Infectivity and immunogenic capability of Dictyocaulus species from elk and cattle in experimentally infected bovine calves
by Paul Joseph Alvin Presidente

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Zoology
Montana State University
© Copyright by Paul Joseph Alvin Presidente (1968)

Abstract:
The level of protection induced in bovine calves by exposure to Dictyocaulus species from elk and cattle was investigated by subsequent challenge with homologous lungworm larvae. The criteria used for evaluation of protection at challenge were as follows: 1) presence or absence of infection; 2) length of prepatent period; 3) duration of patent period; 4) larval output during patent period; 5) changes in respiration; 6) complement-fixing antibody response and 7) histopathology in lung tissues.

Four Holstein calves were inoculated initially with lungworm larvae isolated from elk. Two of these animals, which were immunized when 3.0-months old, were almost completely refractory to challenge with 46,000 homologous larvae 19 months later. The other two Holstein calves, which were immunized when 1.5-months old, developed light patent infections following challenge with 21,000 larvae 5 months later. Compared with the response of the challenge control calf, infections in the immunized calves had a longer prepatent period of 27 vs. 23 days, a shorter average patent period of 30 vs. 43 days, reduced larval production, and showed only transient respiratory distress.

Results of complement fixation tests indicated that calves immunized with elk lungworm demonstrated a secondary response following homologous challenge, suggesting that these animals were primed by this previous exposure. Low antibody titers resulting from immunization were detected when fat-extracted, whole mature lungworm antigen collected from elk was used. Positive results were not achieved when the cattle lungworm antigen was used.

Eosinophilia, lymphoid hyperplasia and interstitial emphysema were observed in lung tissues from the immunized animals at necropsy 2 months post-challenge. Three Holstein calves, which were inoculated with 5,000, 6,000 and 20,000 homologous infective larvae, respectively, developed patent infections that lasted 64, 95 and 55 days. Maximum outputs were 5.0, 9.8 and 45.5 larvae per gram of feces, respectively. Marked respiratory distress was observed during these infections.

One of these calves developed a patent reinfection following homologous challenge with 57,000 larvae 38 days after the termination of the initial infection. The other two animals did not develop patent infections and showed only transient clinical reactions to challenge with 35,000 and 51,000 larvae up to 6.5 months following the end of their initial infections.

In a reciprocal cross infection a captive elk calf, which was inoculated with 24,000 cattle lungworm larvae, developed a patent infection that lasted for 24 days. The maximum larval output was 6.6 larvae per gram of feces.

Results from these preliminary studies indicate that at least partial protection is obtained in cattle against homologous lungworm infections from the use of elk lungworms as an immunizing agent.
INFECTIVITY AND IMMUNOGENIC CAPABILITY OF DICTYOCALUS SPECIES FROM ELK AND CATTLE IN EXPERIMENTALLY INFECTED BOVINE CALVES

by

PAUL JOSEPH ALVIN PRESIDENTE

A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Zoology

Approved:

Head, Major Department

Chairman, Examining Committee

Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana
December, 1968
ACKNOWLEDGMENTS

The author expresses his sincere gratitude to Dr. D. E. Worley, for advice and guidance throughout this investigation. The co-operation of the following individuals has also been greatly appreciated: Dr. L. L. Myers, for advice and assistance with the serological studies; Dr. C. K. Anderson, for examining the lung tissues; Dr. J. E. Catlin, Dr. M. W. Hull and R. H. Jacobson, for technical assistance; Dr. F. W. Douvres, Beltsville Parasitological Laboratory, Beltsville, Maryland, for providing lungworm larvae; Mr. K. R. Greer and the Montana Fish and Game Department, for supplying the elk used in the study; Mrs. Katherine K. Stitt, for reading the manuscript; and to my wife, Colleen, for her encouragement throughout the course of the investigation.

Appreciation for financial support during part of this project is extended to the Animal Science Research Division, Merck Sharp & Dohme Research Laboratories, Division of Merck & Company, Incorporated, Rahway, New Jersey.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITA</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>10</td>
</tr>
<tr>
<td>RESULTS</td>
<td>15</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>25</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Schedule of inoculations with elk and cattle strain Dictyocaulus viviparus in experimental animals</td>
<td>12</td>
</tr>
<tr>
<td>II.</td>
<td>Results of inoculations with elk and cattle strain Dictyocaulus viviparus in experimental animals</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Larval production of cattle strain Dictyocaulus viviparus in calves 12, 13 and 17.</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>Complement-fixing antibody response in immunized cattle following challenge with cattle strain Dictyocaulus viviparus larvae.</td>
<td>19</td>
</tr>
<tr>
<td>3.</td>
<td>Complement-fixing antibody response in calves 15 and 17 following inoculation with cattle strain Dictyocaulus viviparus larvae.</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Larval production of cattle strain Dictyocaulus viviparus in an experimentally infected elk calf.</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Larval production of cattle strain Dictyocaulus viviparus in calves 10, 14 and 15.</td>
<td>23</td>
</tr>
</tbody>
</table>
ABSTRACT

The level of protection induced in bovine calves by exposure to Dictyocaulus species from elk and cattle was investigated by subsequent challenge with homologous lungworm larvae. The criteria used for evaluation of protection at challenge were as follows: 1) presence or absence of infection; 2) length of prepatent period; 3) duration of patent period; 4) larval output during patent period; 5) changes in respiration; 6) complement-fixing antibody response and 7) histopathology in lung tissues.

Four Holstein calves were inoculated initially with lungworm larvae isolated from elk. Two of these animals, which were immunized when 3.0-months old, were almost completely refractory to challenge with 46,000 homologous larvae 19 months later. The other two Holstein calves, which were immunized when 1.5-months old, developed light patent infections following challenge with 21,000 larvae 5 months later. Compared with the response of the challenge control calf, infections in the immunized calves had a longer prepatent period of 27 vs. 23 days, a shorter average patent period of 30 vs. 43 days, reduced larval production, and showed only transient respiratory distress.

Results of complement fixation tests indicated that calves immunized with elk lungworm demonstrated a secondary response following homologous challenge, suggesting that these animals were primed by this previous exposure. Low antibody titers resulting from immunization were detected when fat-extracted, whole mature lungworm antigen collected from elk was used. Positive results were not achieved when the cattle lungworm antigen was used.

Eosinophilia, lymphoid hyperplasia and interstitial emphysema were observed in lung tissues from the immunized animals at necropsy 2 months post-challenge.

Three Holstein calves, which were inoculated with 5,000, 6,000 and 20,000 homologous infective larvae, respectively, developed patent infections that lasted 64, 95 and 55 days. Maximum outputs were 5.0, 9.8 and 45.5 larvae per gram of feces, respectively. Marked respiratory distress was observed during these infections.

One of these calves developed a patent reinfection following homologous challenge with 57,000 larvae 38 days after the termination of the initial infection. The other two animals did not develop patent infections and showed only transient clinical reactions to challenge with 35,000 and 51,000 larvae up to 6.5 months following the end of their initial infections.

In a reciprocal cross infection a captive elk calf, which was inoculated with 24,000 cattle lungworm larvae, developed a patent infection that lasted for 24 days. The maximum larval output was 6.6 larvae per gram of feces.

Results from these preliminary studies indicate that at least partial protection is obtained in cattle against homologous lungworm infections from the use of elk lungworms as an immunizing agent.
INTRODUCTION

The lungworm, *Dictyocaulus viviparus*, is the causal agent for parasitic bronchitis or "husk" in cattle. This parasite has caused serious economic loss in many parts of Eurasia, the British Isles and in North America. Poor weight-gaining ability and mortality in calves are important consequences of this disease (Brown and Spedding, 1958; O'Donoghue, 1958; Djafar et al., 1960). Lower milk yields have been attributed to lungworm infections in dairy cows (Hudson, 1951; Campbell and Wetherill, 1957). Several investigations on the epizootiology of parasitic bronchitis began about 1950. The emphasis of this research was placed on control, treatment and prophylactic measures.

Improved herd management resulted from studies on factors affecting survival and transmission of *D. viviparus* larvae on pasture. Jarrett et al. (1955b) reported that susceptible calves acquired infections on pastures contaminated with larvae 6 and 13 months earlier. Świetlikowski (1959) found that infective larvae could overwinter in Poland, but in southern England and Alabama larvae did not survive more than 6 to 8 weeks (Soliman, 1952; Porter, 1942). Seasonal variations in rainfall and temperature had a direct effect on the rate of development and survival of infective larvae (Rose, 1960). Spedding and Michel (1957) showed that gang-mowing of pastures in spring and fall was conducive to the dissemination of larvae onto the pasture. Soliman (*op. cit.*) suggested that a rotational grazing program would prevent the acquisition of infections. In a controlled experiment, Grégoire et al. (1960) showed this method worked effectively when calves were moved to different pastures every 4 days with a
32-day interval before the animals returned to a particular area. It was suggested that the level of herbage infestation could be reduced by allowing resistant cows to graze on pastures contaminated with lungworm larvae (Baxter et al., 1959). Michel (1957) recommended that all calves graze pastures in early spring to ensure an initial exposure to low levels of herbage contamination, followed by continued access to these pastures to maintain high levels of resistance.

Treatment and evaluation of lungworm anthelmintics improved considerably during this period of research on parasitic bronchitis. Previously, infected calves were treated intratracheally with a variety of chemicals. Good results were reportedly achieved with such solutions as 2% picric acid (Cremona and Monaco, 1933); "GH 25", a mixture of menthol, thymol, turpentine and phenol (Middeldorf, 1932); 15 to 20 cc of a mixture of turpentine, olive oil, creosote and chloroform (Kennedy, 1934); or three injections of an emulsion of one part carbon tetrachloride and four parts olive oil (Niverd; 1947). Birkett (1942) suggested that the violent coughing caused by intratracheal injection of turpentine and carbolic acid effected expulsion of the lungworms. The improved clinical condition of treated animals may have lead to erroneous conclusions about the efficiency of these chemicals, since D. viviparus infections tend to be short-lived and self-limiting (Colglazier and Enzie, 1961), and because untreated infected cattle were not used. Taylor (1942) pleaded for controlled experimentation in assessing the results of treatment and Audureau (1954) outlined principles to use in drug testing. The critical test, using tracheotomy tubes
(Walley, 1957) or total tracheotomy (Vodrážka, 1959; 1960a), was an additional method developed to evaluate lungworm anthelmintics. Worms expelled after treatment were recovered in gauze bags attached to the trachea by a plastic tube and this count was compared with the number of worms found in the lungs at necropsy.

Intratracheal injections of aqueous iodine or iodine preparations such as Lugol's solution or "Iodinol" were highly effective in controlled tests (Popova, 1950; Olteanu and Fromunda, 1961; Evdokimov, 1963; Litoshko, 1963). A colloidal iodine preparation, "Merkojod," and "GH 25" were shown to have little effect in laboratory and field trials (Enigk and Dülwel, 1963).

A more efficient method of administering drugs into the respiratory tree was described by Enigk (1953). He used an apparatus which formed aerosols from the anthelmintics and these were inhaled by the infected animals. Enigk (1957) reported cure or clinical improvement in 78% of 5,760 cattle using an ascaridol-5% santonin mixture. Twelve calves that were treated for periods of 8 to 30 minutes were free from infection 5 days later (Langeler, 1959). Ascaridol aerosol killed more than 80% of mature and some immature worms when experimentally infected calves were treated at two different intervals (Enigk and Dülwel, 1961). A 3-minute treatment with iodine vapor of various concentrations cured 80 to 100% of infected cattle (Smirnov, 1963).

Cyanacethyldrazide, an anthelmintic which acts only against lungworms, was first tested by Walley (1957a,b) in both critical and controlled experiments. He found that 60 to 100% of the worms were expelled, although the
drug had no effect on migrating larvae (Walley, 1960). Three daily subcutaneous injections were ineffective at 14 days post-inoculation (p.i.), 72.9% efficient at day 20 p.i., and removed 86.1% of mature worms (Rubin, 1959; Rubin and Tillotson, 1960). In critical tests, Vodrážka (1960b) reported that three consecutive daily doses administered subcutaneously resulted in expulsion of 67.8% of the worms. The piperazine salt of cyanacethydrazone eliminated 70% of the lungworms, although mature worms were only paralyzed and immature forms were only slightly affected (Enigk and Důvel, 1961). Little or no effect on clinical condition or lung pathology was reported following treatment in other controlled experiments (Swanson et al., 1959; Colglazier and Enzie, 1961). Conflicting results have been reported from field experiments using cyanacethydrazone. The response to treatment was poor, especially when the animals were heavily infected (Enigk et al., 1958; Langeler, 1959; Rosenberger and Heeschen, 1959; Larsen, 1960). Swanson et al. (op. cit.) reported that the controls gained 27 lb/head more than the treated animals by 87 days post-treatment. Improved condition after treatment was observed by O’Donoghue (1958) and Sirigu (1960).

Diethylcarbamazine, developed originally for the treatment of human filariasis, was highly effective against 2 week-old D. viviparous infections (Parker, 1957; Jarrett et al., 1962; Rubin and Tillotson, 1962). Treatment before day 10 p.i. was without action, and elimination of the worms during the second week interfered with the development of acquired resistance (Parker and Roberts, 1958; Parker, 1963; Kendall, 1965). The drug
was less effective against mature worms (Parker, 1957; Vodrážka, 1960b; Enigk and Düwel, 1961; Jarrett et al., 1962). Neither cyanacethydrazide nor diethylcarbamazine is considered completely satisfactory for treatment since they do not work efficiently against all stages of lungworm infection (Gibson, 1961).

Phenothiazine, methyridine, thiabendazole and tetramisole are broad-spectrum anthelmintics which have activity against lungworms as well as gastrointestinal nematodes. Daily doses of phenothiazine in salt killed first-stage larvae in the feces and reduced the incidence of infection (Enigk and Düwel, 1962; Paskalskaya and Zaitseva, 1963; Pivkov, 1963). Walley (1963) reported that methyridine was 86 to 99% effective against mature lungworms and removed over 60% of the immature worms in critical tests. A 95% reduction in worm burdens was reported by Ross (1966) in a controlled test. Oral administration of thiabendazole had little effect on cattle lungworms, but intratracheal injections were moderately efficient against both immature and mature worms (Ross, op. cit.; Rubin and Ames, 1966). Three intramuscular injections were 100% effective against larvae and removed 99.5% of mature worms. However, some residue was found at the site of injection (Ross, op. cit.). The newest broad-spectrum anthelmintic, tetramisole, eliminated 93.8 and 100% of the lungworms from two calves in a critical test (Nilsson and Sorelius, 1967). Forsyth (1966) and McCulloch (1968) reported high efficiency against D. viviparum with clinical improvement following treatment.

Concurrent with improvements in treatment against parasitic bronchitis
were attempts to find a prophylactic means of controlling this disease. Field observations (Wetzel, 1948; Taylor, 1951; Jarrett et al., 1955b) and experimental infection studies (Porter and Cauthen, 1942; Michel, 1955; Rubin and Lucker, 1956a; Weber, 1958a; Jarrett et al., 1959a) showed that calves demonstrated strong resistance to later exposure with lungworm larvae after recovery from initial lungworm infections. Partial protection was conferred to susceptible calves by the passive transfer of immune serum. The immunized group harbored fewer worms than the controls at necropsy (Jarrett et al., 1955a). Calves given 5 ml gamma globulin/lb body weight survived the inoculum of 50,000 larvae, but developed patent infections after a relatively longer prepatent period of 31 days (Rubin and Weber, 1955). Active immunization experiments using injections of antigens prepared from dead larvae or adult worm material did not induce a protective immunity in calves (Jarrett et al., 1960a; Wade et al., 1962).

In summarizing research on the development of immunity to helminths, Soulsby (1958; 1961) concluded that the presence of the living worm was necessary to achieve protective immunity. Metabolic products, particularly exsheathing and molting fluids, were considered to be important functional antigens. When infective ova of *Ascaris lumbricoides* were injected subcutaneously into guinea pigs, few larvae hatched and their development was incomplete. Good protection was demonstrated when these animals were challenged later (Soulsby, 1957). This approach was attempted with fourth-stage *D. viviparus* larvae that were administered.
intraperitoneally. A 70% reduction in worm burden was achieved at challenge; however, three of the four vaccinated calves developed light patent infections following immunization (Cornwell, 1962a). Wade and Swanson (1958) reported the establishment of patent infections in calves when large numbers of first-stage or infective larvae were injected subcutaneously.

Protection resulting from immunization with small numbers of *D. viviparous* larvae given *per os* has also been investigated. Five of six calves given 500 or 1,500 infective larvae demonstrated strong resistance to challenge with 25,000 larvae. Although patent reinfections were not prevented, fewer larvae were recovered from the feces and the patent period was much shorter for the immunized calves than for their controls. Light patent infections resulted from the immunizing doses and moderate respiratory distress occurred 3 to 8 weeks p.i. (Weber and Lucker, 1959). Very few worms were recovered from the lungs of four calves 30 days after challenge with 15,000 larvae. These animals were immunized 5 months previously with 25 doses of 300 larvae inoculated over a 62-day period (Jarrett *et al.*, 1959a).

Jarrett and his coworkers (1960b) studied the biological effects of X-irradiation on *D. viviparous* larvae using techniques similar to those of Gould *et al.* (1955) for artificially attenuating the pathogenicity of *Trichinella spiralis* larvae. After exposure to 40,000 roentgens, the infective larvae underwent only partial development when given *per os* to calves, but the vaccinated animals exhibited strong immunity when challenged subsequently. In field trials, they found that a single dose of
irradiated larvae did not completely protect calves when they were exposed to heavy pasture contamination (Jarrett et al., 1958). The vaccinated animals developed patent infections and 20% of them died. A higher degree of protection was obtained if two doses of 1,000 X-irradiated larvae were given 6 weeks apart (Jarrett et al., 1959b). The lungworm vaccine went into commercial production in 1959 and a high degree of protection resulted from vaccination of susceptible calves (Eck et al., 1960; Engelbrecht, 1961; Nelson et al., 1961; Pierre et al., 1961; Edds et al., 1963; Nelson, 1964; Downey, 1965; 1968). Inadequate protection was obtained from a single dose of irradiated larvae when calves were challenged with 15,000 normal larvae 18 weeks after vaccination (Lucker and Vegors, 1960; 1964). Düwel (1963) reported that 67% of the vaccinated calves developed patent infections when exposed to larvae on contaminated pastures. These vaccinated calves may then serve as carriers of infection to susceptible animals (Cornwell, 1959; Cornwell and Berry, 1960).

An alternate procedure for immunizing against helminth infections was proposed by Stoll (1961). He suggested using naturally occurring species or strains of helminths of low pathogenicity to immunize against similar, more pathogenic strains. This principle was applied by Allen and Samson (1961) to Haemonchus contortus infections in sheep. They found significant resistance to challenge with homologous infective larvae following exposure to a relatively non-pathogenic strain of H. contortus larvae isolated from pronghorn antelope. Protection against homologous lungworm larvae was obtained in calves given Dictyocaulus filaria larvae
from sheep (Hildebrandt, 1962; Parfitt and Sinclair, 1967). Lucke et al. (1964) found that older calves tolerated these larvae well but in calves 1 to 4 months old, D. filaria larvae were excessively pathogenic. Parfitt and Sinclair (op. cit.) killed three of six calves using large doses of these larvae, and Parfitt (1963) reported the establishment of a patent infection in a calf with 30,000 larvae. Therefore, D. filaria do not appear to be the most suitable agent for immunizing against cattle lungworms.

Recent studies with elk in the northern Yellowstone National Park herd have shown that both calves and mature animals have a high incidence of lungworm infection (McBee et al., 1964). This lungworm was originally named Dictyocaulus hadweni, but was later synonymized with D. viviparous (Dikmans, 1936; Dougherty, 1946). In this manuscript, elk lungworms will be considered as the elk strain and those from cattle as the cattle strain of D. viviparous. Serious morbidity has not been associated with these infections in elk, which suggests the occurrence of a well-adapted strain of lungworms. This may have resulted from a long association of the elk with this parasite. Preliminary observations in five bovine calves inoculated with 4,000 to 43,000 elk strain larvae have shown that the infections were self-limiting and practically asymptomatic (Barrett and Worley, 1965). The possibility of using this elk strain of lungworm larvae as an immunizing agent in cattle was investigated in experimentally infected calves.
MATERIALS AND METHODS

All but one of the nine Holstein calves used in this experiment were purchased when less than 7-days old and fed milk replacer for a period of 6 weeks. Alfalfa hay was fed ad libitum. The exception was a challenge control calf (no. 17) that was raised for 7 months under conditions precluding exposure to lungworm larvae. The four principal animals in the study (no. 8, 9, 12 and 13) were raised indoors in stalls with concrete floors from the time of purchase until the date of immunization, and for the interval until challenge. Source animals (no. 10, 14 and 15) and challenge control calves (no. 17 and 11) were housed individually in sheltered stalls during the prepatent and patent periods of their infections.

The elk used were from the northern Yellowstone National Park herd. In late March of 1966 and again in 1967, two pregnant cow elk were brought to this laboratory and housed in a specially modified stall. The calves born in captivity were also used in the study.

First-stage elk strain larvae were obtained from the feces of one of the naturally infected cows in 1966 and from eggs of mature female lungworms recovered from elk in 1967. These eggs were hatched by placing them in containers with a thin film of distilled water with an animal charcoal substrate. They were aerated continuously for 2 to 3 days at room temperature using an aquarium air pump. These first-stage larvae and those recovered by Baermannization from the feces were then cultured to infective stage at 19 to 26°C for 9 to 12 days by the method described by Rubin and Lucker (1956b).
Cattle strain larvae were obtained from source calf 15 which was fitted with a fecal collecting bag. First-stage larvae were recovered from the feces in the following manner: the daily collection of feces was separated into approximately 200 g samples, placed in cheesecloth and set up in 12 to 30 250 ml plastic funnels filled with lukewarm water. These funnels were equipped with an 80-mesh screen 6 cm in diameter placed 4 cm from the top, and a short rubber hose with a pinch clamp attached at the bottom. After 17 to 24 hours, about 25 ml of fluid were tapped from the bottom of each funnel; larvae and associated debris were concentrated by centrifugation and washed several times with distilled water. These larvae were cultured to infective stage as described previously for the elk strain larvae.

Infective larvae were separated from the animal charcoal by washing the contents of the culture through a 100-mesh screen and concentrated by centrifuging the mixture that passed through the screen. The larvae were stored in water at 4°C for less than 2 weeks before being used.

The number of viable larvae was determined by dilution count immediately prior to the time of inoculation. Larvae that were considered viable were either active, tightly coiled, or nearly straight in shape. Animals were inoculated per os by means of a stomach tube or a 4 oz drenching syringe with an 18 in Whitlock nozzle according to the schedule outlined in Table I. Of the four animals immunized with elk strain larvae, calves 12 and 13 were challenged with cattle strain larvae 5 months later and calves 8 and 9 after 19 months. All cattle strain larvae used to challenge immunized animals and control calf 11 were collected from source
Table I. Schedule of Inoculations with Elk and Cattle Strain *Dictyocaulus viviparus* in Experimental Animals.

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Age at Inoculation (months)</th>
<th>No. of Elk Strain Larvae</th>
<th>No. of Cattle Strain Larvae</th>
<th>Interval to Challenge (months)</th>
<th>Age at Challenge (months)</th>
<th>No. of Cattle Strain Larvae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunized Animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>10,000</td>
<td>-</td>
<td>19.0</td>
<td>20.5</td>
<td>46,000</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>9,500</td>
<td>-</td>
<td>19.0</td>
<td>20.5</td>
<td>46,000</td>
</tr>
<tr>
<td>12</td>
<td>3.0</td>
<td>6,500</td>
<td>-</td>
<td>5.0</td>
<td>8.0</td>
<td>21,000</td>
</tr>
<tr>
<td>13</td>
<td>3.0</td>
<td>6,500</td>
<td>-</td>
<td>5.0</td>
<td>8.0</td>
<td>21,000</td>
</tr>
<tr>
<td>Challenge Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-</td>
<td>-</td>
<td>7.0</td>
<td>8.0</td>
<td>21,000</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>-</td>
<td>2,000</td>
<td>7.0</td>
<td>8.0</td>
<td>24,000</td>
</tr>
<tr>
<td>Elk Calf</td>
<td>6.5</td>
<td>-</td>
<td>24,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.5</td>
<td>-</td>
<td>6,000</td>
<td>6.5</td>
<td>19.0</td>
<td>51,000</td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>-</td>
<td>5,000</td>
<td>1.5</td>
<td>5.5</td>
<td>57,000</td>
</tr>
<tr>
<td>15</td>
<td>2.0</td>
<td>-</td>
<td>20,000</td>
<td>0.0</td>
<td>4.5</td>
<td>35,000</td>
</tr>
</tbody>
</table>

*aLarvae obtained from the Beltsville Parasitological Laboratory, Beltsville, Maryland

bLarvae stored in water at 4°C for 2 months before use

cInterval from the termination of the patent period of the initial infection

dChallenge was 9 days before the patent period ended
calf 15. Infective larvae used to inoculate challenge control 17 were ob­
tained from Dr. F. W. Douvres at the Beltsville Parasitological Laboratory.

Calves 8, 9, 12 and 13 were observed several times a week for changes
in respiration following both immunization and challenge. Fecal samples
were collected from all inoculated animals beginning about day 18 p.i.
Samples were collected daily for the first 3 weeks and at least twice week­
ly throughout the duration of the patent period. Determinations of the
total numbers of larvae recovered by Baermannization and larvae per gram
of feces (l.p.g.) were made using fecal samples weighing 50 to 150 g.

Blood samples were collected from the immunized animals prior to,
and for 6 weekly intervals following challenge. Calves 12 and 13 were
sampled for 4 weeks following immunization with the elk strain larvae.
Complement-fixing antibody titers were determined for these blood samples
following the techniques described by Lennette and Schmidt (1964) and
Weber (1958b). Two full units of complement were used, and test tubes
were kept in a 4°C cooler overnight before the hemolytic system was added.
The highest serum dilution at which a four plus reaction occurred was the
end point used for demonstrating changes in titer. Fat-extracted, whole
mature worm antigens were prepared for both the cattle and elk strains
according to the method described by Kent (1963). Antigen concentrations
used for the tests were 1.4 mg/ml for the cattle strain and 3.6 mg/ml for
the elk strain.

Immunized calves 12 and 13 were slaughtered 4 weeks following the
termination of patency, and yearling 9 was killed on the same date. The
lungs and trachea were removed and examined grossly for lesions and for worms in the air passages. Representative tissues were fixed in 10% buffered formalin. These were sectioned, stained with azure-eosinate and examined for pathological changes. Portions of the lungs were cut up and Baermannized to recover any immature worms overlooked on gross examination.

The criteria used for evaluation of the protection demonstrated following challenge with homologous strain larvae were as follows: 1) presence or absence of infection; 2) length of the prepatent period; 3) duration of the patent period; 4) larval output during the patent period; 5) changes in respiration; 6) complement-fixing antibody response and 7) histopathology in lung tissues.

An additional experiment conducted during this study was the reciprocal cross infection of an elk calf with 24,000 cattle strain larvae. Also, the course of initial infections with cattle strain larvae was followed in source calves 10, 14 and 15 (Table I). Fecal samples were collected frequently throughout the patent periods and changes in respiration were noted following initial inoculations. The three source animals were challenged with homologous strain larvae at different intervals following or during the patent period. Similar observations were made on respiratory changes and larval production following these inoculations. Larvae for challenge and those used to inoculate the elk calf were obtained from source calf 15.
RESULTS

The four calves did not develop patent infections following immunization with elk strain larvae (Tables I and II). None of the animals exhibited coughing or prolonged changes in respiration.

Yearlings 8 and 9 (Table II) were almost completely refractory to challenge with 46,000 cattle strain larvae 19 months after immunization. A patent infection did not develop in yearling 8 and only two larvae were recovered from fecal samples collected from yearling 9. Some coughing was observed between days 14 and 35 post-challenge (p.c.), but no obvious respiratory distress occurred.

Immunized calves 12 and 13 (Tables I and II) developed light patent infections from homologous challenge when 8-months old. Compared with the response of challenge control calf 17, the immunized calves demonstrated a relatively longer prepatent period of 27 vs. 23 days, a shorter average patent period of 30 vs. 43 days, and reduced larval output. In Figure 1, larval output data are presented graphically for calves 12, 13 and 17. Values are averaged for the two immunized calves because these determinations were very similar.

The clinical manifestations associated with these infections differed markedly. Immunized calves coughed only a few times between days 12 and 19 p.c. Respiration was somewhat labored during this period, but there was no marked change in the respiratory rate. In contrast, the control calf 17 developed a light cough by day 14 p.i. which increased in severity and frequency until day 27, when this animal stood with head lowered, neck
Table II. Results of Inoculations with Elk and Cattle Strain *Dictyocaulus viviparus* in Experimental Animals.

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Initial Inoculation</th>
<th>Challenge Inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prepatent Period (days)</td>
<td>Patent Period (days)</td>
</tr>
<tr>
<td>Immunized Animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Challenge Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elk Calf</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Source Animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>95</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>55</td>
</tr>
</tbody>
</table>

*aLarvae per gram of feces

*bNumber of fecal samples used for calculating mean output; only values greater than 0.1 l.p.g. were used.
Figure 1. Larval Production of Cattle Strain *Dictyocaulus viviparus* in Calves 12, 13 and 17.
extended, tongue protruding and coughed harshly several times. Expiratory
dyspnea, a copious nasal discharge and frequent coughing were observed from
the 2nd to the 5th week following inoculation. The respiratory rate in­
creased to a maximum of 84 expirations/minute from the normal of 34/minute.

The complement-fixing antibody response in the immunized animals
following challenge is compared in Figure 2 with that of Calf 11 inocu­
lated previously with homologous strain larvae (Tables I and II). Using
cattle strain adult worm antigen, the mean titers are plotted for each pair
of immunized calves. A typical anamnestic response occurred in calf 11
after re-exposure to cattle strain larvae. At 28 days p.c., this animal
had developed four times the titer induced in the calves immunized with
the elk strain larvae. In the immunized animals, a detectable rise in
antibody titer occurred 14 days p.c., while a similar rise was not observed
until at least 21 days p.i. in calves 15 and 17 after initial exposure to
lungworm larvae (Figure 3).

Calves 12 and 13 did not develop detectable antibody titers during
the 4 weeks that blood samples were collected following immunization. A
blood sample collected from each calf prior to challenge gave positive re­sults with the 1:4 serum dilution when the elk strain adult worm antigen
was used. A titer was not detected using the cattle strain antigen.
Yearlings 8 and 9 had low antibody levels in the blood sample collected
prior to challenge. Again, this low titer was only demonstrated when the
elk strain antigen was used.

The lungs of the immunized animals appeared normal on gross examina-
tion, except for small nodules found in the bronchi of calf 12. These
Antibody Titer (reciprocal of highest serum dilution at which a four plus reaction occurred)

Immunized Calves - x---x (no. 12 & 13)
Immunized Yearlings - o---o (no. 8 & 9)
Homologous Control - *---* (no. 11)

Figure 2. Complement-Fixing Antibody Response in Immunized Cattle Following Challenge with Cattle Strain *Dictyocaulus viviparum* larvae.
Figure 3. Complement-Fixing Antibody Response in Calves 15 and 17 Following Inoculation with Cattle Strain *Dictyocaulus viviparus* larvae.
nodules consisted of lymphoid cells in a multilocular arrangement. Prominent lesions found in tissues from calves 12 and 13 were eosinophilia and peribronchiolar lymphoid hyperplasia. Large numbers of eosinophils were present in interlobular, perivascular and peribronchial locations. Many bronchiolar lumina contained eosinophilic cellular debris and desquamated epithelial cells. Diffuse alveolar emphysema and interstitial emphysema were observed, but the latter was more pronounced in yearling 9. Lymphoid hyperplasia was present to a lesser degree in this animal than in calves 12 and 13. An abundance of eosinophils was present in the interlobular septa and at the hilar zone of the bronchial lymph nodes.

Seven immature lungworms were recovered from the Baermannized lung tissue of yearling 9. Three ensheathed fourth-stage larvae were 660, 735 and 795 microns in length. Immature fifth-stage larvae ranged in length from 1,410 to 1,940 microns and were sexually differentiable.

The elk calf developed a patent infection which lasted for 24 days (Tables I and II). The larval output pattern is presented in Figure 4. This animal showed little clinical response to the infection but some dyspnea was observed from days 14 to 50 p.i.

The results of the experimental infections in calves 10, 14 and 15 (Table I) are presented in Table II, and larval output data are shown graphically in Figure 5. The respiratory rate of calf 15 increased steadily from 24/minute on day 7 p.i. to a peak of 61/minute on day 19. During the 3rd week, the rate decreased to about 37/minute and then rose to another peak of 60/minute on day 41 p.i. The rate then returned to
Figure 4. Larval Production of Cattle Strain *Dictyocaulus viviparus* in an Experimentally Infected Elk Calf.
Figure 5. Larval Production of Cattle Strain *Dictyocaulus viviparbus* in Calves 10, 14 and 15.
normal range by day 55. Shallower breathing was observed during both peak periods. The respiratory rate of calf 14 attained an initial peak of 66/minute on day 27 p.i. compared to 34/minute on day 4. The rate decreased to normal by day 34, then rose to a second peak of 74/minute on day 42 p.i. This elevated rate continued until day 50 and then decreased slowly to normal by day 65 p.i.

Challenge with large doses of homologous strain larvae was tolerated by the three source animals (Tables I and II). A patent reinfection was established in calf 14, but the patent period was short and larval output was minimal. This animal was observed coughing between days 21 and 26 p.c. Calf 15 coughed from days 9 through 14 p.c. Both calves demonstrated a serious morbid condition characterized by decreased activity and inappetence for more than 2 months following challenge. Yearling 10 showed little response to 51,000 larvae and coughing was observed only from days 32 to 36 p.c.

Calf 11 demonstrated a high level of resistance to challenge although a patent infection had not developed from the initial inoculum of 2,000 larvae (Table II). These larvae were stored for 2 months at 4°C prior to inoculation (Table I). The patent period resulting from the challenge lasted for 36 days, but the larval output was extremely low.
DISCUSSION

Third-stage larvae of elk strain *D. viviparus* were an effective immunizing agent in Holstein calves. Because so few animals were involved in this study, direct comparisons with results obtained using the X-irradiated larval vaccine are not justified. However, some general considerations may be mentioned. Patent infections have been reported following administration of the commercial vaccine (Poynter *et al.*, 1960; Walley, 1960). Transient increases in respiratory rates were observed following vaccination (Jarrett *et al.*, 1959b; Cornwell, 1962b). Mild pulmonary complications occurred when 4,000 X-irradiated larvae were used (Jarrett *et al.*, 1959b). Single doses of 6,000 to 10,000 elk strain larvae did not result in patent infections or clinical symptoms in four Holstein calves.

Immunized calves 12 and 13 demonstrated partial protection at challenge with 21,000 homologous strain larvae. Control calf 17 developed a lighter infection than expected. Calf 15, which was inoculated at 2 months of age with 20,000 larvae, acquired a relatively heavy infection with a maximum output of 45.5 l.p.g. This calf was considered too young to serve as a control for the immunized calves that were challenged when 8-months old. Calf 17 was inoculated with larvae from another source because the previous source was no longer available. It is possible that the infectivity of these larvae was lowered due to shipment, although the larvae appeared to be in good condition. The age difference between calves 15 and 17 probably did not account entirely for the lower response in the latter animal. Calf 10, whose age was similar to that of calf 17, developed a heavier infection from an inoculum of only 6,000 larvae.
Therefore, it is likely that the differences in response demonstrated by the immunized calves are much greater than indicated by comparison with this control animal.

A high degree of immunity was demonstrated at challenge by yearlings 8 and 9, which had been immunized with about 10,000 elk strain larvae. Yearling 9 developed a 2-day patent infection after a relatively long pre-patent period of 30 days. The recovery of immature worms 76 days p.c. was further evidence that homologous strain larvae were greatly inhibited in their rate of maturation. Inhibited development has been reported as a demonstration of the immune response to *D. viviparus* (Taylor and Michel, 1952; Michel, 1955).

It is difficult to determine which factors accounted for the better protection demonstrated by the yearlings when compared with calves 12 and 13. One possibility is the fact that yearlings 8 and 9 were immunized when 3-months old as opposed to 1.5 months for calves 12 and 13. Düwel (1963) observed that calves vaccinated when 8-weeks old produced a higher level of immunity than those animals vaccinated at 6 weeks of age. Another possible contributing factor was the age of the animals at challenge. As no control animal was used in the study, the response of an unexposed 20-month old animal is not known. Rubin and Lucker (1956b) reported that a 14-month old yearling died from a single dose of 54,000 infective larvae. At necropsy on day 28 p.i., 1,298 and 2,898 worms were recovered from the lungs of two 16-month old animals inoculated with 16,000 larvae (Lucker et al., 1964). These results indicate that yearlings are susceptible to
lungworm infection, although they may tolerate a comparable dose better than calves because of their larger lung size (Rubin and Lucker, op. cit.). The resistance to a large challenge dose demonstrated by the yearlings in this experiment indicates that elk strain larvae in cattle confer a high level of protection.

The strong resistance demonstrated 19 months after immunization was unexpected. Michel (1962) showed that the level of protection demonstrated at challenge declined after 110 days following inoculation with 3,000 normal *D. viviparous* larvae. Protection declined rapidly from about 50% after 6 months to near zero after 18 months in calves given two immunizing doses of 1,000 normal or X-irradiated larvae (Michel and Mackenzie, 1965). The larger number of elk strain larvae used for immunization in the present study as compared with these experiments may account for the persistence of protection for a longer period of time. This was supported by an experiment conducted by Weber (1958a) with two calves that had survived inoculations with 50,000 larvae. He was unable to induce patent infections in these animals with a challenge of 50,000 larvae 2 years later.

Further evidence that the immunized animals were protected was the transient nature of their clinical response following challenge in comparison with the respiratory distress observed in calves 14 and 15 after initial exposure to cattle strain larvae.

It has been shown that the antibody level detected by the complement-fixation test is usually not related to the degree of protection demonstrated by an animal. Weber (1958b) found no correlation between antibody
titers and the number of larvae administered, the age of the animals, or the severity of their clinical response. Protection was demonstrated before antibody was detected in calves challenged up to 15 days after initial inoculations with infective larvae (Michel and Cornwell, 1959). In the present study, the antibody response of the immunized calves following challenge indicates that these animals were primed by previous exposure to elk strain larvae. The rise in titer after 7 days p.c. was considered to be a secondary response, since the appearance of antibodies following initial inoculations required at least 21 to 35 days (Jarrett et al., 1959a; Cornwell, 1960b; 1961; Cornwell and Michel, 1960). This longer delay preceding complement-fixing antibody production also occurred following immunization with the elk strain larvae and after vaccination with irradiated larvae. Cornwell (1960a) reported that 13 calves had no titer, and 11 animals had low titers ranging from 5 to 20 at 6 weeks post-vaccination.

The likelihood that differences exist in the antigenic components of the two strains of *D. viviparum* was suggested since low antibody levels resulting from inoculation with elk strain larvae were detected only when the elk lungworm antigen was used. Since a high degree of protection against the cattle strain was conferred by exposure to the elk strain, one or more functional antigens must be common to both strains.

Histopathological changes in the lung tissues of animals 9, 12 and 13 following challenge were characteristic of the lesions described for immune animals (Jarrett and Sharp, 1963; Michel and Mackenzie, 1965) rather than those reported from initial infections (Jarrett et al., 1957a; 1960c).
Nodules of lymphoid tissue have been observed in resistant calves following challenge (Simpson et al., 1957), in immune animals around dead larvae (Jarrett et al., 1960c), and in calves inoculated with X-irradiated larval vaccine (Poynter, 1963). The suggested function of these nodules involves the local production of protective antibodies (Poynter, op. cit.).

In the cross infection experiment, the elk calf was more susceptible to the cattle strain than Holstein calves were to the elk strain of *D. viviparus*. This suggests that there are physiological differences between these lungworm strains, and the elk strain appears to be better adapted to the reciprocal host than the cattle strain.

The numbers of *D. viviparus* larvae given to the source animals effected lighter infections than results of inoculations reported in the literature. Jarrett et al. (1954) found that calves given 5,000 infective larvae produced several hundred l.p.g. and death occurred frequently at about day 24 p.i. A single dose of 10,000 larvae resulted in a maximum output of 227 l.p.g. in a 2-month old calf (Rubin and Lucker, 1956b). In the present experiment, a dose of 20,000 larvae was necessary to establish an infection with a consistent, relatively high larval output, as 5,000 larvae effected only sporadic larval production in the calves. The different methods of culturing larvae to infective stage may partially explain these discrepancies. Greater larval infectivity has been achieved by other workers (Jarrett et al., 1957b) when first-stage larvae were cultured in the feces.

The clinical signs of infection observed during this study were in agreement with other reports (Rubin and Lucker, op. cit.; Djafar et al., 1960; Fisher and McIntyre, 1960). The second peak in respiratory rates
which occurred in calves 14 and 15 about day 41 p.i. correlated with the
time that these animals began to eliminate their infections.

A high degree of protection was demonstrated by the source animals
when subsequently challenged with large doses of homologous larvae. The
patent reinfection established in calf 14 was unexpected. Porter and
Cauthen (1942) reported the occurrence of patent infections in two
experimentally reinfected calves. Patent reinfections were established
in six calves following initial inoculations with small doses of 500
larvae (Weber and Lucker, 1959). Rubin and Lucker (1956a) found immature
worms in animals following re-exposure, but 8 of 11 animals were refractory
to the development of mature worms.

In conclusion, the calves inoculated with the elk strain of *D. viviparus*
demonstrated an immune response at challenge with homologous
strain larvae on the basis of the seven criteria used (*vide supra*, p. 14).
Total protection was not achieved, in as much as light patent infections
developed in two of the immunized calves. Since two inoculations with
irradiated larvae gave greater protection than single vaccination, it is
possible that increased protection could be achieved by giving two doses
of elk strain larvae to calves.
tion of sheep with a relatively non-pathogenic strain of Haemonchus

Audureau, F. 1954. Traitements par les voies extra-respiratoires de la
Abstr. 23: 394-395)

Baxter, J. T., D. Allan and J. T. Patterson. 1959. The influence of graz­
ing "immune cows" on the level of Dictyocaulus viviparus infection on

Birkett, J. D. 1942. Intratracheal injections in parasitic bronchitis.
(Correspondence) Vet. Rec. 54: 274. (Helminth. Abstr. 11: 28)

Campbell, D. J. and G. D. Wetherill. 1957. Parasitic bronchitis in adult
275.

worm infections in calves and pigs with cyanacethyldrazide. Proc.

Cornwell, R. L. 1959. Parasitic bronchitis: the vaccinated calf as a
carrier. (Correspondence) Vet. Rec. 71: 562.

Cornwell, R. L. 1960a. The complement-fixing antibody response of calves
to Dictyocaulus viviparais. II. Vaccination with irradiated larvae.
J. Comp. Path. 70: 494-498.

Cornwell, R. L. 1960b. The complement-fixing antibody response of calves
to Dictyocaulus viviparais. III. Vaccinated calves exposed to chal­

larvae of Dictyocaulus viviparais. Serum antibody titre, respiratory

Cornwell, R. L. 1962a. Production of immunity to Dictyocaulus viviparais
by the parenteral administration of fourth stage larvae. J. Comp.
Path. 72: 181-189.

Langeler, J. E. T. 1959. Moderne longwormtherapie. Tijdschr. Diergeneesk. 84; 650-656. (Helminth. Abstr. 29; 399)

Litoshko, G. D. 1963. (Anthelmintic treatment of dictyocauliasis in calves.) (Abstr.) Veterinariya 40; 45. (Helminth Abstr. 33; 33-34)

Presidents, P.J.A.

Infectivity and immunogenic capability of *Dictyocaulus* species from elk and cattle in experimentally infected bovine calves.