Abstract:
Investigations undertaken in this paper were able to develop for the first time a modification of the rosette test for use in a system employing homologous erythrocytes. Spleen cells from A/jax and Balb/c mice challenged with 20 x 10^6 Sal-AT cells were examined for their ability to form rosettes with A/jax target erythrocytes at intervals of 5, 10 and 20 days following tumor challenge. Results from these assays demonstrated a close relationship between numbers of rosette-forming cells and tumor destruction in immune Balb/c mice. That is, at the time tumor rejection appeared most intense in immune mice, rosette formation became maximal. A "cell associated" antibody believed to be bound to the small lymphocytes involved in homograft destruction was also detected for the first time in immune Balb/c mice, and was indicated by the appearance of small lymphocytes as the immune cell type chiefly involved in rosette formation with allogeneic target cells.

The exact nature of cytophilic antibody produced in response to antigenation with allogeneic tumor cells was not determined. It appeared capable of passively sensitizing other lymphoid cell types and titres for cytophilic antibody, as demonstrated by the rosette test, bore a direct relationship to early rising hemagglutination titres in immune Balb/c mice. These results and the apparent absence of a complement-fixing antibody suggest that cytophilic antibody involved in destruction of Sal-AT homografts may be of the 7Sγ class.
STUDIES ON SAI-AT HOMOGRAFT REJECTION BY A/JAX
AND BALB/C INBRED STRAINS OF MICE

by

KATHLEEN (ERICKSON) JACKSON

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree
of
MASTER OF SCIENCE

in
Microbiology

Approved:

[Signatures]

Dean, Graduate Division

MONTANA STATE UNIVERSITY
Bozeman, Montana

March, 1969
ACKNOWLEDGEMENT

The author is truly grateful to Dr. John W. Jutila for his guidance and inspiration throughout the course of her graduate studies, to her colleagues for their encouragement and especially to her husband for his forbearance.

The author also appreciates the financial assistance of the National Institutes of Health, Studies on the Pathogenesis of Wasting Diseases, Research Grant Number 2-ROI-AI-06552 and National Institutes of Health, Bacteriology and Mycology, Training Grant Number 5-TOI-AI-00131 in initiating this study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS AND METHODS.</td>
<td>8</td>
</tr>
<tr>
<td>Experimental Animals</td>
<td>8</td>
</tr>
<tr>
<td>Tumor Immunization</td>
<td>8</td>
</tr>
<tr>
<td>The Rosette Test</td>
<td>9</td>
</tr>
<tr>
<td>Hematology</td>
<td>10</td>
</tr>
<tr>
<td>Antibody Titration</td>
<td>11</td>
</tr>
<tr>
<td>Splenomegaly Assays</td>
<td>12</td>
</tr>
<tr>
<td>RESULTS</td>
<td>13</td>
</tr>
<tr>
<td>The natural history of Sarcoma I ascites tumor (SaI-AT) in adult Balb/c and A/jax mice</td>
<td>13</td>
</tr>
<tr>
<td>Splenomegaly as an indicator of host response to SaI-AT</td>
<td>13</td>
</tr>
<tr>
<td>The ability of Balb/c mice to produce serum antibodies in response to SaI-AT challenge</td>
<td>15</td>
</tr>
<tr>
<td>Rosette formation by spleen cells from Balb/c and A/jax mice challenged with SaI-AT</td>
<td>15</td>
</tr>
<tr>
<td>Cellular response to SaI-AT immunization measured by spleen cell rosette formation with A/jax red blood cells in A/jax and Balb/c inbred mice</td>
<td>17</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>21</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>25</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>26</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Table I.</td>
<td>Spleen-body weight ratios in A/jax and Balb/c inbred mice following challenge with SaI-AT</td>
</tr>
<tr>
<td>Table II.</td>
<td>Hemagglutination response of Balb/c mice to A/jax erythrocytes following immunization with SaI-AT</td>
</tr>
<tr>
<td>Table III.</td>
<td>Rosette formation by spleen cells of A/jax and Balb/c mice challenged with SaI-AT</td>
</tr>
<tr>
<td>Table IV.</td>
<td>Species of spleen white blood cells involved in rosette formation in normal and SaI-AT challenged Balb/c and A/jax mice</td>
</tr>
</tbody>
</table>
Investigations undertaken in this paper were able to develop for the first time a modification of the rosette test for use in a system employing homologous erythrocytes. Spleen cells from A/jax and Balb/c mice challenged with 20×10^6 Sal-AT cells were examined for their ability to form rosettes with A/jax target erythrocytes at intervals of 5, 10 and 20 days following tumor challenge. Results from these assays demonstrated a close relationship between numbers of rosette-forming cells and tumor destruction in immune Balb/c mice. That is, at the time tumor rejection appeared most intense in immune mice, rosette formation became maximal. A "cell associated" antibody believed to be bound to the small lymphocytes involved in homograft destruction was also detected for the first time in immune Balb/c mice, and was indicated by the appearance of small lymphocytes as the immune cell type chiefly involved in rosette formation with allogeneic target cells. The exact nature of cytophilic antibody produced in response to antigenation with allogeneic tumor cells was not determined. It appeared capable of passively sensitizing other lymphoid cell types and titres for cytophilic antibody, as demonstrated by the rosette test, bore a direct relationship to early rising hemagglutination titres in immune Balb/c mice. These results and the apparent absence of a complement-fixing antibody suggest that cytophilic antibody involved in destruction of Sal-AT homografts may be of the γ_1 class.
INTRODUCTION

Sarcoma-1 ascites tumor (SaI-AT) is indigenous to and lethal for strain A inbred mice. Tumor development becomes grossly apparent typically, as distention of the abdomen 4 to 5 days following the injection of tumor cells into the peritoneal cavity. Death from massive tumor growth ensues approximately two weeks following tumor transfer. In marked contrast, the injection of SaI-AT into adult allogeneic recipient mice results in development of an immune response that destroys grafted tumor cells.

Mechanisms for rejection of SaI-AT by an allogeneic host, such as Balb/c or C57BL/Ks inbred mice have been a subject of controversy during the past several years. Although the role of the histo-compatibility-II(H-2) locus in homograft rejection has been clearly established (Gorer, 1937; Snell et al., 1953 and Snell, 1957), the actual roles played by cell-associated antibodies, serum antibody and complement in response to transplantation antigen and rejection phenomena have not been clearly defined. The work of Kaliss (1954) and Gorer (1958) has shown SaI-AT to be highly insensitive to humoral antibody. Studies by Gorer and Kaliss (1959) demonstrated that the presence of circulating antibody may even produce an enhancing effect on SaI-AT tumor development. The more recent experiments of Chourlinkov et al. (1962) appear to resolve this. Results from these studies demonstrate that enhancement of SaI-AT homografts in specific tumor anti-serum represents a dose dependent phenomenon. Where hyper-immune sera from C57BL/6 mice was given intra-peritoneally (IP) to allogeneic mice prior
to tumor challenge, suppression of tumor growth resulted in three of five instances and enhancement was observed in the remaining two. Although potent anti-serum to SaI-AT does seem to suppress tumor development, the balance between tumor cell cytotoxicity and enhancement appears to be a delicate one. Studies of Phillips and Stetson (1962) also demonstrated cytotoxic activity of serum antibody and complement for SaI-AT when present in high titres.

Chambers and Weiser (1965) were able to demonstrate an apparent cytotoxic effect of humoral antibody for SaI-AT manifest as prominent blebbing of tumor cytoplasm. When viewed ultra-microscopically tumor cells showed increase cytoplasmic blebbing in C57BL/6K mice at onset of homograft rejection. This was apparent initially in A/jax strain mice bearing SaI-AT but subsided at the point it was seen to increase in the resistant strain of mice. Because this pronounced change in tumor cell morphology was evident where no contact with immune cells had occurred it is possible to attribute the apparent immuno-cytotoxic effect to antibody of a humoral nature. It is well established that at the time rejection begins and blebbing of tumor cell cytoplasm becomes more apparent in resistant animals, circulating antibody is present at its peak in the host.

The cytotoxic and protective effect of antibody to SaI-AT was further demonstrated by Tsoi, Weiser and Tokuda in 1965. Foster nursing experiments demonstrated that immune C57BL/6K mothers were able to passively immunize newborns against SaI-AT primarily via the lacteal
route. Tumor development from small challenge doses was also prevented when hyperimmune serum or ascitic fluid from immune animals was introduced directly into adult C57BL/6K treated with immunosuppressive doses of irradiation. This ability of immune serum to confer passive immunity to tumor susceptible hosts suggests that the antibody involved is humoral in nature.

The importance of complement to immune cytolysis of SaI-AT was suggested by Rief in 1963. Tsui and Weiser noted in their studies (1968) that increasing doses of immune serum do not after a certain point afford additional protection. This was attributed to a lack of complement as a limiting factor in protection. The enhancing effect of complement on immune cytolysis was demonstrated in the work of Phillips et al. (1968). It is established that D10B2/old strain mice, lack the fifth component in complement (C'5) and display an impaired response to SaI-AT ascites homografts. When C'5 was restored to D10B2/old strain mice, tumor cell rejection occurred more rapidly than in the absence of this component.

That mouse complement may be inefficient for bringing a lytic system into full expression is suggested by the work of Holmes and Weiser (1966) who demonstrated enhancement of cytolytic effects upon addition of rabbit complement to tumor-bearing C57BL/Ks mice. Although the activity of complement in mice is limited by inherent factors, complement does appear, in the presence of serum antibody, to possess enhancing activities for immune cytolysis of SaI-AT.
The role of the lymphocyte in destruction of ascites tumor homografts is presently speculative and comprises several facets. The activity of lymphocytes as antibody producing cells has been established and implicates this cell type as responsible for the production of cytotoxic iso-antibody to SaI-AT homografts as previously discussed. Phillips and Stetson (1962) observed anti-tumor activity to SaI-AT following transfer of immune lymphocytes to immuno-incompetent hosts. Although lymphocyte activity as a factor in tumor suppression has been demonstrated both in vitro and in vivo by many investigators, the manner in which the lymphocyte exercises its anti-tumor properties is not known.

In vitro experiments of Rosenau and Moon (1964) and in vivo experiments of Wilson (1967) have demonstrated specific contactual agglutination of sensitized lymphocytes with target cell antigens prior to immune cytolysis. It is suggested (Wilson, 1967) that this may be an immunospecific step resulting from the presence of a preformed nontoxic substance on the surface of the lymphocyte. Similar observations made by Storb and Weiser (1967) on rosette forming cells in vitro suggest that specific agglutination can be attributed to the presence of cytophilic antibody on the surface of lymphocytes which have been sensitized following antigenation. Results from earlier studies of Amos (1960) also favored involvement of a cell-bound antibody where intimate immune cell contact with target homograft cells was seen to occur. The lymphocyte thus appears to function chiefly as a producer of iso-antibody and cytophilic antibody in response to an ascites tumor homograft.
The role of the lymphocyte as a specific agent in destruction of SaI-AT homografts has not been established. Although in vitro work of Rosenau and Moon (1964) suggests cytolytic activities for lymphocytes in contact with target cells, the following discussion shows the macrophage to dominate this phase of graft destruction in the SaI-AT homograft.

Accumulated evidence appears to favor destruction of SaI-AT grafts by the activities of immune peritoneal macrophages. The studies of Journey and Amos (1962) have demonstrated destruction of lymphoma cells following intimate contact with macrophages from a resistant host. The observation of Baker et al. (1962) that tumor cells remain viable in the presence of immune macrophages when implanted intraperitoneally in diffusion chambers suggests target-immune cell interaction as necessary to subsequent destruction of target cells. In vitro experiments by Granger and Weiser (1966) yielded similar results for immune macrophages introduced into tissue cultures of allogeneic target cells. Ultramicrographs show degenerative processes ensuing in target cells following intimate contact with membranes of immune peritoneal macrophages (Chambers and Weiser, 1964).

Tsoi and Weiser (1968) achieved suppression of SaI-AT growth following passage of immune macrophages into the peritoneum of allogeneic hosts. In a following study (Tsoi and Weiser, 1968) macrophages were shown to possess even greater capacity for homograft suppression when given simultaneously with immune serum; the effect appeared to be
synergistic. This would suggest that a serum factor may be responsible for sensitization of peritoneal macrophages.

Earlier work of Granger and Weiser (1966) indicated that events leading to cytoadherance demand biosynthetic activities of immune macrophages. It is possible that such activities may involve "exposing" of receptor sites necessary for attachment of a sensitizing factor such as cytophilic antibody from immune serum. Such sensitization can occur only as the result of active production of receptor sites by the macrophage (Boyden, 1960). That macrophages alone are capable of being passively sensitized by immune serum (Storb and Weiser, 1967) also suggests the involvement of specific receptor sites.

Enhancement of homograft destruction by macrophage-lymphocyte combinations has been demonstrated (Baker et al., 1962). That destruction of SaI-AT ascites homografts results from cytotoxic activities of the lymphocyte is regarded, however, unlikely (Baker et al., 1962; Granger and Weiser, 1964; Weiser et al., 1965). Accumulated evidence appears rather to implicate the lymphocyte as a producer of a sensitizing factor (cytophilic antibody) which imparts to the peritoneal macrophages the capacity for specific adherence to the target cell necessary to its subsequent destruction by the adherant macrophage.

This paper will investigate further the activities of the immune cells involved in the rejection of the SaI-AT homograft. The following experiments seek (1) to establish the presence of cytophilic antibody on lymphocytes and macrophages of SaI-AT immunized hosts using a
modification of the rosette technique; (2) to correlate activity of cyto-
philic antibody with serum titres and (3) to implicate cytophilic anti-
body production as a factor of tumor immunity.
MATERIALS AND METHODS

Experimental Animals

The animals used throughout this study were inbred Balb/c and A/jax adult females approximately two to four months of age.

The Balb/c mice were originally obtained from the National Institute of Health, Bethesda, Md. in 1966 and the A/jax mice from the Jackson Memorial Laboratories, Bar Harbor, Maine in 1964. Both strains have been maintained in this laboratory since by frequent brother-sister matings.

All stock animals were fed Purina Lab Chow whereas breeder mice were maintained on Purina Mouse Breeder Chow. Water was provided ad libitum.

Tumor Immunization

Experimental Balb/c animals were immunized intraperitoneally (IP) with 0.2 ml of Sarcoma-I (SaI-AT) ascites tumor cells. The tumor was maintained in this laboratory by transfer of 0.2 ml ascites fluid every ten days into the peritoneal cavities of normal adult A/jax mice.

Tumor cells used for challenge were drawn from the peritoneal cavity of A/jax mice five to ten days following tumor transfer using a one ml tuberculin syringe fitted with a 25 gauge needle. The tumor cells contained in two ml of harvested ascites were washed in 10 ml sterile phosphate buffered saline, pH 7.2, (PBS) at a speed not exceeding 100 x g for 12-15 minutes in an International table model centrifuge. Washings
were repeated until red blood cells made up no more than 3% of the total cell population. Other cell types generally comprised no more than 1 to 2% of the remaining cell count. Cells were counted after diluting 1:2 with 0.15% trypan blue using a hemacytometer under high power phase.

Washed tumor cells were resuspended in PBS to a concentration of 40 x 10^6 cells per ml. An immunizing dose (Granger and Weiser) of 20 x 10^6 tumor cells (0.5 ml) was then injected I.P. into Balb/c or A/jax mice. Control mice were injected with 0.5 ml of sterile PBS.

The Rosette Test

The rosette tests were conducted on cell suspensions made from individual spleens using a modification of the method of Biozzi, et al. (1966) and Storb and Weiser (1967). All work was done using silicon-washed glassware. Solutions were maintained on melting ice at 4°C throughout the entire procedure. Spleens were removed from the mediastinal cavity of experimental animals at intervals of 5, 10 and 20 days following inoculation of SAl-AT tumor or PBS. Spleens were ground with a sterile glass plunger from a 10 ml syringe in Hank's balanced salt solution, pH 7.2 (HBSS). Cell suspensions were filtered through sterile gauze into 15 ml glass test tubes to remove coarse debris and washed three times for 12 minutes each at 800 x g in an International table model centrifuge. Red blood cells were harvested from adult A/jax female mice by bleeding from the tail vein into sterile PBS. The cells were washed as described above.
Following vital staining with a 1:2 dilution of 0.15% trypan blue, cells were counted under high power phase using a standard hemacytometer. A dose of 6×10^6 spleen cells contained in HBSS were pipetted into serology tubes with 24×10^6 A/jax red blood cells. Five hundredths ml bovine serum albumin (8 mg/ml) (BSA) was added to this and the final volume was adjusted to 1 ml with HBSS. The resulting cell suspension was incubated overnight (12 hrs) at 4°C and examined for presence of rosettes.

Hematology

Following overnight incubation the clear supernate in each rosette preparation was carefully removed using a capillary pipette. The rosettes were resuspended in three to four drops of 30% normal A/jax serum. To avoid destruction of rosettes during resuspension care was taken to repeatedly invert the capped tubes containing the cell suspensions very gently in a melting ice bath for 10 minutes. The resulting suspensions were carefully smeared on clean glass slides and allowed to partially dry. The smear was then fixed and stained for 4 minutes in Wright's stain and buffered 6 minutes in glass distilled water using Wright's method. The stained preparation was examined for the presence of rosettes. A rosette was recorded as a white blood cell in adherence with 4 or more target red blood cells.
Antibody Titrations

Hemagglutination titers were determined according to the method of Stimpfling (1961).

Sera were incubated at 56°C for 30 minutes to inactivate endogenous complement. The sera were then diluted 1:1 in sterile PBS pH 7.2 containing 1.25% polyvinylpyrrolidone MW 160,000 (PVP) (General Analine and Film Corp.). Serum dilutions began at 1:10 and continued to 1:2560. One tenth ml of 1% thrice washed A/jax red blood cells in saline was added to each well and incubated at 37°C for one hour. Hemagglutination was read following incubation at 4°C for 12 hrs or overnight. A titre of zero was assigned to sera producing no detectable hemagglutination patterns at dilutions of 1:10. The final titre was expressed as the last serum dilution showing detectable hemagglutination.

Hemolysin titrations were carried out utilizing the hemagglutination reaction systems. PVP was however not employed in the reaction system. One drop of guinea pig or rabbit complement diluted 1:5 in saline was added to each well. The sera were incubated overnight at 4°C and examined for hemolysis the following morning. The titre was read as the last dilution to show complete hemolysis. Sera showing no hemolysis at dilutions of 1:5 or 1:10 were assigned a titre of zero.
Splenomegaly Assays

Following sacrifice by cervical dislocation experimental animals were weighed on a Mettler top loading balance and whole body weights recorded. Whole spleens were weighed on a Mettler balance immediately after excision, and the ratios of spleen:whole body weights determined.
RESULTS

The natural history of Sarcoma I ascites tumor (SaI-AT) in adult Balb/c and A/jax mice. SaI-AT given intraperitoneally to Balb/c mice proliferated rapidly in the peritoneal cavity for at least 7 days following challenge. Total cell counts of peritoneal washings showed tumor cells to number 82×10^7 at day 5, increase to 95×10^7 at day 8 and became maximal (100×10^7) at day 10. From day 10 until two weeks, rapid decline in number of tumor cells was observed. Rejection was essentially complete by two weeks, although tumor cells have been observed in concentrated peritoneal washings of a few mice as late as day 20 post injection. The cytoplasm of these cells appeared heavily vacuolated and blebbed and nuclear changes typical of cells undergoing cytolysis (Baker et al.) were apparent. A/jax mice which received 10×10^6 SaI-AT succumbed, however, at days 10 to 12 to massive tumor growth.

Splenomegaly as an indicator of host response to SaI-AT. To establish a preliminary index of host responsiveness to challenge with SaI-AT, the spleen:body weight ratios of immunized Balb/c were determined at various time periods and compared to those ratios obtained from A/jax mice. The results of this study are presented in Table I. The spleen/body weight ratios for Balb/c and A/jax mice injected with SaI-AT showed a comparable increase (0.004 gms and 0.003 gms, respectively) at day 5 post-challenge. Splenomegaly became especially pronounced in Balb/c mice in the next 5 days whereas spleen/body weight ratios in A/jax mice failed to increase and, in fact, began to decline at day 10. These
Table I

Spleen-body weight ratios in A/jax and Balb/c inbred mice following challenge with SaI-AT.

<table>
<thead>
<tr>
<th>No. of days following immunization with SaI-AT</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchallenged control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- - - - represents graph for A/jax mice.
- - - - represents graph for Balb/c mice.
* represents ratio of spleen/body weight for one mouse.
○ represents mean spleen/body weight ratio for one group of mice.
results suggest that the onset of specific immunologic responsiveness to SaI-AT cells in Balb/c mice occurred between 5 and 10 days, post-injection, and persisted for at least two weeks longer.

The ability of Balb/c mice to produce serum antibodies in response to SaI-AT challenge. Adult Balb/c mice injected with SaI-AT failed to produce antibodies capable of hemolyzing A/jax erythrocytes in the presence of rabbit or guinea pig complement. This was a surprising finding and suggested that macroglobulins of the 19S species were produced in insufficient titres or not at all. On the other hand, the data presented in Table II demonstrate the ability of Balb/c mice to produce hemagglutinating antibodies (HA), presumed to be of the 7S species, in response to immunization with SaI-AT. The production of HA antibody was clearly evident as early as day 5; maximum response was reached at day 10 and persisted through day 20. All Balb/c mice responded to SaI-AT immunization with high titres of HA antibodies whereas HA antibody titres were not detected in the sera of A/jax mice.

Rosette formation by spleen cells from Balb/c and A/jax mice challenged with SaI-AT. The spleen was selected as the source of cells to conduct rosette tests following challenge with SaI-AT because of its large number and varied population of lymphoid cells and its demonstrated role in tumor immunity. These studies employed the technique of rosette testing (see materials and methods) as a means of measuring cellular responsiveness to SaI-AT at various time periods after
Table II

Hemagglutination response of Balb/c mice to A/jax erythrocytes following immunization with SaI-AT.

HEMAGGLUTINATION RESPONSE OF BALB/C MICE

<table>
<thead>
<tr>
<th>Unchallenged control</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of days following immunization with SaI-AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

represents graph for Balb/c inbred mice.

represents serum titer for one mouse.

represents mean serum titer for one group of mice.
challenge. All attempts to form rosettes with SaI-AT were met with failure because of the tendency of the tumor cells to spontaneously agglutinate in the in vitro system. Hence, A/jax erythrocytes, presumed to contain all the antigens of the tumor cell except tumor-specific antigens, were used as target antigens in the rosette testing procedure. The data in Table III compare the ability of spleen cells from Balb/c and A/jax mice injected with 20 x 10^6 SaI-AT cells to form rosettes with A/jax target cells (erythrocytes). It is evident from the data that a marked difference in the response of the two recipient strains was detected. The number of rosette-forming cells increased from an average background count of 4 per 500 spleen cells from non-immunized Balb/c to an average of 9 rosette-forming cells per 500 spleen cells from immune Balb/c by day 5 post-challenge. By day 10, the number of rosette-forming cells had risen to 17 per 500 spleen cells and was maintained at this level in immune mice for the duration of the experiment. Small numbers (3 per 500 spleen cells) of rosette-forming cells were detected in spleen cells from A/jax mice and remained constant over a 10 day period after tumor challenge.

Cellular response to SaI-AT immunization measured by spleen cell rosette formation with A/jax red blood cells in A/jax and Balb/c inbred mice. The species of A/jax and Balb/c spleen cells involved in formation of rosettes with A/jax erythrocytes are shown in Table IV. The small lymphocyte appears to predominate as a rosette-forming cell
Table III
Rosette formation by spleen cells of A/jax and immune Balb/c mice.

<table>
<thead>
<tr>
<th>Unchallenged control</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day after immunization with Sa1-AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--- represents graph for A/jax inbred mice.
--- represents graph for Balb/c inbred mice.
* represents number of rosettes formed by one mouse.
* represents mean number of rosettes formed by one group of mice.
Table IV.

Species of spleen white blood cells involved in rosette formation in normal and SaI-AT challenged Balb/c and A/jax mice.

<table>
<thead>
<tr>
<th>Inbred strain of mouse</th>
<th>Days after tumor challenge</th>
<th>Small Lymph</th>
<th>Large Lymph</th>
<th>Macrophage</th>
<th>Plasma Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>No.</td>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Balb/c</td>
<td>5</td>
<td>40/47</td>
<td>4/47</td>
<td>2/27</td>
<td>1/47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85.1</td>
<td>8.5</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>112/118</td>
<td>3/118</td>
<td>2/118</td>
<td>1/118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.0</td>
<td>2.5</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>106/106</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Unchallenged control</td>
<td>20</td>
<td>20/20</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>A/jax</td>
<td>5</td>
<td>16/17</td>
<td>1/17</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94.1</td>
<td>5.9</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12/12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Unchallenged control</td>
<td>10</td>
<td>10/11</td>
<td>-----</td>
<td>1/11</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91.0</td>
<td>-----</td>
<td>9.0</td>
<td>-----</td>
</tr>
</tbody>
</table>

* The ratios given are fractions of total numbers of one cell-type involved in rosette formation over total numbers of rosettes per test group.
in immune Balb/c mice whereas the large lymphocyte, macrophage and plasma cell appeared only occasionally in rosettes formed by spleen cells from immune Balb/c mice. The rosettes representing background counts in A/jax and non-immune Balb/c mice were, in nearly all instances, formed by small lymphocytes.
DISCUSSION

Transplantation immunity in the case of solid graft rejection apparently depends on delayed allergic reactions to produce the cytotoxic effects demonstrable both in vitro and in vivo (Amos and Koprowski, 1963; Brent, 1958; Gowans and McGregor, 1965; Gorer, 1961). The reactivity can thus be transferred to normal recipients by lymphoid cells usually of the small lymphocyte classification. The role of circulating antibodies which are generally present, however, is not clear. Since delayed reactivity is as specific as reactions mediated by humoral antibody, it is supposed that delayed reactivity is mediated by "cell bound" antibody. However, this has not been substantiated in spite of extensive studies by numerous investigators in the field.

Only a small number of transferred lymphocytes participate in passively induced delayed allergic reaction, such as skin or tumor homograft rejection, hence, the vast majority of participating cells is of host origin. Evidence is accumulating that a small number of immunologically active lymphocytes can in some undefined way confer specific activity upon other lymphoid cells, including large lymphocytes and macrophages of the host.

The rejection of Sarcoma I by various mouse strains, not unexpectedly, also depends on the participation of cellular (lymphocytes and macrophages) factors. The work of several investigators (Chourlinkov et al., 1962; Phillips and Stetson, 1962; Tsoi and Weiser, 1965) however, indicates that serum components cytotoxic for Sarcoma AT may be important in the destruction of the tumor at least by mice of the
C57BL strains. These serum components are probably of the 7Sy2 immunoglobulin class (see discussion below) and may have little or no relationship to lymphocyte cytophilic antibody. Early work of Amos (1960) favored involvement of a "cell bound" antibody where intimate immune cell contact with target homograft cells was seen to occur. The studies of Granger and Weiser (1963) demonstrated a specific interaction of "immune" macrophages with allogeneic target cells which appeared to be mediated by a cell bound antibody. These authors predicted that the production of a macrophage-sensitizing factor (presumably cytophilic antibody) by immune lymphocytes enabled the "armed" macrophage to specifically interact with and destroy tumor cells. Classic circulating antibody and complement were not found to be necessary for cell destruction. These studies did not, however, provide evidence to support their contention that cytophilic antibody was produced by lymphocytes although Weiser (personal communication) has indicated that macrophages bear cytophilic antibody which can be eluted and re-used to arm non-sensitized macrophages.

In the studies reported here, the rosette test was successfully developed and applied for the first time to study the relationships of cellular components and serum antibody in tumor homograft immunity. An already vast literature indicates that the rosette test has been used only to measure cytophilic antibody as it relates to rosette formation with heterologous erythrocyte systems. The results obtained in rosette forming cell assays using spleen cells of the immune Balb/c...
mouse and A/jax target erythrocytes demonstrated a close relationship between the numbers of rosette-forming cells and tumor rejection; as the rejection phenomenon became more pronounced, rosette-forming cells increased in number in the spleens of mice. Moreover, the results indicate that small lymphocytes were chiefly involved in rosette formation with allogeneic target cells. This then represents the first detection of the hypothesized "cell-associated" antibody believed to be bound to small lymphocytes which promote homograft immunity. Finally, the finding that a small percentage of the total small lymphocyte population of the spleen formed rosettes with target cells and that in immune mice other cells of the lymphoid system formed rosettes supports the possibility that a few small lymphocytes were capable of conferring specific activity upon other lymphoid cells through the production and release of cytophilic antibody.

The specific nature and immunoglobulin class of cytophilic antibodies produced by small lymphocytes in response to allogeneic cell antigenation is not known. In the case of rosette-forming cells interacting with erythrocytes of another species, 7S\(\gamma\)G antibodies have been strongly implicated as the cytophilic antibody (LoBoglio et al., 1967). It is also known that cytophilic antibodies which passively sensitize rodents to cutaneous and systemic anaphylaxis (Bloch et al., 1963; Ovary et al., 1963) belong to the 7S\(\gamma\)1 immunoglobulin class. The latter are characterized by the presence of a reactive site specific for certain cells of the body in the heavy chain of the antibody.
molecule and their inability to fix complement. That these antibodies fix complement suggests that they may function independently in second set rejection phenomena which proceed with rapidity and at times in near absence of cellular elements.

A follow-up study would (1) employ a modification of the rosette technique to determine the capacity of peritoneal macrophages from Balb/c mice immunized with SaI-AT to form rosettes and (2) investigate the ability of different classes of immunoglobulins in anti-SaI-AT serum to convey passive immunity to macrophages to establish the precise nature of antibody involved in rejection of SaI-AT.
SUMMARY

These studies were able to develop the rosette test for original use in a system employing homologous erythrocytes. Spleens from A/jax and Balb/c mice were examined for the presence of cells able to form rosettes with A/jax erythrocytes at intervals of 5, 10 and 20 days after antigenation with a homologous tumor. Results demonstrated a close relationship between numbers of rosette-forming cells and tumor destruction in immune Balb/c mice, and detected for the first time, a "cell associated" antibody on the surface of small lymphocytes in immune Balb/c mice. The exact nature of the cytophilic antibody was not determined, but it appeared to resemble antibody of the 7S^1 classification. Future investigations necessary to define the nature of the antibody involved in rejection of an allogeneic tumor graft have been suggested (see discussion).
LITERATURE CITED

Weiser, R.S. 1968. Personal communication.

<table>
<thead>
<tr>
<th>N378</th>
<th>Jackson, Kathleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>J135</td>
<td>Studies on Sal-AT</td>
</tr>
<tr>
<td>cop.2</td>
<td>homograft rejection by A/jax and Balb/c inbred strains of mice</td>
</tr>
</tbody>
</table>