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Abstract:

Scalar diffraction theory has been shown to produce accurate results in both the far-field (Fraunhofer)
and near-field (Fresnel) regions.7,8,11. The derivation of the theory leads to three possible results of
what is known as the obliquity factor. Light from a laser was allowed to shine through a small aperture
(circular hole). By investigating the appropriate region of the resulting patterns, it was hoped that the
proper obliquity factor could be discerned. Through this study, experimental results have indicated that
when the aperture becomes small enough, scalar diffraction theory fails to accurately predict the
location of the Fresnel patterns occurring in the (very) near-field region. Rather than verifying the
correct obliquity factor, this thesis provides an indication of the region where scalar diffraction theory
is no longer valid.
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ABSTRACT

Scalar diffraction theory has been shown to produce accurate results in both the
far-field (Fraunhofer) and near-field (Fresnel) regions.”®"' The derivation of the theory
leads to three possible results of what is known as the obliquity factor. Light from a
laser was allowed to shine through a small aperture (circular hole). By investigating the
appropriate region of the resulting patterns, it was hoped that the proper obliquity factor
could be discerned. Through this study, experimental results have indicated that when .
the aperture becomes small enough, scalar diffraction theory fails to accurately predict
the location of the Fresnel pattems occurring in the (very) near-field region. Rather than
verifying the correct obliquity factor, this thesis provides an indication of the region
where scalar diffraction theory is no longer valid.




CHAPTER 1
INTRODUCTION

The propagation of an electromagnetic wave past an opaque body casts an
intricate shadow made up of bright and.dark regions quite unlike mythﬁg one might
expect from the tenets of éeometrical optics.l This phenomenbn of diffraction
contradicted the extremely popular belief that light propagated as a ray in a single
direction. -The first docurhentatfion of diffraction was presented by Grixﬁaldi_, in a book
published two years after his death (1663).">* Over the next 100 years, substantial
evidence was found §upp9rti¥1g Grimaldi’s discoveries, however no regl_e%xplanation of
the observed phenomeﬂa was advanced.* Huygens, the firét proﬁonent of the wave
theory, seems to have been unaware of Grimaldi’s findings, as he would have relied on
them to support his ideas.> It was not u.ritil 1818, when Fresnel apflied both Huygens’
construction for _propagating a wave and the principle of interference to arrive at a
possible explanation for diffraction.? This combination was given a firm mathematical
basis by Kirchhoff in 1882, and ever since, the subject has been investigated by many

writers."™!

The phenomenon of diffraction, and the mathematics which support it, has been
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tested extensively over the past century.”*!" As with most practical problems, though,
typical solutions still involve some assumptions and approximations. The resulting
mathematics depends solely on what approach one takes to solve the problem and the
validity of the assumptions. Kirchhoff’s classical theory has been shown to work quite
well in describing the diffraction field when relative dimeqsions of the experiment are
much larger than the incident wavelength.”* However, the theory is often criticized, as
the solutions to his theory do not recover the assumed boundary conditions at the
diffracting aperture.’ Since Kirchhoff’s initial formulation in 1882, there have been two

other formulations for describing diffraction theory which do not encounter mathematical

difficulties. These are the formulations by Rayleigh and Sommerfeld, involving slight

alterations from Kirchho.ff’s_ theory. For a majority of the diffraction problems
encountered, the Kirchhoff formulation seems to be appropriate, as the mathematical
inconsistencies do not contribute to the final solution.>™®

Chapter‘ 2 gives a’ summary of the mathematical derivation which Kirchhoff
presented, and the subsequent additions given by Rayleigh and Sommerfeld. While the
phase relationships of the propagating wave remain the same in all of the derivations,
the obliquity factors differ. Recently, Kraus™'’ has studied the differences in the
obliquity factors in order to test the validity of each derivation. This experiment was'
conceived in an effort to determine which factor is indeed correct. The resulting area
of investigation provided interesting results.

Chapter 3 describes the process of the experimental studies. As is often the case,

after the initial‘conceptualization, many refinements had to be made in order to obtain
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the required data. Throughout the process of development, other related areas of optics
were studied. These studies are presented as separate topics and can be found in the
appendices.

Chapter 4 presents the results of the experiment. The results go beyond the

' initiai goal of the project. Aside from testing the diffraction integral, an interesting area

of diffraction theory was exposed. The experiment was found to probe the region where
scalar diffraction theory itself is seemingly no longer valid. This occurs in areas close
to the diffracting aperture. In this region, vector diffraction theory is probably needed.
Several references dppear to indicate that scalar theory will start to fail in the region
being probed; however, no definite célculations have been done. . The results presented

here may give a point of reference as to where scalar diffraction theory will begin to fail.




CHAPTER 2
THEORY

After the discovery of diffraction, the evolution of a quantitative theory did not
start until Huygens’ principle was combined with wave interference. _Christian Huygens
hypothesized that as a wave propagates, each point along the wavefront acts as an
emitter of secondary sourcelets.® The sum of these secondary sourcelets represents the -
motion of the wave. Figure 1 shows a typical Huygens’ construction. By taking relativ'e
phases into account, Fresnel was able to acc;urately predict light distril;utions using this
wave construction method.

The problem of diffraction is that of light impinging on a screen with a specified
aperture. On the "shadow" _sidg of the screen, geometrical optics would predict.g cone
of light, governed by the properties of the light rays ‘which enter the aperture. However,
for a circular aperture, physical oBservations yield- a pattern of concentric rings. .
Kirchhoff’s derivation in 1882 was the first true mathematical explanation for these
rings. The derivation can be found in almost any basic optics book."** Appendix A
revie;vs the complete derivation of scalar diffraction theory, while the results are simply

presented in this chapter. Figure 2 shows the geometry to be used for the problem.
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in pathlength is an even number of half-wavelengths, all of the phases across the
wavefront cancel out ‘and there is a dark spot along the axis. One can obtain a black
spot by shining light through a hole! When the net difference in pathlength is an odd
number of half-wavelengths, there will be a bright spot. This effecf has been confirmed
in several experiments."**!"" When one of these distinctive patterns occurs, it is known
as a Fresnel pattern. The patterns are numbered according to the integer number m in
Figure 3. Utilizing the geometry of the problem one arrives at an expression for the

location of the Fresnel patterns as a function of the experiment’s geometry;

_Am?l4-a* - : . ‘ (2:4)

This is known as the Fresnel equation.

Chapter 3 describes the experiment which was done in an effort to test equations
(2:1) and (2:3). Following Kraus’ predictions, the appropriate geometry (aperture radius
a, beam radius p, and observation point r,) was investigated to find out which obliquity
" factor in equation (2:1) was indeed correct. Along the way, equation (2:3) was utilized
as the first test that scalar diffraction theory was indeed working. Comparing the
complicated intensi& patterns produced with theory (equation (2:1)) was done at Idaho-
National Engineering Laboratory. The comparison of the position data was much less
involved in term§ of computer time, so equation (2:3) served as the initial requirement

for testing the theory.




CHAPTER 3
EXPERIMENT

In typical experiments, one usually begihs with an initial concept of how the
experiment should work, and thg:n the apparatus is refined until the required precision
is attained. This experiment progressed in precisely tﬁat fashion. ‘Once it was realized
what sort of precision was needed, the proper instrumentation was procured aﬁd the data
was taken. Several additional studies were done in an effort to understand what factors
affected the precision of the experﬁnent. These studies included; Spherical Aberrations
(Appendices B and C) and Image Formation (Appendices D and E). As the studies
were completed, the eiperiment was altered to accommodate these new considerations.

The basic diffraction experiment is pictured in Figure 4. The nature of the
Fresnel diffréction required a coherent light source. A 5 mW helium-neon laser was
employed for this purpose. The beam was filtered to remove the unWmted spatial
"hoise”". The beam, prior to the spatial filter is scattered many times from dust particles |
inside of the laser cavity and in the air itsé:lf. These dust particles cause a distinct non-
uniformity to occur on the beam. The spatial filter focuses the béam through a small

pinhole. The event of focusing separates the desired beam from the unwanted noise.






























































































































































































































































































