Methanogenesis in low sulfate hot spring algal-bacterial mats
by Kenneth Andrew Sandbeck

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Microbiology
Montana State University
© Copyright by Kenneth Andrew Sandbeck (1980)

Abstract:
Methanogenesis in algal-bacterial mats in the effluent channels of low sulfate hot springs (Yellowstone National Park) was studied. Methanogenesis was found to be greatest 13-23 C lower than the upper temperature limit for mat development which was about 73 C. Samples from various temperature regimes of the mat (44-60 C) all showed increased methane production upon incubation at elevated temperatures (65-70 C) indicating that the reason for maximal methanogenesis occurring below the upper temperature limit for mat development was not a lower upper temperature limit for methanogenic bacteria involved in anaerobic degradation. Methanogenic bacteria isolated from various temperature regimes of the mat also showed increased methane production and growth upon incubation at elevated temperatures. It appears that methanogenesis is not limited by temperature. Methane production and primary productivity exhibited similar temperature distributions indicating methanogenesis might be limited by the availability of methanogenic precursors, the amount of which is probably a direct function of the rate of formation of algal-bacterial organic matter. Experiments designed to determine the relative importance of labelled methane precursors indicated that acetate was not an important precursor of methane at either high or low acetate concentrations. At high acetate concentrations, acetate was apparently diverted photoheterotrophically into cellular material. Autoradiograms prepared from mat material incubated with 2-14C-acetate showed that acetate was rapidly incorporated into very long filamentous bacteria. Dark incubation reduced photoheterotrophic incorporation of acetate. Experiments with NaH14CO3 showed that radioactive methane was produced rapidly from H14CO3 and that CO2 reduction accounted for at least 70-80% of the methane evolved from algal-bacterial mat samples. Apparently, CO2 is the main precursor of methane because competition for acetate by other inhabitants of this microbial community, possibly photoheterotrophic bacteria, may preclude acetate as a major methane precursor.
STATEMENT OF PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Montana State University, I agree that the Library shall make it freely available for inspection. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by my major professor, or, in his absence, by the Director of Libraries. It is understood that any copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Signature: [Signature]
Date: 6/16/50
METHANOGENESIS IN LOW SULFATE HOT SPRING ALGAL-BACTERIAL MATS

by

KENNETH ANDREW SANDBECK

A thesis submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in
Microbiology

Approved:

David M. Ward
Chairperson, Graduate Committee

Norman D. Reed
Head, Major Department

Michael Malone
Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana
August, 1980
ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. David Ward, for providing a stimulating research project and for his many words of advice. In addition to thanking all the members of the Department of Microbiology for their help and counsel, I also want to thank my other committee members, Dr. Kenneth Temple and Dr. Gordon McFeters for their guidance and encouragement. I would also like to thank Dr. Michael Winfrey, Kent Kemmerling, and Eric Beck for their help in solving seemingly insurmountable problems. My parents, Mr. and Mrs. Knut Sandbeck, also deserve my thanks for their patience and their attempt to understand the vicissitudes encountered as I strove to obtain an advanced degree. I would like to especially thank my fiancee, Lynn Stimpfling, for her understanding, help and love during a period of time which could best be described as hectic.

This work was supported in part by the Montana Department of Natural Resources and Conservation Renewable Alternative Energy Source Program Grant No. 402-772. This material is also based upon work supported by the National Science Foundation under Grant No. DEB 7824070. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITA</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Methanogenic bacteria</td>
<td>3</td>
</tr>
<tr>
<td>Physiology, biochemistry and structure of methanogenic bacteria</td>
<td>5</td>
</tr>
<tr>
<td>Ecology of methanogenic bacteria</td>
<td>10</td>
</tr>
<tr>
<td>Enumeration of methanogens</td>
<td>21</td>
</tr>
<tr>
<td>The microbiology of low sulfate hot spring algal-bacterial mats</td>
<td>22</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>28</td>
</tr>
<tr>
<td>Study areas</td>
<td>28</td>
</tr>
<tr>
<td>Sampling</td>
<td>29</td>
</tr>
<tr>
<td>Metabolism of radioactively labelled compounds</td>
<td>30</td>
</tr>
<tr>
<td>Analytical methods</td>
<td>35</td>
</tr>
<tr>
<td>Isolation and culturing of thermophilic methanogenic bacteria</td>
<td>38</td>
</tr>
<tr>
<td>RESULTS</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Methanogenesis along the thermal gradient</td>
<td>42</td>
</tr>
<tr>
<td>Effect of temperature on anaerobic degradation to methane</td>
<td>42</td>
</tr>
<tr>
<td>Correlation of primary productivity and methanogenesis</td>
<td>47</td>
</tr>
<tr>
<td>Isolation and characterization of methanogenic bacteria from various temperature regions of the algal-bacterial mat</td>
<td>52</td>
</tr>
<tr>
<td>$H^{14}CO_3^-$ as a methane precursor</td>
<td>55</td>
</tr>
<tr>
<td>Metabolism of $2^{-14}C$-acetate</td>
<td>70</td>
</tr>
<tr>
<td>Fate of 3^H-acetate in algal-bacterial mat samples</td>
<td>76</td>
</tr>
<tr>
<td>Autoradiograms of mat material labelled with $2^{-14}C$-acetate</td>
<td>76</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>82</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Effect of hydrogen and acetate on the importance of CO₂ as a methane precursor (Octopus Spring 55°C)</td>
<td>64</td>
</tr>
<tr>
<td>2.</td>
<td>Temperature distribution of the importance of CO₂ as a methane precursor in Octopus Spring algal-bacterial mat</td>
<td>67</td>
</tr>
<tr>
<td>3.</td>
<td>Importance of CO₂ as a methane precursor in 50°C Octopus Spring algal-bacterial mat samples incubated at various temperatures</td>
<td>69</td>
</tr>
<tr>
<td>4.</td>
<td>Fate of 2-¹⁴C-acetate in hot spring algal-bacterial mat samples</td>
<td>72</td>
</tr>
<tr>
<td>5.</td>
<td>Fate of 2-¹⁴C-acetate added after ongoing methanogenesis in hot spring algal-bacterial mat samples</td>
<td>75</td>
</tr>
<tr>
<td>6.</td>
<td>Fate of ³H-acetate in Octopus Spring algal-bacterial mat samples (50°C)</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Temperature distribution of methanogenesis in hot spring algal-bacterial mats</td>
<td>44</td>
</tr>
<tr>
<td>2.</td>
<td>Effect of temperature on methanogenesis in algal-bacterial mat samples collected at various temperatures (Octopus Spring 1978)</td>
<td>46</td>
</tr>
<tr>
<td>3.</td>
<td>Effect of temperature on methanogenesis in algal-bacterial mat samples collected at various temperatures (Wiegert Channel 1978)</td>
<td>49</td>
</tr>
<tr>
<td>4.</td>
<td>Effect of temperature on methanogenesis in algal-bacterial mat samples collected at various temperatures (Octopus Spring 1979)</td>
<td>51</td>
</tr>
<tr>
<td>5.</td>
<td>Temperature distribution of primary production and methanogenesis in Octopus Spring algal-bacterial mat</td>
<td>54</td>
</tr>
<tr>
<td>6.</td>
<td>Temperature optimum for growth of and methanogenesis by methane-producing bacteria isolated from Octopus Spring</td>
<td>57</td>
</tr>
<tr>
<td>7.</td>
<td>Conversion of NaH(^{14})CO(_3) to (^{14})CH(_4) in hot spring algal-bacterial mats</td>
<td>59</td>
</tr>
<tr>
<td>8.</td>
<td>Change in specific activity CH(_4)/specific activity CO(_2) following addition of NaH(^{14})CO(_3)</td>
<td>62</td>
</tr>
<tr>
<td>9.</td>
<td>Autoradiograms of 2-(^{14})C-acetate labelled cells from Octopus Spring algal-bacterial mat (55 C)</td>
<td>80</td>
</tr>
</tbody>
</table>
Methanogenesis in algal-bacterial mats in the effluent channels of low sulfate hot springs (Yellowstone National Park) was studied. Methanogenesis was found to be greatest 13-23 °C lower than the upper temperature limit for mat development which was about 73 °C. Samples from various temperature regimes of the mat (44-60 °C) all showed increased methane production upon incubation at elevated temperatures (65-70 °C) indicating that the reason for maximal methanogenesis occurring below the upper temperature limit for mat development was not a lower upper temperature limit for methanogenic bacteria involved in anaerobic degradation. Methanogenic bacteria isolated from various temperature regimes of the mat also showed increased methane production and growth upon incubation at elevated temperatures. It appears that methanogenesis is not limited by temperature. Methane production and primary productivity exhibited similar temperature distributions indicating methanogenesis might be limited by the availability of methanogenic precursors, the amount of which is probably a direct function of the rate of formation of algal-bacterial organic matter. Experiments designed to determine the relative importance of 14C labelled methane precursors indicated that acetate was not an important precursor of methane at either high or low acetate concentrations. At high acetate concentrations, acetate was apparently diverted photoheterotrophically into cellular material. Autoradiograms prepared from mat material incubated with 2-14C-acetate showed that acetate was rapidly incorporated into very long filamentous bacteria. Dark incubation reduced photoheterotrophic incorporation of acetate. Experiments with NaH14CO3 showed that radioactive methane was produced rapidly from H14CO3- and that CO2 reduction accounted for at least 70-80% of the methane evolved from algal-bacterial mat samples. Apparently, CO2 is the main precursor of methane because competition for acetate by other inhabitants of this microbial community, possibly photoheterotrophic bacteria, may preclude acetate as a major methane precursor.
INTRODUCTION

The production of methane by microorganisms is a common occurrence in a wide variety of anaerobic environments where organic matter is available for decomposition (98, 172, 178). Methanogenesis (the biological production of methane), occurs in the rumen and intestinal tract of animals, anaerobic waste digestors, freshwater and marine sediments and the wetwood of living trees. Methane production by microorganisms has also been reported in hot springs (157, 178) and lakes (52). Production of methane by microorganisms in sediments, marshes and bogs is continuous and this methane can ignite spontaneously. Colloquially, the transient, amorphous blue lights seen sometimes above these environments are referred to as 'will-o-the-wisp' (175). In these anaerobic environments, methanogens (methanogens = microorganisms which produce methane), are the terminal organisms of the anaerobic microbial food chain. By consumption of the fermentation products of higher trophic levels, particularly H2/CO2 and acetate, they allow anaerobic decomposition to proceed (30). The methane production reaction is very important in the carbon and other cycles in nature because it results in the degradation of complex organic material to the gaseous products CO2 and CH4 with a relatively small growth yield of bacteria. In this way, a large amount of organic material is destroyed, but most of the substrate energy is retained in the methane (90%) (31).
Methane is produced by a small group of morphologically diverse bacteria. These bacteria are unified by their ability to produce methane as an end product during energy metabolism. Many detailed reviews discuss the taxonomy, physiology, biochemistry and activity of these bacteria (98,102,139,172,178).

Barker has reviewed the historical aspects of microbial methane production (7). The historical study of methane production is interesting and warrants a brief summary here. Volta is credited with the first observation of methane production in nature. In 1776, he reported that large quantities of a combustible gas were continuously being formed in the sediments of lakes and ponds in Italy. Volta also noticed that there seemed to be a direct correlation between the amount of plant material and the amount of gas produced, and from this concluded that the gas was formed from this plant material.

In 1806, William Henry found that this combustible gas was identical to a synthetic illuminating gas, methane. In 1868, Béchamp, a student of Pasteur, provided evidence that methane production was a microbiological process. Tappeiner, in 1882, provided more adequate proof that methane production was a microbiological process.

Toward the latter part of the 19th century, cellulose was
thought to be a substrate for methane-producing bacteria. Later, though, it was believed that methanogenesis was a two stage process as cellulose could be decomposed without the production of methane, but the products of cellulose fermentations could be used by a methane-producing culture. However, around this time, Omelianski reported the isolation of Bacillus methanigenes which supposedly could form methane from cellulose.

During this century the study and knowledge of methanogenesis has grown a great deal. However, it has been only in the past 10 or 15 years that the true substrates (used by pure cultures) of methane-producing bacteria have been identified. Even at this point in time, much remains to be learned about methanogenic bacteria and their activities in nature or in manipulated environments such as anaerobic waste digestors. As an example, thermophilic production of methane has received attention as of late as a more efficient means of waste conversion (154).

Methanogenic Bacteria

Interest in methane-producing bacteria has increased lately and the main reason for this increased interest is due to the role methanogenic bacteria play in the anaerobic conversion of organic matter to methane (a fuel gas). Interest has also been stimulated by the idea (2,3,61,171) that methanogens comprise a unique type of
life distinctive from other procaryotic (including chloroplasts and mitochondria) and eucaryotic cell types. The basis for this distinction is not only unique ribosomal oligonucleotide patterns and sequences, but also the lack of muramic acid-containing peptido-glycan cell walls (61,81,84). Recently, Balch, et al. (2) proposed a new taxonomic scheme for the methanogens based on their phylogenetic relatedness as revealed by 16S rRNA comparisons. Additionally, methanogenic bacteria appear to possess unique ether-linked lipids (151). These findings further strengthen the distinction of methanogenic bacteria as the independent Family Methanobacteriaceae made earlier on the basis of common metabolic and physiological criteria (29).

The methanogenic bacteria as a group consist of very few recognized species belonging to five genera distinguished on the basis of cellular morphology (2,29,128). The fact that rod-, coccus-, irregular coccus-, spirillum- and pseudosarcina-shaped cells have been found to produce methane suggests diverse phylogenetic origins. As a group, methanogens have a severely restricted range of energy sources and most isolates use only H₂ or H₂ and formate (29). Previously, a metabolic property believed common to all methanogens, the ability to use H₂ as an electron donor in the reduction of CO₂ to methane, was touted as the one major unifying characteristic of
these bacteria (29,98,172,178). Recently, however, Zehnder, et al. (176) and Zinder and Mah (188) have isolated a rod and pseudosarcina, Methanobacterium soehngenii and Methanosarcina barkeri, respectively, which do not use \(H_2 \) and \(CO_2 \) as precursors of methane, but do actively use acetate as a methane precursor. Carbon monoxide is converted to \(CO_2 \) and \(CH_4 \) by \textit{Ms. barkeri} and \textit{Methanobacterium formicicum} (29). \textit{Ms. barkeri} is the only isolate which may use either acetate or methanol as an energy source (30).

Only one true thermophilic methanogen has been isolated, \textit{Methanobacterium thermoautotrophicum} (184), but Zinder and Mah (188) isolated a strain of \textit{Ms. barkeri} which grew optimally at 50°C and did not grow at 60°C. \textit{M. thermoautotrophicum} grows optimally in the temperature range 65-70°C.

Physiology, Biochemistry and Structure of Methanogenic Bacteria

The substrates for methanogenesis have aroused much controversy in the past. Early workers (7) reported that a wide variety of alcohols, fatty acids, cellulose and \(H_2/CO_2 \) could be used by methanogenic bacteria. However, much of this work was done with impure enrichment cultures and resulted in invalid results. With the advent of improved, specialized techniques for the isolation and cultivation of these strict anaerobes (27,33,70,73), many of the above mentioned substrates were shown to have been metabolized by contami-
nants in the enrichment culture. Previously, only H_2/CO_2, formate, CO, methanol and acetate had been shown to be substrates for axenic cultures of methanogenic bacteria (29). It appears now though (186, 187), that methyl mercaptan may serve as a methane precursor; however, this work was done with natural algal-bacterial mat or sediment material and not with pure cultures. Also, compounds such as methyl amines have been shown to contribute to methane formation (67,116, 162,188). Only recently has acetate conversion to methane been studied in pure cultures (97,159,176). Zeikus, et al. (182) reported that in a mineral salts acetate medium, acetate could serve as a methane precursor in *Ms. barkeri* and *M. thermoautotrophicum* only in the presence of added H_2. Mah, et al. (97) believe that Zeikus found it necessary to add H_2 for acetate conversion because of the selection and pregrowth conditions he employed. Mah, et al. (97) and Zehnder, et al. (176) have isolated pure cultures capable of growth and methane production on acetate as the sole energy source. The isolation of these bacteria in pure culture has done much to explain the frequently observed phenomenon that acetate is the main precursor of methane in most anaerobic systems (38,42,69,80, 88,98,107,136).

Despite the recent progress in obtaining methanogens in pure culture which can convert acetate to methane, a great deal remains
to be learned about organisms responsible for acetate conversion to methane. In addition, virtually nothing is known about the biochemistry of acetate conversion to methane or the means by which methanogens obtain energy from this reaction (98,172,175,178). However, a general scheme has been proposed for both CO₂ and acetate conversion to methane to account for results observed by researchers.

Basically, during the process of methane production, electrons generated in the oxidation of H₂ and formate are used in the reduction of CO₂ to methane; whereas electrons generated in the oxidation of acetate and methanol are used in the reduction of intact methyl groups of these substrates to methane (36,97,125,126,140,159). As electrons flow from donor to acceptor, ATP synthesis is presumed to occur via an electron transport mechanism (54). Stadtman and Barker (140) proposed a branching scheme for the reduction of CO₂ or methyl groups to methane to account for methane production from either CO₂ or methyl carbons. This presumably occurred through a common methylated intermediate, and this scheme replaced the earlier theory of Van Niel (see 6).

The belief of Stadtman and Barker that there was a common methylated intermediate involved in the reduction of CO₂ or methyl carbons was substantiated by the discovery of McBride and Wolfe (101) of coenzyme M (CoM), a terminal methyl carrier (mercaptoethane
sulfonic acid). This coenzyme has been studied by others (143, 144, 145) and appears to be active in the methyl reductase system of all methanogenic bacteria. CoM is found in all the methanogenic bacteria, except *Methanobacterium ruminantium* strain M1 where it is required as a growth factor (144) and this led to the use of this microorganism as a bioassay system for CoM (4). More recent evidence on the ability of CoM to transfer C1 units of differing redox potential, led Gunsalus, et al. (64) to propose that CoM may be the common carrier of C1-carbon from CO2 or methyl groups.

Electrons removed by methanogens in the oxidation of H2 or formate by *M. ruminantium* were shown to pass through a low-potential electron carrier, called factor 420 or F420 (152), to NADP before ultimately reducing methyl CoM to methane. This factor was originally isolated from *Methanobacterium MoH* (46), but was found to be present in all methanogenic bacteria examined (61,64) and is also unique to methanogenic bacteria (61). The structure of F420 was recently presented as a riboflavin analog (59). F420 autofluoresces blue-green when excited by long wavelength ultraviolet light (46). In addition, some methanogenic bacteria have been shown to possess other chromophoric factors (65) of unknown function.

Although the role of CoM and F420 in acetate metabolism is unknown, a role is suggested by the inhibition of growth and methano-
genesis from acetate in a pure culture of *Ms. barkeri* by viologen dyes (97).

Even less is known about the pathway for fixation of CO$_2$ into cell carbon compared to known routes of CO$_2$ fixation (51,146,180). While many methanogens appear to be autotrophic (178), it appears that methanogenic bacteria lack a complete Calvin cycle, and they do not possess the enzymes necessary for CO$_2$ fixation in the serine or hexulose pathway (162). However, it is interesting that Weimer and Zeikus (163) have shown that *M. thermoautotrophicum* and *Ms. barkeri* are deficient in different tricarboxylic acid (TCA) cycle enzymes. This thought becomes more provocative in regard to the fact that some methanogenic bacteria have been shown to excrete organic compounds (178) so that one might infer that some cross-feeding of CO$_2$ fixation intermediates may take place in natural environments. Also, the contribution of acetate in the formation of major amounts of cell carbon in *M. ruminantium* (34) suggests that methanogenic bacteria may be mixotrophic or even heterotrophic. This makes sense in terms of anabolic metabolism as methanogens in nature are often found in a rich organic environment. The stimulation of methanogenic bacteria by growth factors apparently provided by nonmethanogenic associates in mixed cultures (111,127,132,147,159,185) suggests that methanogenic bacteria prefer symbiotic associations for optimal
nutritional conditions.

Not only are methanogens unique in regard to their physiology, they are also somewhat unique in regard to their structure. As mentioned previously, methanogenic bacteria lack a muramic acid-containing peptidoglycan cell wall and are, thus resistant to antibiotics whose action is against cell wall synthesis such as penicillin, vancomycin and cycloserine (81). They also resist lysozyme and detergents such as lauryl sulfate (84). Electron microscopy showed an absence of an electron dense cell wall layer in *Methanococcus vannielii* (81) and a variety of other unusual cell wall and cytological structures in other methanogens (91,179). Evidently, the unusual ribosomal sequences of methanogenic bacteria (61) do not impart differences in ribosomal function or structure as chloramphenicol was found to inhibit *M. vannielii* (81).

Ecology of Methanogenic Bacteria

In nature organic matter is degraded anaerobically through several trophic levels (69,90,98,150). Organic polymers are degraded to a wide variety of sugars, fatty acids, alcohols, H₂ and CO₂. While other microorganisms further ferment the sugars and alcohols, a third group of organisms (30,31,175), the proton-reducing, acetogenic bacteria degrade higher fatty acids to acetate, H₂ and CO₂ which are subsequently used by the terminal organisms of the
anaerobic food chain, methane-producing bacteria. These methane-producing bacteria have been studied in a wide variety of environments.

Probably the most extensively studied methanogenic environments are the rumen and anaerobic sewage sludge digestors. Methanogenesis in these environments has been extensively reviewed (68, 69, 71, 74, 75, 87). Methanogenesis also occurs in sediments and soils and these environments are probably the most significant global source of methane (88). In these environments and others (gastro-intestinal tract, wetwood of trees and algal-bacterial mats), methanogenic bacteria are obligately linked to nonmethanogenic bacteria for the provision of substrates. This is true in all natural environments except in the case of anaerobic environments where methanogenic substrates are provided in emanating geothermal gases (53, 178).

In natural environments methanogens readily form symbiotic associations with other anaerobic microorganisms. This accounts for the wide occurrence of impure cultures obtained in the past. This symbiotic association is well demonstrated by the "Omelianski symbiosis". *Methanobacterium omelianski* was thought to be a pure culture in the past, and, as such, was used for many biochemical and physiological studies. It apparently converted ethanol and CO₂ to acetate and methane. However, in 1967, it was shown by Bryant, et al.
to be a symbiotic association between two microorganisms: a nonmethanogenic S-organism which oxidized ethanol to acetate and H_2 (eq. 1), and a methanogen, *Methanobacterium* strain MoH, which used the H_2 to reduce CO_2 to CH_4 (eq. 2). At pH 7.0:

\[
\begin{align*}
\text{S-organism} & \quad H_2O + CH_3CH_2OH \rightarrow CH_3COO^- + H^+ + 2H_2 \quad \text{(eq. 1)} \\
\text{Methanobacterium strain MoH} & \quad H^+ + HCO_3^- + 4H_2 \rightarrow CH_4 + 3H_2O \quad \text{(eq. 2)}
\end{align*}
\]

Growth of the S-organism on ethanol was greatly inhibited by the presence of H_2; however, when co-cultured with the methanogen, good growth occurred. The methanogen removed the "toxic" hydrogen and allowed the growth of the S-organism, while the S-organism produced H_2 and allowed the growth of the methanogen.

Since the resolution of the Omelianski symbiosis, much work has been done to elucidate the nature of the interaction between methanogens and other fermentative anaerobes. The work of Wolin and others \((28, 77, 105, 130, 174)\) over the last decade has further clarified the concept of interspecies hydrogen transfer. Fermentative anaerobes generate reduced NAD (NADH) during the oxidation of organic substrates. In the absence of H_2-consuming species (methanogens), electrons from NADH are disposed of by the production of reduced end products such as ethanol, lactate, or propionate. When methanogens are present, carbohydrate-fermenting anaerobes produce increased
amounts of H_2 as a reduced end product. Acetate production increases and the production of other reduced end products such as ethanol or lactate is greatly reduced. The oxidation of NADH to produce H_2 is thermodynamically unfavorable if H_2 is present, but the reaction becomes increasingly favorable as the partial pressure of H_2 decreases (174). Methanogens consume H_2 as rapidly as it is produced and by keeping the partial pressure of H_2 very low, they make feasible the production of H_2 from NADH. If H_2 is the primary electron sink instead of reduced organic compounds, pyruvate (from glycolysis) is converted primarily to acetate (148) so that the nonmethanogen obtains more ATP when grown in the presence of a methanogen.

Weimer and Zeikus (161) reported a similar symbiotic interaction when *Clostridium thermocellum* was grown on cellulose in co-culture with *M. thermoautotrophicum*. Another interesting example of interspecies hydrogen transfer between sulfate-reducing bacteria and methanogens was described by Bryant, et al. (32). *Desulfovibrio vulgaris* and *D. desulfuricans* grew poorly on lactate in a low sulfate medium, but grew well when co-cultured with a methanogen. The sulfate reducers were able to grow in the absence of sulfate by using the methanogenic organism as an electron sink. Zeikus (178) has summarized that interspecies hydrogen transfer reactions result in the following changes in co-culture: i) increased substrate utiliza-
tion, ii) different proportions of reduced end products, iii) more ATP produced by the nonmethanogen, iv) increased growth of both symbionts and v) displacement of unfavorable equilibria.

Methanogens using methanol and acetate have also been shown to form symbiotic associations with other anaerobes. Zhilina and Zavarin (185) described several microorganisms which grew commensally with *Methanosarcina* in a methanol enrichment. The associates (nonmethanogens) were unable to grow in pure culture which indicated the existence of a symbiotic relationship between these microorganisms. Additionally, Mah and co-workers (98,159) have reported a stable interaction between *Ms. barkeri* and nonmethanogens in an acetate enrichment. The nonmethanogens could not use acetate as an energy source and it appeared that the nonmethanogens depended on the pseudo-sarcina for nutrient requirements.

It is generally assumed that in aquatic systems organic decomposition is limited by the rate of polymer degradation (164). Many workers (30,49,99,119) have concluded that organic biopolymer (e.g. cellulose) degradation limits the rate at which gas production occurs in anaerobic systems such as anaerobic waste digestors. As shown by Shea (131), in normal sludge digestion only about 3% of the total hydrogen-utilizing capacity of the hydrogen-oxidizing methanogens is utilized. He concluded therefore that methane production from CO2
and \(H_2 \) can never be the rate limiting step in anaerobic digestion as has been claimed by others. McCarty (103) concluded that the decomposition of lipids and volatile acids appears to be the overall rate limiting step in gas production in sewage sludge digestors. Kaspar and Wuhrmann (85) state that in sewage sludge the limiting factor for complete anaerobic mineralization of biodegradable organic matter is found in the boundary conditions for the exergonic oxidation of propionate. Bryant (31) states the problem most clearly in that one can not separate any set of reactions from another in trying to determine the rate limiting step involved in gas production. He concludes that the rate limiting reactions in the methane fermentation (in sewage) often involve the degradation of fatty acids, but this depends on the efficiency of \(H_2 \) utilization. Indeed, it may be impossible to state conclusively that one reaction involved in organic decomposition limits the rate of gas production as all the reactions in complete anaerobic mineralization are intimately interconnected (31).

In other environments, the addition of several compounds has been shown to stimulate methanogenesis. Hydrogen was shown to stimulate methane production in marine sediments (113,115) and Winfrey, et al. (167) reported that in Lake Mendota sediments, methanogenesis was greatly increased by added \(H_2 \). Hungate (72) and Czerkawski, et al. (50) have shown that the amount of methane produced in the rumen is
proportional to the dissolved H$_2$ concentration. Acetate is not an important methane precursor in the rumen since it is drawn off for the energy needs of the animal (72). This was corroborated by the findings of Opperman, et al. (112) that only 2-2.5% of the rumen methane was derived from acetate. The methane precursors formate and acetate have been observed to stimulate methanogenesis and lactate also stimulated methanogenesis in Lake Vechten sediments (37).

In the past, much effort has been directed toward determining what the major precursors of methane are in various anoxic environments. Methanol is not considered to be a product of anaerobic decomposition and is not thought to be a methanogenic precursor in natural environments (80). Even though formate is a major product in anaerobic fermentations, it is not considered per se as an important methane precursor as it is readily cleaved to CO$_2$ and H$_2$ by a large number of anaerobic bacteria (178). In studies on the rumen, Hungate, et al. (76) concluded that formate was metabolized primarily by nonmethanogenic microorganisms.

It would appear then that H$_2$/CO$_2$ and acetate are the major in situ precursors of methane (31,98,172,175,178). Inhibition of methanogenesis with methane analogs (8,38,142,149), viologen dyes (173) or fluoroacetate (38) resulted in the accumulation of H$_2$. Other researchers have investigated the importance of acetate as a methane
precursor. Smith and Mah (136) determined that 73% of the methane produced in sludge was produced from acetate. Jeris and McCarty (80) reported that 70% of the methane produced in anaerobic sewage was derived from acetate. Cappenberg calculated that 75% of the methane evolved from Lake Vechten sediments was produced from acetate (38). Koyama (88) calculated that the methyl position of acetate accounted for 60% of the methane produced in rice paddy soils and that 20-30% of the methane produced was derived from CO$_2$. Belyaev and coworkers (13,78) have shown that in two Russian lakes most of the methane produced was derived from the methyl position of acetate. Winfrey and Zeikus (170) reported that CO$_2$ accounted for up to 41% of the methane formed in Lake Mendota sediments. It appears that the major precursor of methane (H$_2$/CO$_2$ or acetate) is determined by various conditions and relationships which vary from environment to environment. In this regard, some of the work in this study was directed toward determining the importance of acetate or CO$_2$ as methane precursors in algal-bacterial mats.

Cappenberg and others (40,41,42,169,170) have shown that acetate is also oxidized in sediment systems. He found that 2-14C-acetate could be metabolized to 14CO$_2$ and that the amount of 14CO$_2$ evolved from 2-14C-acetate increased with the addition of sulfate. This is an interesting observation because, in the past, sulfate-reducing
bacteria were not believed to use acetate as an electron donor (92, 148). Russian researchers (129, 137) have shown that certain strains of _Desulfovibrio_ can grow on acetate with added H₂ and CO₂. Sorokin (137) reported that acetate was used for biosynthetic purposes and not respired to CO₂. Badziong, et al. (1) observed the same phenomenon in that acetate was required only for cell carbon in strains of _Desulfovibrio_. Other recent work has shown how acetate might be respired to CO₂ in sediments. Pfennig and Biebl (120) isolated a new species of bacterium, _Desulfuromonas acetoxidans_, which could oxidize acetate to CO₂ using elemental sulfur as a terminal electron acceptor. Widdel and Pfennig (165) isolated a new species of _Desulfotomaculum_ which coupled the oxidation of acetate to CO₂ with the reduction of sulfate to H₂S. CO₂ has also been shown to be produced from the methyl position of acetate by pure cultures of a methanogenic bacterium (182). Zehnder, et al. (176) isolated an acetate-decarboxylating, non-hydrogen-oxidizing methanogen and they speculated that some acetate may be completely oxidized to obtain the necessary reducing equivalents for cell biosynthesis.

Sulfate has been shown by several workers to inhibit methane production in sediments (37, 93, 100, 169). It was demonstrated by Martens and Berner (100) that methanogenesis did not occur in marine sediments until sulfate was depleted. They speculated, as have
others, (48) that the inhibition may be due to competition for available hydrogen, or may be related to the relative free energy yield available from sulfate reduction versus carbonate reduction. Winfrey and Zeikus (169) showed that inhibition of methanogenesis in Lake Mendota sediment was due to competition for available substrates. Cappenberg (37) suggested that the inhibition of methanogenesis by sulfate may be due to the production of toxic levels of H_2S. His hypothesis was supported by the isolation of a sulfide sensitive methanogen from Lake Vechten (39). However, it has been reported that the accumulation of 6.25mM sulfide did not significantly affect methane production in digested sludge (see 98). Others (160,169) have also shown that sulfide accumulation did not affect methane production in algal-bacterial mats or lake sediments. It seems that sulfide may be inhibitory in some environments while having little effect in others. Interestingly, Oremland and Taylor (115) reported the concommitant activities of methane production and sulfate reduction in marine sediments, but the rate of methane production was considerably lower than in sulfate-free sediments. Since the work of Oremland and Taylor, other workers have also noted the concommitant activity of methane production and sulfate reduction (108,160,168). Ward (158) reported that methanogenesis occurred in the presence of about 20,000mg SO_4^{2-}/liter in Great Salt Lake sediment.
Numerous other factors have been shown to influence methanogenesis in natural anoxic sediments. Temperature may often limit maximal rates of methane production. Zeikus and Winfrey (183) found that maximal methanogenesis occurred at 35-42 C, more than 10 C higher than the maximum in situ temperature. Cooney and Wise (49) found that there were two temperature optima for methanogenesis in thermophilic sewage sludge digestors, but that methane production was greatest at the higher temperature, 60 C. In the work of Cooney and Wise it appeared that there were two populations or strains of methanogens and the population that operated at 60 C was the more efficient.

Methanogenic bacteria are probably the strictest anaerobes known (98,172,178) and require low Eh values for growth to proceed. In rice paddies, methanogenesis was not observed until the Eh decreased to less than -250mV (89). Oremland and Tahlor (114) noticed diurnal fluctuations in methane levels in the rhizosphere of Thalassia testudinum and suggested the possibility of inhibition of methanogenic bacteria by oxidizing conditions. Nitrate has also been shown to inhibit methanogenesis in fresh water (47,93), marine sediments (5) and flooded soils (5,14). It was suggested by Bollag (14) that nitrate inhibition may be due to a rise in sediment Eh. Thus, the absence of reducing conditions might limit methanogenesis,
Systematic studies on the natural pH range for methanogens have not been reported. However, Van den Berg, et al. (153) reported a narrow pH range (pH 6-7.5) at which methanogenesis was maximal in waste digestors. Ward (157) reported that methanogenesis occurs in alkaline hot spring algal-bacterial mats at pH 8.5.

Enumeration of Methanogens

Many workers have estimated the numbers of methanogenic bacteria in anaerobic environments. In lake sediments workers found numbers of methanogenic bacteria that ranged from 10^2 to 10^7 cells per milliliter of sediment (11,12,13,37). These numbers are considerably lower than those reported for the rumen and digestor sludge. About 10^7 to 10^9 methanogens per milliliter have been reported in sludge (87,109,134) and in the rumen (75,117,134). Ward reported a maximum value of 10^8 methanogens per algal-bacterial mat subcore which roughly translates to 10^8 methanogens per cubic centimeter of a hot spring algal-bacterial mat (157).

Recently, techniques other than most probable number (MPN) estimates have been developed which may yield more accurate counts. Edwards and McBride (58) enumerated methanogens in sewage sludge using the UV fluorescence of F_{420}, a co-factor present in all known methanogenic bacteria. By counting fluorescent colonies, these workers obtained results comparable to those reported above. Mink
and Dugan (106) have similarly shown that methanogens can be tenta-
tively enumerated in pure and mixed cultures based on their auto-
fluorescing properties. Strayer and Tiedje (141) have used a fluore-
scent antibody specific for a strain of *Methanobacterium* to enumerate
methanogens in lake sediments. They obtained counts at least an
order of magnitude higher than with MPN techniques, but it must be
remembered that the fluorescent antibody technique may count non-
viable or moribund cells.

The Microbiology of Low Sulfate Hot Spring Algal-Bacterial Mats

The biology of natural hot springs has attracted the interest of
scientists for many reasons over the years (21). Many surprising
discoveries have been made over the past 15 years during a period
Zeikus, et al. (181) referred to as the 'golden era of thermophily'.

One of the most interesting findings regarding microbial life
at high temperatures was the report that the upper temperature limit
for procaryotic microorganisms was not found in boiling springs (92 C)
of Yellowstone National Park (15,16,25). Extreme thermophilic bac-
teria become macroscopically visible in the temperature range 88-75
C (17).

The upper temperature limit for photosynthetic life is reached
as the effluent water from low sulfate, alkaline, siliceous hot
springs cools to about 73 C (17,43,44). In the region below 74 C
to about 40°C, the growth of photosynthetic microorganisms results in the development of a thick (1-3 cm) algal-bacterial mat. The mat is substantially reduced by metazoan grazing below about 40°C (166). In Octopus Spring, the photosynthetic components of the mat are a photosynthetic flexibacterium, Chloroflexus aurantiacus (123) and a cyanobacterium, Synechococcus lividus (104) which is embedded in the filament matrix of the flexibacterium. Another photosynthetic cyanobacterium, Mastigocladus laminosus can be found as a minor component in the algal-bacterial mat of some springs (Wiegert Channel in this study), and in some springs (43) it is the primary phototrophic component.

Chloroflexus is a good example of the unusual microflora unique to these hot springs. It is apparently related to the green sulfur bacteria by virtue of the presence of bacteriochlorophyll c (122,123,124) and the presence of "chlorobium vesicles" (123). Also, Chloroflexus resembles the green sulfur bacteria as it has similar lipid chemistry (86), a similar G + C ratio (123) and has the ability to grow photoautotrophically using sulfide as an electron donor (45,94). On the other hand, Chloroflexus shares the property of anaerobic photoheterotrophic growth with the nonsulfur purple bacteria (96,124). Additionally, Chloroflexus resembles the cyanobacteria by virtue of similar carotenoid chemistry (66), gliding...
Brock (20) has mentioned that these springs are good environments for ecological studies because they are essentially steady state systems with low species diversity. However, the recent isolation by Zeikus, et al. (181) of *Thermoanaerobium brockii*, the observation of heterotrophic bacteria, and the isolation of other novel bacteria from alkaline hot springs (26,79, unpublished results of this laboratory and personal communication - Steve Zinder) indicate that while species diversity may be low in terms of the major species which make up the mat, a variety of microorganisms reside within the algal-bacterial mat environment.

Most of the previous studies on the algal-bacterial mats of hot springs have been directed toward determining photosynthesis and production of the mat. The combined effect of sunlight and high temperature results in rates of photosynthesis as high as found anywhere in nature (20). In Octopus Spring, primary production of the mat is accomplished by both *Synechococcus* and *Chloroflexus* (57), but the provision of organic compounds for photoheterotrophic or heterotrophic growth of *Chloroflexus* by *Synechococcus* was suggested by Bauld and Brock (10). Indeed, in pure culture, *Chloroflexus* is a more vigorous photoorganotroph than photoautotroph (44). Photosynthesis in the mat is restricted by self-shading to the upper few
millimeters of the mat (9,19,57) and natural populations of the algal-bacterial mat were found to adapt to changes in light intensity (95).

Positive aerotaxis by the motile Chloroflexus in the dark was suggested by Doemel and Brock (57) as the mechanism for upward growth of the mat. Upward growth sometimes leads to the formation of raised mat structures which resemble precambrian algal or bacterial fossil stromatolites (55,155,156). In fact, Chloroflexus is a sediment trapping organism as are the stromatolite-forming blue-green bacteria (55). The laminations evident in a cored sample of the mat may be due to the differential migration of Chloroflexus in response to reduced light intensity or positive aerotaxis at night (55). Growth of the mat appears to be in balance with mat decomposition, but Doemel and Brock (57) speculated that there may be two rates of decomposition, occurring, that which is complete after 2-4 weeks and decomposition of more recalcitrant material which is complete after a year. Zinder, et al. (187) suggested that decomposition was most rapid in the top 3 millimeters of the mat, but was the main biological process below 3 millimeters. Rapid decomposition near the surface of the mat was suggested as a result of the lack of correlation between protein and thickness between inert carborundum layers after burial (57). In Octopus Spring, Ward (157) found maximal methano-
genesis near the mat surface. Additionally, Zinder, et al. (187) found maximal H$_2$S production near the mat surface. They also found that the production of volatile organic sulfur compounds in anaerobic decomposition was inhibited by light which was probably due to inhibition of anaerobic microorganisms by oxygen produced during cyanophyte photosynthesis. Ward (157) suggested that since organic matter accumulated below the upper layer of maximal mat decomposition, there might be limitations imposed on anaerobic decomposition at lower depths or a resistance of some organic components of the mat to anaerobic decomposition.

Brock and co-workers found that maximum primary production in the mat appeared between 48 and 59°C, but found a maximum standing crop between 55 and 60°C (18,23). Peary and Castenholz (118) found that "temperature strains" existed for Synechococcus and similarly, Bauld and Brock (9) found that photosynthesis by Chloroflexus in natural algal-bacterial mat samples was greatest at the environmental temperature where they were found. Brock and Brock (24) also showed that temperature strains exist for heterotrophic bacteria present in the mat. They found that for each temperature tested, the optimum for glucose incorporation was an experimental temperature similar to the environmental temperature of the sample.

Zeikus (178) isolated a H$_2$-using thermophilic methanogenic
bacterium similar to *M. thermoautotrophicum* from the algal-bacterial mat present in the effluent channel of Octopus Spring. The fact that *M. thermoautotrophicum* has an optimum for growth and methane production at 65-70 °C (184) seems incongruous with the reported findings of Ward (157) that methanogenesis in these mats was maximal at 45-50 °C. Accordingly, some of the experiments performed in this study addressed the problem of the temperature limitation of methanogenesis observed in these springs.

The purpose of this research was to examine in detail methane production in this environment because these algal-bacterial mat systems provided a natural high temperature environment in which anaerobic decomposition to methane could be observed. Specific objectives were i) to study the temperature relations and adaptation of the bacteria responsible for methane production and ii) to study carbon and electron flow to determine if substrate flow in these natural environments was similar to other anaerobic environments which have been studied extensively.
MATERIALS AND METHODS

Study Areas

The major research area used in this study was Octopus Spring, an alkaline hot spring (pH 8.0) located about 0.15 km SSE of Great Fountain Geyser in the White Creek drainage in Yellowstone National Park. At this spring, experiments were undertaken only in the southernmost effluent channel. Another research area used in this study was in a meadow, also in the Lower Geyser Basin of Yellowstone National Park, adjacent to Firehole Lake Drive. Springs in this meadow were collectively referred to as Serendipity Springs because of their chance discovery in early 1968 by M.L. and T.D. Brock (60). The study area in the Serendipity Springs group was a plywood channel (1.2 m wide x 24 m long) constructed by Dr. Richard Wiegert (Univ. of Georgia) by diverting the effluent of a spring so that it constantly flowed down the artificial channel. The pH of the piped in water ranged from 6.0 to 7.0 (60), depending on the concentration of the free CO₂. Three other springs in Yellowstone National Park were also investigated initially to study methane production versus temperature. Two of the springs, Twin Butte Vista and Mushroom Spring are located about 0.10 km SE and 0.13 km NNE of Great Fountain Geyser, respectively. The third spring is referred to as "West Thumb A". It can best be described as the first major spring located north of the West Thumb Geyser area that empties into Yellowstone Lake.
Only the northernmost effluent channel was sampled. All officially named springs in the Firehole Lake area are shown on a map in T.D. Brock's book, *Thermophilic Microorganisms and Life at High Temperatures* (22).

Sampling and Experimental Protocol

A) **Sampling**

Whole cores were removed from the algal-bacterial mat with a no. 4 brass cork borer (50.3 mm²) and transferred directly to one dram glass vials (Kimble 14.5 x 45 mm) which were sealed anaerobically (73, except that no copper reducing column was used in the field) under a stream of 100% helium (Linde). Butyl rubber stoppers (A.H. Thomas, recessed butyl rubber stoppers, size 00) were used to effect a seal and keep the vials anaerobic during later manipulations. Anaerobically tubed samples were quickly placed in insulated coolers that contained water which was 5°C warmer than the in situ temperature. During transit to the laboratory (approximately 2 hours), samples cooled slightly but this procedure ensured that samples would be kept within 5°C of their indigenous temperatures. In the laboratory, samples were transferred to incubators that matched the in situ temperature (except in the case of temperature strain experiments where samples were incubated at several different temperatures). All additions were made from anoxic stock solutions at the time of sample
collection except in the case of some $2^{-14}C$-acetate experiments where additions were made after returning to the laboratory.

8) Metabolism of Radioactively Labelled Compounds

The following processes were assayed as described below on anoxically tubed samples:

1. Primary Production

Replicate vials received 0.1 ml (2 μCi) of a 20 μCi/ml stock solution of $NaH^{14}CO_3$ (44.5 mCi/mmol, New England Nuclear) diluted in sterile anoxic distilled water (pH 8.0). The samples were incubated in the effluent channel for 1.5 hours and biological activity was terminated by the addition of 0.5 ml formalin. The addition of formalin was accompanied by extremely vigorous shaking to ensure that the formalin permeated the gelatinous sample. "Light" replicate vials had their stoppers taped only at the top so that upon incubation the core was exposed to sunlight. "Dark" replicates were taped lengthwise and wrapped in aluminum foil to exclude light during incubation. At the laboratory, a gas headspace subsample was removed for determination of the specific activity of CO$_2$. After acidification with 0.1 ml 50% sulfuric acid to ensure removal of ^{14}C-carbonate species, radioactivity was determined by homogenizing the core (teflon tissue homogenizer) and adding 0.1 ml of the homogenate to 10 ml Aquasol (New England Nuclear). A model LS 100-C liquid scintillation counter
Radioactivity was measured on the 3H + 14C window and the gain was set at 240. Correction for differences in counting efficiency were made by the automatic external standard method. The specific activity of CO$_2$ (dpm/nmole) was divided into the dpm in the cell fraction to convert results to moles of carbon fixed during the incubation. Duplicate vials were then averaged and the amount of CO$_2$ fixed in darkened vials was subtracted from the amount of CO$_2$ fixed in the light to give light stimulated primary productivity. The cores differed in length, and since activity is not proportional to length (157), all results were reported on a per core basis.

2. Metabolism of 2-14C-Acetate

i) Replicate vials received 0.2 ml (0.2 μCi) of a 1 μCi/ml stock solution of 2-14C-acetate (sodium salt, 44 mCi/mmol, New England Nuclear). Vials were taped lengthwise with masking tape to secure the stoppers. After two hours, biological activity was terminated as above. Analysis of gas headspace subsamples for 14CO$_2$, CO$_2$, 14CH$_4$ and CH$_4$ were made as described in the analytical methods section. Incorporated radioactivity was determined by filtering a 0.1 ml aliquot of a homogenized sample (teflon tissue homogenizer), diluted with 0.9 ml distilled water through a 0.45 μm membrane filter (Millipore). The filtrate of this mixture was retained in a
two dram glass vial (Kimble, 16 x 60 mm) and a 0.1 ml aliquot of the filtrate was used to determine unincorporated radioactivity. After the filtrate had been obtained, the filter was rinsed with 0.5 to 1.0 ml distilled water. When the filters had dried, they were exposed to concentrated HCl fumes overnight to remove any unincorporated radioactivity remaining on the filters. Headspace volume and liquid volume of each vial were determined by displacement with water so that results could be corrected to a per core basis. Additionally, pH was determined for correction of 14CO$_2$ (gas) to total 14CO$_2$ as described in the analytical methods section.

ii) Replicate vials received 0.1 ml (1 μCi) of a 10 μCi/ml stock solution of 2-14C-acetate (sodium salt, 44.0 mCi/mmol, New England Nuclear). Vials were taped lengthwise as above. Light and dark replicates at 55°C were prepared as above. 14CO$_2$ and 14CH$_4$ were determined as described in the analytical methods section. Incorporated and unincorporated radioactivity were determined as above.

iii) Experimental vials were treated as above except replicate vials received 0.1 ml (1 μCi) of a 10 μCi/ml stock solution of 2-14C-acetate (sodium salt, 44.0 mCi/mmol, New England Nuclear) after methanogenesis had been established (48 hours after coring). 14CO$_2$ and 14CH$_4$ were followed over time and determined as described in the analytical methods section. Incorporated and unincorporated radio-
activity were determined as above and measured 71 hours after the radiolabel had been added.

3. **Metabolism of Tritiated Acetate**

The study was performed in the same fashion as those experiments designed to determine the metabolism of 2-\(^{14}\text{C}\)-acetate, but only in Octopus Spring at 50 C. Replicate vials received 0.1 ml (2 μCi) of a 20 μCi/ml stock solution of \(^3\text{H}\)-acetate (sodium salt, 2 Ci/mmol, New England Nuclear). Both short time incubations (3 hours) and long time course experiments (4 days) were performed. Gaseous subsamples were analyzed for \(^3\text{H}_4\) as described below. A parallel experiment was performed with material obtained from a dairy cow manure digestor (10 day turnover time, 8.8% solids, 86% volatile solids) to prepare \(^3\text{H}_4\) for use in ensuring its detection by the method described below. In other studies (unpublished results of this laboratory), it was determined that about 80% of the methane produced in this system came from the methyl group of acetate. By comparing the minimum and maximum peak responses to \(^3\text{H}_4\) (assuming a stoichiometric conversion of \(^3\text{H}\)-acetate to \(^3\text{H}_4\) and that further incubation did not result in increased amounts of \(^3\text{H}_4\) -- this would maximize error), it was calculated that no more than 0.29% of the added 2 μCi of \(^3\text{H}\)-acetate (in the algal-bacterial mat experiment) could have been converted to \(^3\text{H}_4\), or it would have been detected. Incorporated and unincorporated
radioactivity were determined as described above in the 2-\(^{14}\text{C}\)-acetate labelling experiments. Radioactivity was measured as above using only the \(^3\text{H}\) window and gain of 270 to correspond to the gain setting used for quench curves of tritium.

4. Conversion of NaH\(^{14}\text{CO}_3\) to \(^{14}\text{CH}_4\)

To determine the importance of \(\text{CO}_2\) as a methane precursor, experiments were undertaken in which 0.1 ml (2\(\mu\text{Ci}\)) of a 20\(\mu\text{Ci/ml}\) stock solution of NaH\(^{14}\text{CO}_3\) (44.5 mCi/mmol, New England Nuclear) was added to replicate vials. Radioactive \(\text{CH}_4\) and \(\text{CO}_2\) were followed over time as described below. Correction to nmoles \(\text{CH}_4\) evolved from \(\text{CO}_2\) was obtained by dividing total dpm \(^{14}\text{CH}_4\) by the specific activity of \(\text{CO}_2\).

The ratio, sp act \(\text{CH}_4\)/sp act \(\text{CO}_2\) gives an indication of the importance of \(\text{CO}_2\) as a methane precursor (80). It was found that over the initial incubation period, the ratio of the specific activities of \(^{14}\text{CH}_4\) to \(^{14}\text{CO}_2\) increased. To ensure that specific activity comparisons were made after the ratio appeared to level off (8 hours), vials were flushed (5 minutes) with 100\% helium gas (Linde) that flowed through a heated copper column 24 hours after incubation. Subsequent readings were taken every few hours. To determine if the initial rise in the ratio of the specific activities of \(^{14}\text{CH}_4\) to \(^{14}\text{CO}_2\) was due to an increase in the importance of certain methane
formation reactions, an experiment was performed where 100% hydrogen (Linde) was added (0.1 ml) at the time of sampling and again at the time of flushing to see if this affected the ratio obtained. Also, acetate (0.1 ml to achieve a final concentration of 1mM in an estimated 2.5 ml sample) was added at sampling and flushing times to see if the ratio obtained was affected. To determine if the specific activity ratio obtained (which was always less than 1.0; 1.0 indicates 100% of the evolved methane was derived from CO₂ reduction) indicated error in measurements or isotopic preference for ¹²C over ¹⁴C, a parallel experiment was performed with pure cultures of methanogenic bacteria isolated as described below. Culture conditions were identical to those described later, but the headspace of culture tubes contained only H₂ and the only added methane precursor was CO₂ which was added in the form of NaH¹⁴CO₃ (0.1 ml (2 μCi) of a 20 Ci/ml stock solution, 44.5 mCi/mmol, New England Nuclear).

C) Analytical Methods

1. Headspace Gases

Gas samples were removed from the headspace of vials using a helium flushed gas tight syringe. Hamilton syringes were used initially for methane production experiments. A glasspak syringe (Becton-Dickinson) attached to a mininert valve (Supelco) (to minimize loss of sample due to pressure differences) was used in later experiments.
Gas subsamples (0.2 ml) were analyzed by gas chromatography-gas proportion analysis. Concentrations were corrected to STP. For analysis of \(\text{CH}_4 \), \(\text{14CH}_4 \), \(\text{CO}_2 \) and \(\text{14CO}_2 \) a Carle model 8500 thermal conductivity gas chromatograph equipped with a 3.2 mm OD x 2.3 m (1/8 inch x 7.5 foot) stainless steel column packed with 80/100 mesh Poropak N (Supelco) was coupled to a Packard model 894 gas proportion analyzer. Helium make-up gas was added after combustion (at 750-800 °C) in the gas proportion analyzer to increase total flow to 70 ml/minute so that the flow of propane quench gas through the gas proportion analyzer was an optimal percentage (10%) of the total flow. The gas chromatograph was operated isothermally at 50 °C. This method of analysis for \(\text{CH}_4 \) and \(\text{CO}_2 \) and radioactivity in these gases was similar to the method reported by Nelson and Zeikus (110). Gas concentrations were calculated by comparison of peak area to that of standards using a Spectra-Physics model 4100 computing integrator. Radioactivity was calculated by comparison of peak area to the responses of standards to determine disintegrations per minute (based on standardization by liquid scintillation counting) using a Spectra-Physics Minigrator. \(\text{C}^3\text{H}_4 \) was detected in the same way, but with the gas proportional counter furnace turned off to prevent combustion of methane. The sensitivity to \(\text{C}^3\text{H}_4 \) was determined by preparing \(\text{C}^3\text{H}_4 \) from \(^3\text{H}-\text{acetate} \) using contents of a dairy cow manure digester as
described previously. The total amounts of CH$_4$ and 14CH$_4$ were calculated by comparison of subvolume to the gas headspace volume. Total amounts of CO$_2$ and 14CO$_2$ per vial were determined by correction for the difference between subsample and headspace volume, and also for gas solubility and dissociation equilibria according to Stainton (138).

More sensitive methane analysis was performed on a Varian 3700 series flame ionization gas chromatograph using a 3.2 mm x 1.83 m (1/8 inch x 6 foot) stainless steel column packed with 60/80 mesh Poropak Q (Supelco) with a helium carrier flow at 40 ml/minute and an isothermal oven temperature of 50 C. Injector and detector temperatures were 60 and 150 C, respectively. Gas concentrations were calculated by comparison of peak area to that of standards using a Spectra-Physics model 4100 computing integrator.

2. Autoradiograms

Autoradiograms of material incubated with 2-14C-acetate were prepared after the method of Brock and Brock (16). A thin film of homogenate was smeared onto a precleaned glass slide (precleaned glass slides - VWR Scientific) and allowed to air dry. The slides were put through a series of five distilled water baths (one minute each) to remove any unincorporated radioactivity. Slides were then dipped for five seconds in photographic emulsion (Kodak NTB2) under a Kodak no. 2 safelight. Slides were exposed for about one month in total darkness.
and then developed in total darkness with Kodak D-19 developer and fixed with Kodak fixer. Slides were examined using a Leitz Ortholux II microscope equipped for interference contrast optics. Photomicrographs were taken with a Nikon Microflex model EFM semi-automatic photomicrographic attachment at 500X using Kodak Panatomic-X film. Exposure time was about one second. Negatives were then enlarged to 5" x 7" prints on silver bromide print paper (Koda Bromide F-4) to achieve better contrast.

3. Other Methods

pH was taken in the field using colorpHast pH paper (MC/B Manufacturing Chemists, Inc.). pH was measured in the laboratory with a pH Master pH meter (VWR Scientific) and a glass combination electrode. Temperature was taken with a mercury thermometer.

D. Isolation and Culturing of Thermophilic Methanogenic Bacteria

1. Isolation

Enrichment, isolation and maintenance of a thermophilic methanogen was done in a medium (basal medium-BM) that contained the following per liter distilled water (all chemicals used were reagent grade): KH₂PO₄, 0.15g; Na₂HPO₄, 1.05g; NH₄Cl, 0.53g; MgCl₂·6H₂O, 0.20g; cysteine-HCl, 0.5g; 0.001g resazurin and 10 ml mineral elixir B. Mineral elixir B contained per liter distilled water: nitrilotriacetic acid, 1.5g; FeCl₂·4H₂O, 0.3g; MnCl₂·4H₂O, 0.1g; CoCl₂·6H₂O,
0.17g; ZnCl₂, 0.1g; CuCl₂, 0.02g; H₃BO₃, 0.1g; Na molybdate, 0.01g.

Mineral elixir B was prepared by adding the nitrilotriacetate to 200 ml distilled water and adjusting the pH to 6.5 with KOH. This solution was added to 600 ml distilled water at which time the remaining components of mineral elixir B were added in the order as they appear above. The volume was then brought to one liter with distilled water. The pH of the medium was adjusted to 9.2 so that the final pH was about 7.1 (±0.1) after all additions had been made. The medium was made anoxic by a modification of the Hungate Technique (73). The medium was boiled under 100% helium (Linde), but dispensed under 20% CO₂/80% H₂ (Linde) with a 5 ml repipet (L/1 Repipet). Each roller culture tube (150 X 16 mm, Bellco) fitted with a butyl rubber stopper (A.H. Thomas, recessed butyl rubber stoppers, size 00) received 5 ml of medium. Roller culture tubes were autocalved in a tube press. Na₂S·9H₂O (pH 13) was added after autoclaving to achieve a final concentration of 0.03%. All additions to the medium after autoclaving were made from sterile anoxic stock solutions. The basal medium (BM) was modified by adding 0.2% yeast extract and 0.2% trypticalase for use in checking for heterotrophic contaminants (BM + TYE). A contaminant organism was isolated on BM + TYE (see Results) by dilution to extinction, and a portion of this "spent" medium that was rendered sterile by autoclaving and filtration through a 0.45
membrane filter (Millipore) was needed to supplement BM (BM + S) so that methanogenic bacteria could be isolated by dilution to extinction. Growth in the highest dilutions containing methane and blue-green autofluorescing cells was serially diluted repetitively until 1) all culture members exhibited similar morphology and fluorescence (the ability to autofluoresce was observed in a Leitz Ortholux II Microscope equipped with vertical illumination with ultraviolet light from an HBO-200W mercury lamp that passed through a Leitz B cube excitation and emission filter combination), and 2) inoculation into BM + TYE with a helium atmosphere yielded no growth. Since methanogenic bacteria have been shown to resist certain antibiotics (2), the isolation of the thermophilic methanogens by dilution to extinction was carried out with the sodium salt of either penicillin G (Eli Lilly), or ampicillin (Sigma) added to each dilution to reach a final concentration of 300 μg/ml of medium. Isolates were obtained at 50, 55, 60, and 65°C using Octopus Spring algal-bacterial mat obtained at each of those temperatures as inoculum. To determine if growth could occur on formate, acetate, or methanol, BM + S was used with a helium atmosphere. Sodium formate, sodium acetate or methanol (sterile anoxic stock solutions) were added to reach a final concentration of 1.0%.

2. Temperature Strain Experiments

Temperature strain experiments were performed with the
isolates using BM + S to parallel temperature strain experiments done with natural mat material. Each isolate was grown in duplicate at 50, 55, 60, 65, 70, 75 and 80 °C and methane production was followed over time. Each experimental tube received a 0.1 ml inoculum from a turbid culture which had been pregrown in BM + S at the temperature at which it had been isolated. In addition, each isolate was grown in duplicate at the temperatures listed above and optical density was measured after 72 hours relative to an uninoculated blank on a Varian model 635 or a Gilford model 250 spectrophotometer at 660 nm (1 cm light path). Tubes analyzed for optical density were flushed daily with 20% CO₂/80% H₂ and given (via a 10 ml glasspak syringe fitted with a mininert valve) about 2.5 final atmospheres of the CO₂/H₂ gas mixture. Stoppers were held in place by tape in tubes used for optical density determinations. After 48 hours, tubes used for optical density determinations were supplemented again with 0.05 ml of a sterile anoxic 3% Na₂S·9H₂O solution (because sulfide was presumably lost through daily gas headspace flushings).
RESULTS

Methanogenesis Along the Thermal Gradient

In alkaline, siliceous hot springs, a well developed algal-bacterial mat develops in the effluent channel up to about 73°C, the upper temperature limit for the phototrophic components of the mat. Original experiments were designed to determine the region of greatest methanogenesis along the thermal gradients of several hot spring effluents. Although methane production was linear over the initial incubation period (48 hours), results are presented for the earliest time point rather than estimating a rate. Contrary to what might be expected, methane production in each of the five springs surveyed was greatest well below the upper temperature limit of algal-bacterial development. Generally, the best temperature for methane production was 50 to 55°C; however, two springs, Mushroom Spring and West Thumb A, showed maximum methanogenesis at 60°C (Figure 1). Later experiments were designed to examine if the reason for maximum methanogenesis occurring below the upper temperature limit for mat development was a lower upper temperature limit for methanogens involved in anaerobic degradation.

Effect of Temperature on Anaerobic Degradation to Methane

When samples collected at various temperatures along the thermal gradient were incubated at elevated temperatures (up to 65°C in Octopus Spring, Figure 2, and up to 70°C in the Wiegert Channel
FIGURE 1. TEMPERATURE DISTRIBUTION OF METHANOGENESIS IN HOT SPRING ALGAL-BACTERIAL MATS (METHANE PRODUCED AFTER 17-20 HOURS, AVERAGE OF TRIPlicATES).
A. Wiegert Channel

B. Twin Butte Vista

C. Octopus

D. Mushroom

E. West Thumb

μ Moles CH₄/CORE

TEMPERATURE (C)
FIGURE 2. EFFECT OF TEMPERATURE ON METHANOCENESIS IN ALGAL-
BACTERIAL MAT SAMPLES COLLECTED AT VARIOUS TEMPERATURES
(OCTOPUS SPRING 1978): (METHANE PRODUCED AFTER 7 HOURS,
AVERAGE OF TRIPlicATES).
Figure 3) increased methane production occurred. This observation was confirmed in a similar experiment in Octopus Spring (Figure 4). The inclusion of higher incubation temperatures permitted the observation of the upper temperature limit for processes involved in anaerobic decomposition to methane. Above 70 °C, methane production was lower in samples collected from various temperatures in the algal-bacterial mat. Although some methane production was indicated for the 50 °C samples incubated at 75 and 80 °C, this was most likely a result of methane production that occurred before samples could be transferred to higher incubation temperatures (transit time from the field to the laboratory was about two hours). Time courses of methane production showed no increases in methane production for samples incubated at 75 and 80 °C. Thus, the upper temperature limit for anaerobic processes involved in the conversion of algal-bacterial material to methane appears to be 70 to 75 °C. Therefore, it appears likely that limitations other than temperature must account for the lack of methanogenesis above about 60 °C in these algal-bacterial mats (Figure 1).

Correlation of Primary Productivity and Methanogenesis

Experiments to determine if there was a correlation between primary productivity and methane production showed that primary production was sharply limited at temperatures above 50 to 55 °C.
FIGURE 3. EFFECT OF TEMPERATURE ON METHANOGENESIS IN ALGAL-
BACTERIAL MAT SAMPLES COLLECTED AT VARIOUS TEMPERATURES
(WIEGERT CHANNEL 1978) (METHANE PRODUCED AFTER 12 HOURS,
AVERAGE OF TRIPlicATES).
FIGURE 4. EFFECT OF TEMPERATURE ON METHANOGENESIS IN ALGAL-
BACTERIAL MAT SAMPLES COLLECTED AT VARIOUS TEMPERATURES
(OCTOPUS SPRING 1979) (METHANE PRODUCED AFTER 15 HOURS,
AVERAGE OF DUPLICATES).
In this experiment, measurements of methanogenesis and primary production were made on the same date in Octopus Spring. There was a reasonable correlation between primary productivity and methane production, both of which showed significant activity at only 50 and 55°C. It would appear then that methanogenesis above 60°C is not limited by temperature, but might be limited by the availability of methanogenic precursors, the amount of which is probably a direct function of the rate of formation of algal-bacterial organic matter.

Isolation and Characterization of Methanogenic Bacteria From Various Temperature Regions of the Algal-Bacterial Mat

Attempts to isolate a thermophilic methanogen in pure culture by dilution to extinction failed at first as it was impossible to separate methane-producing bacteria from a heterotrophic contaminant. However, the heterotrophic contaminant was readily isolated by dilution to extinction in BM (see Materials and Methods) supplemented with 0.2% trypticase and 0.2% yeast extract under a 20% CO₂/80% H₂ atmosphere (BM + TYE). When BM was supplemented with 0.1 ml of a turbid culture of the isolated heterotrophic bacterium (grown in BM + TYE; sterilized after growth by autoclaving and filtration through a 0.45 μm Millipore filter - BM + S), it was possible to obtain pure cultures of methanogenic bacteria at 50, 55, 60 and 65°C using Octopus Spring algal-bacterial mat materials as a source of inocula. It was later found that vitamin B₁₂ (1mg/ml) replaced the requirement for the
FIGURE 5. TEMPERATURE DISTRIBUTION OF PRIMARY PRODUCTION AND METHANOGENESIS IN OCTOPUS SPRING ALGAL-BACTERIAL MAT (METHANE PRODUCTION AFTER 9 HOURS, AVERAGE OF DUPLICATES) (PRIMARY PRODUCTION, 1 1/2 HOUR INCUBATION, AVERAGE OF 2 REPLICATES FOR BOTH LIGHT AND DARK CONDITIONS).
PRIMARY PRODUCTION

TEMPERATURE (C)

µ MOLES CH₄/CORE

µ MOLES CO₂ FIXED

TEMPERATURE (C)
growth factor supplied by the heterotrophic associate.

All methanogenic isolates were long, irregular, Gram positive, rod shaped bacteria which exhibited a blue-green autofluorescence. Hydrogen, but not formate, acetate or methanol served as an energy source for growth. The heterotrophic contaminant was a Gram negative rod that contained inclusion granules visible in Gram stains. The contaminant was an obligate anaerobe that would grow as well under a helium atmosphere as under a 20% CO₂/80% H₂ atmosphere.

All methanogenic isolates showed greatest growth and methane production at 65°C (Figure 6). Methane production and growth occurred when all isolates, except for the 50°C strain, were incubated at 70°C. No growth or methane production was observed at 75 or 80°C. These results correlate well with the observed environmental temperature relations.

H¹⁴CO₃⁻ as a Methane Precursor

As mentioned in the introduction, CO₂ and acetate appear to be the main precursors of methane in anaerobic environments. When NaH¹⁴CO₃ was added to algal-bacterial mat samples from Octopus Spring or Wiegert's Channel, rapid linear production of ¹⁴CH₄ ensued (Figure 7). It was possible to examine the relative importance of HCO₃⁻ as a precursor to methane since the specific activity of ¹⁴CH₄ produced from H¹⁴CO₃⁻ would be diluted by nonradioactive CH₄,
FIGURE 6. TEMPERATURE OPTIMUM FOR GROWTH OF AND METHANOGENESIS BY METHANE-PRODUCING BACTERIA ISOLATED FROM OCTOPUS SPRING (AVERAGE OF DUPLICATES MEASURED AT 72 HOURS).
FIGURE 7. CONVERSION OF NaH14CO$_3$ TO 14CH$_4$ IN HOT SPRING ALGAL-BACTERIAL MATS (AVERAGE OF TRIPlicATES).
n MOLES CH₄ FROM CO₂

HOURS AFTER SAMPLING

WIEGERT 60 C
OCTOPUS 55 C
produced from methane precursors, such as acetate, which are not converted to methane via HCO_3^-. The ratio $\text{sp act CH}_4/\text{sp act CO}_2$ (in equilibrium with HCO_3^-) indicates the fraction of methane derived from HCO_3^- (see Jeris and McCarty, 80). The specific activity ratio increased over the initial 6 to 8 hours after addition of $\text{NaH}^{14}\text{CO}_3$ to algal-bacterial mat samples (Figure 8). It is unlikely that this change in the specific activity ratio reflected a changing relative importance of methane production reactions as the phenomenon was related to the addition of radiolabel and not to time after sampling (data of Figure 8 are for addition of radioisotope 46 hours after sampling). Also, addition of H_2 or acetate to artificially enhance the importance of different methane production reactions did not significantly alter the specific activity ratio (Table I and see Discussion). In subsequent experiments, results used to indicate the relative importance of HCO_3^- in methanogenesis were recorded 3-5 hours following displacement of the gas headspace with helium (about 24 hours after sampling). In this way the specific activities of headspace $^{14}\text{CH}_4$ and headspace $^{14}\text{CO}_2$ (evolved from $\text{H}^{14}\text{CO}_3^-$ in solution during the interval in which $^{14}\text{CH}_4$ was produced) could be compared at a time substantially after changes in the specific activity ratio were no longer apparent (as will be mentioned in the Discussion section). As indicated in Table I, similar results were obtained at
FIGURE 8. CHANGE IN SPECIFIC ACTIVITY CH$_4$/SPECIFIC ACTIVITY CO$_2$
FOLLOWING ADDITION OF NaH14CO$_3$ (LABEL ADDED 46 HOURS
AFTER SAMPLING, AVERAGE OF DUPLICATES).
TABLE 1. EFFECT OF HYDROGEN AND ACETATE ON THE IMPORTANCE OF CO₂ AS A METHANE PRECURSOR (OCTOPUS SPRING 55 C).
<table>
<thead>
<tr>
<th>CONDITION<sup>a</sup></th>
<th>sp act CH<sub>4</sub>/sp act CO<sub>2</sub> AT HOUR AFTER SAMPLING:<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>0.692 0.941 0.728 0.788</td>
</tr>
<tr>
<td>HYDROGEN<sup>d</sup></td>
<td>0.902 1.171 0.861 0.897</td>
</tr>
<tr>
<td>ACETATE<sup>e</sup></td>
<td>0.836 1.004 0.857 0.834</td>
</tr>
</tbody>
</table>

^a Average of 4 replicates.

^b Specific activity CH₄ ÷ specific activity CO₂ x 100 = % CH₄ from CO₂.

^c Headspace flushed at 24 hours with 100% helium (5 minutes).

^d 0.1 ml 100% H₂.

^e 0.1 ml sterile anoxic Na acetate to achieve a final concentration of 1 mM (assuming a 2.5 ml sample).
earlier incubation times (6 hours) before the displacement of headspace gases. When data from different experiments were pooled, mean specific activity ratios of 0.804 (±0.099 standard deviation, n=10) for Octopus Spring (55 C) and 0.711 (±0.242 standard deviation, n=5) for Wiegert's Channel (60 C) indicated that 71.1-80.4% of the methane formed was by reduction of HCO$_3^-$. Similar results were noted at all temperatures in Octopus Spring (Table 2) and when samples collected at 50 C in Octopus Spring were incubated at elevated temperature (Table 3). The results indicated the predominance of HCO$_3^-$ as a methane precursor.

A parallel experiment to determine the ratio sp act CH$_4$/sp act CO$_2$ in pure cultures of isolated thermophilic methanogenic bacteria was performed (see Materials and Methods). This experiment was undertaken to determine if the specific activity ratio obtained with natural algal-bacterial mat material was similar to specific activity ratios obtained for pure cultures of the isolated methanogen grown only on H$_2$/CO$_2$, which would indicate error due to method or isotopic selection of 12C over 14C. Twenty-four hours after inoculation, the 50, 55, 60 and 65 C isolates showed specific activity ratios of 0.839, 0.807, 0.827 and 0.826, respectively. These specific activity ratio values were quite close to the values reported above for natural algal-bacterial mat material suggesting that nearly all methane
TABLE 2. TEMPERATURE DISTRIBUTION OF THE IMPORTANCE OF CO$_2$ AS A METHANE PRECURSOR IN OCTOPUS SPRING ALGAL-BACTERIAL MAT.
<table>
<thead>
<tr>
<th>TEMPERATUREa</th>
<th>sp act CH$_4$/sp act CO$_2$b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°C</td>
<td>0.81</td>
</tr>
<tr>
<td>50°C</td>
<td>0.87</td>
</tr>
<tr>
<td>55°C</td>
<td>0.88</td>
</tr>
<tr>
<td>60°C</td>
<td>0.90</td>
</tr>
</tbody>
</table>

a Average of 3 replicates; samples incubated at temperature sampled.

b Specific activity CH$_4$ ÷ specific activity CO$_2$ x 100 = % CH$_4$ from CO$_2$.

c Readings taken 3 hours after headspace flushed with 100% helium (5 minutes).
<p>| Temperature | Importance of CO₂ as a Methane Precursor | 5°C Octopus Spring Algal-Bacterial Mat Samples Incubated at Various Temperatures |</p>
<table>
<thead>
<tr>
<th>Incubation Temperature(^a)</th>
<th>[\text{sp act CH}_4/\text{sp act CO}_2] (^b, c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °C</td>
<td>0.684</td>
</tr>
<tr>
<td>55 °C</td>
<td>0.927</td>
</tr>
<tr>
<td>60 °C</td>
<td>0.951</td>
</tr>
<tr>
<td>65 °C</td>
<td>0.892</td>
</tr>
<tr>
<td>70 °C</td>
<td>1.227</td>
</tr>
</tbody>
</table>

\(^a\) Each temperature - average of 2 replicates.

\(^b\) Specific activity \(\text{CH}_4\) ÷ specific activity \(\text{CO}_2\) x 100 = % \(\text{CH}_4\) from \(\text{CO}_2\).

\(^c\) Readings taken at 5 hours after headspace flushed with 100% helium (5 minutes).
formed in the natural environment may have come from HCO_3^- reduction.

Metabolism of 2^{-14}C-Acetate

In Octopus Spring, initial experiments to determine if 2^{-14}C-acetate was an important precursor of methane showed that no radioactive methane arose from the addition of 0.2 μCi of 2^{-14}C-acetate to sample vials that were incubated two hours in the effluent channel. This amount of label was equivalent to adding about 4.5 nmoles acetate to each sample. In later experiments, done in both the Wiegert Channel and Octopus Spring addition of 1 μCi of 2^{-14}C-acetate (equals about 22.7 nmoles acetate) resulted in the production of small amounts of radioactive methane. In a short time course experiment (2 hours), most of the label was taken up by cells or was recovered in the filtrate (presumably as unmetabolized acetate, see Table 4). Except in one condition where 11.06% of the label was recovered as radioactive methane, all other conditions showed no more than about 1% of the recovered label appearing as $^{14}\text{CH}_4$. This experiment (Table 4) also indicated that there might have been some light stimulated uptake of 2^{-14}C-acetate. Vials that were left completely exposed to sunlight (light condition) had more label enter the cellular pool than those sample vials that were darkened by aluminum foil. In the Wiegert Channel (part B, Table 4) an extra condition at 55°C was tested in which vials were only taped lengthwise
TABLE 4. FATE OF 2^{-14}C-ACETATE IN HOT SPRING ALGAL-BACTERIAL MAT SAMPLES.
Condition

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>% OF RECOVERED ^{14}C IN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO$_2$</td>
</tr>
<tr>
<td>A. OCTOPUS SPRINGb</td>
<td></td>
</tr>
<tr>
<td>45 C</td>
<td>1.59</td>
</tr>
<tr>
<td>50 C</td>
<td>2.53</td>
</tr>
<tr>
<td>55 C LIGHT</td>
<td>1.32</td>
</tr>
<tr>
<td>55 C DARKc</td>
<td>0.58</td>
</tr>
<tr>
<td>60 C</td>
<td>2.07</td>
</tr>
<tr>
<td>65 C</td>
<td>5.20</td>
</tr>
<tr>
<td>B. WIEGERT CHANNELd</td>
<td></td>
</tr>
<tr>
<td>45 C</td>
<td>0.98</td>
</tr>
<tr>
<td>50 C</td>
<td>0.82</td>
</tr>
<tr>
<td>55 C</td>
<td>2.71</td>
</tr>
<tr>
<td>55 C LIGHT</td>
<td>1.01</td>
</tr>
<tr>
<td>55 C DARKc</td>
<td>4.15</td>
</tr>
<tr>
<td>60 C</td>
<td>1.09</td>
</tr>
</tbody>
</table>

a Cells and filtrate separated by means of a 0.45 μm Millipore filter.

b Incubation time - 2 hours; Octopus Spring average of 2 replicates.

c Dark conditions created by wrapping vials containing samples in aluminum foil.

d Wiegert Channel - average of 4 replicates, except only 2 replicates for light and dark conditions at 55 C, incubation time 2 hours.
to secure the stopper. A large amount of recovered label was still taken up by the cellular fraction (85%). This lengthwise taping (a precaution adopted in every experiment designed to prevent stoppers from being extruded due to increased pressure) apparently did not exclude light from the samples. Very little label appeared as 14CO$_2$ in any of these experiments.

Even though acetate did not seem to be a very important precursor of methane, experiments were undertaken to see if 2-14C-acetate would appear as radioactive methane when 1 μCi of 2-14C-acetate was added after sampling and ongoing methanogenesis (Table 5). In this experiment, label was added 48 hours after the mat had been sampled and the samples were assayed 71 hours after label addition. Assays of the headspace gases of these vials before label addition showed that methane production was occurring. Except for one condition (Wiegert Channel 55 C), most of the recovered label (90-97%) remained in the filtrate and very little label was recovered in the cellular fraction (2-8%). In the 55 C sample from the Wiegert Channel, about 39% of the recovered label appeared as methane, but most of the recovered label still remained in the filtrate (53.5%). In all other conditions radioactive methane accounted for a relatively minor percentage of recovered radioactivity (0.1-5.4%).
TABLE 5. FATE OF 2^{-14}C-ACETATE ADDED AFTER ONGOING METHANOGENESIS IN HOT SPRING ALGAL-BACTERIAL MAT SAMPLES.
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>% OF RECOVERED 14C IN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO$_2$</td>
</tr>
<tr>
<td>A. OCTOPUS SPRING</td>
<td></td>
</tr>
<tr>
<td>50 C</td>
<td>0.39</td>
</tr>
<tr>
<td>55 C</td>
<td>0.29</td>
</tr>
<tr>
<td>60 C</td>
<td>0.36</td>
</tr>
<tr>
<td>B. WIEGERT CHANNEL</td>
<td></td>
</tr>
<tr>
<td>50 C</td>
<td>0.07</td>
</tr>
<tr>
<td>55 C</td>
<td>1.24</td>
</tr>
<tr>
<td>60 C</td>
<td>0.18</td>
</tr>
</tbody>
</table>

a Average of 2 replicates, label added 48 hours after sampling; samples assayed 71 hours after label addition.

b Cells and filtrate separated by means of a 0.45 µm Millipore filter.
Fate of 3H-Acetate in Algal-Bacterial Mat Samples

An experiment was performed with tritiated acetate to determine if the flow of label was similar to that observed in earlier experiments where much higher levels of acetate were added. In this experiment, 2.0 µCi of 3H-acetate was added to each sample vial. This was equivalent to adding about 1 nmole acetate to each vial. Tritiated methane was not detected (Table 6) in either short term incubation (3 hours in the effluent channel) or long term incubation (4 days). By means of a parallel experiment (see Materials and Methods) where the same amount of tritiated acetate was added to a sample of cattle waste digestor material, it was determined that no more than 0.29% of the added label could have appeared as methane or it would have been detected. Most of the recovered label (97-98%) remained in the filtrate, and the remainder (1-2%) was recovered in the cellular fraction (Table 6).

Autoradiograms of Mat Material Labelled With 2-14C-Acetate

Autoradiograms prepared from 2-14C-acetate labelled material obtained from Octopus Spring are shown in Figure 9. In all cases where labelling experiments were performed with 2-14C-acetate, the label was taken up by large, very long, filamentous microorganisms. Similar results were noted for 2-14C-acetate labeled material obtained from the Wiegert Channel. Additionally, the same labeling patterns
TABLE 6. FATE OF 3H-ACETATE IN OCTOPUS SPRING ALGAL-BACTERIAL MAT SAMPLES (50 C).
<table>
<thead>
<tr>
<th>INCUBATION TIME<sup>a</sup></th>
<th>% OF RECOVERED <sup>3</sup>H IN:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH<sub>4</sub></td>
<td>CELLS<sup>b</sup></td>
<td>FILTRATE</td>
</tr>
<tr>
<td>3 HOURS</td>
<td>ND<sup>c</sup></td>
<td>1.23</td>
<td>98.75</td>
</tr>
<tr>
<td>4 DAYS</td>
<td>ND</td>
<td>2.22</td>
<td>97.75</td>
</tr>
</tbody>
</table>

^a Average of 2 replicates.

^b Cells and filtrate separated by means of a 0.45 μm millipore filter.

^c Not detectable; it was determined that no more than 0.29% of the added label could be C³H₄ or it would have been detected.
FIGURE 9. AUTORADIOGRAMS OF 2^{-14C}-ACETATE LABELLED CELLS FROM THE OCTOPUS SPRING ALGAL-BACTERIAL MAT (55 °C) (2 HOUR LABELLING EXPERIMENT, BARS INDICATE 15 μm).
were seen in both springs in the temperature range 45-60 °C.
DISCUSSION

Methane production in algal-bacterial mats has been reported only recently (157, 178). Specifically, Ward (157) reported that methanogenesis in the Octopus Spring algal-bacterial mat was greatest in the 45 C temperature regime of the effluent channel; but occurred over a temperature range of 30 to 68 C. In this study methanogenesis was found to be greatest at about 50 C in Octopus Spring and maximal at about 55 C in the artificially constructed Wiegert Channel. Twin Butte Vista Spring also showed an optimum for methanogenesis at 55 C, while two other springs, Mushroom Spring and West Thumb A showed maximum methanogenesis at 60 C. While no simple explanation of the differences found for the higher temperature optima of methanogenesis reported in this study can be made at this time, the differences observed are probably due to numerous factors which might vary from year to year. It is possible that the hydrology (flow rate, flow dynamics) or water chemistry of the environment might have changed and thus influenced terminal anaerobic decomposition, or that changing environmental parameters influenced microbial interactions which subsequently affected anaerobic decomposition. Regardless of the cause or causes which might have an influence on where methanogenesis is greatest, it is important to emphasize that methanogenesis in all temperature regimes of the mat (except 65-70 C) appeared to be temperature limited. This was suggested by the fact that methanogenesis
was increased in all samples from different temperature regimes (except 65°C) upon incubation at higher temperatures. Temperature limitations on methanogenesis were also observed by Zeikus and Winfrey (183). They found maximal methanogenesis at about 10°C higher than the highest naturally-occurring temperature of Lake Mendota sediments. Inability of any of the microorganisms involved in anaerobic degradation to methane to function at elevated temperatures was not the basis for limited methanogenesis at higher mat temperatures (i.e. 60-70°C) as evidenced by the fact that methanogenesis was increased during incubation for a period (several days) sufficient for depletion of immediate methane precursors. A single "temperature strain" of a methanogenic bacterium may inhabit all temperatures regimes of the Octopus Spring and Wiegert Channel mats as indicated by the similar response to temperature exhibited by samples from various temperature regions of the mat. This was confirmed by the isolation of methane-producing bacteria from different temperature regimes of the algal-bacterial mat, all of which demonstrated maximum growth and methanogenesis at 65°C. This finding appears contrary to the previous reports of Peary and Cactenholz (118), Bauld and Brock (9) and Brock and Brock (24) which indicated that the photosynthetic microorganisms responsible for mat formation (9,118) and heterotrophic bacteria (24) present in the mat were optimally adapted to the environmental tempera-
ture at which they were present in the mat. Since the methanogenic bacteria in this system prefer to grow at 65 °C, some factor other than temperature must account for the fact that maximum methanogenesis occurs below the temperature at which the bacteria would prefer to live.

Experiments which were performed to determine if a correlation exists between primary production and maximum methanogenesis indicated that production and decomposition (methanogenesis) may be tightly linked (Figure 5). Doemel and Brock (57) reported that growth of the mat appears to be in balance with decomposition as no net growth of the mat could be detected. The idea that decomposition is tightly linked to the rate of primary production leads to the conclusion that maximum methanogenesis might be restricted to temperatures where primary productivity is greatest. Brock and coworkers (18,23) reported maximum primary production over a wide range of temperatures (48.3-58.5); whereas in this study, light stimulated primary productivity was maximal at 50 °C, and significant light stimulated primary production was restricted to the 50-55 °C temperature range (Figure 5). Brock reported a wider temperature range of maximal primary production than that observed in this study. The discrepancy may be resolved by the fact that the methodological approach in this study took into account the importance of the specific activity of CO₂.
The methane-producing bacteria which were isolated all appeared to be similar to *Methanobacterium thermoautotrophicum* as described by Zeikus and Wolfe (184). Zeikus (178) reported isolating a thermophilic methanogen similar to *M. thermoautotrophicum* from the Octopus Spring algal-bacterial mat. However, as mentioned elsewhere (see Results), all thermophilic methanogenic bacteria isolated in this study appeared to require vitamin B₁₂ as a growth factor, whereas the isolate described by Zeikus and Wolfe had no requirement for vitamins. It is therefore possible that the thermophilic methanogen isolated in this study is a new or different strain of *M. thermoautotrophicum*.

It has not yet been determined if the heterotrophic contaminant, which was isolated at 55°C, has a specific temperature optimum, or if the contaminant is specifically adapted to the temperature at which it can be found in the mat. Unpublished results of this laboratory (Eric Beck - personal communication) indicate that the contaminant will grow in the temperature range of 45-70°C. In the future, isolates of this heterotrophic contaminant should be obtained from different temperature regimes of the algal-bacterial mat to determine if temperature strains of this microorganism exist. This heterotrophic contaminant was a Gram negative, obligate anaerobe. Studies will continue to determine if this contaminant constitutes a novel genera of bacterium as it appears to be unrelated to previously
described bacteria isolated from this algal-bacterial mat environment (26,79,181).

Methanogenic bacteria have been shown to use H_2, acetate, formate, methanol, carbon monoxide, and various methyl amines as energy sources (2). However, in natural environments, the predominant methane precursors are thought to be H_2/CO_2 and acetate (98). Since CO_2 reduction to methane (via H_2 oxidation) and acetate conversion to methane (methyl carbon reduced directly and not via HCO_3^-) occur by different mechanisms, $\text{NaH}^{14}\text{CO}_3$, 2-14C-acetate and 3H-acetate were used to selectively study the contribution of either methane production reaction. When 2-14C-acetate was used to study the contribution of acetate in methanogenesis, very little $^{14}\text{CH}_4$ was formed at any temperature in Octopus Spring or Wiegert Channel algal-bacterial mats. Even when 2-14C-acetate was added after methanogenesis was ongoing (Table 5), little $^{14}\text{CH}_4$ was detected. These results tend to indicate the lack of importance of acetate in methanogenesis in this environment. Small amounts of $^{14}\text{CO}_2$ were produced from 2-14C-acetate (Table 4 and 5). Anaerobic acetate oxidation by a sulfate-reducing bacterium was demonstrated by Widdel and Pfennig (165). Sulfate reduction has been previously reported in the Octopus Spring algal-bacterial mat (56), and rapid reduction of $^{35}\text{SO}_4^-$ to H_2^{35}S also occurred in Octopus Spring and Wiegert's Channel.
personal communication). The $^{14}\text{CH}_4$ detected in 2^{-14}C-acetate labelling experiments may have come from reduction of $^{14}\text{CO}_2$ rather than by direct reduction of the methyl carbon of acetate. This possibility is especially likely in the experiment where 2^{-14}C-acetate was added 48 hours after sampling and samples were not assayed until 71 hours after label addition.

In short term labelling experiments (Table 4) with 2^{-14}C-acetate, it was noted that ^{14}C was rapidly incorporated into cellular material. This phenomenon was observed at all temperatures in both Octopus Spring and Wiegert's Channel. The incorporation of 2^{-14}C-acetate into cellular carbon was decreased by dark incubation (and by addition of label after two days of incubation in the dark, see Table 5) which suggests that phototrophic microorganisms may be involved in acetate incorporation. Autoradiograms of 2^{-14}C-acetate labelled algal-bacterial mat material from Octopus Spring and Wiegert's Channel were prepared so that incorporated ^{14}C could be related to the type of cell involved in acetate incorporation. Representative results from Octopus Spring (55 C) (Figure 9) clearly indicated that very long filamentous bacteria incorporated most of the ^{14}C into cellular material. It is reasonable to guess that acetate was incorporated by the phototrophic bacterium \textit{Cloroflexus aurantiacus} because i) this organism is common to both of the algal-bacterial
mats sampled, ii) results indicated the involvement of a phototrophic microorganism and iii) the ability of *Chloroflexus aurantiacus* to grow photoheterotrophically using acetate as a carbon source was recently shown (133). Pierson (121) and Bauld and Brock (9) were apparently led to the same conclusion when these workers also noticed incorporation of radiolabelled acetate into *Chloroflexus*-like filaments in hot spring algal-bacterial mats. Thus, it appears that in the algal-bacterial mat environment acetate is not a significant methane precursor. The proximity of active photoheterotrophic microorganisms and anaerobic processes may lead to acetate consumption by photoheterotrophic bacteria rather than by methanogenic bacteria. It has been suggested that competition for acetate between photoheterotrophic bacteria and terminal anaerobic microorganisms also occurs in a high sulfate hot spring algal-bacterial mat where sulfate-reducing bacteria are more active than methanogenic bacteria (160). A similar situation exists in the rumen and gastro-intestinal fermentations where methane is produced mainly from CO₂ because the host animal absorbs acetate for its energy metabolism (72,98).

It was considered a possibility that an increase in the acetate pool upon addition of 2-¹⁴C-acetate to samples (to approximately 11.5 μm) might alter the flow of acetate away from indigenous reactions (such as conversion to methane, which might have a low Kₘ and
and V_{max} for acetate uptake), toward a reaction unimportant at low acetate concentration (such as uptake by photoheterotrophic cells whose competitiveness for acetate might be enhanced at artificially high acetate pool levels, i.e. high K_m and V_{max}). By using 3H-acetate it was possible to study acetate flow at a lower acetate concentration (approximately 0.5 μM). Results (Table 6) indicated that acetate was less rapidly incorporated at the lower acetate concentration. This result might reflect the concentration dependence for acetate incorporation. No 3H$_4$ was detected so it appears that acetate conversion to methane was not a reaction favored by low acetate concentrations.

$\text{NaH}^{14}\text{CO}_3$ labelling experiments gave results consistent with the lack of importance of acetate as a major methane precursor. When data from different experiments done in the field were pooled, mean specific activity ratios of 0.804 (±0.099 standard deviation, n=10) for Octopus Spring (55 C) and 0.711 (0.242 standard deviation, n=5) for Wiegert's Channel (60 C) indicated that 71.1 to 80.4% of the methane formed was by reduction of HCO_3^-. Similar results were noted at all temperatures in Octopus Spring (Table 2) and when samples collected at 50 C in Octopus Spring were incubated at elevated temperature (Table 3). In view of the altered fate of acetate in this environment, these results, which indicate the predominance of CO_2
as a methane precursor, are not surprising.

As mentioned in the Results section, it was noticed that the specific activity ratio increased over the initial 6-8 hours after the addition of NaH\textsubscript{14}CO\textsubscript{3} to algal-bacterial mat samples (Figure 8). This change in the specific activity ratio probably was not a reflection of a changing relative importance of methane production reactions as i) the phenomenon was related to the addition of radiolabel and was not related to time after sampling and ii) addition of H\textsubscript{2} or acetate did not significantly alter the specific activity ratio (Table 1). The addition of these methane precursors markedly changed the relative importance of methanogenic reactions in lake sediments (170) and in a dairy cow manure digestor (unpublished results of this laboratory). The lack of a lowered specific activity ratio following acetate addition was further evidence that the conversion of acetate to methane was not ongoing in algal-bacterial mat samples. It was assumed that the change in the specific activity ratio was an artifact related to the dispersal of the added NaH\textsubscript{14}CO\textsubscript{3} to methanogenic bacteria residing within the compact, gelatinous mat sample which was not easily dispersed. Therefore, results used to indicate the relative importance of HCO\textsubscript{3}- in methanogenesis were recorded 3-5 hours following displacement of the gas headspace with helium (about 24 hours after sampling). In this way, the specific activities
of headspace 14CH$_4$ and headspace 14CO$_2$ (evolved from H14CO$_3^-$ in solution during the interval in which 14CH$_4$ was produced) could be compared at a time substantially after mixing problems were no longer apparent.

Acetate appears to be a totally unimportant methane precursor in these algal-bacterial mats; thus, one might wonder why a specific activity ratio (sp act CH$_4$/sp act CO$_2$) of 1.0 (which indicates 100% of the methane formed is derived from CO$_2$ reduction) was not obtained. First, it is possible that other methane precursors such as methylamines (67,116,162,188) contributed to methane formation. Another possibility examined by Zinder and Brock (186) is that methyl mercaptan may have contributed slightly to the formation of methane. If these methyl compounds were precursors of methane in the algal-bacterial mats studied, one would expect to see a specific activity ratio lower than unity (1.0). Methane-producing bacteria are also known to carry out one of the greatest biological carbon isotope discriminations known (98). A preference of 12C over 13C of 3.1-6.1% has been reported during HCO$_3^-$ reduction to CH$_4$ by M. thermoauto-trophicum (62,63). As the mass difference between 12C and 14C is twice the mass difference between 12C and 13C, the discrimination between 12C and 14C should be twice as great as between 12C and 13C (83). Thus, up to 12.2% of the specific activity dilution between
and H^{14}C_3 could be explained by a preference for the lighter nonradioactive 12C. In an experiment to determine the specific activity ratio in pure cultures of the isolated methanogenic bacteria (see Results) the highest sp act CH$_4$/sp act CO$_2$ found was 0.839 indicating either i) the error in the four determinations needed to calculate the specific activity ratio or ii) that discrimination between 12C and 14C had diluted the specific activity of CH$_4$ by about 16%. This value is sufficient to correct specific activity ratios determined in field work to near 1.0, indicating that HCO$_3^-$ may be the sole source of methane in the anaerobic degradation of hot spring algal-bacterial mats.

Future experiments in these algal-bacterial mat environments should be directed toward determining whether there are other precursors of methane. Other experiments might address the problem of determining those materials which are relatively easily degraded and what step or steps in anaerobic degradation limit the production of methane. These environments provide a good opportunity for observing natural thermal degradative processes and could perhaps provide clues which might be used to make anaerobic conversion of waste matter to useful products more efficient. Since biological processes are usually more rapid at higher temperatures, these algal-bacterial mats might be good models in which to study the biochemical basis of
compounds which are highly resistant to decomposition. Finally, further efforts should be made to isolate novel microorganisms from these environments. These problems and other questions should be addressed in future research.
LITERATURE CITED

Symposium on microbial production and utilization of gases (H₂, CH₄, CO), E. Goltze KG, Gottingen.

142. Sykes, R.M. and E.J. Kirsch. 1972. Accumulation of methano-
egenic substrates in CCl₄ inhibited anaerobic sewage sludge digester cultures. Water Res. 6:41-55.

Methanogenesis in low sulfate hot spring algal-bacterial mats