Cost-volume relationships in locally owned Montana cooperative elevators
by Edward L Hanson

A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Master of Science in Agricultural Economics
Montana State University
© Copyright by Edward L Hanson (1959)

Abstract:
The purpose of this study is to analyze the economic efficiency of resource use in Montana cooperative grain elevators. This study shows the cost-volume relations in country elevators in this state. The study supplies information to elevator managers regarding costs of operation and suggestions for increasing efficiency and net gains.

Part I introduces the problem and objectives of the research. It also indicates the area and limitations of the study and the hypothesis formulated from the objectives.

Part II contains the analysis of the data and the relationship of volume upon costs of operation and margins. The influence of sideline operations upon elevator operation is analyzed and discussed. It was found that as volume of grain handled was increased the average cost per bushel decreased. Also significant is the fact that as receipts of an elevator increase gross margins may be lower since costs of operation are lower with higher volumes.

Part III discusses the implications of the data presented in Part II relative to other elevators, new elevators, and in relationship with other areas. Recommendations for increased savings are made in this section along with some theoretical modifications.
COST-VOLUME RELATIONSHIPS
IN
LOCALLY OWNED MONTANA COOPERATIVE ELEVATORS
by
EDWARD L. HANSON

A THESIS
Submitted to the Graduate Faculty
in
partial fulfillment of the requirements
for the degree of
Master of Science in Agricultural Economics
at
Montana State College

Approved:

Head, Major Department

Chairman, Examining Committee

Dean, Graduate Division

Bozeman, Montana
March 1959
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>PART I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Problem Situation</td>
<td>1</td>
</tr>
<tr>
<td>Objectives of the Study</td>
<td>5</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>6</td>
</tr>
<tr>
<td>Area and Limitations of the Study</td>
<td>6</td>
</tr>
<tr>
<td>Procedure</td>
<td>7</td>
</tr>
<tr>
<td>Theoretical Considerations</td>
<td>8</td>
</tr>
<tr>
<td>PART II. THE ANALYSIS</td>
<td>12</td>
</tr>
<tr>
<td>Operational Techniques</td>
<td>12</td>
</tr>
<tr>
<td>Cost-volume Relationships</td>
<td>15</td>
</tr>
<tr>
<td>Cost of Labor Input</td>
<td>22</td>
</tr>
<tr>
<td>Depreciation Expense</td>
<td>25</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>26</td>
</tr>
<tr>
<td>Margins</td>
<td>28</td>
</tr>
<tr>
<td>Gross Margins</td>
<td>28</td>
</tr>
<tr>
<td>Net Margins</td>
<td>29</td>
</tr>
<tr>
<td>Sideline Operations</td>
<td>32</td>
</tr>
<tr>
<td>PART III. IMPLICATIONS</td>
<td>35</td>
</tr>
<tr>
<td>Application to Other Elevators</td>
<td>35</td>
</tr>
<tr>
<td>Impact on New Elevators</td>
<td>35</td>
</tr>
<tr>
<td>Relationship to Other Areas</td>
<td>38</td>
</tr>
<tr>
<td>Recommendations for Increased Savings</td>
<td>38</td>
</tr>
<tr>
<td>Theoretical Modifications</td>
<td>39</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Growth in Capacity of Montana Grain Elevators, 1930-1954</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>The Formation of a Long-run Average Cost Curve From a Series of Short-run Average Cost Curves</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Derivation of Long-run Economies of Scale Curve From Short-run Cost Curves</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Operational Costs and Margins Per Bushel Received at Country Elevators</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Cost and Margin Relationships for Grain by Elevator Capacities</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Costs and Margins for Grain by Bushel Capacities of Country Elevators</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Margins and Costs of Sidelines in Relation to Elevator Capacities</td>
<td>33</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>I</td>
<td>COSTS AND MARGINS BY ELEVATOR CAPACITIES</td>
<td>23</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The author wishes to express thanks and appreciation to Dr. C. R. Harston for his encouragement, guidance, and critical review throughout the writing of this thesis. Special thanks are extended to Mr. William J. Ewasiuk and Mr. Pius Weisgerber, the other members of the thesis committee, for their helpful suggestions and criticisms.

Thanks are due to Mr. J. M. Waber and Mr. Ted Martin of the Farmers' Union Grain Terminal Association of Great Falls, Montana for their help and cooperation in the early stages of this project. I wish to thank all of the grain elevator managers for their time, help and consideration while taking the schedules used in this study. Appreciation is extended to the Farmer Cooperative Service, United States Department of Agriculture, who designed the schedules and financed this study.

Any errors or omissions in this study are the responsibility of the author.
ABSTRACT

The purpose of this study is to analyze the economic efficiency of resource use in Montana cooperative grain elevators. This study shows the cost-volume relations in country elevators in this state. The study supplies information to elevator managers regarding costs of operation and suggestions for increasing efficiency and net gains.

Part I introduces the problem and objectives of the research. It also indicates the area and limitations of the study and the hypothesis formulated from the objectives.

Part II contains the analysis of the data and the relationship of volume upon costs of operation and margins. The influence of sideline operations upon elevator operation is analyzed and discussed. It was found that as volume of grain handled was increased the average cost per bushel decreased. Also significant is the fact that as receipts of an elevator increase gross margins may be lower since costs of operation are lower with higher volumes.

Part III discusses the implications of the data presented in Part II relative to other elevators, new elevators, and in relationship with other areas. Recommendations for increased savings are made in this section along with some theoretical modifications.
PART I

INTRODUCTION

Problem Situation

Many changes have occurred in the techniques of producing and marketing grain during recent years. These changes have been particularly pronounced for wheat which is the principal agricultural commodity in Montana.

Technological changes developed during recent years have had a tremendous effect on our grain marketing structure. A change of major importance is the reduction in the length of time required to harvest and to deliver the grain to country elevators. The introduction of self-propelled combines and the increased use of trucks which take the grain directly from the combines to the elevators has speeded the flow of grain into marketing channels. The increased use of migratory harvesting crews who furnish all of the necessary machinery and equipment has further decreased the amount of time necessary for harvesting with the result that grain elevators are now required to handle more grain in a much shorter period of time.

Harvest time congestion at country grain elevators is a common problem in Montana. As a result, grain elevators have had to expand in size and increase handling efficiency.

Studies were made by the Farmer Cooperative Service in which costs for farm and elevator storage were examined in Oklahoma, North Dakota, and Indiana. Elevator storage was found to be less expensive than farm storage and more convenient from the marketing standpoint since grain could
be sold and delivered any day the farmer should choose, regardless of weather conditions and with less labor effort.\(^1\)

Government grain programs have increased the farmer's need for additional storage capacity. Larger storage facilities are also needed to enable farmers to store large crops until a short crop year when they can take advantage of the income tax structure.\(^2\) By storing grain from one year to the next, the farmer is able to spread his tax liability over a period of two years. Montana elevator managers are also interested in additional storage capacity enabling them to take advantage of the government storage programs. In recent years, commercial firms have been induced to build new and larger storage facilities. Easy money policy, guaranteed occupancy, and rapid depreciation write-off have been particularly influential.\(^3\)

The trend toward larger storage capacity has been pronounced. In Montana, 95 percent of the licensed commercial elevators had a capacity of less than 50,000 bushels in 1930, and only five percent had a capacity of more than 50,000 bushels (see Figure 1). In 1954, 42 percent of Montana's licensed elevators had a capacity of less than 50,000 bushels, and 58 percent had a 50,000 bushel capacity or more. The average size of

\(^1\) Thomas E. Hall, *Changing Grain Storage Costs, Farm vs. Elevator*, Farm Credit Administration Circular C-151, United States Department of Agriculture, Washington, D. C., 1953.

\(^3\) Ibid., p. 12.
commercial storage facilities in Montana increased from 34,000 bushels in 1930 to 80,000 bushels in 1954. Many Montana elevator managers and their boards of directors are considering additional storage capacity, ranging from 50,000 to 100,000 bushels.

![Figure 1. Growth in Capacity of Montana Grain Elevators, 1930-1954.](image)

The trend for larger storage capacity has been important because the larger the capacity of the grain elevator the larger the volume of grain it can handle. By increasing the volume of grain, an elevator can take advantage of certain efficiencies of operation which will reduce costs.

Some important items which increase efficiency are larger legs, bigger grain dump pits, and automatic equipment which is practical with large volumes.

Cooperative as well as independent elevator managers must select the combination of grain merchandizing activities, sideline operations and storage services that will be most profitable. Efficient use of labor is also an important factor which must be considered in the expansion of any business.

Operational efficiency may be increased by diversification within the grain elevator operation. Size of elevator will be important in regard to sideline operations, costs, and savings.

Most Montana elevators transact sideline operations in addition to their grain merchandizing and grain storage function. These sidelines usually consist of sales of feed, petroleum products and miscellaneous farm supplies. The introduction of sideline sales may reduce the variability in total income to elevators. Large cooperative sales organizations and farm supply dealers are interested in expanding sideline sales in grain elevators since sales to elevators provide additional outlets for them.

Research Problem

Elevator managers in Montana need information that will enable them to appraise the influence of plant size and the volume of sideline activities on the cost of operating country elevators. The economic problem
of Montana cooperative grain elevators can thus be stated in terms of economic efficiency criteria.

The efficiency of country elevators in performing the services of assembly, storage, conditioning, shipping, reflecting supply-demand relationships and to a limited extent price discovery has a direct impact on the returns to producers.

The problem this study is concerned with is the economic efficiency of resource use in Montana cooperative grain elevators. Local cooperatives include 12 percent of the elevators in Montana. There are a total of 400 country elevators in the state. Inferences drawn from a study of cooperatives may relate to all country elevators in the state.

Cooperative grain elevators are owned by the farmers. The farmer owners elect a board of directors who in turn hire a manager to operate their business. The farmer member who delivers his grain to the cooperative shares in the profits or net margins in accordance with the amount of grain he delivers to the elevator. This share is returned to the farmer in the form of patronage refunds. It is important that the members elect qualified men with good business backgrounds to their boards of directors and demand that the boards hire qualified individuals to manage their elevators. Therefore the distinguishing feature of cooperatives is that the farmers own the cooperative elevator and share the net gain.

Objectives of the Study

1. To study facilities, operational techniques, services and costs of independent cooperatives in Montana.
2. To make an economic analysis of relationships between costs and facilities, operational techniques and services.

3. To determine possible ways of increasing operational efficiency of grain elevators.

Hypothesis

Country elevator operating costs are directly related to plant size, volume of sideline operations, and volume of grain moving through the elevator into marketing channels.

Area and Limitations of the Study

The area under consideration is the entire State of Montana. Data were obtained from elevators located primarily in the northern and eastern portions of the state. These areas are the major wheat producing regions in Montana and are primarily dryland farming areas.

It becomes necessary to point out several limitations when working with a broad study of this nature: (1) the time available for the research; (2) the inaccuracies of personal estimates; (3) practically no previous research on cost-volume studies of grain elevators in Montana; and (4) allocation of costs to the various activities may be difficult since existing facilities and available labor may be used to operate sideline activities.

\[1\] The term "existing facilities" in this study means the space and equipment which is in existence and was not specifically installed to handle sidelines.
Procedure

This study is concerned with cooperative grain elevators. Data were available from schedules taken from the Farmer Cooperative Service, United States Department of Agriculture.

Managers of all independent (local board of directors) cooperative grain elevators in Montana were contacted by personal interview during the summer of 1957. Data were obtained for their 1956-1957 fiscal year regarding costs of operation, volume of grain handled, type of facility, services performed and volume of sideline operations.

Fifteen of the 48 elevators contacted were selected and data used in making the cost analysis in Part II. The 15 were selected because the schedules for them contained complete financial statements. The financial statements were analyzed to determine the relationships between cost for handling grain receipts and cost for sideline operations and their effect upon type of facility, operational techniques and data other than specific costs were obtained from the schedules for the total of 48 elevators.

Margins gained on both the grain operation and sideline operations were computed and related to size of elevator, volume of grain receipts, and sideline operations.

Implications are made regarding the usefulness of the observations to new elevators, to elevators other than cooperatives, and to elevators in other areas of the United States. Some implications of the significance of sidelines along with the grain merchandizing and storage functions of grain elevators is presented.
Average costs of handling grain receipts were calculated and divided into three categories: (1) labor, (2) depreciation expense, and (3) operating expenses. The combination of these costs is the total cost of handling grain receipts. Cost curves are drawn approximating the average cost for labor, depreciation, operation expenses and total average costs.

Costs are related to the gross and net margins of the firms. These firms are classified into the following capacity sizes: under 100,000 bushels; 100,000 to 200,000 bushels; 200,000 to 300,000 bushels and those over 300,000 bushels.

Theoretical Considerations

Assumptions necessary to the theoretical considerations are a single firm takes such a small proportion of the total amount of any resource that it cannot influence resource price; firms can get all they want of any one resource at a constant price.

Costs can be divided into short-run and long-run costs. The short-run is a time period so short that the firm is unable to vary the quantities of some resources used. The short-run is then any time period between that in which no resources can be varied in quantity and that in which all resources but one are variable.

In the short-run costs can be divided into fixed costs and variable costs. Fixed costs are those costs or expenses which must be met regardless of volume turnover or whether any business is conducted. Some fixed costs to grain elevators are the costs of depreciation, interest, director's

fees, lease and rent expense, scale inspection and managers salaries. Salaries for other employees can be considered partially variable because an employee can be discharged if necessary to cut expenses when business declines. However, most elevators require at least one additional man besides the manager throughout the year.

Variable costs are those costs incurred for variable resources which fluctuate in relationship to the volume of business. Some of the variable costs incurred by grain elevators are part-time labor expense, heat, power, repair costs, telephone and telegraph expense above the monthly minimum rate, truck expenses, donations, operating supplies and travel expenses. Variable costs increase as the firm’s volume increases because larger volumes require larger quantities of the variable resources.

Each elevator has a physical maximum capacity, and it would be difficult to handle additional grain above this maximum. At this point the variable cost curve would rise sharply. Factors which govern maximum capacity are actual elevator capacity, size of legs, size and number of dump pits, capacity of load-out scale, availability of railroad cars and trucks to transport grain to market and terminal storage, availability of terminal storage and amount of elevator space occupied by stored grain.

The long-run would be a period of time long enough for the firm to be able to vary the quantities of all resources used. There are no fixed costs -- all costs are variable. The long-run for grain elevators would probably be a year or more as it takes time to increase the capacity by
building a new main house or an annex. Management is another factor which is not readily variable.

Figure 2 shows a long run average cost curve formed by a series of short-run average cost curves along which the firm can move over a length of time. The long-run average cost curve shows the least possible cost per unit of producing various outputs when the firm has time to build any desired scale of plant. The short-run average costs curves represent various scales of plants to which the firm can move over the long-run. The long-run average cost curve is called an envelope curve.1/

![Diagram](image)

Figure 2. The Formation of a Long-run Average Cost Curve From a Series of Short-run Average Cost Curves.

1/ Ibid., p. 150.
The long-run average cost curve is usually thought to be U-shaped. In the long-run, increases in output are achieved by construction of larger scales of plants. If the long-run average cost curve decreases as output increases, it means that successively larger scales of plants are more efficient than the smaller ones. This is true until at a given scale of plant, costs are at a minimum. Beyond this minimum long-run average costs increase, meaning that successively larger scales of plants becomes less efficient.\(^1\) This is referred to as the area of diseconomies of scale and results from difficulties of coordination and control which reduces the efficiency per dollar outlay on management as the scale of plants is increased, per unit costs of production will increase.\(^2\)

When the scale of plants has become sufficiently large for diseconomies of scale to become apparent, the long-run average cost curve turns upward to the right. However, as the minimum cost point of a plant is reached a larger scale plant may be constructed through advanced technology and the area of diseconomies of scale may never be reached.

Part II describes various scales of size for Montana grain elevators. Long-run average cost curves (economies of scale curves) are used to represent the relationship between costs and size of operations.

\(^1\) Ibid., p. 152.
\(^2\) Ibid., p. 154.
PART II

THE ANALYSIS

Operational Techniques

Montana's grain market outlets divide the state into two areas. One area is the western part of the state where the majority of the grain is shipped to the West Coast; the other is eastern Montana with Minneapolis as its primary market.

Grain elevator managers in western Montana associated with the Grain Terminal Association sell in 500 bushel lots to the Association on the day of purchase. Those in eastern Montana attempt to sell primarily on a to-arrive basis through grain brokerage firms; although some may also sell in 500 bushel lots on the day of purchase to the Grain Terminal Association in Great Falls for movement to the West Coast markets. Those in eastern Montana also sell futures in order to hedge their purchases where those in western Montana sell only cash grain. Some of Montana's independent cooperatives market through grain brokerage firms which hold seats on the grain exchange. Others market through regional cooperatives which are also members of the grain exchange.

All Montana cooperatives provide storage services for their patron members. Through arrangements with grain brokerage firms and regional cooperatives, terminal storage facilities are available to the country elevators thus increasing their storage capacity.
In Montana, elevators must charge "four cents per bushel for all grains except flax for receiving, grading, weighing, elevating, and insuring 15 days or part thereof free storage and delivering to the owner. For flax, the charge is five cents per bushel."¹ Two cents per bushel is charged for cleaning grain at the request of the owner, in which case screenings are delivered to him. The legal charges for storage are 1/30 of one cent per day per bushel for storage after the period of free storage has elapsed.²

Most elevators do some processing, namely cleaning and treating grain for seed. Other processing, such as feed manufacturing, grinding, and mixing, is conducted by only a few organizations.

Insect infestation and quality deterioration from excessive moisture content is a minor problem in this state, since Montana has a dry climate. Most elevators are not equipped with dryers and therefore the managers refuse to accept grain with a high moisture content for storage. Elevator managers fumigate about once a year at a time when their bins are empty.

The size of the trade area for Montana grain elevators is dependent upon geographical features; such as rivers, mountains and towns. The size of the trade area varies from a radius of two to three miles to 100 miles. The average radius of the trade area is 19 miles.

² Layton Thompson, op. cit., p. 29.
Three of the 48 elevators visited had branch houses. Two of the cooperatives utilized their branches to a large extent but the third filled the branch house at harvest with long term storage grain. Since the branch house in the latter case is only four miles away, an addition to the main elevator would be more efficient.

During the fiscal year 1956-1957 most of the elevators reported increased volume which was attributed to the redemption of Commodity Credit Corporation loans on wheat. Some elevators experienced decreased volume because of extremely dry weather.

Most of the elevators studied had automatic load-out scales. The majority of these were of 10 bushel capacity. However, some still have hopper scales which are not as efficient as the automatic scale.

The average receiving capacity for the elevators surveyed was 2,955 bushels per hour. The average loading out capacity was 2,563 bushels per hour. The receiving capacity of an elevator is governed by the size of the dump pit and capacity of the legs which carry the grain from the dump pit to the bins. The loading out capacity is governed again by the leg capacity but more important by the loading out scale. The larger the loading out scale the faster the grain can be loaded for shipment. An automatic load out scale allows for speedier loading.

There was a small amount of flat grain storage in use. Where flat storage was used, it contained long term storage grain such as the stored under government programs. One elevator had a considerable amount of flat storage and as a result had high handling costs per bushel.
Cost-volume Relationships

The percentage of income received from the grain operation for each elevator, was determined by dividing gross income for the grain operation (margins from grain sales, storage income and other income related to the grain operation as distinguished from sideline operations) by the total gross income of the elevator. The grain operation and the sideline operation were charged with those expenses which could be directly assigned. The expenses which could not be specifically assigned to the grain operation were allocated according to the proportion of total income received from grain; the balance being allocated to sideline operations. The total expenses allocated to grain were then divided by bushel receipts yielding the average cost per bushel for handling total grain receipts for each elevator in the sample. The average costs for labor, depreciation and operating expenses were computed and allocated in an identical manner.

The allocation of costs between various functions presents many problems to the analyst. First is the problem of determining which costs can be charged directly to the various operations. Another is to determine how to allocate those costs which cannot be charged directly to the various operations.

In analyzing costs in this study, we should remember that the output of a given scale of plant is most efficient when the average cost is lowest.
Here the cost of the inputs of resources per unit of output of product is least.¹

Figure 3 shows possible short-run cost situations (dotted lines) faced by elevators as they expand in the long-run (solid line). The exact shape of the short-run cost curves is unknown. Only that these curves are tangent to the long-run economies of scale curve at points A, B, C and D.

You will notice that the short-run curves are not tangent to the economies of scale curve at their low points. This is to indicate that a firm anticipating expansion does not theoretically operate at the point of minimum cost. They normally operate in the area of decreasing costs.

Point D on the long-run curve is the last point for which data were available to calculate and the shape of the curve beyond this point is unknown but is believed to be decreasing at a decreasing rate.

Figure 4 illustrates the relationship of bushel receipts or annual grain volume to grain expenses for the fiscal year 1956-1957. As grain volume increased average costs per bushel for handling grain tended to decrease. Contrary to the traditional approach of the gradual sloping, envelope shaped, long-run average cost curves described in Part I, costs drop sharply when volume is increased at the lower levels. When the higher volumes are reached costs decrease at a decreasing rate. Data were not available regarding costs beyond a volume of 2.25 million bushels but it is believed that costs continue to decrease at a decreasing rate.

Figure 3. Derivation of Long-run Economies of Scale Curve From Short-run Cost Curves.
Figure 4. Operational Costs and Margins Per Bushel Received at Country Elevators.
until an unknown point of maximum efficiency is reached. Beyond this
point is the area of decreasing returns to scale (increasing costs) accord­
ing to the traditional approach. However, this area of decreasing returns
to scale may never be reached, as increased technology may open new areas
of economies of scale which are unknown at the present time. Total aver­
age costs decreased from 9.7 cents per bushel for elevators with an aver­
age volume of 190,000 bushels to 3.1 cents when volume exceeded two million
bushels.

Figure 4, also depicts the relationship of gross and net margins to
bushel receipts. Gross margins for the small volume elevators are high,
for elevators with average receipts of 241,748 bushels the gross margin is
14.1 cents per bushel decreasing to 7.5 cents when the receipts reach
339,305 bushels. There is a slight increase to 8.9 cents when receipts
are 926,765 bushels and a drop to 5.9 cents when receipts are 2,209,416
bushels.

Net margins follow a similar pattern as the gross margins with the
low volume elevators having fairly high net margins. This is perhaps
from taking too high a gross margin in the beginning. Net margins for an
elevator having average receipts of 231,855 was 6.1 cents per bushel, de­
creasing to 3.7 cents when receipts increased to 298,188 bushels, and to
1.3 cents when receipts increased to 299,856 bushels. There was an in­
crease in net margins to 3.6 cents when receipts increased to 926,165
bushels and to 2.0 cents when receipts were increased to 2,209,416 bushels.

Gross margins of necessity have to be high when an operator expects
to have high operational costs. However, from the spread indicated above
it appears some managers are taking a higher gross margin than may be necessary. Net margins are the difference between gross margins less the operational costs. These are distributed to the patrons in the form of patronage dividends.

Figure 5 shows the average cost relationships by bushel capacities. For those elevators under 100,000 bushel capacity, total average costs were 7.60 cents per bushel received; for those with capacities from 100,000 to 200,000 bushels, total average costs were 7.02 cents; for the 200,000 to 300,000 bushel houses, total average costs were 5.80 cents; and for those elevators over 300,000 bushels in capacity, total average costs were 3.85 cents.

Volume is a determinant of elevator cost; as volume increases, average cost per bushel should decrease. Yet the volume an elevator can handle is dependent on many things, i.e., the capacity of the elevator, efficiency of equipment and labor utilization, availability of terminal storage which in turn is dependent on the transportation facilities needed to reach the terminal storage. There is usually a railroad car shortage during the harvest season creating a big problem for the elevator managers. Weather is perhaps the biggest determining factor of volume as in time of a drouth in the area, volume will be very low, therefore, increasing the average cost of handling each bushel of grain receipts.

An excellent example of what can happen to an elevator when a drouth hits the area causing receipts to drop to 89 percent of elevator capacity, is what happened in one case under study during the 1956-1957 fiscal year.
Figure 5. Cost and Margin Relationship for Grain by Elevator Capacities.
The average cost per bushel received was 20.3 cents, where it would have been approximately 7.3 cents — if the receipts had been 2.5 times the capacity of the elevator. This situation proved to be unusual again in that the elevator showed a net gain of 10.3 cents per bushel, resulting primarily from storage and handling income. Approximately half of this came from storage of Commodity Credit Corporation grains and the balance from an increased gross margin.

Cost of Labor Input

Cost of labor input per unit of output decreased as the total elevator volume increased. Figure 4 shows the downward sloping average cost curve for labor as receipts increased from 170,000 bushels to over two million bushels. The average cost for the elevators in the lower group was 4.7 cents per bushel decreasing to 1.3 cents for the large volume elevators.

The average cost of labor per bushel of grain received by the sample of 15 elevators was 2.5 cents. This was 37 percent of the total average cost of 6.8 cents (see Table I).

The average cost varied from a high of 3.3 cents per bushel for the elevators of less than 100,000 bushel capacity to 2.04 cents for those of 100,000 to 200,000 bushels; 1.1 cents for those of 200,000 to 300,000 bushels to 1.6 cents for those having a capacity over 300,000 bushels.

The data shows that the cost of labor increased from those elevators above 300,000 bushels in capacity by 0.5 cents. There is a drop in labor costs of almost 1.0 cents per bushel between the 100,000 to 200,000
TABLE I. COSTS AND MARGINS BY ELEVATOR CAPACITIES.

<table>
<thead>
<tr>
<th>No. of Firms</th>
<th>Elevator Capacity</th>
<th>Bushel Receipts</th>
<th>Average Cost Per Bushel Received (Cents)</th>
<th>Margins per Bu. Received (Cents)</th>
<th>Margins and Expenses Sideline Operations (Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bushels</td>
<td>Average Lbr.</td>
<td>Depr. Opr. Total</td>
<td>Gross Net</td>
<td>Gross Expenses Net</td>
</tr>
<tr>
<td>7</td>
<td>Less than 100,000</td>
<td>247,534</td>
<td>3.3 1.3 3.3</td>
<td>7.6</td>
<td>11.44 3.8</td>
</tr>
<tr>
<td>5</td>
<td>100,000 to 200,000</td>
<td>432,694</td>
<td>2.04 1.32 3.38</td>
<td>7.02</td>
<td>11.31 4.47</td>
</tr>
<tr>
<td>1</td>
<td>200,000 to 300,000</td>
<td>900,570</td>
<td>1.1 1.5 3.1</td>
<td>5.8</td>
<td>8.6 2.7</td>
</tr>
<tr>
<td>2</td>
<td>Over 300,000</td>
<td>1,621,194</td>
<td>1.6 .5 1.7</td>
<td>3.85</td>
<td>7.85 4.0</td>
</tr>
<tr>
<td>15</td>
<td>Total Average 139,400</td>
<td>532,411</td>
<td>2.51 1.22 3.1</td>
<td>6.8</td>
<td>10.72 3.98</td>
</tr>
</tbody>
</table>
bushel units of the 200,000 to 300,000 bushel houses. This is true because the lone observation for the 200,000 to 300,000 bushel class was an example of an extremely efficient operator. With more than one observation in this area the average cost of labor would fall somewhere between 2.04 cents and 1.60 cents per bushel.

Whenever an elevator can increase its volume without additional labor, the average cost of labor per bushel of receipts will decrease.

Table I indicates that those elevators with the higher volumes had decreasing average costs and lower labor costs per bushel. These larger volume elevators with lower labor costs paid higher wages both to their managers and to other employees.

Manager's salaries varied as follows: an average of $4,414 a year for elevators under 100,000 bushels; $4,860 for those with a capacity of 100,000 to 200,000 bushels; $6,000 a year for the 200,000 to 300,000 bushel houses; $6,900 for those with a capacity of over 300,000 bushels. In addition to these annual average wages, the majority of the cooperatives gave their managers a bonus in the form of a percentage of the elevator net gain.

Some elevator managers keep certain personnel such as the second man on the payroll during the slack months of the year in order to be assured of qualified help during the rush of harvest.

Most elevators employ a second man who does the general elevator work and is in charge when the manager is away. The average annual wage for these people averaged as follows: $3,450 for elevators under 100,000 bushels in capacity; $3,900 for both the 100,000 to 200,000 and the
200,000 to 300,000 bushel elevators; those over 300,000 bushels in capacity paid their second man $4,100 per year. Like the managers, the second man usually shared in the cooperative's net gain.

This indicates that low labor cost does not necessarily mean that the elevator pays low wages.

Depreciation Expense

Depreciation is usually listed as a fixed cost to a business. It is analyzed separately in this study since it represents one of the major costs of operation for the grain elevators studied.

Depreciation expense variations are associated with the ages of the elevators. Some older elevator buildings are entirely depreciated. However, most elevators have some depreciation expense on their books at all times since they are continually adding new equipment which must be written off as it depreciates. Some older elevators show sizeable depreciation costs because they have new additions which require depreciation reserves.

The average cost of depreciation per bushel of receipts for the 15 elevators was 1.22 cents or 18 percent of the total average cost of 6.80 cents per bushel received (see Table I).

The average cost of depreciation per bushel for the elevators having under 100,000 bushel capacity was 1.30 cents; for those between 100,000 and 200,000 bushels, the average cost was 1.32 cents; for the 200,000 to 300,000 bushel houses, the average cost was 1.50 cents; and for those
over 300,000 bushels, the average cost reached a low of 0.50 cents per bushel (see Figure 5).

The figures indicate depreciation costs rise for the elevators having between 100,000 and 300,000 bushel capacity. The majority of the elevators in this area have expanded in size recently, therefore, they have new buildings and new equipment which must be written off over a period of time causing depreciation costs to rise.

Operating Expenses

Operating expenses include all other expenses with the exception of labor and depreciation whether the expenses are fixed or variable.

Cost of insurance and surety bonds constitute the major portion of the operating expense. Besides insurance, some other items which are included as operating expense are: auditing, telephone and telegraph, office supplies, heat, light and power, advertising, lease and license, personal property taxes, travel expense, donations, scale inspection and protein testing.

Insurance costs are directly related to type of structure. Each elevator is considered separately in calculating insurance rates. Type of structure is of primary importance, i.e., a wood cribbed elevator would carry a higher rate than a concrete or steel structure. Type of equipment is considered and whether the elevator has an automatic sprinkling system. Location of the elevator must be considered in relation to other highly inflammable business or buildings. Whether the town in
which the elevator is located has a fire department and the type of fire fighting equipment is also considered in calculating the insurance rate.

Operating expense other than labor and depreciation for the 15 elevators averaged 3.1 cents per bushel or 45 percent of the total average cost allocated to the grain operation (see Table I). The high for the group was 5.2 cents per bushel for an elevator with receipts of 269,000 bushels. This particular house had extremely high advertising costs which amounted to twice the average for the size group. The low was 1.5 cents for a house with receipts in excess of two million bushels.

Advertising costs may seem an odd expense for a grain elevator but all elevators are doing some advertising. Among their advertising expenses are costs for calendars and the annual promotion campaign to encourage farmers to vote "yes" on the annual referendum for production limits and marketing quotas. If an elevator sells feed or other merchandise they do some advertising to attract new customers.

The average operating expense by capacity groups was as follows: under 100,000 bushel, 3.30 cents per bushel; 100,000 to 200,000 bushel group, 3.38 cents; 200,000 to 300,000 bushel group, 3.10 cents; and 1.7 cents per bushel for those with a capacity of over 300,000 bushels.

All of the grain elevators under 100,000 bushels in capacity were wood cribbed structures. Those in the group between 100,000 and 200,000 bushels in capacity were all wood cribbed except for one which had a 30,000 bushel cribbed house and two concrete tanks of 40,000 bushels each. This particular elevator had much lower insurance costs than the other four. Therefore, it is safe to say the cause of the increase in
operating expenses of 0.08 cents between those units under 100,000 and those from 100,000 to 200,000 bushels can be attributed to increased insurance costs for the cribbed elevators. Another contributing factor is that when the 100,000 to 200,000 bushel houses were expanded to their current size, many of them failed to increase leg capacity and the size of their dump pits which would result in inefficiencies and increased operating expenses.

Costs of operation of any business are influenced by the extent to which facilities are utilized. Facilities must be fully utilized in order for the elevator to operate efficiently and economically. Grain elevators have many fixed costs which must be paid regardless of the extent to which the facilities are used.

Margins

Margins can be divided into two groups, gross margins which are those margins available for expenses, and net margins which are those margins after expenses and available for patronage refunds.

Gross Margins

Gross margins are income from sales plus inventory less acquisition costs and storage liability. Gross buying margin is the difference between current market price and the price the elevator will pay for the grain. Gross margins or gross income per bushel before expenses tended to move downward from relatively high margins for the low capacity elevators to the lower gross margins for the higher capacity
elevators (see Figure 6). The larger the elevator the smaller the per bushel margin required to cover costs of operation.

Gross margins for the 15 elevators averaged 10.72 cents per bushel received. Separated into capacity groups, those under 100,000 bushel capacity had averaged gross margins of 11.44 cents per bushel; those of 100,000 to 200,000 bushels were 11.31 cents per bushel; the 200,000 to 300,000 bushel groups were 8.60 cents; and those over 300,000 bushel capacity had gross margins of 7.85 cents per bushel (see Table I).

The larger the storage capacity of the elevator, the larger the total grain receipts it can handle thus expecting lower total costs per bushel. Therefore, it can offer a higher original cash price for the grain purchased rather than returning net margins to the farmer in the form of patronage refunds.

Net Margins

Net margins vary because of their dependence upon the total costs of the operation as well as total receipts. The net margins are the difference between gross margins and total costs and are returnable to the farmer patron in the form of patronage refunds.

Net margins shown both in Table I and Figure 6 are the average net margins for the various capacity groups. Those elevators with a capacity under 100,000 bushels had a gross margin of 11.44 cents per bushel and average costs of 7.60 cents leaving a net margin of 3.80 cents per bushel available for patronage refunds. The elevators in the 100,000 to 200,000 bushel class had an average gross margin of 11.31 cents per bushel which
Figure 6. Costs and Margins for Grain by Bushel Capacities of Country Elevators.
was a little decrease from the previous class but experienced an average cost of 7.02 cents, leaving a net margin of 4.47 cents. The next group, the 200,000 to 300,000 bushel capacity elevators, experienced a lower gross margin amounting to 8.60 cents, a considerable decrease over the two previous groups. This group had the lower average cost per bushel of 5.80 cents leaving a net margin of 2.70 cents available for patronage refunds. The fourth group, those elevators over 300,000 bushels in capacity, had a still lower gross margin of 7.85 cents per bushel and a lower average cost per bushel of 3.85 cents leaving a net margin of 4.00 cents per bushel available for patronage refunds.

Patronage refunds cannot be used as a measure of efficiency since they are the difference between gross margins and total costs with too many factors causing them to change. An elevator may have a high net margin as a result of taking a high gross margin in the beginning. Total costs may fluctuate from year to year due to factors not related to efficiency thus causing patronage refunds to change. Drouth would decrease volume and increase costs and may result in low or no net margins available for refund. Looking at the other extreme where weather was such that bumper crops existed an elevator may have an extremely high volume and as a result low costs leaving high net margins available for refund. Other factors which influence the profit position of elevators are: whether expenses increase or decrease, the market price of grain, and the buying margin which the elevator takes anticipating no great increase in expenses. Cooperatives often operate on minimum buying margins because profit is returned to patrons as patronage dividends.
An elevator may operate on a low gross margin because it is operated efficiently and able to expect low costs. In such a case, the farmer may have been given a higher price at the time he sold his grain to the elevator rather than at the end of the fiscal year in the form of patronage refunds.

Sideline Operations

Sidelines include such items as: feed, seed, salt, petroleum products, fertilizer, coal, lumber, propane, automotive supplies, sprays, and general merchandise. Here as with grain gross margins are those margins over and above acquisition costs. Net margins are the profit after deducting cost of labor, depreciation, and operating expenses.

As capacity and volume of grain business increased sideline operations also increased (see Table I). The elevators with capacities under 100,000 bushels had average gross margins from sideline operations of $5,800, expenses allocated to these sidelines of $3,750 and a net margin of $2,050. This increased as capacity increased until those elevators over 300,000 bushels in capacity had gross margins of $43,349, expenses of $20,584 and net margins of $22,765 (see Figure 7).

Sidelines are important to the elevator operation to the extent that they are means of diversification for the elevator. They also attract customers who may become patron members thus increasing the elevators grain volume. Sidelines can be carried on in facilities designed for grain merchandising or in specially constructed facilities depending on the size of the sideline operation. Many of the cooperatives
handle petroleum products. This sideline is of such a nature that it takes special facilities and facilities designed for grain merchandising are not useable.

Figure 7. Margins and Costs of Sidelines in Relation to Elevator Capacities.
In the past sidelines have been added when labor could not be fully employed the year round, thus making it possible to hire a second man in many cases who could be trained in all phases of elevator operation instead of seasonal untrained labor at harvest time.

Elevators have been increasing their office space and in making this addition have added some extra room for handling sidelines. Therefore, in the majority of the cases additional space has been added to handle sidelines, but most costs, other than for procurements were not allocated directly to the various processes or activities.

The labor used in sideline operations offers a complex situation. Where petroleum products are handled at least one additional man is hired to operate this part of the business. Often he is the driver of the bulk truck and delivers fuel to farms.

In the case of a general merchandise store which is separate from the elevator or is of considerable size additional labor must be hired. However, where a small volume of feed is handled by a small elevator no additional labor is required.
PART III

IMPLICATIONS

Application to Other Elevators

Data presented in this study can be applied to elevators other than cooperatives. As stated previously, one difference between cooperatives and non-cooperatives is in the sharing of profits. Non-cooperatives would be more concerned with the net margin since they are in the grain business to make a profit. Any effort on the part of the manager to hold costs at a minimum would increase the profit of the business; this is also true for cooperatives.

The relationship between costs of operation and volume turn-over in Part II are applicable to all grain elevators. The higher the volume the lower the average costs will be for each bushel of grain received. Efficient utilization of equipment and labor is more probable in large elevators than in small. Most costs are fixed to a great extent in elevators and relatively few costs change in a positive relationship with volume.

Sidelines are important to all elevators as it offers a means of diversification for the business. Sidelines may also make up the difference between a profit and a loss in poor crop years when grain volume would be low.

Impact on New Elevators

The first thing to be considered when planning to build a new elevator is the need for additional storage facilities and marketing outlets.
in the area, along with the number of prospective customers or patrons the new elevator will be able to attract and the anticipated volume of grain these patrons will deliver to the elevator. Capacity size should then be built which will handle the anticipated volume efficiently at the lowest possible cost. The new elevator must be planned so additional storage space can be added when the need arises anticipating efficiency of operation. However, if an elevator is built with excess storage capacity, costs per bushel for handling grain will be higher since larger elevators have higher fixed costs and with a low volume the average costs will rise. A small elevator in which storage capacity is inadequate will not be able to take advantage of efficiencies which are possible with a larger operation such as bigger legs and dump pits to speed handling.

Other studies indicate that storage capacity should not be built larger than the average (over a period of years) for stored and cash grain at elevators in the area. Factors to consider when planning a new elevator and additions to old elevators are: quantities and year-to-year variability of production; carry-over stocks; percent of production stored at harvest; existing capacity on farms; marketability of stored grain at storage point; past storage experience in the territory to be served; government programs; transportation facilities; competing elevators and their existing facilities and equipment; and effect of location on operating problems.¹

The expansion of old elevator facilities presents many problems; old elevators are difficult and costly to remodel; the old elevator was not designed for the addition of annexes or tanks and often the additions cause inefficiencies in operation. The addition of a leg, which is a governing factor of capacity, is very costly. If a leg is added or leg capacity increased then it is usually necessary to expand the size of the receiving dump pit and often the scale. With these problems it is advantageous to build a new main house and use the old elevator as an annex. However, one advantage of expanding the size of an elevator is that it permits the adoption of new techniques and efficiencies of handling grain which were not economical at lower volumes. Several excellent studies in the area of size and volume relationships are available from the Farmer Cooperative Service, United States Department of Agriculture.

Sideline operations should be considered keeping in mind which sideline products are in demand and can be sold at a profit for the organization. In all other studies reviewed, sidelines were found to be an important factor in the elevator operation as was found in this study. Sideline dollar volume increased as the size of elevator capacity and grain volume increased.

Sidelines offer convenience to the patron, he can get his feed, machinery parts and other farm supplies while transacting his grain business. This one-stop shopping is important to the farmer especially during the rush of harvest. Sidelines, especially in smaller elevators, make it possible to keep experienced personnel the year around through diversification of effort.
Relationship to Other Areas

In relating this study to other areas, the following quotation is pertinent: "Analyses of the operations of the elevators on the basis of rated bushel capacity (size) gave clear evidence that the smaller houses usually required higher buying margins merely to stay in business. This need of extra margins mostly is a matter of relatively higher operating costs associated with smaller volumes of grain generally available in their trade territories. But, in part, it also springs from lack of demand or need for additional services, particularly those that make possible more efficient use of regular labor and plant facilities." 1/

This was found to be true in Montana as is indicated by Figure 6 which shows that the smaller houses have high gross or buying margins and high costs of operations. The margins and the costs decreased as the elevator capacity increased.

Recommendations for Increased Savings

In order to increase savings as pointed out in Part II, volume must be increased without any large increases in expenditures to the organization. To increase the volume the elevator must have a manager who is capable of attracting new patron members to the organization. In many

cases it is advisable for the cooperative to remodel or add new equipment which will add to the efficiency of the operation and help reduce costs. Several managers have stated the need for larger legs and bigger grain dump pits. Wherever possible these items should be increased in capacity as they lead to greater efficiency reducing the waiting time of the farmer during the rush of harvest.

Management was found to be good at most of the elevators. However, there is still a need for trained managerial personnel and boards of directors should look for these people when considering a new manager.

The question arises, can farmers operate a small inefficient elevator in competition with a large efficient independent elevator? Yes, providing their overall return is greater than what it would be by doing business with the independent. However, if the return is less, then the board of directors should look for ways of increasing the efficiency of the small cooperative so the return to the patrons will be equal to or greater than the return from the independent. If this is not possible then it is advisable to abandon the cooperative attempt. It is possible for the small cooperative to compete because of the profit and loss sharing of a cooperative.

Theoretical Modifications

None of the elevators observed were large enough to be operating in the area of diseconomies of scale on the average cost curve. The data indicates that the elevators are still operating in the area of decreasing costs. This decrease in costs is at a decreasing rate as volume is increased. Sufficient data is not available to determine whether the
last point calculated is the minimum cost or whether costs will continue to decrease until a minimum is reached. However, it is believed that through increased technology and better management as size is increased new economies of scale (lower cost operation) will become apparent to firms.

Labor has proved to be less flexible than is considered in classical theory. It normally takes at least two men to operate a grain elevator throughout the year.
BIBLIOGRAPHY

Montana Department of Agriculture, Division of Grain Standards and Marketing, Montana Directory of Licensed Grain Dealers, Public Warehousemen, Agricultural Seed Buyers, Mustard Seed Contractors, Grain Dealers and Track Buyers, License year 1956, Helena, Montana, 1956.

Hanson, E. L.
Cost-volume relationships in locally owned Montana co-operative elevators.