Computer calculations for binary electrolyte vapor-liquid equilibrium
by Gary Dale Nelson

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE in Chemical Engineering
Montana State University
© Copyright by Gary Dale Nelson (1969)

Abstract:
An investigation has been made into vapor-liquid equilibrium for binary monovalent electrolyte
systems. These electrolyte systems were treated as systems which deviate from nonelectrolyte behavior
due to their dissociation in the liquid phase. Corrections to this nonelectrolyte behavior were made in
fitting programs written to predict phase equilibrium for nonelectrolytes.

Improvements were made in the fitting programs for hydrochloric acid by considering the mole
fraction of undissociated electrolyte molecules in the liquid phase as the liquid phase solute
concentration. This undissociated molecule concentration was obtained from a concentration dependent
dissociation curve.

Slightly dissociating electrolytes such as ammonia seem to differ much less from nonelectrolyte
behavior than do highly dissociating electrolytes such as hydrochloric and hydrobromic acid.
COMPUTER CALCULATIONS FOR BINARY ELECTROLYTE VAPOR-LIQUID EQUILIBRIUM

by

GARY DALE NELSON

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Chemical Engineering

Approved:

Head, Major Department

Chairman, Examining Committee

Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana

March 1969
ACKNOWLEDGMENT

The author wishes to recognize and thank several people who assisted him toward the completion of his research. He particularly wishes to recognize the following: Dr. Michael Schaer for his guidance and assistance throughout this work, and the staff at the Montana State University Computing Center for their cooperation during the progress of this work.

He also wishes to thank the National Defense Education Act Committee and the Chemical Engineering staff at Montana State University for their financial support while this investigation was being carried out.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITA</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>II</td>
<td>STATEMENT OF THE PROBLEM</td>
</tr>
<tr>
<td>III</td>
<td>PROCEDURE</td>
</tr>
<tr>
<td>IV</td>
<td>RESULTS</td>
</tr>
<tr>
<td>V</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>45</td>
</tr>
<tr>
<td>Appendix A: Derivations of Corrections to Programs</td>
<td>46</td>
</tr>
<tr>
<td>Appendix B: Listing of Programs</td>
<td>54</td>
</tr>
<tr>
<td>Appendix C: Data</td>
<td>61</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Liquid Compositions for HCl-H₂O at 19.95°C in Unsymmetric Convention</td>
<td>41</td>
</tr>
<tr>
<td>C-I</td>
<td>Binary Vapor-Liquid Equilibrium Data</td>
<td>61</td>
</tr>
<tr>
<td>C-II</td>
<td>Physical Properties of Components</td>
<td>65</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Vapor Compositions of HCl-H₂O System at 19.95°C using HVYFTW Program for</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nonelectrolytes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dissociation Constant of HCl as a Function of Temperature</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Ionization of Hydrochloric Acid</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Experimental Equilibrium Mole Fractions for HCl-H₂O System at 19.95°C</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Dependence of HCl Vapor Pressure on Concentration</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Vapor Compositions for NH₃-H₂O at Two Atmospheres</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Vapor Compositions for HF-H₂O at One Atmosphere</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Vapor Compositions for HBr-H₂O at 54.5°C</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>Vapor Compositions for HCl-H₂O at 19.95°C</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>Vapor Compositions for HCl-H₂O at 75°C</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Vapor Compositions for HCl-H₂O at 55.2°C</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>Vapor Compositions for HCl-H₂O at 1.0 Atmosphere</td>
<td>39</td>
</tr>
</tbody>
</table>
An investigation has been made into vapor-liquid equilibrium for binary monovalent electrolyte systems. These electrolyte systems were treated as systems which deviate from nonelectrolyte behavior due to their dissociation in the liquid phase. Corrections to this nonelectrolyte behavior were made in fitting programs written to predict phase equilibrium for nonelectrolytes.

Improvements were made in the fitting programs for hydrochloric acid by considering the mole fraction of undissociated electrolyte molecules in the liquid phase as the liquid phase solute concentration. This undissociated molecule concentration was obtained from a concentration dependent dissociation curve.

Slightly dissociating electrolytes such as ammonia seem to differ much less from nonelectrolyte behavior than do highly dissociating electrolytes such as hydrochloric and hydrobromic acid.
I. INTRODUCTION

When designing separation equipment involving distillation, it is necessary to have available data on vapor-liquid equilibrium for the components involved. There is some experimental data for binary systems, but much less is available for ternary and higher order systems due to the increased difficulty involved in the experimental work. Thus it would be desirable to have available a method of calculating multicomponent vapor-liquid equilibrium requiring only component physical properties and equilibrium data from binary systems. First, however, a model would have to be devised to predict binary data using parameters obtained from binary data.

J. M. Prausnitz and co-workers at the University of California at Berkeley, have devised such a method to not only fit binary data but predict multicomponent data with good accuracy for nonelectrolytes at low or moderate pressures. They have published this work in the form of a series of programs in Computer Calculations for Multicomponent Vapor-Liquid Equilibria. Using component properties, binary equilibrium data, correlations for calculating some thermodynamic functions, and thermodynamic relations, the programs calculate certain parameters which are useful for predicting
multicomponent equilibrium values. While these programs give good fit to nonelectrolyte systems tested, they give poor results for almost all electrolyte systems. An example of the fit obtained can be seen in Figure 1, for a hydrochloric acid-water system. Thus in order to use these programs to calculate vapor-liquid equilibrium for electrolyte systems, certain modifications must be made. While Prausnitz' monograph represents an attempt to summarize thermodynamic functions valid for nonelectrolytes into a computer program, this report represents an attempt to modify those programs to make them valid for acid and base electrolytes, particularly hydrochloric acid.

Nonelectrolyte Vapor-Liquid Equilibrium

The basic concepts used in the computer programs written by Prausnitz is that, 1) the sum of the mole fractions in both the liquid and the vapor phases is equal to 1.0, and, 2) the fugacity of each component in the liquid phase is equal to its fugacity in the vapor phase when the system is at equilibrium. The fugacities of the components are calculated using either experimental data or correlations which give good results. Since computers are used to do the calculations no assumptions of ideality need to be made. The calculation of the fugacities is reduced to using properties of the system or of the components involved.
Figure 1. Vapor Compositions of HCl-H$_2$O System at 19.95°C using HVYFTW Program for Nonelectrolytes.
The vapor phase fugacity of a component is related to its mole fraction by the following:

\[f_i^V = y_i \phi_i P \]

where

- \(f_i^V \) = vapor phase fugacity of component \(i \).
- \(y_i \) = vapor phase mole fraction
- \(\phi_i \) = fugacity coefficient
- \(P \) = system pressure.

The fugacity is actually just the partial pressure corrected by the fugacity coefficient (in an ideal system, \(\phi_i \equiv 1.0 \) and fugacity = partial pressure). A thermodynamic derivation by Beattie (16) gives a relation for the fugacity coefficient as a function of an equation of state of the vapor phase.

The liquid phase fugacity is a function of the liquid phase mole fraction according to the following relation:

\[f_i^L = x_i \gamma_i f_{i0L} \]

where

- \(f_i^L \) = liquid phase fugacity of component \(i \)
- \(x_i \) = liquid phase mole fraction
- \(\gamma_i \) = activity coefficient
- \(f_{i0L} \) = reference state fugacity.

There are thus two thermodynamic functions and one system variable upon which the liquid phase fugacity is dependent. Methods were needed to calculate the activity coefficient and reference state fugacity using only system properties.
The activity coefficient can be calculated using a thermodynamic relation involving the excess Gibbs free-energy of a system. The activity coefficients and mole fractions must also satisfy the Gibbs-Duhem expression,

\[\sum_{i=1}^{N} x_i \, d \ln \gamma_i = 0 \text{ (constant temperature and pressure)} \]

The excess Gibbs energy function used to calculate the activity coefficient is the following

\[RT \ln \gamma_i = \left(\frac{\partial n_T g^E}{\partial n_i} \right)_{T,P,n_j(i\neq j)} \]

where

- \(n_i \) = number of moles of i
- \(n_T \) = total number of moles
- \(g^E \) = excess Gibbs energy
- \(R \) = gas constant
- \(T \) = temperature
- \(P \) = pressure.

Many models have been proposed as solutions to these two relations including the van Laar and Margules models. Prausnitz chose to use a more recently developed model, the Wilson equation, which gave better accuracy than any of the previous ones.

The Wilson model is characterized by interaction parameters between solute and solvent. They are used as solutions
to the excess Gibbs energy which is defined as
\[\frac{\partial E}{\partial T} = \sum_{i} x_i \ln \gamma_i = \sum_{i} \frac{n_i}{n_T} \ln \gamma_i \]

The Wilson equation is
\[\frac{\partial E}{\partial T} = \sum_{i} x_i \ln \left[\sum_{j=1}^{N} \Lambda_{ij} x_j \right] \]

where
\[\Lambda_{ij} = \text{Wilson parameters} \]
\[= \frac{v_{ij}}{v_i} \exp \left[- \left(\lambda_{ij} - \lambda_{ii} \right) \frac{RT}{RT} \right] \]

and
"\((\lambda_{ij} - \lambda_{ii}) \) is an empirically determined energy term closely related to the difference in cohesive energy between an \(i-j \) pair and an \(i-i \) pair." (16)

By performing the indicated operation on the excess Gibbs energy, equations are obtained which give the activity coefficients of the binary system as solutions.

Prausnitz uses two methods by which the activity coefficient is standardized for the given component. For components which are at subcritical conditions in the system the activity coefficient approaches 1.0 as the mole fraction approaches 1.0, or
\[\lim_{x_i \to 1} \gamma_i = 1.0 \]
If a component is supercritical, i.e. the system temperature is higher than the component's critical temperature, then the activity coefficient is defined to approach unity as the mole fraction approaches zero, or

$$\lim_{x_i \to 0} \gamma_i = 1.0$$

If a supercritical component exists, it is designated as the solute. When both components in a binary mixture are subcritical, they are treated the same and the symmetric convention is used. If one is subcritical and one is supercritical the components are in the unsymmetric convention. Activity coefficients for subcritical components are calculated by the above method from the excess Gibbs energy, while the activity coefficients for supercritical components are calculated from a method developed by Prigogine and Defay. This method is shown by O'Connell and Prausnitz (13) as

$$\frac{\gamma_i}{\gamma_i^*} = \lim_{x_i \to 0} \gamma_i$$

where

- \(\gamma_i\) = activity coefficient in symmetric convention
- \(\gamma_i^*\) = activity coefficient in unsymmetric convention.

The unsymmetric convention also assumes that the interaction parameter \(A_{21}\) = 0, where 1 represents the supercritical solute and 2 represents the subcritical solvent.
The second thermodynamic function characterizing the liquid phase fugacity is calculated differently for the two conventions. The reference state fugacity for a condensable component is that of the pure liquid at the system temperature and a reference pressure. It is calculated by equating the pure liquid fugacity to the fugacity of the pure saturated vapor at equilibrium.

Noncondensable components, for which the unsymmetrical convention is used, are usually present in low concentrations in the solutions. The reference state fugacity for these components is set equal to the Henry's constant for that component in the solvent. Thus the noncondensable components are assumed to follow fairly closely to Henry's Law, which is applicable to components at low concentrations.

Characteristics of Electrolyte Solutions

Electrolyte solutions are characterized by the presence of ions when the solvent used is a polar compound. These ions produce many of the effects present in electrolyte solutions such as conductance and nonideality. When the electrolyte is dissolved in the solvent the degree to which it dissociates is dependent on the bonds holding the molecule together and by the polarity of the solvent molecule. Electrolytes which form primarily ionic bonds dissolve and dissociate in a polar solvent much more easily than those.
which exist as covalent molecules.

Electrolytes are classified into two primary groups. True electrolytes exhibit conductance characteristics out of solution and completely dissociate in solution. They may exist as ionic lattice crystals in their usual solid salt state, i.e., NaCl. Potential electrolytes, which include most acids and bases, do not dissociate out of solution and do not serve as conductors unless dissolved. Their dissociation is not complete, i.e., not 100% of all molecules dissociate, but some remain in solution as covalent molecules. It is these electrolytes with which we are concerned because they exert a vapor pressure and can thus be separated by distillation. Hereafter the term electrolyte will refer to these compounds.

Water is a particularly good solvent for electrolytes because of the polarity of the water molecule. The charge placement in the water molecule and in the electrolyte molecule cause an attraction between oppositely charged parts of the two molecules. If this attractive force is great enough, the electrolyte might dissociate into positive and negative ions in the case of an acid, or the water might dissociate in the case of a base. One of the ions may become attached to the other polar molecule in the solution and the other ion will exist by itself. When an acid is dissolved in water it dissociates as follows:
\[\text{HA} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{A}^- \]

The amount of ionization or dissociation occurring is governed by a dissociation constant for the reaction. This constant is defined for the acid dissociation as:

\[K_{\text{diss}} = \frac{a_{\text{H}_3\text{O}^+} a_{\text{A}^-}}{a_{\text{HA}} a_{\text{H}_2\text{O}}} \]

where \(a \) = activity of the chemical entity.

The activity is related to the mole fraction by the activity coefficient in the particular solution

\[a_B = \gamma_B x_B \]

The dissociation of a compound is dependent on both temperature and concentration as shown in Figures 2 and 3 for HCl in water.

Since electrolytes exist in the vapor phase not as ions but as covalent molecules, they must also be present as covalent molecules in the liquid phase. The covalent molecule mole fraction in the liquid phase may be determined by the dissociation constant of the particular electrolyte. This constant is not the same for all electrolytes but is dependent on the electrolyte bond strength. Hydrochloric acid is a particularly highly dissociating acid with a dissociation constant of about \(10^{-7} \). Ammonia and hydrofluoric acid are much weaker and have a dissociation constant in the region of \(10^{-4} \) to \(10^{-5} \).
Figure 2. Dissociation Constant of HCl as a Function of Temperature.
Figure 3. Ionization of Hydrochloric Acid
The deviation from ideality of one particular electrolyte, hydrochloric acid, in water, may be observed by looking at Figure 4. No solution is truly ideal, but the hydrochloric acid solution is much farther from ideality than any nonelectrolyte system observed except those containing a noncondensable or supercritical component. Since the acid solution is at 19.95°C, and below its critical point, its nonideality apparently does not exist as a result of its being a supercritical component. Robinson and Stokes (19) discussed the nonideality of hydrochloric acid: "At 10 N, ..., the partial pressure of hydrogen-chloride is of the order of 20 mm, is contrast with a value of about 7.6 atm. which would be estimated from vapor pressure of pure liquid hydrogen chloride at 20°C (41 atm) on the basis of Raoult's law if the hydrochloric acid were completely undissociated and an ideal solute. ..., This figure, ..., indicates that an appreciable amount (of the order of 0.3 percent) ... is in the form of covalent molecules."

Dissociation of electrolyte solutions results in two other effects. One effect is caused by the presence of charged particles in solution. These charged particles produce long-range electrostatic interactions between the ions in addition to van der Waals and other shorter range forces commonly present in solutions.
Figure 4. Experimental Equilibrium Mole Fractions for HCl-H₂O System at 19.95°C. (2)
The second effect of dissociation is the increase in the number of solute particles present in solution. Every time a molecule dissociates, another particle is formed. Thus the solute concentration would double in a completely dissociated electrolyte solution. The result of this increase is shown by Denbigh (6) where the vapor pressure of hydrochloric acid, a highly dissociating electrolyte, is shown as a function of concentration of solute. In Figure 5 the first curve shows vapor pressure as a function of the concentration of HCl in solution while the second curve shows vapor pressure as a function of concentration squared. The second curve approaches zero concentration at a finite slope as it should if it were to obey Henry's Law at low concentrations. The first curve has a slope of zero as it approaches zero HCl concentration. This dependence on the concentration squared may be a result of the existence of two moles of solute in solution for every mole dissolved.

Since many electrolytes dissociate into more than two ions (H$_2$SO$_4$, H$_3$PO$_4$) there may be many different ions present in these solutions. Ions may associate in solution to form complexes other than the parent molecule in these solutions. Thus ions of valences of two or three may exist in some solutions in addition to the more common single valenced ion. Since this work is an initial probe into the field of electrolyte vapor-liquid equilibrium, only single valenced ions
Figure 5. Dependence of HCl Vapor Pressure on Concentration (6).
will be considered. This will reduce the complexity of the system. Hydrochloric acid is of primary interest because it is monovalent, highly nonideal, and more data are available on it than most other electrolytes.

Most work done on electrolyte solutions up to this time has been involved with conductivity and diffusion of electrolytes and basic functions related to or derived from these phenomena. Little work has been done on phase equilibrium and the thermodynamic quantities needed for its study. Hala (8) has devised a method for calculating vapor-liquid equilibrium for electrolytes using the excess Gibbs energy function derived from the free energy of dilution and employing a separation function for dissociation. However, he does not equate fugacities in the vapor and liquid phases as a means of predicting equilibrium. According to Hala the excess Gibbs energy for an electrolyte is:

$$\Delta G^E = k \sum_{i=1}^{n} n_i \nu_i RT \ln \gamma_i$$

as compared to that for nonelectrolytes

$$\Delta G^E = n_T g^E = \frac{k}{RT} \sum_{i=1}^{n} n_i \ln \gamma_i$$

where

$$\nu_i = \nu_i^+ + \nu_i^- = \text{total number of ions produced by dissociation}$$
\[\gamma_{i\pm} = \text{ionic activity coefficient} \]

\[= (\gamma_{i+}^{v_{i+}} \gamma_{i-}^{v_{i-}})^{1/v_{i}} \]

From this function, the ionic activity coefficient can be obtained

\[\left(\frac{\partial \Delta G^E}{\partial n_i} \right)_{T,P,n_i(i \neq j)} = v_i RT \ln \gamma_{i\pm} \]

If a model were used which was a solution to the excess Gibbs energy and satisfied the Gibbs-Duhem equation, it could be used to calculate the ionic activity coefficient by means of the last relation.

The standard state for electrolytes is defined such that the activity coefficient of the electrolyte approaches unity as the concentration of the electrolyte approaches zero. This is similar to the unsymmetric convention used for nonelectrolyte systems containing noncondensables.

The activity coefficient of an electrolyte may be determined by conductivity experiments or theoretically from the Debye-Huckel method. However, the above procedure involving the excess Gibbs energy is more interesting in this work since it involves a method which could be programmed and one which will yield physical parameters describing a system. If a model were developed which would
satisfy the Gibbs-Duhem equation and accurately predict ionic activity coefficients, it would be valuable in phase equilibria for electrolytes.
II. STATEMENT OF THE PROBLEM

Although there has been work done to obtain vapor-liquid equilibrium data for nonelectrolyte systems with good accuracy, this method yields poor results when applied to electrolyte systems. Prausnitz' work has been summarized in the form of computer programs to obtain the equilibrium data for multicomponent systems using only binary equilibrium data. Fitting programs are used to obtain parameters for the binary systems which describe these systems and can then be used for the multicomponent systems.

Hala (8) has derived a method for obtaining vapor-liquid equilibrium for electrolyte systems with good results for the systems tested but his method is much different than that used by Prausnitz. It does not use many basic phase equilibrium thermodynamics functions and relations and does not equate fugacities in the liquid and vapor phases.

Since no real attempt has been made to summarize thermodynamic functions for electrolytes as has been done for non-electrolytes, this report represents an initial attempt to do this. The fitting programs of Prausnitz will be modified to predict vapor-liquid equilibrium for binary systems of extremely non-ideal electrolytes such as hydrochloric acid. If this objective were accomplished then attempts could be made to use these fitting programs to obtain parameters which
would be used for multi-component systems.

Thus the objectives of this investigation were the following:

1. Make corrections on the theory of nonelectrolytes to include effects produced by electrolyte dissociation characteristic of electrolyte solutions.

2. Use these corrections to revise Prausnitz' fitting programs to predict vapor-liquid equilibrium for binary electrolyte solutions, particularly hydrochloric acid.
III. PROCEDURE

There were two basic methods used in this research in an effort to obtain a correction of Prausnitz's programs which would predict vapor-liquid equilibrium for electrolytes. The first method was to calculate the mole fraction of covalent molecules present in a system at a given concentration of electrolyte and use this as the solute in the equilibrium liquid phase. The second method was to correct the excess Gibbs energy used by Prausnitz to calculate liquid phase activity coefficients to that excess Gibbs energy proposed by Hala for electrolytes.

Two different fitting programs were employed in the research. The first program was HVYFTW and its associated subroutine CALPHW used by Prausnitz for systems treated in the symmetric convention. The second fitting program was LTFTXW and its associated subroutine CALXLW for components treated in the unsymmetric convention. These subroutines are used to calculate activity coefficients for the particular convention employed. Both programs also use the subroutines INPUT, for converting input data to suitable form; VIRIAL, for calculating the second virial coefficient of the gas mixture; RSTATE, for calculating reference state fugacities and partial molar volumes; PHIMIX for calculating the fugacity coefficients of the components, and LSQ which is
used to obtain a least squares fit of the data.

Seven different sets of data taken from equilibrium data compiled by Chu (2), were used in testing the methods proposed for this research. These included water as the solvent with the electrolytes ammonia, hydrofluoric, hydrobromic, and four sets of hydrochloric acid. These data could all be used in the HVYFTW program, but only isothermal data can be used in LTFTVW. Because of its extreme nonideality, hydrochloric acid was the primary electrolyte studied. Hydrobromic acid is also a highly dissociating, nonideal electrolyte, but ammonia and hydrofluoric acid dissociate to a much smaller degree. Data on hydrochloric acid is much more common than that for hydrobromic acid so hydrochloric acid was studied more extensively.

The data included ammonia at two atmospheres, hydrofluoric acid at one atmosphere, hydrobromic acid at 54.5°C, and hydrochloric acid at 19.95°C, one atm., 55.2°C, and 75°C. These data are included in Appendix C along with other physical properties of the components.

In making corrections to Prausnitz programs, it was assumed that the vapor phase molecules are far enough apart that the molecules have little influence on each other. Since they also exist as covalent molecules in vapor, the vapor phase of electrolytes should be similar in behavior to that
of nonelectrolytes. Thus no changes were made in calculating vapor phase fugacities and only effects caused by dissociation in the liquid phase were included in the research.

Undissociated Liquid Phase Molecules

Since only covalent molecules exist in the vapor, they must be in equilibrium with covalent molecules in the liquid phase. The curve of dissociation of HCl molecules as a function of concentration (Figure 3) shows that dissociation decreases with increased concentration. It was thought that the great increase of vapor phase mole fraction with increasing liquid mole fraction in Figure 4, might be a result of this increase in covalent molecules in the liquid phase. By equating the fugacity of undissociated molecules in the liquid phase with the vapor phase fugacity, the vapor phase mole fraction should be calculated. The ions present in the solution would be considered as part of the solvent and not the solute.

This mole fraction of undissociated liquid phase electrolyte molecules was calculated by two methods. In the general case the mole fraction was calculated by subroutine COVCAL using dissociation constants for the particular electrolyte. The subroutines CUBIC and QUAD from McCormick (12) were used to solve a cubic equation in the calculation. This method of calculation is outlined in Appendix A, and the
subroutines are listed in Appendix B. The second method was used only for hydrochloric acid solutions using the dissociation curve in Figure 3. This curve was approximated by two straight lines initially and then fitted using a cubic equation. The method is outlined in Appendix B.

Excess Gibbs Energy

The second method used in correcting for electrolyte nonidealities consisted of calculating the ionic activity coefficient by using the Wilson equation as a solution to the excess Gibbs energy of dilution as proposed by Hala. This excess Gibbs energy is defined as:

\[
-\Delta G^E_{\pm} = \sum_{i}^{N} n_{i} v_{i} RT \ln \gamma_{i\pm}
\]

and is based on the complete dissociation of the electrolyte. When the Wilson parameters are introduced as a solution to this, the excess Gibbs energy becomes

\[
-\Delta G^E_{\pm} = -\sum_{i}^{N} n_{i} v_{i} RT \ln \left[\sum_{j=1}^{k} \Lambda_{ij} x_{j\pm} \right]
\]

After differentiating the first expression with respect to moles of component i, an expression for the activity coefficient of i can be obtained.

\[
\left(\frac{\partial (-\Delta G^E_{\pm})}{\partial n_{i}} \right)_{T,P,n_{j}(j\neq i)} = v_{i} RT \ln \gamma_{i\pm}
\]
Then by performing a similar operation on the second expres­sion, an expression for the activity coefficient in terms of
the Wilson parameters is obtained.

\[\nu_i = \nu_i^- + \nu_i^+ = \text{total number of ions produced by complete dissociation} \]

\[\Lambda_{ij} = \text{Wilson parameter} \]

\[x_{i \pm} = \text{mole fraction of component after complete dissociation of solute} \]

\[= (x_{i^+} x_{i^-})^{1/\nu_i} \]

for monovalent electrolyte

\[x_{j^+} = \frac{n_{j^+}}{n_j^+ + n_{j^-} + n_k} \]

\[n_{j^+} = \text{moles of positive ion produced per mole of electrolyte} \]

\[n_{j^-} = \text{moles of negative ion produced per mole of electrolyte} \]

\[n_k = \text{moles of solvent present per mole of electrolyte} \]

The resulting expressions for activity coefficients of the electrolyte and the solvent are:

\[\gamma_{1 \pm} = \exp[-x_{2 \pm} \frac{x_{1 \pm} - 2x_{1 \pm} \Lambda_{12}}{x_{1 \pm} + \Lambda_{12} x_{2 \pm}} - x_{2 \pm} \frac{x_{2 \pm} \Lambda_{21} - 2x_{2 \pm}}{\Lambda_{21} x_{1 \pm} + x_{2 \pm}}]/(x_{1 \pm} + \Lambda_{12} x_{2 \pm}) \]

\[\gamma_{2 \pm} = \exp[-\nu_1 x_{1 \pm} \frac{2\Lambda_{12} x_{1 \pm} - x_{1 \pm}}{x_{1 \pm} + \Lambda_{12} x_{2 \pm}} - x_{2 \pm} \frac{2x_{1 \pm} - \Lambda_{21} x_{1 \pm}}{\Lambda_{21} x_{1 \pm} + x_{2 \pm}}]/(\Lambda_{21} x_{1 \pm} + x_{2 \pm}) \]
where (1) refers to electrolyte
(2) refers to solvent in binary.

This operation as shown gives activity coefficients in the symmetric convention. The calculation procedure is shown in Appendix A.

The activity coefficients for the unsymmetric convention are calculated from symmetric convention activity coefficients using the following expression as shown by O'Connell and Prausnitz (13).

\[
\frac{\gamma_1^*}{\gamma_1^±} = \lim_{x_1^± \to 0} \gamma_1^±
\]

where \(\gamma^* \) = activity coefficient in unsymmetric convention.

The interaction parameter \(\Lambda_{21} \) was set equal to zero as done by Prausnitz assuming little solvent-solute interaction. The resulting activity coefficients for the unsymmetric convention are:

\[
\begin{align*}
\gamma_1^± &= \exp\left(\frac{-x_2^±}{x_1^± + \Lambda_{12}x_2^±} + \frac{2x_1^± \Lambda_{12}}{\nu_1} - \frac{2}{\nu_1}\right)\frac{\Lambda_{12}}{x_1^± + \Lambda_{12}x_2^±} \\
\gamma_2^± &= \exp\left(-\nu_1x_1^±\right)\frac{2\Lambda_{12}x_1^± - x_1^±}{x_1^± + \Lambda_{12}x_2^±} - 2x_1^±)/x_2^±
\end{align*}
\]

This calculation is shown in Appendix A and is listed in Appendix B as it appeared in the program.
Since the activity coefficient of electrolytes is normalized to approach unity as the mole fraction approaches zero, they should be treated in the unsymmetric convention. The reference state fugacity should be Henry's constant, and the program LTFTXW should apply because it contains both these features. Both conventions were tested in an effort to obtain mole fractions which fit the data.
IV. RESULTS

The original fitting programs were initially run with five sets of binary data: NH$_3$, HF, HBr, and two sets of HCl data. The NH$_3$-H$_2$O system attained good fitting results using the symmetric convention fitting program. These results are shown in Figure 6. This data set was not used in the unsymmetric convention because only isothermal data can be used in that fitting program. The close fit obtained for the ammonia system may be due to the small amount of dissociation that ammonia undergoes in solution. This would make the ammonia more nearly like the undissociated nonelectrolytes than the more highly dissociating hydrochloric acid. These results were good enough that no real correction is probably needed for ammonia.

Hydrofluric acid dissociates only slightly more than ammonia as evidenced by a comparison of their dissociation constants, 6.75×10^{-4} for HF and 1.78×10^{-5} for NH$_3$. However, the fit obtained for HF as shown in Figure 7, was much poorer than for NH$_3$ in the symmetric convention and no improvement was made upon introducing the corrections for dissociation. The mole fractions obtained from the corrected excess Gibbs energy were worse than the uncorrected calculations and the change made by using only the covalent molecules present in calculating the mole fraction made little
Figure 6. Vapor Compositions for NH$_3$-H$_2$O at 2 atmospheres.
Figure 7. Vapor Compositions for HF-H₂O at 1.0 Atm.
difference. The unsymmetric convention wasn't used because this data was for isobaric and not isothermal conditions.

Hydrobromic acid dissociates much more than hydrofluoric acid and the uncorrected symmetric convention fitting program, HVYFTW, yields vapor phase mole fraction values which are far above experimental. This would be expected if there are less covalent molecules present in the liquid than indicated by the original mole fraction. The original HVYFTW program calculates properties based on mole fraction of solute. However, the use of subroutine COVCAL apparently overcorrects for this. The dissociation constant of HBr was unavailable so that for HCl, 10^7 was used. This gave vapor phase concentrations of zero so the mole fraction of covalent molecules in the liquid phase must have been too low. The corrected excess Gibbs energy gave better results but they were still much too high. These results are shown in Figure 8.

The HCl data tested most was that at 19.95°C. The results of the four methods involving the HVYFTW program are shown in Figure 9. It is easily seen that the results obtained from the theory using the undissociated electrolyte as liquid phase mole fraction calculated from the dissociation curve are the best. These results are still in error but show a great improvement over the other methods used. The
Figure 8. Vapor Compositions for HBr-H₂O at 54.5°C.
Figure 9. Vapor compositions for HCl-H₂O at 19.95°C.
conditions under which this curve was obtained are not given by Curtman (4), but it was probably at 25°C. The results obtained from the excess Gibbs energy for electrolytes proposed by Hala and based on complete dissociation of the electrolyte yields the poorest results. This seems strange since this method gave good results for ammonia, which does not dissociate greatly, and represented an improvement for HBr which does dissociate greatly.

The calculation of the covalent molecules by the subroutine COVCAL, which uses a dissociation constant, yielded the second best results. However a dissociation constant of 0.24 was used rather than 2.5×10^7 as obtained by Wynne-Jones (21). The latter was tried but yielded mole fractions of the near zero in the vapor phase. This might indicate that, 1) the dissociation constant of 2.5×10^7 should not be used although Robinson (18) obtained a similar one, or, 2) the assumptions used in calculating the covalent mole fraction were poor (activity coefficients = 1.00). However these latter assumptions should not make a great deal of difference. The mole fractions of liquid phase covalent molecules were calculated in a separate program and gave values much less than those obtained from the dissociation curve. Thus the dissociation constant may be a poor way of calculating mole fractions. It did not have a dependence on concentration either.
The HCl data at 75°C was fit best by the dissociation curve as shown in Figure 10. The original HVYFTW program predicted values much too high. The correction using the Gibbs function for electrolytes predicted values too high except at higher concentrations while the dissociation curve predicted values which were low but fairly consistent. This data was not tested using the COVCAL subroutine to calculate the covalent molecule mole fraction with the dissociation constant of .24.

The method of determining phase equilibrium properties from the presence of covalent solute molecules in the liquid-phase using the dissociation curve for HCl was then tested with two more HCl systems. The first, at 55.2°C, gave fairly good results as shown in Figure 11, but the second, at one atmosphere, gave results which were very low in Figure 12. However, an error developed during the program calculation for the second data set and the results may not have been valid. These poor results may also have been due to the changing of the temperature of the system over the mole fraction range. The dissociation is not constant over a temperature range but varies as does the dissociation constant. Some of the data may have been out of the range of the temperature at which the curve was obtained. However this is only speculation.
Figure 10. Vapor Compositions for HCl-H$_2$O at 75°C.
Figure 11. Vapor Compositions for HCl-H$_2$O at 55.2° C.
Figure 12. Vapor Compositions for HCl-H₂O at 1.0 atm.
The HCl data was used in the LTFTXW or unsymmetric convention fitting program. The results obtained for this method were poor in all cases as shown in Table I. They were completely inconsistent as the liquid-phase mole fraction, which is calculated and compared to the original, even dropped for some increasing experimental liquid concentrations or it became greater than 1.00. One possible explanation for these poor results is that the data is out of the range of Henry's constant. This could easily be because the HCl data ranges up to a mole fraction of .2. In the example of a supercritical component given by Prausnitz, N₂ in decane, the mole fraction of N₂ in the vapor is nearly 100% for liquid-phase mole fractions of about .04. The HCl vapor phase mole fraction is very low at this liquid concentration. This would indicate that the reference state fugacity for electrolytes should be determined from the pure saturated vapor fugacity.

The solvent-solute interaction parameter, \(\Lambda_{21} \), was set equal to zero in the unsymmetric convention. This may be a good assumption for nonelectrolytes but not necessarily for electrolytes. The presence of polar molecules and ionic charges may make this assumption invalid.

No dissociation curves were found for the other electrolytes to test this covalent molecule theory as was done for
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Experimental Covalent</td>
<td>Calculated Covalent</td>
</tr>
<tr>
<td>.0860</td>
<td>.3723</td>
<td>.0475</td>
<td>.0070</td>
<td>.0062</td>
</tr>
<tr>
<td>.0978</td>
<td>.3801</td>
<td>.0520</td>
<td>.0062</td>
<td>.0050</td>
</tr>
<tr>
<td>.1116</td>
<td>.5337</td>
<td>.0483</td>
<td>.0188</td>
<td>.0123</td>
</tr>
<tr>
<td>.1356</td>
<td>.6195</td>
<td>.0499</td>
<td>.0243</td>
<td>.0154</td>
</tr>
<tr>
<td>.1413</td>
<td>.6283</td>
<td>.0507</td>
<td>.0308</td>
<td>.0160</td>
</tr>
<tr>
<td>.1747</td>
<td>.0919</td>
<td>.1014</td>
<td>.0431</td>
<td>.0193</td>
</tr>
<tr>
<td>.1950</td>
<td>.5116</td>
<td>.3327</td>
<td>.0463</td>
<td>.0203</td>
</tr>
<tr>
<td>.2240</td>
<td>2.2685</td>
<td>.0395</td>
<td>.0643</td>
<td>.0464</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.0754</td>
<td>.3079</td>
</tr>
<tr>
<td>.1585</td>
<td>2.8665</td>
<td>.0981</td>
<td>-2.8453</td>
<td></td>
</tr>
</tbody>
</table>
hydrochloric acid. This should be done before any definite conclusions can be made about this theory although it did show an improvement in equilibrium calculations for HCl. It was also assumed that the presence of ions in the solutions has no effect on the properties of the solution. The ions were considered as being a part of the solvent in this method whereas they probably do play a part in the equilibrium. Actually the solution to phase equilibrium for electrolytes probably lies in a combination of an ionic interaction theory with the theory that the undissociated molecules in the solution act as the solute with which the vapor is in equilibrium.
V. SUMMARY

The results obtained from this investigation into electrolyte vapor-liquid equilibrium seem to indicate the following conclusions:

1. Slightly dissociating electrolytes such as ammonia and hydrofluoric acid deviate less from the behavior of non-electrolytes in phase equilibrium than do such highly dissociating electrolytes as hydrobromic and hydrochloric acid.

2. Hydrochloric acid systems lie out of the range of Henry's law in equilibrium calculations. Neither should these systems be treated in the unsymmetric convention.

3. Improvements in vapor-liquid equilibrium calculation for hydrochloric acid were made by considering only the undissociated molecules in the liquid phase as the solute mole fraction in Prausnitz programs for nonelectrolytes, treated in the symmetric convention.

4. The use of the excess Gibbs energy for electrolytes in calculating activity coefficients for electrolytes yields no improvement over the excess Gibbs energy for nonelectrolytes.

This work is only an initial investigation into the field of vapor-liquid equilibrium for electrolytes as a deviation from the more ideal nonelectrolytes. Further investigation
should be made into the undissociated molecule mole fraction theory for all electrolytes. The effect of the presence of ionic charges in solution on the electrolyte equilibrium should also be studied.
APPENDIX A
DERIVATION OF CORRECTIONS TO PROGRAMS

Calculation of Covalent Electrolyte Molecule Concentration in Solution (From Ionic Equilibrium: A Mathematical Approach)

Dissociation Reaction

\[\text{HA} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{A}^- \]

HA = electrolyte (in this case an acid)

\[\text{H}_3\text{O}^+ = \text{H}^+ \] in following.

Reaction is governed by four equilibrium equations:

1) Dissociation constant

\[K_a = \frac{a_{A^-} a_{H^+}}{a_{HA} a_{H_2O}} \quad \text{and} \quad a = \gamma [C] \]

where \(a \) = activity

\(\gamma \) = activity coefficient

\([C]\) = concentration

Assume \(\gamma = 1.00 \) in all cases

\[K_a = \frac{[A^-][H^+]}{[HA]} \]

2) Water dissociation constant

\[[H^+][O\text{H}^-] = 10^{-14} \]

3) Electrical Neutrality in Solution

\[[H^+] = [O\text{H}^-] + [A^-] \]
4) Electrolyte concentration remains constant

\[C = [HA] + [A^-] \]

where \(C \) = initial electrolyte concentration before dissociation

\[3a) \quad [H^+] = \frac{10^{-14}}{[H^+]} + [A^-] \quad \text{(using 2)} \]

\[1a) \quad (C-[A^-])K_a = [H^+] [A^-] \quad \text{(using 4)} \]

\[3a) \quad [A^-] = [H^+] - \frac{10^{-14}}{[H^+]} \]

Substitute 3a) into 1a)

\[[H^+] ([H^+] - \frac{10^{-14}}{[H^+]}) = K_a (C-[H^+] + \frac{10^{-14}}{[H^+]}) \]

rearranging

\[[H^+]^3 + K_a [H^+]^2 - (K_a C+10^{-14})[H^+] - K_a (10^{-14}) = 0 \]

This cubic equation would then yield a solution for \([H^+]\) and from the first four equilibrium equations a solution of \([HA]\), the covalent molecule concentration was obtained.

\[[OH^-] = 10^{-14}/[H^+] \]

\[[A^-] = [H^+] - [OH^-] \]

\[[HA] = \frac{[H^+][A^-]}{K_a} \]

The program used to compute this value is included in Appendix B along with the subroutines used to solve the cubic equation.
The mole fraction was converted to molar concentration (molarity) as follows:

\[
\text{mole fraction} = \frac{\text{moles } X_i}{\text{total moles}}
\]

\[
\text{Molarity} = \frac{\text{moles } X_i}{\text{liter of solution}} = \left(\frac{\text{moles } X_i}{\text{total moles}}\right)\left[\frac{(\text{gms/ml})\times1000}{\text{M.W.}}\right]
\]

\[
= \frac{\text{moles } X_i}{\text{liter}} = (\text{mole fraction})\left(\frac{\text{density (gms/ml)}}{\text{M.W.}}\right)
\]

\[
\text{M.W.} = (X_1)(\text{M.W.1}) + (X_2)(\text{M.W.2})
\]

Densities were taken from Perry's Chemical Engineer's Handbook and a straight line was drawn through the points fairly accurately to determine an equation for density.

Calculation of Mole Fraction of Undissociated HCl Molecules Using Dissociation Curve

As an initial test this curve was approximated by two straight lines. Then it was fitted by a cubic equation using a least squares fitting program written by Robert J. Robertus. This program yielded the following cubic equation:

\[
(-3.3046 \times 10^{-4})x^3 + (1.0549 \times 10^{-2})x^2 - (15613)x + .95537 = y
\]

where \(x = \text{molarity}\)

\(y = \text{ionization fraction}\)
The equation fit the data as follows:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>YCAL (by curve)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>.98</td>
<td>.95381</td>
<td>2.6185E-02</td>
</tr>
<tr>
<td>.02</td>
<td>.97</td>
<td>.95226</td>
<td>1.7744E-02</td>
</tr>
<tr>
<td>.03</td>
<td>.965</td>
<td>.9507</td>
<td>1.4244E-02</td>
</tr>
<tr>
<td>.05</td>
<td>.955</td>
<td>.94759</td>
<td>7.4052E-03</td>
</tr>
<tr>
<td>.1</td>
<td>.93</td>
<td>.93987</td>
<td>-9.8672E-03</td>
</tr>
<tr>
<td>.2</td>
<td>.9</td>
<td>.92457</td>
<td>-2.4568E-02</td>
</tr>
<tr>
<td>.3</td>
<td>.88</td>
<td>.90948</td>
<td>-2.9477E-02</td>
</tr>
<tr>
<td>.5</td>
<td>.86</td>
<td>.87991</td>
<td>-1.9907E-02</td>
</tr>
<tr>
<td>1.0</td>
<td>.82</td>
<td>.80946</td>
<td>1.0535E-02</td>
</tr>
<tr>
<td>2.0</td>
<td>.685</td>
<td>.68267</td>
<td>2.3308E-03</td>
</tr>
<tr>
<td>3.0</td>
<td>.58</td>
<td>.57301</td>
<td>6.9942E-03</td>
</tr>
<tr>
<td>5.0</td>
<td>.4</td>
<td>.39714</td>
<td>2.8560E-03</td>
</tr>
<tr>
<td>7.0</td>
<td>.26 (interp.)</td>
<td>.26602</td>
<td>-6.0171E-03</td>
</tr>
<tr>
<td>10.0</td>
<td>.12 (interp.)</td>
<td>.11851</td>
<td>1.4928E-03</td>
</tr>
</tbody>
</table>

Although these results weren't completely accurate over the entire range, it was decided that they were close enough for this work.

This method was then programmed and used in calculating the mole fraction of undissociated molecules from the total mole fraction of HCl in solution.
Derivation of Expression for Activity Coefficients Using Wilson Model: Symmetric Convention

Wilson equation for nonelectrolytes

\[gE = \sum_{i=1}^{N} x_i \ln \gamma_i = - \sum_{i=1}^{N} x_i \ln \left[\sum_{j=1}^{N} \Lambda_{ij} x_j \right] \]

Proposed Wilson equation for electrolytes (Gibbs energy definition from Hala)

\[-gE = -\frac{\Delta G^E}{n_T} = \sum_{i=1}^{N} x_i \pm \nu_i \ RT \ln \gamma_i \pm = \sum_{i=1}^{N} x_i \pm \nu_i \ RT \ln \left[\sum_{j=1}^{N} \Lambda_{ij} x_j \right] \]

\(\frac{\partial (-\Delta G^E)}{\partial n_i} \) \(T, P, n_i \neq j \) = +RT ln \(\gamma_i \pm \)

\(\nu_i = \nu_{i+} + \nu_{i-} \) total sum of ions per molecule at complete dissociation

\(x_{j \pm} = \left(x_{j+}^{\nu_{j+}} \cdot x_{j-}^{\nu_{j-}} \right)^{1/\nu_j} \]

\[= \left[\frac{n_{j+}}{n_{j+} + n_{j-} + n_k} \right]^{\nu_{j+}} \left[\frac{n_{j-}}{n_{j+} + n_{j-} + n_a} \right]^{\nu_{j-}} \right]^{1/\nu_j} \]

where \(k \) refers to solvent

\(n_{j+} = \) number of moles of positive \(j \) ions per dissociation molecule

\(n_{j-} = \) number of moles of negative \(j \) ions.
For monovalent binary as used in this research: electrolyte (1), solvent (2)

\[
x_{2\pm} = \left[\left(\frac{n_1}{n_1 + n_1 + n_2} \right)^1 \left(\frac{n_1}{n_1 + n_1 + n_2} \right)^1 \right]^{1/2} = \frac{n_1}{2n_1 + n_2}
\]

\[
x_{2\pm} = \frac{n_2}{2n_1 + n_2}
\]

\[v_1 = 2, \quad v_2 = 1\]

\[
\Delta G^E_\pm = RT\{-n_1 v_1 \ln[A_1] x_{1\pm} + A_{12} x_{2\pm}\}
\]

\[
- n_2 \ln[A_2] x_{1\pm} + A_{22} x_{2\pm},\quad A_{11} = A_{22} = 1
\]

\[
= RT\{-n_1 v_1 \ln\left[\frac{n_1}{2n_1 + n_2} + \frac{n_1}{2n_1 + n_2} \right]}
\]

\[
- n_2 \ln\left[A_{21} \left(\frac{n_1}{2n_1 + n_2} + \frac{n_2}{2n_1 + n_2} \right)\right]
\]

\[
\frac{\partial (\Delta G^E_\pm)}{\partial n_1}_{T,P,n_2} = RT\{-v_1 x_{1\pm} \frac{x_{2\pm} - 2x_{2\pm} A_{12}}{x_{1\pm} + A_{12} x_{2\pm}} - v_1 \ln[x_{1\pm} + A_{12} x_{2\pm}]
\]

\[
- x_{2\pm} \frac{x_{2\pm} A_{21} - 2x_{2\pm}}{A_{21} x_{1\pm} + x_{2\pm}}\}
\]
Thus

\[v_1 \ln \gamma_1^\pm = -v_1 \ln \left[x_1^\pm + \Lambda_{12} x_2^\pm \right] - v_1 x_1^\pm \frac{x_2^\pm - 2x_1^\pm \Lambda_{12}}{x_1^\pm + \Lambda_{12} x_2^\pm} - x_2^\pm \frac{\Lambda_{21} - 2x_2^\pm}{\Lambda_{21} x_1^\pm + x_2^\pm} \]

Differentiating with respect to \(n_2 \) in a similar manner, one obtains an expression for \(\ln \gamma_2^\pm \). The results for \(\gamma_1^\pm \) and \(\gamma_2^\pm \) are:

\[\gamma_1^\pm = \exp \left[-x_2^\pm \frac{x_1^\pm - 2x_1^\pm \Lambda_{12}}{x_1^\pm + \Lambda_{12} x_2^\pm} - x_2^\pm \frac{\Lambda_{21} - 2x_2^\pm}{\Lambda_{21} x_1^\pm + x_2^\pm} \right] \left(x_1^\pm + \Lambda_{12} x_2^\pm \right) \]

\[\gamma_2^\pm = \exp \left[-v_1 x_1^\pm \frac{2\Lambda_{12} x_1^\pm - x_1^\pm}{x_1^\pm + \Lambda_{12} x_2^\pm} - x_2^\pm \frac{2x_2^\pm - \Lambda_{21} x_1^\pm}{\Lambda_{21} x_1^\pm + x_2^\pm} \right] \left(\Lambda_{21} x_1^\pm + x_2^\pm \right) \]
Unsymmetric Convention

\[\frac{\gamma_1}{\gamma_1^*} = \lim_{x_1^\pm \to 0} \gamma_1 \]

\[\gamma_1^* = \lim_{x_1^\pm \to 0} \gamma_1^\pm \]

as \(x_1^\pm \to 0, x_2^\pm \to 1 \)

Limit \(\gamma_1^\pm = [\exp(2 - \Lambda_{21})/\nu_1]/\Lambda_{12} \)

Setting \(\Lambda_{21} = 0 \) by assumption of weak interaction

\[\gamma_1^\pm = \exp(-x_2^\pm \frac{x_1^\pm - x_1^\pm A_{12} x_2^\pm}{x_1^\pm + A_{12} x_2^\pm} + \frac{2x_2^\pm}{\nu_1} - \frac{2}{\nu_1}) \frac{\Lambda_{12}}{x_1^\pm + A_{12} x_2^\pm} \]

\[\gamma_2^\pm = \exp(-\nu_1 x_1^\pm \frac{2A_{12} x_1^\pm - x_1^\pm}{x_1^\pm + A_{12} x_2^\pm} - 2x_1^\pm)/x_2^\pm \]
SUBROUTINE CQVCAL

SUBROUTINE FOR CALCULATING THE MOLE FRACTION OF COVALENT MOLECULES IN SOLUTION OF ELECTROLYTE

REAL MW1, MW2

COMMON TITLE, NCMP, NLIGHT, NACTCO, TCRT, PCRIT, VCRIT, OMEGA,
1 IDENT, VLIQ, CVL IQ, PSAT, CPSAT, CACTCO, GAMMA, X, SUMX, Y, SUMY,
2 P, T, TOLD, PHI, B, BMIX, VMIX, ZMIX, F, FREFER, NREFER, HENRY,
3 CHENRY, VL IQ, CVL IQ, OMEGAH, DIPOLE, ETA, NCRIT
4 VRAT10, RT, RRT, D, WTMOLE

COMMON A, XR, AQ, DENS, DENB, DISSK, MW1, MW2, XI

DIMENSION TITLE(18), TCRT(5,5), PCRIT(5,5), VCRIT(5,5),
1 MEGA(5), IDENT(5,4), VLIQ(5,5), CVL IQ(5,3), PSAT(5),
2 CPSAT(5,6), CACTCO(5,5,3), GAMMA(5), X(5), Y(5), PHI(5),
3 B(5,5), F(5), FREFER(5), NREFER(10), HENRY(10,5),
4 CHENRY(10,5,2), VL IQ(10,5), CVL IQ(10,5,2), OMEGAH(5),
5 DIPOLE(5), ETA(5), D(5), WTMOLE(5)

DIMENSION PARAM(6), DATA(50,10), PT(2), PCAL(50)

DENMIX=DENSITY OF MIXTURE AT COMPOSITION X(I)
AVGMWT=AVERAGE M.WT. OF SOLUTION BASED ON COMPOSITION FACTOR
CMBLAR=MOLARITY OF ELECTROLYTE SOLUTION CONVERTED FROM MOLE FRACTION

MW1=M.WT. OF SOLUTE, MW2=M.WT. OF SOLVENT

DENMIX=DENSAT. + X(1)*DENB
AVGMWT=X(1)*MW1 + X(2)*MW2
CMBLAR(1) = (X(1)*DENMIX*1000.)/AVGMWT

A(I) ARE COEFFICIENTS OF CUBIC EQUATION USED IN SOLVING FOR ASSOCIATED MOLECULES, DISSK=ASSOCIATION CONSTANT OF ELECTROLYTE

ELECM=CONCENTRATION OF H+ OR OH- ION IN SOLUTION

CONJMOE=CONC OF CONJUGATE ION IN SOLUTION
A(1) = 1.00
A(2) = DISSK
A(3) = (DISSK*CMGLAR(1) + 1.0E-14)
A(4) = (DISSK*1.0E-14)
IF (DISSK=1.0E04) 900, 901, 901
900 CALL CUBIC(A,XX,XI(2))
 IF (XX(1)) 15, 15, 12
12 IF (XI(1)) 15, 13, 15
13 ELECM8 = XX(1)
 GO TO 902
15 IF (XX(2)) 18, 18, 16
16 IF (XI(2)) 18, 17, 18
17 ELECM8 = XX(2)
 GO TO 902
18 IF (XX(3)) 30, 30, 19
19 IF (XI(3)) 30, 20, 30
20 ELECM8 = XX(3)
 GO TO 902
901 ELECM8 = CMGLAR(1)/ELECM8
902 CBNJ8M8 = (1.0E-14)/ELECM8
 AMGLAR=ELECM8*CBNJ8M8
 CBVAL=(ELECM8*AMGLAR)/DISSK
 X(1) = (CBVAL*AVGMT)/(DENMIX*1000.)
 X(2)=1.0*X(1)
36 FORMAT (11H,N9 RESULT)
 GO TO 32
30 PRINT 36
32 RETURN
END
SUBROUTINE CUBIC(A, XR, XI)

SOLUTION OF CUBIC EQUATION
A(1)*X**3 + A(2)*X**2 + A(3)*X + A(4) = 0

DIMENSION A(4), XR(3), AQ(3)

IPATH=2
EX = 1/3;
IF (A(4)) 1006, 1004, 1006

1004 XR(1) = 0
GO TO 1034

1006 A2 = A(1)*A(1)
Q = (27*A2*A(4)-9*A(1)*A(2)*A(3) + 2*A(2)**3)/(54*A2*A(1))
IF (Q) 1010, 1008, 1014

1008 Z=0
GO TO 1032

1010 Q=0
IPATH = 1
1014 P=(3*A(1)*A(3)+A(2)*A(2))/(9*A2)
ARG = P*P*P + Q*Q
IF (ARG) 1016, 1018, 1020

1016 Z=2*SQRTF(-P)*CSBF(ATANF(SQRTF(ARG)/Q)/3,)
GO TO 1028

1018 Z=-Z**EX
GO TO 1028

1020 SARG = SQRTF(ARG)
IF (P) 1022, 1024, 1026

1022 Z = -(D+SARG)**EX + (Q+SARG)**EX
GO TO 1028

1024 Z = -(2*Q)**EX
GO TO 1028

1026 Z = (SARG -Q)**EX -(SARG +Q)**EX

1028 GO TO (1030, 1032), IPATH

1030 Z = -Z
1032 XR(1) = (3*A(1)*Z - A(2))/(3*A(1))

1034 AQ(1) = A(1)
SUBROUTINE QUAD (A, XR1, XR2, X1)

SOLUTION OF THE QUADRATIC EQUATION

A(1)*X**2 + A(2)*X + A(3) = 0.

DIMENSION A(3)
X1 = -A(2)/(2*A(1))
DISC = X1*X1 - A(3)/A(1)
IF (DISC) 10,20,20
10 X2 = SQRT(-DISC)
XR1 = X1
XR2 = X1
XI = X2
GOTO 30
20 X2 = SQRT(DISC)
XR1 = X1 + X2
XR2 = X1 - X2
XI = 0。
30 RETURN
END
Program for Calculating Covalent Molecule Concentration from Dissociation Curve

Program Used to Calculate Fraction of Undissociated Molecules from Dissociation Curve for Hydrochloric Acid

DENMIX = Density of mixture, AVGMWT = Average Molecular Weight of Mixture, XMOLAR = Molarity, XION = Fraction of Dissociated Molecules, COVMOL = Fraction of Undissociated Molecules

DENMIX = DEMA + X(1)*DENB
AVGMWT = X(1)*MW1 + X(2)*MW2
XMOLAR = (X(1)*DENMIX*1000)/AVGMWT
XION = (7.00033046)*(XMOLAR**3) + 0.010549*XMOLAR**2 + 15613*XMOLAR

COVMOL = 1.00 - XION

X(1) = COVMOL * DATA(J,1)
X(2) = 1.00 - X(1)
Activity Coefficient Calculation in Symmetric Convention for Electrolytes

SYMMETRIC CONVENTION ACTIVITY COEFFICIENT CALCULATION FOR ELECTROLYTES

TO BE USED IN SUBROUTINE CALPHW

DISN1 = NUMBER OF MOLECULES PRODUCED BY DISSOCIATION

XLAMD1, XLAMD2 = WILSON PARAMETERS FOR ELECTROLYTES

XD(I) = CORRECTED MOLE FRACTION

GAMMA(I) = ACTIVITY COEFFICIENT

\[
\begin{align*}
\text{DISN1} &= 2*00 \\
\text{XLAMD1} &= \text{VRATIO} \times \expf(-\text{CACTC0}(1,2,1)/\text{RRT}) \\
\text{XLAMD2} &= \expf((-\text{CACTC6}(2,1,1)/\text{RRT})/\text{VRATIO}) \\
\text{XD}(1) &= \text{X}(1)/(1.0+\text{X}(1)) \\
\text{XD}(2) &= \text{X}(2)/(1.0+\text{X}(1)) \\
\text{XLD12} &= \text{XD}(1) + \text{XLAMD1} \times \text{XD}(2) \\
\text{XLD21} &= \text{XD}(2) + \text{XLAMD2} \times \text{XD}(1) \\
\text{XLD121} &= 2 \times \text{XLAMD1} \times \text{XD}(1) \times \text{XD}(1) \\
\text{XLD122} &= \text{XD}(2) + 2 \times \text{XD}(2) \times \text{XLAMD1} \\
\text{XLD212} &= \text{XD}(2) \times \text{XLAMD2} + 2 \times \text{XD}(2) \\
\text{XLD211} &= 2 \times \text{XD}(1) + \text{XLAMD2} \times \text{XD}(1) \\
\text{FACT1} &= \text{XD}(1) \times \text{XLD122}/\text{XLD12} \\
\text{FACT2} &= (\text{XD}(2)/\text{DISN1}) \times (\text{XLD212}/\text{XLD21}) \\
\text{FACT3} &= (\text{DISN1} \times \text{XD}(1) \times \text{XLD121})/\text{XLD12} \\
\text{FACT4} &= (\text{XD}(2) \times \text{XLD211})/\text{XLD21} \\
\text{GAMMA}(1) &= \expf(-\text{FACT1}-\text{FACT2})/\text{XLD12}
\end{align*}
\]
Activity Coefficient Calculation in Unsymmetric Convention for Electrolytes

C
C UNSYMMETRIC CONVENTION ACTIVITY COEF CALC FOR ELECTROLYTES
C TO BE USED IN SUBROUTINE CALXLW
C
C DISN1 = NUMBER OF MOLECULES PRODUCED BY DISSOCIATION
C XLAMD1, XLAMD2 = WILSON PARAMETERS FOR ELECTROLYTES, XD(1) =
C CORRECTED MOLE FRACTION
DISN1 = 2.00
XLAMD1 = VRATIO * EXPF (-CACTCO(1,2,1)/RRT)
XD(1) = X(1)/(1.0 + X(1))
XD(2) = X(2)/(1.0 + X(1))
XLD12 = XD(1) + XLAMD1*XD(2)
XLD121 = 2.0*XLAMD1*XD(1)-XD(1)
GAMMA(1) = EXP((XD(2)*XLD121)/XLD12) + 2.0*XD(2)/DISN1 - 2/DISN1
1*(XLAMD1/XLD12)
GAMMA(2) = EXP(-DISN1*XD(1)*XLD121/XLD12 - 2.0*XD(1))/XD(2).
APPENDIX C - DATA

TABLE C-I

BINARY VAPOR-LIQUID EQUILIBRIUM DATA

<table>
<thead>
<tr>
<th>Mole % (A) in</th>
<th>Liquid</th>
<th>Vapor</th>
<th>Temp °C</th>
<th>Pressure mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Ammonia</td>
<td>(B) Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>120.6</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>1.5</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>29.0</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>50.6</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>67.5</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>80.3</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>89.2</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.4</td>
<td>94.8</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>97.5</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.7</td>
<td>98.4</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Hydrofluoric Acid</td>
<td>(B) Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.95</td>
<td>0.78</td>
<td>101.6</td>
<td>760</td>
<td></td>
</tr>
<tr>
<td>9.20</td>
<td>1.83</td>
<td>102.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.9</td>
<td>6.42</td>
<td>106.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.8</td>
<td>10.6</td>
<td>108.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.9</td>
<td>17.8</td>
<td>110.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.8</td>
<td>30.6</td>
<td>111.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.4</td>
<td>32.1</td>
<td>112.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mole % (A) in Liquid</td>
<td>Mole % (A) in Vapor</td>
<td>Temp °C</td>
<td>Pressure mm Hg</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Hydrofluoric Acid (B) Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.6</td>
<td>34.0</td>
<td>112.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.8</td>
<td>35.7</td>
<td>112.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.7</td>
<td>38.6</td>
<td>112.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.7</td>
<td>47.5</td>
<td>111.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.4</td>
<td>63.3</td>
<td>108.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.3</td>
<td>81.2</td>
<td>101.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.3</td>
<td>86.2</td>
<td>98.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.0</td>
<td>92.2</td>
<td>90.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.2</td>
<td>96.9</td>
<td>86.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.8</td>
<td>98.8</td>
<td>79.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.8</td>
<td>98.4</td>
<td>74.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.8</td>
<td>98.5</td>
<td>61.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.8</td>
<td>98.6</td>
<td>45.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.0</td>
<td>99.0</td>
<td>33.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Hydrobromic Acid (B) Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>0.0</td>
<td>54.83</td>
<td>109.7</td>
<td></td>
</tr>
<tr>
<td>5.45</td>
<td>0.0</td>
<td>99.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.85</td>
<td>0.32</td>
<td>58.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.94</td>
<td>0.05</td>
<td>38.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.20</td>
<td>13.30</td>
<td>36.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.80</td>
<td>19.90</td>
<td>36.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mole % (A) in Liquid</td>
<td>Mole % (A) in Vapor</td>
<td>Temperature °C</td>
<td>Pressure mm Hg</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>19.20</td>
<td>24.89</td>
<td>36.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.60</td>
<td>26.93</td>
<td>35.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.28</td>
<td>44.92</td>
<td>40.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.12</td>
<td>54.90</td>
<td>51.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.38</td>
<td>65.63</td>
<td>53.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.85</td>
<td>85.93</td>
<td>104.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.17</td>
<td>96.30</td>
<td>103.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A) Hydrochloric Acid (B) Water

<table>
<thead>
<tr>
<th>Mole % (A) in Liquid</th>
<th>Mole % (A) in Vapor</th>
<th>Temperature °C</th>
<th>Pressure mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>0.23</td>
<td>75.9</td>
<td>264.3</td>
</tr>
<tr>
<td>7.86</td>
<td>1.08</td>
<td>236.0</td>
<td></td>
</tr>
<tr>
<td>11.94</td>
<td>10.22</td>
<td>205.3</td>
<td></td>
</tr>
<tr>
<td>12.50</td>
<td>13.13</td>
<td>203.6</td>
<td></td>
</tr>
<tr>
<td>12.77</td>
<td>15.75</td>
<td>202.0</td>
<td></td>
</tr>
<tr>
<td>13.85</td>
<td>25.97</td>
<td>209.9</td>
<td></td>
</tr>
<tr>
<td>14.63</td>
<td>36.81</td>
<td>226.6</td>
<td></td>
</tr>
<tr>
<td>16.48</td>
<td>61.18</td>
<td>299.2</td>
<td></td>
</tr>
<tr>
<td>17.94</td>
<td>76.92</td>
<td>427.7</td>
<td></td>
</tr>
<tr>
<td>19.42</td>
<td>84.08</td>
<td>522.2</td>
<td></td>
</tr>
<tr>
<td>19.82</td>
<td>85.84</td>
<td>561.3</td>
<td></td>
</tr>
<tr>
<td>2.53</td>
<td>0.0</td>
<td>19.95</td>
<td>16.0</td>
</tr>
<tr>
<td>5.20</td>
<td>0.0</td>
<td>14.6</td>
<td></td>
</tr>
</tbody>
</table>
Mole % (A) in Liquid Vapor Temp °C Pressure mm Hg

<table>
<thead>
<tr>
<th>Mole %</th>
<th>Vapor</th>
<th>Temp °C</th>
<th>Pressure mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.60</td>
<td>.51</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td>9.78</td>
<td>1.08</td>
<td></td>
<td>12.2</td>
</tr>
<tr>
<td>11.16</td>
<td>3.21</td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>13.56</td>
<td>11.45</td>
<td></td>
<td>9.3</td>
</tr>
<tr>
<td>14.13</td>
<td>16.17</td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td>17.47</td>
<td>68.45</td>
<td></td>
<td>16.1</td>
</tr>
<tr>
<td>19.50</td>
<td>88.85</td>
<td></td>
<td>38.5</td>
</tr>
<tr>
<td>22.40</td>
<td>97.90</td>
<td></td>
<td>145.3</td>
</tr>
</tbody>
</table>

(A) Hydrochloric Acid (B) Water

<table>
<thead>
<tr>
<th>Mole %</th>
<th>Vapor</th>
<th>Temp °C</th>
<th>Pressure mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.53</td>
<td>0.0</td>
<td>55.2</td>
<td>114.7</td>
</tr>
<tr>
<td>5.20</td>
<td>0.7</td>
<td></td>
<td>104.7</td>
</tr>
<tr>
<td>8.60</td>
<td>0.83</td>
<td></td>
<td>89.9</td>
</tr>
<tr>
<td>9.78</td>
<td>1.97</td>
<td></td>
<td>84.1</td>
</tr>
<tr>
<td>12.90</td>
<td>12.70</td>
<td></td>
<td>74.1</td>
</tr>
<tr>
<td>13.40</td>
<td>16.14</td>
<td></td>
<td>74.0</td>
</tr>
<tr>
<td>14.13</td>
<td>23.40</td>
<td></td>
<td>76.3</td>
</tr>
<tr>
<td>15.14</td>
<td>34.65</td>
<td></td>
<td>86.5</td>
</tr>
<tr>
<td>16.76</td>
<td>58.38</td>
<td></td>
<td>111.0</td>
</tr>
<tr>
<td>17.47</td>
<td>70.50</td>
<td></td>
<td>145.8</td>
</tr>
<tr>
<td>1.0</td>
<td>0.01</td>
<td>100.4</td>
<td>760</td>
</tr>
<tr>
<td>3.0</td>
<td>0.08</td>
<td>100.79</td>
<td></td>
</tr>
</tbody>
</table>
Mole % (A) in Liquid and Vapor

<table>
<thead>
<tr>
<th>Mole % (A)</th>
<th>Liquid</th>
<th>Vapor</th>
<th>Temp °C</th>
<th>Pressure mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0</td>
<td>0.31</td>
<td>101.55</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>4.77</td>
<td>4.78</td>
<td>104.35</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>38.91</td>
<td>38.92</td>
<td>107.60</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>86.20</td>
<td>86.20</td>
<td>109.84</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>95.97</td>
<td>95.97</td>
<td>106.04</td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>97.60</td>
<td>97.60</td>
<td>90.70</td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>98.53</td>
<td>98.53</td>
<td>62.50</td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>99.39</td>
<td>99.39</td>
<td>29.2</td>
<td></td>
</tr>
</tbody>
</table>

TABLE C-II

PHYSICAL PROPERTIES OF COMPONENTS

<table>
<thead>
<tr>
<th>Critical Properties and Parameters Characterizing Vapor-Phase Nonideality</th>
<th>(T_{c}, \text{°K})</th>
<th>(P_{c}, \text{atm})</th>
<th>cc</th>
<th>(c_{gmol})</th>
<th>(\omega)</th>
<th>(\omega_{H})</th>
<th>(\mu, \text{Debye})</th>
<th>n</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>324.6</td>
<td>82.1</td>
<td>87.6</td>
<td>0.133</td>
<td>0.013</td>
<td>1.05</td>
<td>0.0</td>
<td></td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td></td>
<td>461.00</td>
<td>64.00</td>
<td>69.0</td>
<td>0.3851</td>
<td>0.013</td>
<td>1.92</td>
<td>0.0</td>
<td></td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td></td>
<td>363.20</td>
<td>84.50</td>
<td>100.74</td>
<td>0.0672</td>
<td>0.013</td>
<td>0.80</td>
<td>0.0</td>
<td></td>
<td>Hydrogen bromide</td>
</tr>
<tr>
<td></td>
<td>405.00</td>
<td>111.3</td>
<td>72.5</td>
<td>0.250</td>
<td>0.010</td>
<td>1.47</td>
<td>0.0</td>
<td></td>
<td>Ammonia</td>
</tr>
<tr>
<td></td>
<td>647.4</td>
<td>218.3</td>
<td>55.2</td>
<td>0.344</td>
<td>0.010</td>
<td>1.83</td>
<td>0.0</td>
<td></td>
<td>Water</td>
</tr>
</tbody>
</table>

(Table C-II continued)

Constants for the Vapor Pressure Equation (from VAPFIT Program of Prausnitz)

\[\ln P(\text{atm}) = C_1 + \frac{C_2}{C_3 + T} + C_4 T + C_5 T^2 + C_6 \ln T \]

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>55.9449130</td>
<td>-2958.5466</td>
<td>0.0</td>
<td>0.01716886</td>
<td>0.0</td>
<td>-8.3000</td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td>HF</td>
<td>121.4358521</td>
<td>-5606.8633</td>
<td>0.0</td>
<td>0.038559</td>
<td>0.0</td>
<td>-20.000</td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td>HBr</td>
<td>77.8766174</td>
<td>-3907.2358</td>
<td>0.0</td>
<td>0.01875147</td>
<td>0.0</td>
<td>-11.78995</td>
<td>Hydrogen bromide</td>
</tr>
<tr>
<td>NH3</td>
<td>17.9889374</td>
<td>-3094.2170</td>
<td>0.0</td>
<td>0.00065027</td>
<td>0.0</td>
<td>-0.8999997</td>
<td>Ammonia</td>
</tr>
<tr>
<td>H2O</td>
<td>70.4346943</td>
<td>-7362.6981</td>
<td>---</td>
<td>0.006952085</td>
<td>---</td>
<td>9.0000</td>
<td>Water</td>
</tr>
</tbody>
</table>

Temperature Dependence of Liquid Molar Volume

<table>
<thead>
<tr>
<th>T_1,°K</th>
<th>v_1^L</th>
<th>T_2,°K</th>
<th>v_2^L</th>
<th>T_3,°K</th>
<th>v_3^L</th>
<th>cc/gmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>213.1</td>
<td>29.869</td>
<td>273.15</td>
<td>39.502</td>
<td>313.15</td>
<td>52.367</td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td>293.15</td>
<td>20.2735</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td>206.15</td>
<td>29.213</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Hydrogen bromide</td>
</tr>
<tr>
<td>273.15</td>
<td>27.113</td>
<td>288.65</td>
<td>28.192</td>
<td>310.95</td>
<td>29.93</td>
<td>Ammonia</td>
</tr>
<tr>
<td>277.13</td>
<td>81.348</td>
<td>298.15</td>
<td>83.229</td>
<td>323.15</td>
<td>85.147</td>
<td>Water</td>
</tr>
</tbody>
</table>
Dissociation constants used in program COVCAL (reference in parentheses)

- Ammonia: 1.78×10^{-5} (1)
- Hydrofluoric Acid: 6.75×10^{-4} (1)
- Hydrobromic Acid: 1.00×10^{7} (approximately same as HCl)
- Hydrochloric Acid: 2.5×10^{7} (8)

Partial molar volume at infinite dilution for hydrochloric acid (reference in parentheses)

- $298.15^\circ C$: 17.82 cc/gmol (7)
- $333.15^\circ C$: 18.82 cc/gmol (used this to get program LTFTXW to run; not actual value)

Equation for solution densities (water is solvent) (from density data in Perry's Chemical Engineering Handbook)

Density = $A \times X + B$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>1.00</td>
<td>-.373</td>
</tr>
<tr>
<td>Hydrofluoric Acid</td>
<td>1.00</td>
<td>-.375</td>
</tr>
<tr>
<td>Hydrobromic Acid</td>
<td>1.00</td>
<td>1.30</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>1.00</td>
<td>.50</td>
</tr>
</tbody>
</table>
LITERATURE CITED

Nelson, Gary Dale
Computer calculations for binary electrolyte vapor-liquid equilibrium

NAME AND ADDRESS
MONTANA STATE UNIVERSITY