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Abstract:

In blowing and drifting snow, two distinct flow regimes are found. At the surface is the saltation layer
which, although very thin, is responsible for the majority of mass transport. Above this layer, the flow
can be described as a turbulent, two-phase mixture of air and snow particles. These two layers are
highly coupled, and therefore an accurate description of the general snow transport process requires a
description of processes occurring within both of these layers.

A physically based computational model of the salient features of blowing and drifting snow in
two-dimensional terrain is developed. The model has two distinct parts, one describing the turbulent
flow mixture of air and snow, and a second describing the mass transport process and resulting snow
accumulation patterns related to the saltation layer. The turbulent flow model consists of a general
solution of the time averaged, two-dimensional Navier-Stokes equations, where the k-epsilon
turbulence model is used to close the system of equations. The effect of particulates on the turbulent
flow field is accounted for by computing the particle concentration field using a convection-diffusion
equation and a subsequent modification of the k-epsilon model. The turbulent flow model is coupled to
a saltation model and the time evolution of drift development and wind flow fields are computed.

The model suggests that, for the case of precipitating snow, snow particles can be considered a passive
additive to the turbulent flow field. Modeled snow accumulation profiles are very similar to published
field and experimental data.
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ABSTRACT

In blowing and drifting snow, two distinct flow
regimes are found. At the surface is the saltation
layer which, although very thin, is responsible for the
majority of mass transport. Above this layer, the flow
can be described as a turbulent, two-phase mixture of
air and snow particles. These two layers are highly
coupled, and therefore an accurate description of the
general snow transport process requires a description of
processes occurring within both of these layers.

A physically based computational model of the
salient features of blowing and drifting snow in two-
dimensional terrain is developed. The model has two
distinct parts, one describing the turbulent flow
mixture of air and snow, and a .second describing the
mass ‘transport process and resulting snow accumulation
patterns related to the saltation layer. The turbulent
flow model consists of a general solution of the time
averaged, two-dimensional Navier-sStokes equations, where
the k-epsilon turbulence model is used to close the
system of equations. The effect of particulates on the
turbulent flow field is accounted for by computing the
particle concentration field using a convection-
diffusion equation and a subsequent modification of the
k-epsilon model. The turbulent flow model is coupled to
a saltation model and the time evolution of drift
development and wind flow fields are computed.

The model suggests that, for the case of
precipitating snow, snow particles can be considered a
passive additive to the turbulent flow field. Modeled
snow accumulation profiles are very similar to published
field and experimental data.




CHAPTER 1
INTRODUCTION

"This document describes a study of the physical
processes which govern blowing and drifting snow and the
snow accumulation and distfibution patterns which result
from these processes. The study combines techniques
from the fields of turbulence modeling, suspended and
bed load transport, énd computational fluid mechanics to
describe the bhenomenon of wind transpérted snow.

Outside our doors in the winter environmept,
whether'it be in the city, the country, or tﬁe.
mountains; sﬁow depth is found to be highly variable as'
one moves from one place to another. This variability
can be caused by several factors, including (1)
variatidns in air température and radiation balance, (2)
local orographic influences on precipitation and storm'
movément,.(3) the‘topographic variability of the ground
surface, and- (4) snow‘transport due to avalanéhes;
Howevef,_when’viewed on a small local scale (say 5 to
500 meters) these factors are generally considered

secondary processes. The dominant process which
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produces spatially vapying snow depths is the
redistribution of snow by wind; this generally occurs
during or following brecipitation or storm events.

' The spatial distribution of seasonal snow is a
significant feature.of both middle and upper latitude
environments. Its influence on both globél and local
scales is dramatic. On the global scale, the
_ interaction between heat gain at low latitudes, and heat
loss at high latitudes, is the primary mechanism driving
global atmospheric circulation and weather patterns.

. Since snow cOvered surfaces have a much higher albedo
(surface reflectivity) than vegetated surfaces, the
seasonal snow distribution in high latitudes strongly
influences the earth's radiation balance (McFadden énd
Ragotzkie, 1967). As a consequence, Snow aisfribution
is a critical parameter affecting global éirculation and
climate.

on the local scale, the seasonal snow distribution
is an important hydroiogical parameter affecting
farmland irrigation, hydroelectric power, and water
supplies for business and domestic use. The snowcover
is also utilized as a recreation ﬁedium, providing sport
for skiers, snowmébilers, and other winter outdoor
enthusiasts. ‘Thé hazardous aspect of snow éffécts

transportation by reducing visibility, forming drifts on
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roadways, and reducing traction. In addition, hazards
such as snow avalanches and snowmelt flooding may pose a
threat to both property and life.

" In Arctic Alaska, seasonal snow ié a dominant
feature of the landscape for nine months of each year.
Several problems have been identified which relate
directly to the spatial variation of this snowcover. 1In
regions lacking sufficient fresh water supply due to
lack of runoff or suitable reservoirs, for instance,
there is an interest in accumulating snOW‘intovlarge
drifts to serve as summer water sources (Slaughter et
al., 1975). in addition, the petroleum industry spends
millions of dollars annually, remoQing snow from .
materiel sites, drill pads, and roéds at their arctic
drilling locatipns? Furthermore, Federal regulations
designed to protect underlying arctic vegetation
stipulate, based on snowcover amount, when travel across
the arctic tundra is permissible. Only through-
knowledge of snow distribution patterns can this
. determinatiqh be made.accurately and thus fulfill its
intended obﬂective.

In Antarctica, a continent where more than 95
perceht of ‘the. land area is coveréd by a blanket of snow
and ice, blowing and drifting snow has been a

significant factor affecting all research and
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exploration conducted there. The United States
Antarctic Research Program bases McMurdo and South Pole,
for instance, continually have to deal with drifting |
snow. The continent is a desert with low annual snow
accumulation, but since little of it melts, the subpiy
of snow for drifting is literally limitless. At McMurdo
Station, the buildings at‘the near-by air field are
virtuaily buried by dfifting snOW'dﬁring‘the long winter
" months. éfews spend much of fhe austral summer diggiﬁg‘
these buildings out and moving the snow far énough away
so it won't induce further drifting.\ At South Poie‘
Station, Qhere the air temperatﬁre never rises above
freezing, snow removal is a never ending task. In spite
of the crews' efforts, the station is slowly being
drifted under. .

Snowcover influences not only the acti§ities of
people, but also flora and fauna aré affected by its
distribution. Vegetation growth is influenced by spring
land summer snowmelt from drifts formed the previous
winter. In addition, winter whéaf crops in the northern
latitudes require the insulation provided by snowcover
to withstand low winter temperatures. The depth of snow
dictates where livestock, deer; elk; and moose can feed.
Also, microtine rodents living beneath the snow depend

on it for protection from predators and from extremes of
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wind énditémperature in_the énvironment.ab0ve.

Déspite the significant‘rolg that sndw accumulation
pattefns play in our lives and the world around ﬁs,
severe deficiencies exist in our ability to describe and
- .model the relevant processes and resulting snow
distributioﬁ. Here I attempt to fili some of  these
deficiencies as well as providé a contributipn to
disciplineé interested in describing.turbulent-sediment
‘ transport. |

. This research project studies the blowiﬁg and
drifting snow problem and develoés a phyéiéally based
model‘describing,its significant features. While the
cﬁrreﬂt knowledge base is concerned largely with one-
diménsional flows, a unique feature of this study is a
focus on two-dimensional flows.- The current state of
understanding and technology clearly indicates thé need
and capability té make the next step forward and
describe this more complex flow cénfiguration._ Recent
advances in modeling turbﬁlent two-phase flows providg‘
an exciting opportunity to use this information to
dévelop a coﬁputational model of snow transport
processes.

In blowing and drifting snow, two distinct flow
regimes are'found;. At the'surface is the saltation

layer. This layer is approximately 5 cm thick and is




6
..qharactefized by particles,repeatedly?impacting the
surface, dislodging gdditional particles ipto the air to
be brought back to the surface under the influence of
'gravity. Above this layer, the flow can be described as
a turbulent, two-phase mixture of air and snow
particles. These two layers are'highly couﬁled; and
therefore an accurate description of the génera; snow
transport process relies heavily on the descripﬁions of
motions contained within boﬁh of these léyers..

‘ A model is developed which descfibes the turbulent
air and snow mixture flowing above the saltatién layer.
* A saltation model is then adopted and the two models are
coupled.through their common boundary and used to
describe-the fundamental features of the blowing and -
drifting snow problem. Features to be described include
‘(1) the flow field of the turbulent air-snow mixture,
(2) the snow.concéntration field within the air-snow
mixture,’and (3) the resulting snow accumglation
profiles. Published experimental results are used to

evaluate the computational model.




CHAPTER 2

1

PREVIQUS WORK ON BLOWING AND DRIFTING SNow

Past studies of blowing and driftiﬁd snow can -
roughly be broken into twé general categories: those
studying the physical characteristics of the process,
and those modeling the process and effects.

Investigations of the physical characteristics of

'blowinq and drifting snow have been largely’

observational in nature. These studies include

measurements of particle size distributions, saltation

" parameters, flux profiles, aﬁd drift formations. around

natural‘and created obstructions to the flow.

Detaiied reviews of many of tﬁesé studies can be
found in Mellor (1965, 1970), Radok (1977), Male (1980),
Kind (1981), and Schmidt (1982a). - The results of these
reviews and the follbwing‘cited literature is not-
summarized here. They are presented as an indicatioh of
the information available on this sﬁbject. |

Particle size distributions have been measured by
Budd (1966), Budd et al. (1966), and Schmidt (1981,

1982b, 1984). Vertical flux profiles are described by
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Budd et al. (1966), Fohn (1980), Takeuchi (1980),
Schmidt (1982b, 1986a), Schmidt et al. (1982), and
Schmidt et al. (1984). Sublimation from blowiné snow
particles is discussed by Dyunin (1967); Séhmidt (1972,
1982b), Tabler '‘and Schmidt (1972), Lee (1975), Tabler
(1975a), Male (1980), and Benson (1982).

Studies focusing on the saltation process include
Bagnold (1941), Mellor and Radok (1960), Jenssen (1963),
owen (1964), Oura (1967), Oura et al. (1967), Kobayashi
(1972, 1979), Kind (1976), White and Schluz (1977),
Maeno et al. (1979), and Kind and Murray (1982). The
influence of snow surface hardness on snow transport is
studied by Dyunin-(19é3), Bagnold (1966), Narita (1978),
Schmidt (1980, 1981, 1986a, 1986b), and Martinelli and
Ozment (1985).

Measurement of snowdrift profilés in natural
topographic catchments include those made by Berg and
Caine (1975), Tabler (1975b), Benson (1982), Berg .
(1986), and Liston (1986). Profiles of snowdrifts
'formed by snow fences are’described by Tabler (1980).

The pfeceding studies represent a Worla-wide effort
to obtain a better understanding of the physical
principles‘governing drifting snow and the saltation
‘process. They are all observational. ‘

The second classification of the drifting snow
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studies encompasses thosé which model the drifting
proceés and/or éffects° The complexity of the factors
influencing snowdrift patterns fofmed by strqcturés and
‘terrain features has lead to the simulation of blowing
snow and drift formations using wind tunnels and water
fiumes. Finney (1934) introduced this technique using
‘sawdust and mica in a wind tunnel. In ofder to assure
quantitative scaling of the snowdrifts, certain
theoretical requirements mﬁst be:met, However, these
requiremenfs cannot be entirely reaiized, and
consequently compromises must be made if this. approach
is used (Iversen, 1979, 1980; Anno, 1984a; Kind, 1986).__
Reduced-scale model experiments, performed outsidé'in
natural conditions instead of within a wind tunnel, have
been used in an attempt.to avoid these restrictive
scaling requirements (Tabler and Jairell, 1981; Anno,
1984b) . |

Empirical models have also beeﬁ produced. Tabler
(lé75b) developed a multiple linear regression eqﬁation
which predicts equilibrium profiles of snowdrifts in
topographic catchments. This type of model is generally
considéred appropriate'oﬁly-for the conditions ﬁnderr
which the regression coefficients were originally
détermined. Similari&, Tabler (1980) developed

polynomial regression curves which describe equilibrium
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snowdrift profilés'produced by snow fences.

A computer simulation model which predicté the
accumulation of wind-blown snow particles in topographic
catchments is presented by Berg and'Caing (1975) and
Berg (1986). The model comprises a set of mathematical
relationships between airflow, topography, and snow
particle movement that determine regions where the
windspeed is below the threshold required for snow
transport and then consequently accumulates particles in
such regions.

Recently, computational and physical modeling
efforts have been implemented in an attempt to (1)
explain the physical processes associated with snow
transport and (2) develop predictive tools for these
processes. Decker and Brown (1983, 1985) utilized
modern mixture theory to study blowing snow in
mountainous terrain. This study was aimed at predicting
snow deposition patterns in mountainous terrain and
determining the nature of the dominant processes
Qoverning two phase flow of air and suspended snow
particles. Uematsu et al. (1989) developed a two-
dimensional finite element model of snowdrift
development. They solve the momentum equations assuming
a constant eddy or turbulent diffusivity.

The piéture that emerges from this review is that
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the vast majority of previous snow transport studies
have been observational in nature, and very little

computational modeling of the relevant flow features and

processes has been attempted.
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CHAPTER 3
MATHEMATICAL MODEL DEVELOPMENT

In this chapter the governing equations and
turbulence modeling practices for both single-phase and
two-phase flows are presented. The governing equations
of fluid motion represent a description of the time and
spatial variation of velocity and pressure for the flow
of concern. 1In engineering and atmospheric sciences the
flows of interest are almost always turbulent. A
turbulent flow is characterized by fluid motion which is
eddying, highly random, unsteady, and three-dimensional.
These eddies cover a wide spectrum of sizes, ranging
from the size of the flow domain to many orders of
magnitude smaller, and they also cover a correspondingly
wide range of—fluctuation frequencies with the high
frequenciee being associated with the small eddies.
Commonly the turbulent fluctuations are removed from the
flow description by a suitable averaging of the
governing equations. This averaging leads to new terms
which contain unknown correlations between fluctuating

velocity components. A non-closed system of equations
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results since the number of unknown variables now
exceeds the number of equationé. To close the system of
equations a turbulence model must be deVelbped which
relates the new unknown quantities to the mean flow

field.

Turbulence Modeling for Single-Phase Flows

The governing equations of fluid motion aré based
on the universal conservation laws of mass and momentum.
The resulting continuity and momentum equations for a
Newtonian fluid are commonly referred to as the Navier-
Stokes equations and take the following form for an
incompressible fluid (Schlichting, 1979),

Continuity Equation:

oU;
- 1
= " O )
Momentum Equations:
oU; 60; 1 0P U,
——— - . -— — — ettt 2
ot 0x; p Ox; Ty 0x;0X; (2)

where U; is the instantaneous vélocity component in the
x; direction, t is time, P is pressure, p is the fluid
density, and v is the kinematic viscosity. Here the
Einstein summation convention on repeated indices has

been applied.
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The unsteady Navier-Stokes equations are generally
considered to be capable of describing turbulent flow.
Direct simulation of the turbulent flow is iméractical,
however, because the scale of the smallest eddies in
turbulent flow is typically 103 times the size of the
flow domain. A common estimation is that a numerical
grid containing 10° points would be required to resolve
just'l cm® of the flow. As.a conseguence, it is not
expécted that computers will be large and fast enough to
describe the flow field in this manner in the near
future.

The common approach used today is to solve for the
mean flow field using the equationé which have been
averaged over a time which is long compared with the
turbulence but short when compared to that of the mean
flow. In this approach, the instantaneous values of
velocity U; and the pressufe P are separated into mean

(overbars) and fluctuating (lower case) quéntities

U,

1

-TU,+u; , P=P+p (3)

and the mean quantities are given by

—_ 1 t, - 1 k2
U, = U,dt , P= P dt 4
. t,-t, e, + , t,-t, Jey ‘ (4)
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Carrying out the averaging procedure leads to the
following equations, where the overbars have been
drobped for efficiency, except where averages of
products of fluctuating terms are needed for clarity.

Continuity Equation:

oU;
5 = (5)
Momentum Equations:
ou; ou; 1 9P a (, 9U; :
Bt U, T Pk T ax | ox, “i“j) ()

These time averaged Navier-Stokes equations are
often called the Reynolds averaged equations after their
original developer, Osborne Reynolds, and they govern

the mean flow quantities U; and P. The time averaging

has led to new terms u;uy, in the momentum equations

which, when multiplied by p, are interpreted as stresses
associated with the turbulent motion. These turbulent
stress components are frequently many orders of
magnitude larger than the viscous stresses found in fhe
term containing v. These new terms must now be modeled
or described in terms of the mean flow variables in
order to create a closed.set of equatiﬁns.'

Existing turbulence models which approximate these
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terms range from simple models based on Prandtl's’
.mixing-length hypothesis (Schlichting, 1979) to those
that use differential fransport equations for the
individual turbulent stresses and fluxes. Extensive
reviews of the various models can be found in Rodi
(1982) and Lakshminarayana (1986).

| The simple models based on the Prandtl mixing-
length hypothesis suffer from several‘drawbacks. One
primary failing is that the hypothesis implies that the
turbulence is in ‘local equilibrium, consequently the
model is unable to account for the transport aﬂd history
effécts of turbulence. This leads to incorrectly '
predicting zero turbulence in flow.regions of uniform
mean velocity where the velocity gradient is zero.
Examples of this problem include the prediction of zero
turbulence in both the center of a pipe and in the flow
behind a uniform grid (qui, 1980). It is alsé worth
noting that since it is difficult to prescribe the
mixing-length distribution in any but the simplest
flows, these models are hot'applicable to more complex,
separating flows.

Efforts to develqp a more universal turbulence

model has led to what is known as the k-¢ model of Jones
and Launder (1972) . This is a two-equation model which

uses two partial differential transport equations to
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describe evolution of the turbulent kinetic energy k,
and the dissipation rate €, of the turbulent kinetic
energy. The turbulent kinetic energy k, where k is

defined to be

Ui

k= 2 Tg; - 5 (w2057 (7
and a length scale L, which describes the charécteristic
size of large eddies producing turbulent stresses, are
frequently viewed as the primary parameters which allow
description of turbulent flows. Since the rate of |
dissipation €.is proportional to k*2/L (kodi, 1980), a
description of the variation of k and € will allow a%
indirect description of the characteristic turbulent
length scale.

Inklaminar flows the viscous stresses are
proportional to the mean velocity gradients; with the

kinematic viscosity v of the fluid serving as the

proportionality constant. To develop the k-¢ model the

turbulent stresses u;u; are first assumed to be related

to the mean velocity gradients by Boussinesq's eddy

viscosity hypothesis

- oU; oU; 2
- ——.1— —-l -— — 3
Uy = Ve (axj ' axi) ko

(8)
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where v, is the turbulent viscosity and 84; is the
Kronecker Delta function. Here the turbulent viscosity

is a property of the flow rather than the fluid, and

174
t
it may vary greatly over the flow field. Equation 8

contains two new unknowns Ve

and the turbulent kinetic
energy k. Since it is difficult to derive an expression

directly for v,, it was reasoned, by dimensional

1 &4

analysis, that v,  is proportional to k%/e¢ where € is the

t
dissipation rate of k (Jones and Launder, 1972). Thus

it is assumed that

V= C, — “(9)

where C, is a constant. At this stage the problem has
‘been shifted from describing the Reynolds stresses, to

describing the distribution of k and €.

An exact equation for the Reynolds stresses u,u;

can be derived from tﬁe Navier-Stokes equations. To do
this, the time averaged momentum equations (Equation 6)
are subtracted from the time debendent Navier-Stokes
equations (Equation 2) for both velocity components i
and j. The equafion for u, is‘then multiplied by u; and
the equation for uj‘by u,, and the two resulting
equations are added. Time averaging this lasf eéuation,

and assuming the viscous diffusion term is negligible in
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high Reynolds number flows, yields (Hinze, 1975),

ot T 17 ax, " 3x, (2ru545) - ol ox, T 9x;
(10)
ou. aU; du; Jdu, du; du
- Tl ——2 o, i 3 P 1 il - g4 9%
Mt gy, T Wiy, T p( dx; ! axi) 2v ox; 0x,

When these three equations for the three normal
stresses (i=j=1,2,3) are summed, an exact equation for
the turbulent kinetic energy is obtained (Rodi, 1934),

3k 3k _ _ 3 uu; pl| U,
ot " Ui ox; axi[”i( 2 p)) %1% Tk,

J

(11)

In this equation the rate of change of k is balanced by
convective transport due to the mean flow, diffusive
transport due to velocity and pressure fluctuations,
production of turbulent kinetic energy due to the
combihation of Reynoids stresses and mean velocity
gradients, and dissipation of k by the transfer of
kinetic energy inté heat.

For this k equation to be applied to the momentum
equatioﬁs, the additional unknown terms in this‘equétion
must be modeled. Applying.the Boussinesq eddy viscosity

hypothesis, the term describing the production of k due
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to the interaction of Reynolds stresses and velocity

shear becomes

au; (aU- ou,\ aU;
S Uy = Ve |t j) : (12)
1 ox; 0x ox; | 0x;
The diffusive transport term is modeled as
- (u(ﬂ’_ﬁﬁ)] _ Ve (13)
i| == .
2 p o, Ox;

where o, is a constant. The last term describes the
product of the molecular kinematiclviscosity and the
fluctuating vorticity, or the rate of viscous
dissipatioﬁ of energy ¢,

Ju, du,
u; ou;

1

0x; 8x3

v - € Lo (14)
The final, most common form of the turbulent

kinetic energy transport equation is

ok ok o (Ve ok ou; , 0U;) 9U; _ 15
ot (ak axi)+v°(6xj+8xi 0x; ¢ (%)

U -
gt 1ox; | oxg
(1) (ii) (iii) (iv) (V)
where term (i)"fepresents the rate of change of k, term

(ii) describes convective transport of k, term (iii) is

the diffusive transport, term (iv) describes the
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production of k through shear, and tefm (v) is the rate
of viscéus dissipation. | |
An exact transport equation for € can also be.
derived from the Navier-Stokes equations for high

Reynolds number flows (Hanjalic and Launder, 1972),

Be , gy O 2v(auj u; | 9 aul) au,
(16)

7 \2
auj ou; du; _ oy? Pu; 9 ==
6xi 0x, axi 0x;0x,

where €' describes the fluctuating dissipation rate.
Again theré have been new terms introduced which must be
modeled in order to obtaln a closed set of equatlons
(Hanjalic and.Launder, 1972). The first term on the
right is a generation term which is modeled as

_ du; OJu; du; du;| _ v, (0U; ou; (17)
2V axl axl * ox; 8x3) caee_——(?ar " ox,

where ¢, is a modeling constant. The second and third

terms are modeled together in the form

ou; ou; ou; +2v2( Pu; ) P (18)
k

axl axl ax
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where c,, is a constant. The fourth term describes the

diffusion of € due to velocity fluctuations and becomes

g - Ve Oe 19
. Oc a,x.i ( )

where o, is a constant. The most common form of the

modeled € equation is

3 de _ 3 (Ve e
e U ox; axi('oe axi)
(20)
v t an an an _ €2
* Clee—?(axj * ox, ax; Cee g

where each term has a meaning similar to those found in
the k equation.

In engineering applicaéions the empirical constants
most frequently used in these equations are: C,

=1.92, o, = 1.0, o, = 1.3 (Launder and
k €

= 0.09,

¢ 2¢

e = 1.44, C

Spalding, 1974). These constants have been found to
successfully predict mean flow characteristics for ‘a
large variety of flows including flows having a'free
surface and those in&olving recirculation. Over the
past 15 years the k-¢ mbdel has been tested extensively
and has. found success for a variety of different flowé(
including free shear flows, wall boundary layers, flows
involving recirculation, and duct flows (Rodi, 1982).

Hanjalic and Launder (1980)  proposed that an
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additional term be added to increase the rate of
irrotational deformations in promoting turbulent energy
transfer. Rodi (1985) developed a buoyancy-extended k-e¢
model which is used to model horizontal shear layers
with stable stratification. This paper is essentially a
simplification of the transport equation model of Gibson
and Launder (1978).

A further step in turbulence model complexity is
the second-order closure schemes which employ fransport
equations to describe the individual stresses and
fluxes. This eliminates the assumption of local
isotropy found in the k-e¢ model. Although these models
contain fewer assumptions and are much more general than
the simpler models, they also contain additional terms
which must be modeled based on approximations and
assumptions of flow properties, some of which are still
unable to be measured. In addition, the large number of
partial differential equations involved make these
models computationally cumbersome. At this stage, these
very comblex models are considered to be subjects of
turbulence research and are not sufficiently refined for
application to practical problems. The stress and flux
transport equations can be reduced, however, to
algebraic equations which still maintain many of the

important characteristics of the more complex equations.
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These algebraic equations are then combined with the k
and € equations to simulate thé turbulent stresses
(Lakshminarayana, 1986). |

A completely different approach is called large
eddy simuiation. In this scheme the large scale
turbulence, which is responsible for the majority of the
flow-behavior, is simulated numerically while a model is
used to describe the small scale turbulence structure |
(Peyret and Taylor, 1983). This computationally tedious
method also shows much prpmise but is stillnlargely in

its developmental stages.

Turbulence Modeling for Two-Phase Flows

As early as 1945 résearch showed that adding a
dilute suspension of particles to a turbulent fluid
increases the flow rate under a given pressure gradient
(Sproull, 1961).' Hetsroni and Sokolov (1971) concluded
that the particles suppress the turbulence in the
dissipation rahge of small eddies and that the process
is dependent upon both particle‘size and concentration.
Moderrass et al. (1984) showed that, depending on
particle léading, the turbulent kinetic energy can be
reduced as much as 50 percent, theréby ihcreasing thé
carrier fluid velocity. This process is again

attributed to a decrease in turbulence dissipation
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resulting from particle-fluid interaction.

Two common approaches are taken to describe fluid-
particle flows, the trajectory approach and the two-
fluid approach. In the trajectory approach the
- turbulent flow field is first calculated assuming single
phase flow. Then particle velocities and trajectories
are calculated using the single-phase flow field. A
major shortcoming of this is the assumption that the
presence of particles does not influencé the motion of
the fluid. This results in what is known as a one-way
coupling of the phases. This method can be extended by
recalculating the flow field with the inclusion of the
calculated particle behavior. The particle trajectories
are again calculated based on the flow field and this
process is‘repeated until the flow field does not change
with subsequent iterations. 1In this manner the
trajectory approach is able to include the two-way
coupling which commonly characterizes two-phase flows
(érowe, 1982). Two-way coupling is also included when
using the two-fluid approach. This approach regards the
fluid and particulate phases as two interacting fluids
which are governed by their own mass balance and
momentum balance equations. |

In this study the author will consider only dilute

particle suspensions where the particulate phase volume

P
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fraction is small (of order 1073), and particle to
particle interactions can be considered negligible. For
this case, the governing equations of motion can be
described as taking the same férm as the previously
introducéd Navier-Stokes and Reynolds averaded
equations, where an additional source term F, has been
added to the right'side~of the momentum equations to
account for the force exerted upon the fluid by the
particles (Marble, 1970);

Two-phase turbulence closure modeling is a
relatively new field of study. Danon et al. (1977)
proposed a one—equafion, one-way coupled model for a
very lightly loaded flow. Melville and Bray (1979)
produced an algebraic model based on the Prandtl mixing-
length hypothesis for moderately loaded jets. Genchev
and Karpunov (1980) developed a mixing-length model
which includes an extra term which takes into account
the particle influence on turbulent motion. Their
results ére not compared to experimental data.
Elghobashi and Abou-Arab (1983) presented a complex,
two-equation closure scheme for two-phase flows which
attémpts to resolve some of the weaknesses of the
schemes of Danon et al. and Genchev and Karpunov.
Decker énd.Brown (1985) modeled the turbulent

fluctuations of the particulate phase based on the
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mixing-length hypothesis and applied it to a one-way
coupled mixture of air and snow.

One of the mosf advanced and extensively tested
modeling efforts has been that of Chen (1983) and Chen
and Wood (1984; 1985). It is assumed that the
pafticulate phase volume fraction is much less than
unity and made up of spherical particles of uniform
size.

Their model is based on the twq-equation k-¢€
turbulence model described previously. Here an
additional term, which results from including a
particle-fluid interaction force, is added to each of
the k and € turbulence equations. It is assumed that.
the particles follow the mean floﬁ, but that on the high
frequency turbulent fluctuation level, the particles do
not exactly follow the fluia and the resulting slip is a
hydrodynamic drag force F, which can be described by

Stokes law and takes~the‘form,

F, - _&M - (21)

t*

where U, and Vi'represent the fluid and particle
velocities, respectively. Po is the particulate phase
density, and t" = d% /18u is the characteristic response

time of the particles; d is the particle diameter, ,  is
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the density of the solid particulate material, and p is
the fluid viscosity. This approach appears to be valid
for the dilute mixture considered here. Experimental
data by Popper et al. (1974) and Yuu et al. (1978)
suggest that, to a first approximation, we can assume
that the particles follow the mean motion but not
necessarily the turbulent fluctuations.

A derivation of the turbulence kinetic énergy
equation with the inclusion of the Stokes drag force in
the momentum equations produces an additional term in
the k equation which takes the form (Chen and Wood,
1984), |

Pp ('uiVi ~ uiui) . (22).
Pt

where v, is the fluctuating particulate velocity. This
new term represents additional dissipation resulting
from particle slip at the turbulent fluctuation level.

This term is modeled by letting

e

- (ugvy - uzuy) = Zk(l _eXP(_Bk it::* )) (23)

where t, = 0.165 k/€, and B, is a constant set equal to
0.0825 (Chen and Wood, 1985).
'The dissipation rate equation for ¢ will also have

an additional term
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2 Ppl, 04 9vy Ouy (24)
E* P 8x3 8x3 8x3
which is modeled as
(B (E T o)) e
x; | 0x; 0%y A
where 7 = (Q/e)V2 is the Kolmogorov time scale

fréquently used to describe high freqﬁency eddies’ and B,
is a modeling‘constant;

These modeled terms, when added to-the right side
of the appropriate k“and € equations, produce a@ditional
dissipation which redﬁCe turbulent velocity 
fluctuations.

Since the two additional particulate terms depend
on the dimensionless particulate phase loading‘pp/p, an
additional transporf equation must be solved to
deterﬁine the particle concentration field. This
equation accounts for particulate mass cdnservation and

takes the following form (Rodi, 1984),

Wy w9 (Ve ow 26
at * Y1 ax, axi(otaxi) - (28)
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where the particulate concentration W= pp/p, and o, is
the turbulent Schmidt number = 0.5 for planar flows

(Reynolds, 1976).

Saltation Modeling

SaltatioQ is a process in which snow particles are
transported close to the ground, undergoing repeated
impacts Qith the snow covered surface. Initially loose
snow particles are entrained into the air stream by the
wind. After having gained momentum from the wind they
fall back to the ground‘to strike other snow particles
on the snow covered surface. Most of the time the
impacting particle reboﬁnds'from the surface and is
accelerated by the w1nd before it again falls to the
ground. Since the 1mpact with the surface is 1nelastlc,
fhe rebound veloc;ty is necessarily less than . the impact
velocity. Since the surface is rough, on a scale
comparable .to the particle size, the impacting particle
rebounds at an angle different than the impact angle.

In order to sustain saltation, the average vertical

- rebound velocity must equal the incident vertical
velocity. If it is less, the vertical velocity will die
out after several impacts and the particle will cease to
saltete. During impact a particle ﬁey also dislodge

additional snow particles from the snow surface. While

i
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some of these particles may then join the saltation
process, others may roll or bounce over short distances
to form a layer of reptating‘particles. As more'
particles are added to the airstream, the speed of the
wind in the saltating laYer is reduced. This reduces
the impact velocity of the saltating particles which in
turn decreases the average vertical rebound velocity.
In addition, as the impact velocity decreases, the
effectiveness of an impacting particle at ejecting more
particles into the flow decreases. Thus, snow particles
begin to settle out,of the saltating layer. As the
particles start to settle out,'fhe wind deceleration is
reversed, allowing more particles to be entrained. -2An
equilibriuﬁ is eventually reached for a given free
stream airflow, and only a certain number of particles
are maintained in the saltatlng layer. |

Measurements above a horizontal surface show a very
rapid decrease in mass flux with helght through the
saltation layer. 1In fact, Kind (1981),'u51ng data
provided by Oura (1967) and Kobayashi (1972), reported
that approximately 99 percent of the total saltating
mass flux is contained within the firsf 3 cm above the
surface.

The presence of saltation is depeﬁdent upon the

relative magnitudes of the shear strength of the snow
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surfaée and the shear stress at the surface produced by
the wind above. In order for snow particles to begin to
move, some threshold shear stress must be exceeded.
This threshold value ié dependent. upon such factors as
temperature, grain size, extent of grain bonding, and
surface hardness. Kind (1981) lists experimental
studies which have found threshold shear velocity values
ranging from 0.1 m/s for light dry snow, to 0.4 m/s for
old hardened snow.

One'saltatign model which has . found considérable
favor in the literature was developed by Iversen et al.
(1975) based én similitude arguménts. Schmidt (1982a)
has shown this modei to‘Successfully reproduce field

data collected by several researchers. The model takes

.the form

0, - C(-g)( gst) U2 (U, - Uy,) ' | (27)
where Q. is the total mass transport rate per unit
lateral dimension with units of kg/(m s), p is the fluid
density, g is the gravitational acceleration, V, is fhe
settling velocity of a snow pariicle, U, is the friction
or shear velocity, Uﬁ.is theuthreshold shear velocity,
and C is a constant set equal to 1.0.

Since the majorify of the mass flux is confined to
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the area very near the ground, -and a computation of the
turbulent flow field above the surface Qill provide
values of the surfaée shear velocity,'the conputed upper
flow field willibe used to drive the saltation model.
Here the turbulent layer's sole pﬁrpose.is to drive the
‘saltétion'model which is responsible for thebgreatest
contribution of.sﬁow transport.

As presented, the coupling between the turbulent.
and séltation layers has been assumed passive or one-
'way; i.e., the presence or lack of saltation does not
affect the solution of the turbulent flow field.
Initially, it appears‘that the two-way coupling which
occuré in the natural system is only a secondary
process. Consequently, the ohe-way coupling
apﬁroximation,will be assumed valid.

The saltation model provides fhe vertically.
integrated rate of snow'tranéport, Q. (%), within that
layer. Knowledge of the particulate concentration and
velocity fields allow computation of the vertically
integrated rate of snow transport within the turbulent

flow layer, Q,(x), where

0.(x) - f Ulx,z) wi(x,z) dz (28)
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Changes in the bed surface level (snow accumulation
or drift formation) result frém changes in Q, And Q,
with %. This change in surface level is described by
the vertically integrated mass continuity equation,

oh . 1 '3 o
-a—E +, p—bg (Qt + Qs) 0 . (29)

where h is the surface level with respect to a
horizontal datum, t = time, and p, is the bulk density
of snow. The accumulation of mass, and subsequent new

boundary configuration, necessitates a recomputation of

the turbulent flow: field.
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CHAPTER 4

TWO-PHASE TURBﬁLENT FLOW MODEL FOR BLOWING SNOW

Governing Equations

In the previous chapter the ground work was set for
developing a model for application to blowing and
drifting snow. As a rigorous test case for the model

the flow over a, two-dimensional obstruction, such as an

“infinitely long solid wall 2 meters high and aligned

perpendicular to the wind direction, will be considered

(Figure 1). Developing the governing equations for this

problem will begin with the Reynolds averaged equations.

Since the flow of interest will contain significant

.zones of recirculation, boundary layer approximations

will not apply and the Reynolds equations must be solved
in their full form. In addition to the two-dimensional
restriction, only steady state flows will be considered.
As such, the previously introduced Reynolds equations
and the k and € turbulence model equations will apply
with the neglect of the appropriate terms. Also, as

noted previously, since the kinematic viscosity v is
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‘typically several orders of magnitude smaller than the
turbulent viscosity v,, the term cohtaining v in the
time averaged momentum equafiqns (Equation 6), will be
neglected. ‘
To establish the exact form that the momeﬁtum

equations will take, Equation 8 must be introduced into

Equation 6 to eliminate the u;u; term. When doing this

it is noted that the Kronecker Delta term in Equation 8
is a pressure-like'term which can be.absorbed into the
momentum equation préssure term. The diffusion terms in

the momentum equations now take the form
_i_'(vc(.?ﬂ N _‘?ﬂ)) "~ (30)
0x ox;  0x;)) -

This can be expanded for the dimensions x and z,
respectively, in the horizontal and vertical directions.
By applying the continuity equation (Eqﬁation 5) and the
propertyvthat in a discrete differencé”scheme products

aré‘interchangeable, the term becomes

—aa;(vc%)+%(vt-g-g) | (31)
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for the x momentum equation with velocity U. A similar
term is found for the z momentum equation with velocity
V. Combining this information and expaﬁding the other
indexed terms in the continuity equation and momentum
equations leads to three of the eqﬁations compriéing the
turbulent flow model. They will be listed with the
other equations at the end of this chapter.

The k and € equations include a production term,

resulting from shear, of the form

(32)

(ou, | 9U;\ 9u;
ox;  0x;) 9x;

When this is expanded in a manner similar to the term in

the momentum equation, this term becomes
ou ov\2
- - 2L 33
(32 ~ ) (33)
Together'the k and € equations contain five

modeliné constants, c¢

1 Cier Cper Oy and o, which must be

determined before the equations can be solved (Launder
and Spaldiﬁg, 1974). Values.for these constants were
listed in fhe previous chapter. How the constants were
obtained is discussed by Rodi- (1984). The value of c,,
was computed based on measurements of the‘decaf rate of
k behind gfids. Values for the diffusion constants o,

and o, were obtained by a computer. optimization
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procedure which involved applying the model to sevefal
laboratory shear flows aﬁd adjusting the constants to
achieve the best overall fit with experimental results.
The final two constants, c, and c¢,,, are evaluated by
considering local equilibrium shear layers occurring
near a wall. For atmospheric flows, as opposed to
~engineering or hydraulic flows, the values of ¢, = 0.03
and ¢,, = 1.16 have been suggested in the literature
(Sutton et al., 1986). Since these constants agree well
with atmospheric measurements (Lumley and Panofsky,
1964; Frost et al., 1975), I will adopt these
atmospheric values.

The exact form of the particulate source terms in
the k aﬁd € equations must also be determined. To do
thié, representative afmospheric profiles of velocity,
turbulent kinetic energy, and diésipation rate must be
established. |

A wide range of experimental and theoretical
studies have shown ﬁhat wind profiles within a surface
layef of nearly hydroétatically neutral stratification
can be closely approximatéd by a logarithmic equation.

This is commonly expressed in the form (Holton, 1979),

- ln(—z—) (34)

K Z,
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where U, is the shegr velocity, z is the height above
the surface, z, is the roughness length which is
dependent upon the roughness,of the:surface, and « = 0.4
is von Karman's constant. A roughness length of 2z, =
0.1 cm will be used as a representative value for snow
Hsuffaces_(Sorbjan, 1989). |

In a homogeneous, déutrally stratified boundary
layer the rate of dissipatioh above the visqous sublayer
is given by

3
e = O (35)
KZ

(Panofsky and Dutton, 1984;'Sorbjan, 1989). This is
'alsd consistent with expefimental data (Wyngaard and
Cote, 1971). Frost et al. (1975) provided atmosphefic
profiles of turbulent kinetic energy k for the same

conditions,

k- = (36)

This agrees with field measurements by Lumley and
Panofsky (1964). These profiles of U, k, and evgiven by
"Equations 34, 35, and 36 can all be computed upon |
choosing an appropriate value for U at a spécified
height z. For reference, in mid-latitude regions,

typical windspeeds experienced during snow transport
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events fall in the range 10 to 15 m/s,measured'at a
height of 10 m (Kind, 1981). .
.The form that the ﬁarticulate source terms in the‘k
and € equations take is stronglf dependent uﬁon the

relative magnitudes of time scales t*, t_, and 7. To

e’
compute t* for a spherical ice grain in air, note that
p, = 910 kg/m’, v = 13.3e-6 m’/s, and p’= 1.29 kg/m® for .
a pressure of one atmosphere and temperature of 0° C.
Applying a typical wind velocity of 10 m/s at 10 m, and
computing the values of theée time scales shows that for
snow pafticles having diameters d > 0.5 mm, t* >> 7.
This analysis also shows that t° and t, are of the same
order of magnitudé for this particle size range, and
that only when d € 0.1 mm is t" << t,. The implication
"of these results is that,‘for'this study, a restriction
of d 2 0.5 mm alléws the neglecting of the exponential
term in the € equétioﬁ particulate source term (Equation
25), while the k equation particulate source term
(Equation 23) must be ﬁsed in its full form.
‘The partiqle concentratioﬁ equation (Equation 26)

is valid as stated with fhe exception that a constanf
particle settling velocity V, will be added to the
vertical convection term. Here the author has assumed

that the particle'concentration field is convected

downward at a velocity additional to the vertical
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velocity of the fluid. A sufvey of published data
suggests that Vv, = 0.75 m/s is a representative still
air fall velocity for snow particleé of inferest inAthiS'

study (Mellor, 1965; Kind, 1981; Schmidt,  1982a).

Boundary Conditions

To sol?e the governing equations, boundary
éonditions must be applied at all boundaries of the
computational domain for all the dependent variables.
For this pfoblem cﬁnditions U, V, P, k, €, and w must
all 5e specified in some. form. A representative flow
démain is depicted in Figufe 1. The flow domain
contains an unrestricted inflow, outflow, and top
boundary as well as a solid lower boundary composed of
‘horizohtal suffaces and vertical walls. ' The appropriate
boundary conditions are defined as follows.

| Inflow boundary: '
v=2~0 .
U is given by Equation 34

EH_L = 0 for P

on

k is given by Equation 36
¢ is given by Equation 35

w is set equal to a constant, 0 < w £ 1.0
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Upper boundary:

a .
—éHL =0 for U, V, P, k, and €

w is set equal to a constant, 0 < w < 1.0
Ooutflow boundary:
o0) O foru, VvV, P, k, €, and w
an [ [ 14 ’ ’

Horizontal surfaces:

U

logarithmic
V=20
k and € are functions of the surface shear

stress through the friction velocity:U*

o()

——— - 6 for P and w
don

Vertical surfaces:

Uu=o0
V=0
a .
én) = 0 for P, Kk, and €
w=20

where n is the direction perpendicular to the boundary.
The horizontal and vertical surface type boundary
conditions warrant .additional discussion. The pressure '

boundary conditidn will bé discussed in Chapter 5. 1In
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developing the turbulence equations, the laminar flow
within thé‘viscous sublayer near a wall has been
neglected. Turbulence models have been developed which
account fof these effects, but since the gradients
encountered in the neér-wall region are typically very
steep, and consequently computationally expensive to
resolve, these'modeis are not commonly used. A far more
common scheme is to choose a computational domain which
is slightly removed from the solid boundary and apply
semi—empifi¢a1 wall functions to the gap bétwegn the
solid bouﬁdary and computational boundary.

The logarithmic profile given by Equation 34 is
used in this study for the U velocity boundary condition
on all horizontal surfaces including the top of the
wallgl U is set to zero on vertical walls. The V
component of velocity, which is perpendicular to
horizontal surfaces, is set equal to zero, and
considered negligibly small on vertical surfaces. - To
apply the log-wall boundary condifion, a profile given
by Equation 34 is aésumed to exist between the solid
surface at z = 0.0, a grid point on thé computational
domain boundary at z = z,, and the first interior grid
point at z = z,. The resulting two equations for U, and
' U, can be equated’ through their common U, and solved to

yield a boundary condition of the form




v, ' - (37)

The bbundary conditions for k and € are alsd
related to the friction or shear velocity U, and are
giyen by Equations 36 and 35, respectively, where z in
the € equation is now given by z = z,. These boundary
conditions can also be obtained by noting that in the .
region near the wall the Reynolds stresses are nearly
constant (Rodi, 1984).' Here convection and diffusion is
small and the production due to shear and viscous
dissipation terms are balanced.

For the particle concentration equation the
horizontal surface boundary condition can be obtained by
applying the concentration equation at that surface.
Since the only aiffusion influence present there is due
to the viscosity of the fiuid, and the only convective
component existing is due to the particle settling
velocity,'the equation reduces to the boundary condition
stated above. For the case of veftical surfaces, since
both convective and diffusive processes are negligible
or.noneQistent there, the concentration there cannot

rise above zero.
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Model Summary

Combining the above information yields the coupled,
highly non-llnear system of equations which models the
steady state, two-phase, two-d1mens1onal turbulent flow
field. The system of equatlons is found in Flgure 2,

Application of this model is restricted to
particulate volume fractions ¢ = 'pp/ps of order JLO'3 or
less. Since the solid material density of an ice grain
Cpg = 910 kg/nF, the particulate phase density cannot be
greater than order 1. With a fluid phase density p =
1.29 kg/m®, this corresponds to the restriction that the
particulate concentretion W = pp/p must be of order < 1.
This criterion is easily met in both blowing snow and
precipitating snow storms. For example, consider a snow
storm with a moderate to high snow accumulation rate of
2 cm/hr, a snow settlihg velocity of 0.75 m/s, and a
snow accumulation density of 200 kg/m’. Here w = pp/p =
0.001, which is still three orders of magnitude less
than required by the above restriction. In the'case of
blowing and drifting snow, Budd et al. (1966) showed the.
criterion to be satlsfled above 1 cm in the saltation
layer. Also, extrapolatlon of data presented by Schmidt

(1982b) suggests similar results.
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Figure 2. The system of partialldifferential equations
which models the steady state, two-phase,
two-dimensional turbulent flow field.
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CHAPTER 5

COMPUTATIONAL APPROACH TO MODEL SOLUTION

The six equation model presented in Figure 2

represents an imposing system of coupled partial

differential equations. Any solution of the full steady

or unsteady Navier-Stokes equations which 1ncludes a

turbulence model is a formidable task as. 111ustrated by

the follow1ng quote taken from ASCE (1988):

The development of such a code is typically
the result of teamwork by research groups at
universities, specialized laboratories or
institutes. A typical team working on the
development of a turbulence model-based code
may consist of two or more senior researchers,
two or more junior researchers, and often

- graduate students.... The duration of a code
development project may be from two to four
years.,

In light of this, an existing algorithm was implemented

and modified to fit the requirements of this particular

problem.

The SIMPLER finite control volume a1gor1thm

-descrlbed by Patankar (1980) was used to solve the

continuity, x and z momentum, k and € turbulence, and

perticle concentration equations. Since the details of
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Patankar's computational scheme is well documented in
his 1980 béok, only a broad outline of the method will
be presented here. 1In addition, problem specific
modifications and implementations will be discussed.

The SIMPLER acronym stands for Semi-Implicit Method
for Pressure-Linked Equations, Révised. The term semi-
implicit refers to the method by which é pressure
correction is related to a correction of the velocity as
the soiution progresses; In the Navier;stokes
equations, if the correct pressure field is given, then
solving.the momentum equations will lead to velocities
which satisfy the continuity equation. Since the
continuity equation is directly related to the pressure,
it can be feformul#ted into a Poissoﬁ equation for
pressure. The goal of the numérical.schemé is to
iteratively correct a guessed veioqity field in order to
produce a preséure field which is compatible with
continuity. SIMPLER can.ﬁe thought of as an iterative,
pseudo time dependent formulation in.which the
discretized equations are marched from an initial
condition, to the steady étate solution. To ensure that
the discretized equatiéns are linear‘during the current
iteration, some of the coefficients are evaluated at the

previous iteration level. For this specific application

the ‘algorithm consists of the following sequence of




steps:

1)

2)

3)

4)

5)

6)

7)

8)

9)
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Provide initial guesses for the U, V, k, e,
and w fields.

Compute a psﬁedo velocity from the momentum
equations in the absence of the pressure
tefms.

Solve a pressure equation for the pressuré

field.

‘Using this pressure field, solve the momentum

equations for the velocity.

Solve a pressure-correction equation.

Use this'pressure—correction information to
update the velocities.

Solve the k and € equations using these new
velocities. |

Solve the concentration w equation using the

‘new values for k and €.

Return to step 2.

SIMPLER and related échemes have been widely tested and

are a commonly used approach for solving incompressible

viscous flow problems (Fletcher, 1988).

SIMPLER is a second order implicit formulation

which is based on the concept of the control volume.

The computational domain is divided into a series of

control volumes, each of which encloses a grid point.
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The‘differential equation is then integrated over each
control voiume. This produces the desiréblé
characteristic of coarse gfids yielding solutions which
represent exact integ;al balances. fhe grid spacing can ..
be nonuniform in both the x and z directions. This |
allows effiéient use of computing energy by'enabiing the
user to define course gridé in regions where the
gfadients of the dependent variables are sméll.

Patankar (1978) introduced a harmonic meén approach
to describe the value of the diffusion coefficient
(viscosity) at control volume interfaces, based on
diffusion coefficient values at the main grid points
(control volume centers). This approach, as opposed to
using the arithmetic mean, correctly deals with large
step changes in the diffusion coefficient from one
control volume to anothér. As én example application, a
very largé viscous coefficient can be used to force the
velocity within a control volume to zero. The use of
the harmonic mean ensures that neighboring control
volumes consider. the velocity throughout that control
volume be zero. Effectively the zero velocity has been
transferred from the main grid point to the control
volume wall. The use of the harmonic mean has been
implemented in SIMPLER, and the details are included in’

Patankar (1980).
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To assist in the accurate numerical solution of
convection dohinated flows, an additional feature of
SIMPLER is the use of a weighted upwinding scheme where
the degree of upwinding imposed at each'grid point
depends on the ratio of the strengths of convection to
diffusion. Applying central differences to convection
dominated convection-diffusion problems can lead to
physically unrealistic results. This can genérally be
‘attributed to the formation of negative coefficients
(Patankar, 1980). Although this can be remedied by
refining the grid spacing, it is much more desirable to
develop a scheme which produces'reasonable results using
course grids. General upwipding at all grid points
would be one solution to the problem, but in
applications containing some regions not dominated by
convection this would not be an acceptable practice.
Patankar's approach is to compute the relative
influences of convection and diffusion, and then weight
the degree of upwinding accordingly. An additional
concern which must be accounted for is that the scheme
must be able to identify which direction is upwind,
since in complex flows with flow reversals this may vary.

throughout the domain.
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Application to the Tugbulent Flow Model °

To bring the model and assdciated boundary
conditions to solution, several pfoblem specific factors
must be addressed. In this section such concerns as
.source term linearization, gnderrelaxation of the
solution evolution, and declaring convergence will be
aiscusséd. |

Implementation of the SIMPLER algorithm ieads to a
fully implicit system of linear algebraic equations for
each discretized partial differential equation solved.
Since two-dimensional probiems lead to sparse syétems
coﬁtaining five diagonal sequences of .coefficients, |
considerable computer storage can be consumed by
nonessential zeros in thé systems'of equations if they
are stored in standard matrix form. To alleviate this
problem a sparse storage scheme has been implemented
which stores only the neceséary coefficients and an
index value describing their original positions, for
each system of equations. Each of these systems is
solved during every global iteration cycle. The Thomas
algorithm (Andefson et al., 1984) is used to solve the
systens of‘equationsL ?his is a highly efficient direct
solver for tridiagonal éystems of equations found in

' one;dimensipnal problems. To -apply the Thomas algorithm
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to the two-dimensional problems of interest in this
study, a grid line is chosen in the x or z direction and
the dependent variable is assumed known, from their
latest values, at-the grid lines on either side. The
algorithm can theﬂ be used to solve for the dependent
Vafiables along that center line. In the solution
implementation this iterative, line-by-line method is
first used to s&eep through the domain in the x ana then
the z direction, completing one iteration. The
iterati&ns are‘repeaféd until the maximum absolute
difference between successive iterations is less than
some set tolerance. If the x direction'sweep'is made in
the direction of the main flow, a tolerance of 107 is
typically achieved in fewer than seven iterations for
all equations except the one for‘pressure.

Ferziger (1990) néted thatiit is typical for
incompressible viscous flow solution schemes to spend
the majority of tﬁeir éomputing time solving the
pressure equation. Since it is only the pressﬁre
differences which are meaningful in these applications,
not thehabsolute value of pressure, it is common to
apply a normal pressure derivative equal to zero
éondition to all flow domain boundaries. Thié implies
ﬁhat the pressure field and the pressure field plus any

arbitrary constant are satisfactory solutions to the
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pressure equation. In this case a direct solution
method would indicate a singular system of équations,
while an iterative method like the Thomas iine-by—line
méthod will‘actually converge to a pressure field which
marches by a constant at each subsequent iteration.

The nonlinear'source terms in the partiai
differential equations for k and € must be liﬁearized,
and this linearization must ensure that the dependent
variébles k and € are always positive. This positive
status is critical for both physical fealisﬁ and
numerical'stabiiity. To implement the 1inearization,
the source terms S are cast in the form |

S = S, + Sy (44)

where S  is the constant part of S, and S, is the
coefficient of the dependent Qariable ¢ Fér the case
wﬁere the dependent vafiable is not required to be
positive, the S, term must be negative or zero. Again
this is réquired for physical reality and computational
stability. Fof always positive.variables, a poéitive or
zero S, ié an additional requirement (Patankar, 1980).

To place S in this form, one desirable approach is
to expand nonlinear terms in a Taylor series about the
value of the dependent variable at the previous

iteration, and keep the first two terms. This leads to -







































































































































































































































































































