07</td>
<td>15.60*</td>
</tr>
<tr>
<td>error</td>
<td>36</td>
<td>572.43</td>
<td>15.90</td>
<td>-</td>
</tr>
<tr>
<td>Within</td>
<td>201</td>
<td>543.93</td>
<td>2.71</td>
<td>-</td>
</tr>
<tr>
<td>Days</td>
<td>5</td>
<td>127.40</td>
<td>25.48</td>
<td>17.45*</td>
</tr>
<tr>
<td>Days X Drug</td>
<td>5</td>
<td>251.08</td>
<td>50.22</td>
<td>34.40*</td>
</tr>
<tr>
<td>Days X solution</td>
<td>5</td>
<td>13.70</td>
<td>2.74</td>
<td>1.88</td>
</tr>
<tr>
<td>Days X Drug X Solution</td>
<td>5</td>
<td>14.78</td>
<td>2.96</td>
<td>2.02</td>
</tr>
<tr>
<td>error</td>
<td>181</td>
<td>264.37</td>
<td>1.46</td>
<td>-</td>
</tr>
</tbody>
</table>

* \(p < .001 \)

During this crossover period there was a reliable effect of days, \(F(5, 181) = 17.45, p < .001 \). This indicates that intake varied across days. A significant interaction between days and drug \(F(5, 181) = 34.40, p < .001 \) was also found. This reveals that the animals that had begun the experiment with SAL treatments (now treated with NAL) decreased intake over days while the NAL animals (now treated with SAL) increased intake.

To determine whether pretreatment with NAL results in different
acquisition rates, a post hoc comparison was made between the level of sucrose intake on the fifth day of ingestion for the SAL control groups (day 5 of the experiment) and the fifth day of ingestion for the NAL groups (day 15 of the experiment). This analysis revealed a significant difference between controls and the animals previously treated with naloxone, \(t(18) = 2.702, p = .015 \), (see Figure 2). This result demonstrates that, after removal of the antagonist, the animals previously treated with NAL developed a stronger preference for sucrose within the same period of time as controls.

Discussion

This experiment demonstrates that sweet taste-motivated behavior can be disrupted by blockade of opioid receptors. The animals which received injections of NAL drank essentially no sweet solution while the control animals developed normal taste preferences for both sucrose and saccharin, although the sucrose preference was clearly stronger. Removal of the antagonist in the NAL-treated animals resulted in a recovery of taste preference. These animals consequently drank the sweet solutions in large amounts, and, as expected, they quickly developed preference for both palatable liquids.

The finding that, once the NAL was removed, the NAL-treated animals attained higher levels of intake than the control animals (who had received no antagonist treatment) may indicate that the daily pretreatment with NAL for 10 days resulted in fundamental changes in the opioid receptor system. Interestingly, the animals
FIGURE 2. Effect of Drug History on Preference

Mean Volume Intake (mL)

Days of Drug-Free Ingestion

- SAL-Sucrose
- NAL-Sucrose
which were offered sucrose drank consistently more than did their saccharin-consuming counterparts across all experimental conditions.

Also of interest is the finding that when NAL was administered to those animals which had already acquired preferences, their level of intake was not completely eliminated. This implies that the EOP's are somehow important during the learning of taste preferences, but that such preferences can later be maintained in the absence of the peptides. This maintenance of the drinking behavior in the absence of opioid receptor stimulation argues against a drive theory explanation of EOP regulation of feeding, since such an explanation requires the dependancy of ingestion on a fully functioning opioid receptor system.
EXPERIMENT 2

The purpose of Experiment 2 was to test the possibility that the rewarding effects of opioid agonists might facilitate the intake of a 20% sucrose solution by repeated association of intake with either the mu agonist morphine or the kappa agonist U-50,488H. Intake was measured under four treatment conditions: a low dose of U-50, a high dose of U-50, morphine, or saline (see Table 5). Sucrose was used instead of saccharin in this study, following a suggestion made by Cooper (personal communication) that U-50,488H might mediate an increased intake of sucrose but may not have the same effect on saccharin. Also, U-50,488H was employed along with morphine because it is quite specific in affinity for kappa receptors which have been implicated in taste motivated intake (Lynch, 1983; Jackson & Cooper, 1985).

Table 5. Treatment Conditions for Experiment 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Days 1-10</th>
<th>Days 11-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U-50L</td>
<td>SAL</td>
</tr>
<tr>
<td>2</td>
<td>U-50H</td>
<td>SAL</td>
</tr>
<tr>
<td>3</td>
<td>MOR</td>
<td>SAL</td>
</tr>
<tr>
<td>4</td>
<td>SAL</td>
<td>SAL</td>
</tr>
</tbody>
</table>

Method

Subjects

Forty male rats of the same strain were purchased from the same supplier as in Experiment 1. As in the first experiment, the animals
were housed in groups of five and allowed ad lib. access to food and water, except during testing.

Apparatus

The same test cages, as described in Experiment 1, were employed for presentation of water and sweet solutions. Each test cage was fitted with one bottle containing tap water and another bottle containing a 20% (w/v) sucrose solution.

Procedure

The animals were randomly assigned to the four treatment conditions. Each day the animals were brought into the experimental room and administered one of four subcutaneous injections: 0.3 mg/kg U-50,488H (U-50L group); 1.0 mg/kg U-50,488H (U-50H group); 1.0 mg/kg morphine (MOR group); and 1.0 ml/kg saline (SAL group). 30 minutes after receiving the injection each animal was placed individually into a test cage for 30 minutes. After this intake period the animal was returned to the home cage and the intake volume was recorded. This occurred for 10 days and was followed by a 5 day recovery period during which the drug was removed from all animals and each received daily injections of SAL while their intake volumes continued to be recorded.

Results

Figure 3 illustrates the differential effects of agonists on intake volumes during 10 days of treatment and 5 days of recovery. It appears that the low dose of U-50,488H elevated intake.
FIGURE 3. Agonist Effects on Sucrose Intake

![Graph showing agonist effects on sucrose intake over days of testing.](#)
consistently over the 10 days of treatment as compared to saline, and this higher level was maintained 5 days after the drug treatments ended. Neither of the other drug groups differed from the saline control group in intake volumes either before, or after, drug treatment.

A 2 x 2 x 10 three-way ANOVA for split-plot designs (see Table 6) calculated on the intake volume data for the first ten days revealed a significant main effect of drug treatment, $F(3, 36) = 7.10, p < .001$. This indicates that the treatment groups differed in the amount of sucrose intake. The analysis also revealed a significant effect of days, $F(9, 324) = 40.09, p < .001$. This result indicates that the volumes changed over days. A reliable interaction between days and drug, $F(27, 324), p < .001$, was also revealed by the analysis. This demonstrates that the drug effects changed over days. A post hoc comparison, to determine if the U-50L group ingested more sucrose on day 10 than did the SAL group, was significant, $t(18) = 2.963, p = .0083$.

Table 6. Analysis of Variance for Experiment 2, Days 1-10.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>39</td>
<td>2469.20</td>
<td>63.31</td>
<td>-</td>
</tr>
<tr>
<td>Drug</td>
<td>3</td>
<td>919.03</td>
<td>306.03</td>
<td>7.10*</td>
</tr>
<tr>
<td>error</td>
<td>36</td>
<td>1550.17</td>
<td>43.06</td>
<td>-</td>
</tr>
<tr>
<td>Within</td>
<td>360</td>
<td>1856.98</td>
<td>5.16</td>
<td>-</td>
</tr>
<tr>
<td>Days</td>
<td>9</td>
<td>1612.72</td>
<td>179.19</td>
<td>40.09*</td>
</tr>
<tr>
<td>Days X Drug</td>
<td>27</td>
<td>408.05</td>
<td>15.11</td>
<td>3.38*</td>
</tr>
<tr>
<td>error</td>
<td>324</td>
<td>1448.93</td>
<td>4.47</td>
<td>-</td>
</tr>
</tbody>
</table>

* $p < .001$

A 2 x 2 x 6 three-way ANOVA for split-plot designs (see Table 7)
calculated on the recovery data (days 10-15) revealed a significant effect of drug history, $F(3, 36) = 3.01, p < .05$. This indicates a difference in intake between the treatment groups. The analysis also revealed a significant interaction between days and drug history, $F(15, 181) = 1.91, p < .05$. This result indicates that the different intakes between groups changed over days, with the U-50L group maintaining intake levels above the SAL group.

Table 7. Analysis of Variance for Experiment 2, Days 10-15.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>39</td>
<td>1817.96</td>
<td>46.61</td>
<td>-</td>
</tr>
<tr>
<td>Drug</td>
<td>3</td>
<td>364.08</td>
<td>121.36</td>
<td>3.01*</td>
</tr>
<tr>
<td>error</td>
<td>36</td>
<td>1453.88</td>
<td>40.38</td>
<td>-</td>
</tr>
<tr>
<td>Within</td>
<td>201</td>
<td>837.16</td>
<td>4.16</td>
<td>-</td>
</tr>
<tr>
<td>Days</td>
<td>5</td>
<td>183.67</td>
<td>36.73</td>
<td>9.21**</td>
</tr>
<tr>
<td>Days X Drug</td>
<td>15</td>
<td>114.15</td>
<td>7.61</td>
<td>1.91*</td>
</tr>
<tr>
<td>error</td>
<td>181</td>
<td>723.01</td>
<td>3.99</td>
<td>-</td>
</tr>
</tbody>
</table>

* $p < .05$
** $p < .001$

Discussion

This experiment was designed to measure the effect of subcutaneous injections of opioid agonists on ingestion of preferred sucrose solutions. As expected, the kappa agonist U-50,488H increased intake, but only when the dose was a relatively small one.

Five days after removal of the drugs, the U-50H, MOR, and SAL groups were not consuming significantly different volumes of sweet, but the U-50L group did demonstrate a marginally significant increase in intake compared to the SAL control group. What is indicated by these results is that non-deprived animals which are
drinking purely for sweet taste will increase their intake if a low
dose of a kappa agonist is presented concurrently with ingestion.

It remains unclear if this facilitation of preference learning
is due to a modification of taste quality or to the strength of the
learned response which may have been reinforced by the repeated
administration of exogenous opioid agonists. Again, as in Experiment
1, the maintenance of the preference in the absence of the agonist
argues against a drive mechanism of opioid regulation of feeding.
EXPERIMENT 3

The purpose of Experiment 3 was to investigate the effect of ingestion, and the anticipation of ingestion, of a highly palatable solution on the release of EOP's. The release of EOP's was assessed by measuring sensitivity to a painful stimulus, reasoning (as did Cohen et al., 1984; Bergmann et al., 1984; and Dum & Herz, 1984) that a NAL-suppressible decrease in sensitivity to pain indicates the release of endogenous opioids. The analgesic response measure used in this experiment was the latency to tail-flick in response to a high-intensity beam of light (see D'Amour and Smith, 1941).

Method

Subjects

Forty male rats of the same strain, and purchased from the same supplier, as in Experiments 1 and 2 were also used in this experiment. These were housed in groups of five, allowed ad lib. access to food (except during testing), and deprived of water for 18 hours each day immediately prior to testing.

Apparatus

The same test cages, as described in Experiments 1 and 2, were employed for presentation of the water and sweet solutions. The sweet solution used in this experiment was a mixture of 3% glucose and .125% saccharin which has been demonstrated to induce large
intakes in laboratory rats (Smith & Foster, 1980). The analgesic response was defined as the latency to tail-flick and was measured by a device designed and built in our lab (see Figure 4). This device directs a semi-focused beam of light from a 150 watt G. E. projector lamp (type EXL) onto a blackened spot 4 cm from the base of each rat's tail. A digital timer is activated simultaneously with the onset of the light and measures to within 10 msec the time it takes for the animal to flick its tail away from the heat source. A photoresistor under the tail detects the light after the tail has moved and automatically stops the timer and turns off the light source. The animals were lightly restrained by hand by the experimenter while in this device which left the tail free to move.

Procedure

All animals were deprived of water in their home cages for 18 hours immediately prior to each training and testing session.

Days 1-10 comprised the training portion of the experiment. Subjects in groups 1 and 2 (the sweet and water pre-intake groups, respectively) were brought into the experimental room, injected subcutaneously with 1ml/kg SAL, and 15 minutes later placed individually in the tail-flick apparatus for 15 seconds without the heat stimulus being engaged. The animals in group 1 were placed into test cages which were fitted with two bottles, one containing water and the other a highly preferred mixture of 3% glucose + .125% saccharin. The group 2 animals were placed in test cages which also contained two bottles, both of which contained tap water. The animals
FIGURE 4. Schematic of Tail-Flick Device for Experiment 3.
were allowed to drink ad lib. for 10 minutes at which time each was returned to the home cage. Groups 3 and 4 (sweet and water post-intake, respectively) were exposed to the same conditions as groups 1 and 2 except that they had access to the solution bottles prior to injections and analgesia testing.

On days 11 and 12 the actual analgesic responses were measured with each group being split in half and counterbalanced such that SAL (1ml/kg) was injected on one day and NAL (1mg/kg) delivered on the other day. For the pre-intake animals (groups 1 and 2), the injections were still delivered 15 minutes before the rats were placed in the tail-flick device for 15 seconds, but after this time the heat source was engaged and the tail flick latencies (TFL's) recorded. Subjects in the post-intake groups (3 and 4) first had access to the solutions, then they were injected with SAL or NAL, and 15 minutes later their TFL's were recorded.

Results

A 2 x 2 ANOVA for split-plot designs was performed on the day 11 and day 12 TFL data. This analysis revealed no significant effects due to drug, solution type, or time of the analgesia test. In addition, the analysis revealed no significant interactions. This failure to reveal any significant effects seems due to both the lack of systematic differences between groups and to the extreme individual variability within the data.
Discussion

This experiment was intended to investigate the release of endogenous opioids by measuring tail-flick latencies in response to either the actual ingestion or expected ingestion of a highly palatable mixture of glucose and saccharin. In accord with the reasoning of other researchers (eg. Lieblich, et al., 1983; Dum & Herz, 1984) a decrease in pain sensitivity which can be reversed by NAL was considered to be indicative of EOP release, and it was predicted that both expected and actual intake of a preferred substance would result in some analgesia. Unfortunately, no effect on TFL scores was found between the various conditions in this experiment. The extreme between subject variability may have accounted for the lack of statistical reliability, but inspection of the data also reveals no apparent systematic differences between groups.

At this point one may conclude that either the phenomenon is not reliable, or that the behavioral measure used is not sensitive enough to detect changes in analgesia induced by gustatory events. However, another possibility is that the 15 minute delay between injection and analgesia test (especially in the post-intake group) may have allowed any EOP release to dissipate, thus leading to no treatment effects. In other words, the release of EOP's in response to intake may be short-lived. This makes intuitive sense: If a primary function of EOP release is to reinforce the learning of taste preferences, then
temporal contiguity should be a necessary condition for learning to occur.

To test further this idea, some ad hoc manipulations were performed in which the data were collected under conditions of minimal experimental control. Nevertheless, the results were provocative.

Five days after the end of Experiment 3 the post-intake animals (n=10) which had been exposed to the sweet solution were brought into the experimental room following an 18-hour deprivation period. These animals were allowed to drink for 10 minutes immediately after which they were subjected to the pain test. This procedure was followed for two consecutive days. The hypothesis that the analgesia effect disappears quickly was supported by the finding that, in this manipulation, the TFL's for each group were elevated as compared to the corresponding scores collected during Experiment 3.

These results were encouraging, so a further manipulation was imposed upon the same animals the next day. After an 18 hour deprivation period, they were allowed access to the sweet mixture for 6 minutes after which half were tested immediately and the other half were tested following a 15 minute delay. The next day these conditions were reversed so that each animal was tested both with, and without, a delay. A six minute drinking period was chosen in order to test the animals during the first intake bout while they were drinking avidly. Again, sizeable differences between the two conditions were found, $t(9) = 4.493, p = .0015$, with the delay apparently causing the large decrease in TFL scores (see Figure 5).
FIGURE 5. Effect of Delay and NAL on Analgesia.
In order to show that this analgesic response is opioid-mediated, the following day all animals were given subcutaneous injections of 2.0 mg/kg NAL and four minutes later were allowed to drink for six minutes. Figure 4 shows the increase in sensitivity to painful stimuli which was demonstrated by these animals when treated with NAL. A comparison of the differences in TFL scores between the NAL condition and the previous no-drug condition were found to be significant, \(t(9) = 2.97, p = .016 \).

These findings, although preliminary, suggest that opioid peptides are released in response to the intake of palatable substances and that this release of EOP's is a physiological event of short duration which is undetectable as little as 15 minutes after ingestion. In addition, it seems that the latency to tail-flick is an appropriate means of assessing this EOP release. The issue of whether or not such release also occurs in anticipation of intake remains unresolved.
GENERAL DISCUSSION

It is well established that the EOP's have regulatory effects on ingestion (Reid, 1985) and this idea is supported by the results of the experiments reported here. Experiment 1, for instance, demonstrated the almost complete cessation of drinking in animals who received injections of the opioid antagonist NAL. As expected, control animals developed normal taste preferences for both sucrose and saccharin solutions, although significantly greater amounts of sucrose were ingested than saccharin.

It was predicted that removal of the antagonist would allow the consequent development of preference for sweet solutions, and this was found to be the case. What is particularly intriguing is the finding that, following removal of the NAL, the animals developed preference at an extremely rapid rate, especially those animals who were offered sucrose. The level of intake 5 days after NAL was withdrawn exceeded that of the saline control animals (who had no prior drug history) after 5 days of exposure to the sucrose solution. This higher level of intake may indicate that repeated administration of NAL results in changes in the opioid system itself, such that it becomes hypersensitive to ingestive stimulation. This hypersensitivity would conceivably have the opposite effect of receptor blockade by antagonists (i.e., an increased effectiveness of EOP's, and thus an increase in intake).
One would expect the sensitivity of the opioid system to be enhanced if the number of opioid receptors was increased (upregulation) by repeated treatment with NAL, and such upregulation has been reported in response to chronic exposure to opiate antagonists (Tempel, Gardner, & Zukin, 1985; Paden, Krall, & Lynch, in press). Therefore, the results reported here are consistent with the view that EOP's are involved in taste-motivated behavior and that externally induced changes in the opioid system may cause corresponding changes in sensitivity to ingestive stimulation.

Related to this notion of receptor upregulation is the high intake volume which was maintained by the NAL-treated animals who were offered sucrose (in experiment 1) 10 days following removal of the drug. In Figure 1 it is evident that the mean daily intake for this group was higher than the intake of the control animals during their first 10 days of ingestion, and this may indicate either that the receptors remained upregulated for this relatively long period of time, or that the hypersensitivity of the system was important for the initial learning of the taste preference but not for the maintenance of it. Support is lacking for the idea that the receptors remained upregulated, however, in light of a recent study which found that opioid receptor densities which were increased by long-term exposure to naltrexone returned to basal levels after only 6 days following termination of drug treatment (Tempel, et al., 1985). Thus, a more plausible explanation for the maintenance of the heightened intake is that the hypersensitivity of the receptor system is important for the acquisition but not the maintenance of
Another interesting finding is the consistently higher intake volumes by those animals drinking sucrose compared to those drinking saccharin. This held true for the control animals (when treated with SAL or NAL), and also for the NAL-treated animals once the antagonist was removed. This may suggest that there is a fundamental difference in the opiate system's response to nutritive and non-nutritive substances or it may simply indicate that these two sweeteners are preferred to different degrees.

The results also support the idea that the connection between the opioid system and ingestive behavior is not merely one of gustatory stimulation causing the release of endogenous opiates or, conversely, EOP release inducing intake. This is evident in the finding that the administration of NAL after a preference had already been established did not completely eliminate the drinking behavior (as it did prior to preference learning); complete suppression of preferred intake would be expected if this connection were a direct one. Instead, the results are consistent with a learning explanation of acquired taste preferences, which is further discussed below.

Experiment 2 investigated the role of EOP's in ingestion from the opposite perspective: the facilitation of intake following the administration of opioid agonists. The literature dealing with the use of agonists indicates that the connection between ingestion and opioid receptor activation is not a direct one (Reid, 1985). In addition, it has been reported that the kappa-opioid receptor subtype is particularly involved in taste-motivated behavior (Locke, Brown, &
Holtzman, 1982; Cooper, et al., 1985). Therefore, in this experiment the effects of two doses of a specific kappa agonist and a mu agonist on intake were measured.

In agreement with previously reported findings (Locke, et al., 1982) the mu agonist had a slight suppressant effect across all 10 days of drug treatment (although this effect was not statistically significant). The high dose of the kappa agonist U-50,488H stimulated intake above the control level but only for 3 days in the middle of the treatment period, and after this the level of intake quickly tapered off. Five days after removal of the drugs there were no significant differences in intake between the morphine, U-50H, and saline groups. The results are different, however, for the animals which received a low dose of U-50,488H (U-50L). This group had mean intakes consistently above controls over the entire 15 days of the experiment, which includes the period following drug removal (days 11-15). These results indicate that a low dose of the kappa agonist, delivered in association with the opportunity to drink a sweet solution, consistently enhances intake. The finding that a specific type and dose of agonist facilitates intake is encouraging, but even more intriguing is the finding that this enhanced intake is maintained for five days following removal of the agonist. This seems to indicate that the presentation of exogenous opioids concurrently with preferred substances greatly facilitates the learning of preferences, and further, once this learning has taken place the opiates are no longer necessary for maintenance.

There was an unexpected drop in intake for one test period
following removal of this low dose of U-50,488H. However, the previous level of intake was regained in only four days such that the drop may have been due to stimulus generalization decrement, that is, a temporary disruption of behavior in response to experimental change. Again, the fact that the U-50L group maintained its high level of intake even in the absence of the agonist drug implies that opioids which are presented contiguously with preferred substances facilitate the learning of preference for those tastes, but these elevated levels of opioids are not necessary for the maintenance of the preference.

The working hypothesis throughout this research has been that the EOP's act to reinforce the learning of taste preferences, which may later be maintained in the absence of the exogenous opioids or in the presence of opioid antagonists. This hypothesis was supported by the results of Experiments 1 and 2. A logical follow-up question, then, is under what stimulus conditions are the EOP'S released? Experiment 3 addressed this question by means of a completely different paradigm which used pain sensitivity as an indirect measure of the release of EOP's in response to ingestive events. Some studies have indicated that such release occurs in response to ingestion (Lieblich, et al., 1983) while others report release when palatable foods are expected (Dum & Herz, 1984). This research does not indicate, however, whether the release is maximal in response to ingestion or in response to the expectation of ingestion. Therefore, this issue was investigated in Experiment 3.
The release of endorphins was assessed in Experiment 3 by measuring changes in pain sensitivity as a result of ingestion or of the expectation of ingestion. If an increase in sensitivity was found, and this was reversed by naloxone, then it could be inferred that endogenous opioids had been released. No systematic differences in analgesia were found between the groups. Subsequent manipulations, however, did produce some interesting results that suggest analgesia is affected by ingestion. In this case, the finding that analgesia was detected only in those animals who were tested immediately after intake suggests that the phenomenon is short lived. In other words, the data indicate that ingestion of sweet solutions causes a release of EOP's, resulting in increased analgesic responses, but that this EOP effect disappears quickly.

An important direction for further research to take, then, is the measurement of EOP release just prior to, during, and immediately following a drinking bout. Such studies would increase our understanding of when (and under what stimulus conditions) opioids are released. Once the temporal patterns of EOP release are clarified, it is anticipated that such information would provide support for the hypothesis that opioid peptides reinforce ingestive behaviors, thereby encouraging the continuation of feeding in specific situations.
REFERENCES CITED

Endogenous opioids and feeding in the male rat