Purification of hexadecanol-1-C₁⁴ for solubility studies
by Clark Samuel Hoffman

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE in Chemistry
Montana State University
© Copyright by Clark Samuel Hoffman (1964)

Abstract:
Since the discovery that monomolecular films retard water evaporation, increased attention has been
focused on the basic chemical and physical properties of long chain alcohols which form such films.
The present study is part of an effort to measure water solubility, a property of these compounds which
has economic significance. Three samples of hexadecanol tagged with carbon-14 were purchased from
different companies and were used in the preliminary solubility measurements. Each sample
proved to be impure with significant amounts of radioactivity appearing in the impurities. Column,
preparative thin layer, thin layer, and gas chromatographic techniques were used in attempts to purify
the commercial samples of hexadecanol-1-C₁⁴. Preparative thin layer chromatography resulted in a
99.5% radiopurity for one sample of hexadecanol-1-C₁⁴; however, the alcohol still contained some
lower molecular weight homologs and a small amount of water soluble tagged impurities. The failure
of radiotracer experiments to produce a reasonable solubility for hexadecanol was attributed to the
presence of these water soluble carbon-14 labeled impurities.
PURIFICATION OF HEXADECANOL-1-C14 FOR SOLUBILITY STUDIES

by

CLARK S. HOFFMAN, JR.

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Chemistry

Approved:

William C. Cook
Head, Major Department

E. W. Amacker
Chairman, Examining Committee

Dean, Graduate Division

MONTANA STATE COLLEGE
Bozeman, Montana

August, 1964
ACKNOWLEDGMENT

In writing this thesis, I wish to thank the following:

The United States Bureau of Reclamation for providing the funds which made this research possible.

Drs. E. W. Anacker and G. L. Baker for their helpful advice and encouragement.

My wife, Nancy, for her continued patience.

My parents, Mr. and Mrs. Clark S. Hoffman, Sr., for their enduring faith in a not always deserving son.

Finally, I wish to dedicate this thesis to my brother (late) Jack Alfred Hoffman.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>5</td>
</tr>
<tr>
<td>Purification of Hexadecanol-1-C(_{14})</td>
<td>6</td>
</tr>
<tr>
<td>Solubility Measurements</td>
<td>8</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>9</td>
</tr>
<tr>
<td>Hexadecanol-1-C(_{14}) Impurities</td>
<td>12</td>
</tr>
<tr>
<td>Column Chromatography</td>
<td>13</td>
</tr>
<tr>
<td>Preparative Thin Layer Chromatography</td>
<td>16</td>
</tr>
<tr>
<td>Gas Chromatography</td>
<td>19</td>
</tr>
<tr>
<td>Attempted Solubility Measurements with Purified Hexadecanol-1-C(_{14})</td>
<td>21</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>28</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>29</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF TABLES

I. Calculated Solubilities of Hexadecanol.

Page
4
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial Solubility Results</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Thin Layer Chromatograms of Commercial Hexadecanol-1-14 Samples</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Thin Layer Chromatograms of Column Purifications</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Thin Layer Chromatograms Comparing Adsorbents</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Thin Layer Chromatogram of "Purified" Hexadecanol-1-14</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Gas Chromatogram of "Purified" Hexadecanol-1-14</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Gas Chromatogram of Tracerlab Hexadecanol-1-14</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Identification of Impurities in "Purified" Hexadecanol-1-14</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>Solubility Measurements with "Purified" Hexadecanol-1-14</td>
<td>26</td>
</tr>
</tbody>
</table>
ABSTRACT

Since the discovery that monomolecular films retard water evaporation, increased attention has been focused on the basic chemical and physical properties of long chain alcohols which form such films. The present study is part of an effort to measure water solubility, a property of these compounds which has economic significance. Three samples of hexadecanol tagged with carbon-14 were purchased from three different companies and were used in the preliminary solubility measurements. Each sample proved to be impure with significant amounts of radioactivity appearing in the impurities.

Column, preparative thin layer, thin layer, and gas chromatographic techniques were used in attempts to purify the commercial samples of hexadecanol-1-C14. Preparative thin layer chromatography resulted in a 99.5% radiopurity for one sample of hexadecanol-1-C14; however, the alcohol still contained some lower molecular weight homologs and a small amount of water soluble tagged impurities. The failure of radiotracer experiments to produce a reasonable solubility for hexadecanol was attributed to the presence of these water soluble carbon-14 labeled impurities.
INTRODUCTION

Modern civilization has placed an increasing burden on the natural resources of the United States. The future needs of our exploding population require efficient conservation of these resources. Water, a vital resource, must be available in abundant quantities; its shortage would cause a serious decline in our nation's economy. The water conservationist's task is complicated by an uneven seasonal distribution of precipitation coupled with varying regional climatic conditions. Storing spring runoff in large, man-made reservoirs is one method used to insure an evenly distributed annual water supply. Stored water is then available during dry summers for crops, livestock, industry, and human consumption. Reservoirs in providing a solution to the seasonal problem have created several new ones, such as, water loss through seepage and evaporation.

In the Western United States evaporation accounts for an annual water loss of 25 million acre feet (1). According to Magin and Randall (2), "The evaporation loss is serious because it is usually greatest in dry areas where the supply is most valuable. For example, in the Great Basin and the Colorado River Basin, where the needs for water exceed the amounts available, evaporation dissipates almost one-sixth of the available water supply. Great economic gain would result in all arid areas if as much as one-fourth of the evaporation from stored water could be prevented."

Economical methods which retard evaporation are becoming more of a necessity each year. One method presently being studied uses long chain primary alcohols. The alcohol, or mixture of alcohols, when applied to the water surface forms a film one molecule thick (2,3). Under ideal laboratory conditions these monomolecular films or monolayers are effective evaporation
retardents (4); however, they are not as successful in retarding evaporation from large bodies of water (1,5). Wind, temperature, humidity, and various other natural phenomena reduce their effectiveness (2). Means by which alcohol may disappear from the monolayer include decomposition by ultraviolet radiation from the sun (6), bacterial attrition (7,8), evaporation(9), and solubilization (9). In the present work I am concerned with the last of these, specifically the solubility of hexadecanol. This alcohol was chosen as it is representative of the series of alcohols from C16 to C20 which presently seem to be the most useful in retarding water evaporation.

Hexadecanol solubility estimates to date have been dependent on extrapolation of data obtained for C4 to C10 n-primary alcohols. In 1926, Hill and Walisoff (10) reported the solubility of butyl alcohol in water. These authors were able to measure the solubility of butanol over a wide temperature range using standard volumetric techniques. In 1933, Butler, Thomson, and Maclennan (11) determined the water solubilities of C5 to C8 n-primary alcohols by comparing the refractive indices of saturated solutions with those obtained for solutions of known concentration. The water solubilities of C5 to C10 alcohols have also been determined (12,13,14) by surface tension measurements. In a typical determination, a plot of log concentration versus surface tension was made for unsaturated solutions of known concentration. The surface tension of the saturated solution was then measured, the linear plot was extrapolated to this point, and the solubility of the solution was graphically determined. Measurements of this type were made by Addison (12) for C5 to C8 alcohols and by Addison and Hutchinson (13) for decyl alcohol. These authors measured the surface tension using the "roughened plate"
method. Kinoshita, Ishikawa, and Shinoda (14) determined the solubilities of C_4 to C_{10} alcohols using the "drop weight" method to measure surface tensions.

Solubility measurements for alcohols with chain lengths greater than ten carbons have not been reported in the literature. However, several authors (13, 14, 15) have given equations from which one can estimate solubilities of long chain alcohols. All equations are based upon the linearity of log solubility versus carbon number plots. Table I contains a list of references, equations, and calculated solubilities of hexadecanol in water. The equation reported by Kinoshita, Ishikawa, and Shinoda (14) was not consistent with the solubility values they obtained for C_4 - C_{10} alcohols. I applied the method of least squares to their data and obtained the equation \(\log C = -0.602 m + 2.40 \). The solubility of hexadecanol obtained from this equation is listed in Table I.

J. H. Brooks and A. E. Alexander (9) have also estimated the solubility of hexadecanol. They used the plots of log concentration versus surface tension reported by Posner, Anderson, and Alexander (16) for C_4 to C_8 alcohols and by Addison and Hutchinson (13) for decyl alcohol. From these plots they observed that for a given lowering of surface tension (film pressure of 35 dynes/cm.) a plot of bulk concentration in the aqueous solution against chain length was linear. Through extrapolation the solubility of hexadecanol was obtained. Their result has been included in Table I. The present investigation is an attempt to measure the solubility of hexadecanol directly. There is no guarantee that the equations of Table I can be used outside the range for which they satisfactorily
<table>
<thead>
<tr>
<th>Reference</th>
<th>Equation</th>
<th>Solubility (mol./l.)</th>
<th>Temp. (°C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addison & Hutchinson (13)</td>
<td>(I = 5.65 - 1.78 \log S) (a)</td>
<td>(6.2 \times 10^{-8})</td>
<td>20</td>
</tr>
<tr>
<td>Erichsen (15)</td>
<td>(\log X = 3.4991 + (-0.043100) M) (b)</td>
<td>(6.1 \times 10^{-8})</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(\log X = 3.5621 + (0.0045054)M)</td>
<td>(2.4 \times 10^{-8})</td>
<td>40</td>
</tr>
<tr>
<td>Kinoshita, Ishikawa & Shinoda (14)</td>
<td>(\log C = -1.39 m + 5.53) (c)</td>
<td>(2.1 \times 10^{-17})</td>
<td>25</td>
</tr>
<tr>
<td>Least Squares Method</td>
<td>(\log C = -.602 m + 2.40) (d)</td>
<td>(5.9 \times 10^{-8})</td>
<td>25</td>
</tr>
<tr>
<td>Brooks & Alexander (9)</td>
<td>None (e)</td>
<td>(1.0 \times 10^{-7})</td>
<td>40</td>
</tr>
</tbody>
</table>

(a) \(I \) = chain length, \(S \) = solubility (wt. %)
(b) \(M \) = molecular wt., \(X \) = solubility (mole %)
(c) See Least Squares Value
(d) \(C \) = solubility (mol./l.), \(m \) = chain length, Data from Ref. 14
(e) Film pressure 35 dynes/cm.
correlate actual solubility data.

Synthetic and analytic procedures for obtaining solubility values have been developed (17). The synthetic method involves changing the temperature and pressure of the system until all the solute present dissolves. The analytic method, in general, consists of obtaining equilibrium saturation and then analyzing the solution by either chemical or physical means. The analytic method does not require complete solubilization of the solute; equilibration may be obtained by intimately mixing the solute and solvent (18), percolation of the solvent through the solute (19), or by convection of the solvent through the solute (20). When the solute and solvent are intimately mixed, separation is best effected by filtering the excess solute from the saturated solution.

A suitable analytic technique must be available for accurately measuring the amount of soluble solute per unit volume of solution. Since the estimates of the solubility of hexadecanol are quite small (Table I), the common procedures of Reilly and Raye (18), Fox (19), and Gibson (20), which are relatively insensitive, are unsatisfactory. Jordan (21), Caddock and Davies (22), and Jones and Monk (23) have proposed radioisotope procedures for determining the solubility of a slightly soluble material. Since hexadecanol-1-14C is readily available, it was decided to attempt the measurement of the solubility of hexadecanol by tracer methods.

EXPERIMENTAL

The experimental section can best be separated into two parts: 1) Purification of Hexadecanol-1-14C and 2) Solubility Measurements.
Appendix I contains a listing of chemicals and materials used in the work. The listing includes manufacturer and, when available, purity specifications.

Purification of Hexadecanol-1-\(^{14}\mathrm{C}\)

Hexadecanol-1-\(^{14}\mathrm{C}\) samples were purchased from Tracerlab Inc., Volk Radiochemical Company, and Nichem Inc. Preliminary experimental work (described later) indicated that the samples of hexadecanol-1-\(^{14}\mathrm{C}\) were contaminated with water soluble carbon-14 labeled impurities. Before accurate solubility measurements could be attempted, these impurities had to be removed. Purification techniques were limited to column and thin layer chromatography. Gas chromatography was used only to check on the efficiency of thin layer separations. The solvents used in chromatographic techniques were redistilled and stored in glass containers.

Column chromatography was carried out using solid supports of Unisil (silicic acid), Woelm Neutral Alumina, and 20% Silver Nitrate-Unisil. Ungefug (24) has reported the basic packing, loading, and eluting techniques used with these columns. The columns were of glass construction with an inside diameter of 1.2 cm. Columns containing 4.5 g. Unisil and 5.0 g. 20% AgNO\(_3\)-Unisil were ca. 8.5 cm. high. The 20% AgNO\(_3\)-Unisil columns were prepared by dissolving silver nitrate (20% by weight) in distilled water and then mixing the solution with the Unisil. The water was removed by vacuum rotatory evaporation, and the support was reactivated at 110°C. Woelm Neutral Alumina columns were deactivated with 1.5% distilled water. The alumina and water were placed in a one liter round bottom flask and rotated to obtain even adsorption of the water by the alumina. These 7.5 g.
columns were ca. 6.8 cm. high.

Thin layer chromatographic techniques and the preparation of plates have been reported by Mangold (25) and by Ungefug (24). These techniques were employed with four adsorbents: Silica Gel G, Silica Gel H, Adsorbosil I, and Adsorbosil II. Silica Gel G and Adsorbosil I contained 13 and 10 percent CaSO₄ binder, respectively.

When preparative thin layer chromatography was required, the techniques reported by Ungefug (24) were modified in the following way. Thin layer plates (250 microns thick) were prepared in the usual manner. One µl. spots of hexadecanol-1-C¹⁴ in benzene were placed on the plate side by side, 1 cm. from the bottom, so that they overlapped to form a band. The plates were placed in a solvent tank until the eluent reached the 15 cm. mark. Plates were then removed from the tank, air dried, and about one-half centimeter of the right and left hand edges were sprayed with Rhodamine 6 G. The alcohol band was located by examination of the sprayed portion under long wave ultraviolet light. The alcohol fluoresced a yellowish color and was visible at both sides of the plate. The leading and tailing edges of the band were marked with a sharp dissecting needle. A plastic template was then placed over the plate and lines were drawn through the adsorbent connecting the marks. In this way the location of the entire band was determined, and the sprayed portion of the adsorbent was scraped from the plate and discarded. The unsprayed portion of the alcohol band was scraped from the plate and extracted with ether. The adsorbent was separated from the alcohol by filtration through a medium pore sintered glass filter. The filter had previously been cleaned with chromic acid and
then washed with distilled water, acetone, and ether. The alcohol was concentrated by vacuum rotatory evaporation and the remaining solvent (ca. 2 cc) was removed by a nitrogen stream. The alcohol purity was then determined by normal thin layer tests and gas chromatography. Band spotting hexadecanol-1-C14 enables one to purify approximately 10 mg./plate.

Gas chromatograms were obtained using an F&M Biomedical Gas Chromatograph, Model No. 400. The output from the chromatograph was fed to a Honeywell one millivolt strip chart recorder equipped with a Disc integrator. Flame ionization detection was used with a 3.8% SE-30 on 80/100 mesh diataport S column. Instrument settings were: temperature, 160°C.; carrier (helium) flow rate, 65 ml./min.; and chart speed, 1/2 in./min.

Solubility Measurements

Hexadecanol-1-C14 samples were weighed into 1 cc. beakers by means of a Mettler Micro Balance M5. The weights were accurate to ± 2 μg. The samples and beakers were then placed in 125 ml. screw top Erlenmeyer flasks. The flasks and beakers had previously been soaked in warm chromic acid, washed in phosphoric acid to remove adsorbed chromium, and rinsed extensively in tap water. They were then washed with distilled water until a negative acid test was obtained from blue litmus and finally, were dried in an oven at 110°C. (26). The teflon lined caps were wiped thoroughly with lens tissue to remove dust, soaked extensively in distilled water to remove soluble impurities, and dried at 110°C. before use.

Upon completion of the weighings for a series of samples, either 50 cc. of water, distilled over alkaline KMnO\textsubscript{4}, or 50 cc. of dilute AgNO\textsubscript{3} (50 parts
silver nitrate per billion parts distilled water) solution were added to each flask. The flasks were capped, placed in a thermostat at 30°C ± 0.1°C., and shaken vigorously by a Burrel Wrist-Action Shaker, Model No. 00. At approximately twenty-four hour intervals an aliquot of each solution was withdrawn by a hypodermic syringe equipped with a Leur-Lok tip containing a 5/8 in. 25 gauge needle. These aliquots (ca. 1 cc.) were then filtered through either type AA or HA, white, 13 mm. diameter, Millipore filters. A Swinny Hypodermic Adapter (Millipore Filter Corp., Bedford, Mass.) allowed direct filtration from the syringe into a 5 dram counting vial. The volume of filtrate was determined by weighing the counting vial before and after addition of the solution.

Fifteen cc. of a naphthalene-dioxane counting solution (27) was then added to each vial. The counting solution consisted of 60 g. naphthalene, 4 g. PPO (2,5-diphenyloxazole), 0.2 g. POPOP (1,4-bis-2-(5-phenyloxazolyl)-benzene), 20 ml. ethylene glycol, 100 ml. methanol (absolute), and redis­tilled 1,4 dioxane to one liter. Samples were counted in a Packard Tri-Carb Liquid Scintillation Spectrometer, Series 314A. Counting conditions were: freezer temperature, 0°C.; high voltage, 900 or 1,000 volts; dis­criminator settings, 10 v. - 50 v. - 100 v.; and analysis mode No. 3 with the C discriminator on.

RESULTS AND DISCUSSION

Preliminary solubility experiments were conducted as previously described with samples of hexadecanol-1-C14 as received from Tracerlab and Nichem. The alcohol concentration is proportional to the count rate per cc.
of a filtered aliquot. In these experiments the count rate increased when
the amount of labeled alcohol used to make up a mixture was increased.
This is illustrated in Figure 1, where the weight of hexadecanol-1-C\(^{14}\)
used is plotted against the dpm./ml. for 1 cc. aliquots at a counting
efficiency of 40.5%. After the mixtures had been prepared and placed in
the shaker, aliquots were withdrawn daily, filtered, and counted. The
count rates for a given mixture increased with time at the start and then
leveled off. The points shown in Figure 1 represent the maximum values
obtained.

The plot strongly indicates the presence of tagged impurities in the
commercial hexadecanol-1-C\(^{14}\) samples. If the alcohol had been free of
water soluble tagged impurities, the line AOC would have coincided with the
line AXE. The count rate would then have remained constant upon the
addition of more alcohol. The figure shows that this situation did not
exist. The fact that the activity is directly proportional to the amount of
alcohol introduced into the system and does not level off indicates that
water soluble impurities account for a large percentage of aliquot activity.
If the points in Figure 1 were accurately known, the plot could be used to
estimate the solubility of hexadecanol in the presence of impurities. An
extrapolation of the OC line to zero concentration provides one with a
method of obtaining the ratio of the activity from hexadecanol-1-C\(^{14}\)
(interval GO, Fig. 1) to the activity from water soluble impurities
(interval GF, Fig. 1). Once this ratio is determined, the solubility of
hexadecanol can be calculated. My data were not consistent enough, however,
to permit an accurate location of the true activity curve, and an estimate
AOB - Plot obtained if all radioactivity in the alcohol water mixture was soluble.

OC - Plot obtained from experimental activities.

AXE - Plot obtained if hexadecanol-1-C^{14} had contained no labeled impurities.

AD - Plot obtained for the portion of the experimental activity due to labeled impurities in hexadecanol-1-C^{14}.

GF - Activity due to labeled impurities when solution is saturated with hexadecanol-1-C^{14}.

GO - Activity due to labeled alcohol when solution is saturated with hexadecanol-1-C^{14}.

Figure 1. Initial Solubility Results
of the solubility was therefore not possible.

Dr. Shih Lu Chang (?) has pointed out that hexadecanol promotes the growth of bacteria, and that common bacteria, e.g., pseudomonas, are continually present in air and water. He has recommended the use of a 50 ppb. AgNO₃ solution as an effective deterrent to bacterial growth (28). Experiments were conducted to compare hexadecanol-1-¹⁴C-distilled water mixtures with hexadecanol-1-¹⁴C-50 ppb. AgNO₃ mixtures. Filtered aliquots of mixtures of hexadecanol and water containing AgNO₃ had count rates ca. 5 x 10⁴ times higher than those from mixtures having the same amount of hexadecanol but no AgNO₃. No attempt was made to establish whether or not bacteria were responsible for this phenomenon, but it was decided to use the 50 ppb. AgNO₃ solution in the remaining experiments.

Hexadecanol-1-¹⁴C Impurities

Thin layer chromatography was utilized to investigate the nature of the impurities present in commercial samples of hexadecanol-1-¹⁴C. Silica Gel G plates spotted with the alcohol were developed with either benzene-ethyl acetate (9:1) or hexane-ether-acetic acid (90:10:1). Rhodamine 6G (mixed with the adsorbent before the plates were spread) served as the indicator. All plates were placed in a tank containing iodine vapor to facilitate the identification of any unsaturates present as impurities. When a plate is viewed under long-wave ultraviolet light, hexadecanol fluoresces yellow and impurities fluoresce either yellow (saturated) or blue (unsaturated) against a green background.

In determining the percentage activity of impurities versus alcohol,
the spots were individually scraped from the plate into separate 5 dram counting vials and 15 cc of counting solution was added to each vial. The insoluble adsorbent settled to the bottom of the vial and the alcohol or impurity was dispersed throughout the counting solution. The solutions were then counted in the liquid scintillation counter.

Figures 2A and 2B are thin layer chromatograms of Tracerlab, Volk, and Nichem hexadecanol-1-\(^{14}C\). The first plate (Fig. 2A) was developed with benzene-ethyl acetate (9:1) and the second (Fig. 2B) with hexane-ether-acetic acid (90:10:1). Both chromatograms show that impurities were present in each commercial sample. Approximate percentage impurities were determined from ratios of impurity activities and total activities. The results are: Tracerlab, 65%; Volk, 16%; and Nichem, 25%. It is obvious the use of commercial hexadecanol-1-\(^{14}C\) without purification would result in meaningless solubilities.

Column Chromatography

Because of the expense and limited amounts of hexadecanol-1-\(^{14}C\) on hand, it was decided to work out purification techniques using untagged alcohol (Lachat Chemical Company, 95% pure) containing impurities similar to those present in the tagged samples (compare Figs. 2A & 3A). The untagged samples of hexadecanol (50 mg. in 1 ml. of hexane) were placed on columns and eluted with various solvent combinations. Unisil columns were eluted successively with 60 ml. 18% benzene in hexane, 85 ml. 60% benzene in hexane, and 60 ml. benzene. Thin layer chromatography, benzene-ethyl acetate (9:1), of the concentrated fractions (Fig. 3B) showed that fraction
Figure 2. Thin Layer Chromatograms of Commercial Hexadecanol-1-C14 Samples
Figure 3. Thin Layer Chromatograms of Column Purifications
No. 1 contained saturated and unsaturated impurities (possibly esters or aldehydes), that No. 2 contained hexadecanol and one unsaturated impurity, and that No. 3 contained a small amount of hexadecanol, usually less than 5% of fraction No. 2, and unsaturated impurities. Twenty percent AgNO₃-Unisil columns eluted by the same combination of solvents resulted in similar thin layer chromatograms. Woelm Neutral Alumina columns were eluted with 100 ml. benzene and 100 ml. ether. Thin layer chromatograms, benzene-ethyl acetate (9:1), showed (Fig. 3C) that fraction No. 1 contained saturated impurities and that No. 2 contained hexadecanol and unsaturated impurities.

By comparing Figure 3A with 3B and 3C, one sees the columns tested did remove impurities from the hexadecanol fraction; however, one also notes that unsaturated impurities were introduced into this fraction by the purification process. These impurities appear to be artifacts washed from the columns. Attempts to remove these artifacts by prewashing columns with benzene, ether, methanol, and combinations of these solvents failed to improve the alcohol purification. At this point column chromatography was abandoned in favor of preparative thin layer chromatography. I am reasonably certain continued effort would have resulted in a "working" column; however, at the time, preparative thin layer chromatography, which was being investigated simultaneously, seemed to be offering more promise of success.

Preparative Thin Layer Chromatography

Before hexadecanol-1-C¹⁴ was subjected to preparative thin layer chromatography, Silica Gel G, Silica Gel H, Adsorbosil I, and Adsorbosil II
were tested using unlabeled alcohol. The tests were aimed at determining which adsorbent would yield purified alcohol containing a minimum of adsorbent artifacts.

Preparative thin layer chromatography was carried out on plates spread with each adsorbent. The alcohol band was removed and extracted. The concentrated alcohol was subjected to standard thin layer chromatography on the same adsorbent that had previously been used for the preparative purification. Chromatograms for Silica Gel G, Silica Gel H, and Adsorbosil I were similar and are illustrated by Figure 4A. Additional pre-extraction of Silica Gel G with benzene-ethyl acetate (9:1), chloroform, and ether failed to reduce the number of artifacts present. A 100 hour Soxhlet extraction of Silica Gel H with ethanol (absolute), also failed to improve test results for this adsorbent. Attempts at precleaning plates by eluting, chloroform-methanol (2:1), in the same direction the adsorbent was spread, reactivating the plates at 110°C. for 45 minutes, and then running preparative chromatography against the direction of spreading also failed to improve the results previously obtained (Figs. 4A & B).

Adsorbosil II gave better results (Fig. 4B) than the other adsorbents. Several runs failed to produce any artifacts other than those present in Figure 4B. Extraction of Adsorbosil II with ether (5 g, Adsorbosil II; 250 ml. ether) yielded no measurable extractables at the 0.1 mg. level. This is significant as ether was used in the preparative technique for extracting the alcohol from the adsorbent. These considerations led to the adoption of Adsorbosil II for the purification of hexadecanol-1-C\textsubscript{14} by preparative thin layer chromatography.
Hexadecanol

Figure 4. Thin Layer Chromatograms Comparing Adsorbents
Tracerlab hexadecanol-1-C\(^{14}\) purified by thin layer preparative methods, concentrated, and spotted (50 \(\mu\)g/\(\mu\)l.) by standard thin layer techniques resulted in chromatograms like that of Figure 5. Two factors concerning these chromatograms warrant further discussion: 1) the number of unsaturated spots appearing here (Fig. 5) versus the number present in Figure 4B, and 2) the purity of the labeled alcohol as determined by removal and counting of spots appearing on said plates.

Comparison of Figures 4B and 5 shows that the number of unsaturated impurities has increased both in number and in size of spots. This could be due either to impurities in the adsorbent varying from one plate to the next or from different impurities being present in hexadecanol-1-C\(^{14}\) than those present in the untagged test alcohol (Lachat hexadecanol, 95% pure). No attempt was made to determine the source of the impurities indicated by Figure 5 since counting showed them to contain less than 0.1% of the activity of the hexadecanol-1-C\(^{14}\) spot. It was also noted that any area of the plate, 1 cm. in diameter, preceding the hexadecanol-1-C\(^{14}\) spot contained some activity, in general, no more than the amount present in the unsaturated spots. From this, I concluded that while there is still some question as to the chemical purity of thin layer purified hexadecanol-1-C\(^{14}\), the alcohol has a radiopurity better than 99.5% (activity of hexadecanol spot \(\times\) 100%/total activity of plate) which is excellent compared to 35% radiopurity as received from the manufacturer.

Gas Chromatography

While suggesting that the hexadecanol-1-C\(^{14}\) had been purified consider-
Figure 5. Thin Layer Chromatogram of "Purified" Hexadecanol-1-C14
ably, thin layer chromatography by itself cannot show this as it is a limited technique. Since all long chain primary alcohols migrate similarly, it was considered necessary to examine the purified alcohol by gas chromatography to determine if other alcohols were present. The results are shown in Figure 6. For purposes of comparison a sample of Tracerlab hexadecanol-1-14C, as received from the manufacturer, was subjected to gas chromatography. The results are given in Figure 7.

In a comparison of the chromatograms of Figures 6 and 7, one notices that purification by preparative thin layer chromatography reduces the number of impurities from 12 to 2. Figure 8 consists of a plot of log retention time versus carbon number for known alcohols C\textsubscript{10}, C\textsubscript{12}, C\textsubscript{16}, and C\textsubscript{18} and unknowns A and B. The retention times of unknowns A and B correspond to those of tetradecanol and pentadecanol. The percentages of A and B, present as impurities in hexadecanol-1-14C, were determined by Disc integration of the peaks to be 3\% and 13\%.

Attempted Solubility Measurements with Purified Hexadecanol-1-14C

Although thin layer purified hexadecanol-1-14C was not 100\% chemically pure, solubility tests were nevertheless conducted since the radiopurity approached 100\%. The alcohol was divided into six samples with weights of 40, 111, 227, 296, 460, and 554 \(\mu\)g. Fifty cc. of 50 ppb. AgNO\textsubscript{3} solution was added to each sample, and shaking was begun. Aliquots were taken each day for ten days, beginning at the end of the first 24-hour interval.

A plot of cpm./ml. versus sample weight (Fig. 9) indicated that the alcohol had not been sufficiently purified. The plot shows that again the
Figure 6. Gas Chromatogram of "Purified" Hexadecanol-1-C14
Figure 7. Gas Chromatogram of Tracerlab Hexadecanol-1-14C
Figure 8. Identification of Impurities in "Purified" Hexadecanol-1-C14
count rate is dependent on the initial sample size. The line on the plot (Fig. 9) depicts the cpm./ml. that would have been obtained if the entire sample of hexadecanol-1-C14 had completely dissolved in a 50 ppb. AgNO\textsubscript{3} solution. One also notes that comparison of this test with the preliminary ones (Fig. 1) reveals a considerably lower count rate per ml. (50,000 vs. 15,000 for ca. 500 \(\mu\)g. of alcohol) for the latter test, indicating that the alcohol had undergone substantial purification. However, the failure of the plot to level off indicates that soluble impurities were still present in sufficient amounts to prevent the accurate determination of hexadecanol solubility. Since undissolved alcohol was detected after prolonged shaking of the mixture containing the 40 \(\mu\)g. sample, it is apparent the solubility of hexadecanol is less than 40 \(\mu\)g./50 cc. of 50 ppb. AgNO\textsubscript{3} solution or 80 \(\mu\)g./100 cc. of solution.

At this point the supply of hexadecanol-1-C14 was exhausted, and solubility measurements were discontinued for the moment. Possible avenues for future investigation are:

1. **Purification of hexadecanol-1-C14 by preparative gas chromatography.**

2. **Purification of hexadecanol-1-C14 by column or preparative thin layer chromatography.** These techniques have certainly not been exhaustively investigated. Further variations in column length and diameter, column and thin layer adsorbents, solvent systems, and thin layer thickness are possible.

3. **Extraction of hexadecanol-1-C14 with distilled water or a 50 ppb. AgNO\textsubscript{3} solution.** For maximum removal of water soluble impurities
Figure 9. Solubility Measurements with "Purified" Hexadecanol-1-C^{14}
the alcohol should be present in the liquid state. Removal of an
ing impurity buried in the interior of a solid particle by the solvent
is a slow process.

4. **Combinations of suggestions 1, 2, and 3.**

5. **Gas chromatographic determination of the solubility of hexadecanol.**

 Recent advances in gas chromatographic detection systems have
 increased the sensitivity of the instrument. It is possible this
type of instrument could determine the amount of hexadecanol present
in aqueous solutions.

6. **Determination of the rate of passage of alcohol from the mono-
layer to the bulk liquid phase.**

7. **Investigation of the solubility dependence on the temperature of
the alcohol-water system.**

8. **Investigation of the hexadecanol-water equilibrium in the dark
with prior removal of dissolved oxygen from the system.**
SUMMARY

Solubility studies of hexadecanol-1-C14 were carried out with mixtures of alcohol and water shaken for periods of up to two weeks. Initial experiments indicated that carbon-14 labeled impurities were interfering with the solubility determination. A preparative thin layer chromatographic scheme was developed for removing organic impurities, e.g., esters, acids, aldehydes, from hexadecanol-1-C14. Hexadecanol-1-C14 "purified" by this technique had a radiopurity of 99.5%.

Solubility experiments using "purified" hexadecanol-1-C14 gave inconclusive results as the purification failed to remove a small amount of water soluble carbon-14 labeled impurities. It was determined the solubility of hexadecanol was less than 80 μg./100 cc. of 50 ppb. AgNO$_3$ solution; however, attempts to obtain a better estimate were not successful. Several approaches have been suggested for removing trace amounts of highly water soluble radioactive impurities from the alcohol.
APPENDIX
APPENDIX I

Materials

1. Acetic acid (glacial), Baker and Adamson (B&A), Allied Chemical, Morristown, N.J., ACS reagent grade

2. Acetone, Mallinckrodt Chemical Works, New York, analytical reagent grade

5. Chloroform, B&A, ACS reagent grade

6. 1,4-dioxane, Eastman Organic Chemicals, Rochester 3, N.Y., histological grade

7. Ethanol (absolute), U.S. Industrial Company, Tuscola, Ill., U.S.P. grade

8. Ethyl acetate, J. T. Baker, Baker analyzed reagent grade

9. Ethylene glycol, Eastman Organic

10. Ethyl ether (anhydrous), B&A, ACS reagent grade

12. Methanol (absolute), B&A, ACS reagent grade

13. Naphthalene, Matheson, Coleman & Bell, Norwood, Ohio, recrystallized from alcohol, Mp 79-80°C.

14. POPOP & PPO, Packard Instrument Company, Box 428, LaGrange, Ill., scintillation grade

15. Rhodamine 6G, Allied Chemical, National Aniline Division, 40 Rector Street, New York 6, N.Y.

17. Silver nitrate, B&A, ACS reagent grade

18. Unisil, Clarkson Chemical Company, Inc., Williamsport, Pa., 200-325 mesh, acid washed

19. Woelm Neutral Alumina, Aluphorum Chemicals, P.O. Box 755, New Orleans, La., activity grade I
LITERATURE CITED

Hoffman, Clark Samuel
Purification of hexadecanol-1-C14...