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Abstract:

In blowing and drifting snow, two distinct flow regimes are found. At the surface is the saltation layer
which, although very thin, is responsible for the majority of mass transport. Above this layer, the flow
can be described as a turbulent, two-phase mixture of air and snow particles. These two layers are
highly coupled, and therefore an accurate description of the general snow transport process requires a
description of processes occurring within both of these layers.

A physically based computational model of the salient features of blowing and drifting snow in
two-dimensional terrain is developed. The model has two distinct parts, one describing the turbulent
flow mixture of air and snow, and a second describing the mass transport process and resulting snow
accumulation patterns related to the saltation layer. The turbulent flow model consists of a general
solution of the time averaged, two-dimensional Navier-Stokes equations, where the k-epsilon
turbulence model is used to close the system of equations. The effect of particulates on the turbulent
flow field is accounted for by computing the particle concentration field using a convection-diffusion
equation and a subsequent modification of the k-epsilon model. The turbulent flow model is coupled to
a saltation model and the time evolution of drift development and wind flow fields are computed.

The model suggests that, for the case of precipitating snow, snow particles can be considered a passive
additive to the turbulent flow field. Modeled snow accumulation profiles are very similar to published
field and experimental data.
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ABSTRACT

In blowing and drifting snow, two distinct flow
regimes are found. At the surface is the saltation
layer which, although very thin, is responsible for the
majority of mass transport. Above this layer, the flow
can be described as a turbulent, two-phase mixture of
air and snow particles. These two layers are highly
coupled, and therefore an accurate description of the
general snow transport process requires a description of
processes occurring within both of these layers.

A physically based computational model of the
salient features of blowing and drifting snow in two-
dimensional terrain is developed. The model has two
distinct parts, one describing the turbulent flow
mixture of air and snow, and a .second describing the
mass ‘transport process and resulting snow accumulation
patterns related to the saltation layer. The turbulent
flow model consists of a general solution of the time
averaged, two-dimensional Navier-sStokes equations, where
the k-epsilon turbulence model is used to close the
system of equations. The effect of particulates on the
turbulent flow field is accounted for by computing the
particle concentration field using a convection-
diffusion equation and a subsequent modification of the
k-epsilon model. The turbulent flow model is coupled to
a saltation model and the time evolution of drift
development and wind flow fields are computed.

The model suggests that, for the case of
precipitating snow, snow particles can be considered a
passive additive to the turbulent flow field. Modeled
snow accumulation profiles are very similar to published
field and experimental data.




CHAPTER 1
INTRODUCTION

"This document describes a study of the physical
processes which govern blowing and drifting snow and the
snow accumulation and distfibution patterns which result
from these processes. The study combines techniques
from the fields of turbulence modeling, suspended and
bed load transport, énd computational fluid mechanics to
describe the bhenomenon of wind transpérted snow.

Outside our doors in the winter environmept,
whether'it be in the city, the country, or tﬁe.
mountains; sﬁow depth is found to be highly variable as'
one moves from one place to another. This variability
can be caused by several factors, including (1)
variatidns in air température and radiation balance, (2)
local orographic influences on precipitation and storm'
movément,.(3) the‘topographic variability of the ground
surface, and- (4) snow‘transport due to avalanéhes;
Howevef,_when’viewed on a small local scale (say 5 to
500 meters) these factors are generally considered

secondary processes. The dominant process which
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produces spatially vapying snow depths is the
redistribution of snow by wind; this generally occurs
during or following brecipitation or storm events.

' The spatial distribution of seasonal snow is a
significant feature.of both middle and upper latitude
environments. Its influence on both globél and local
scales is dramatic. On the global scale, the
_ interaction between heat gain at low latitudes, and heat
loss at high latitudes, is the primary mechanism driving
global atmospheric circulation and weather patterns.

. Since snow cOvered surfaces have a much higher albedo
(surface reflectivity) than vegetated surfaces, the
seasonal snow distribution in high latitudes strongly
influences the earth's radiation balance (McFadden énd
Ragotzkie, 1967). As a consequence, Snow aisfribution
is a critical parameter affecting global éirculation and
climate.

on the local scale, the seasonal snow distribution
is an important hydroiogical parameter affecting
farmland irrigation, hydroelectric power, and water
supplies for business and domestic use. The snowcover
is also utilized as a recreation ﬁedium, providing sport
for skiers, snowmébilers, and other winter outdoor
enthusiasts. ‘Thé hazardous aspect of snow éffécts

transportation by reducing visibility, forming drifts on
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roadways, and reducing traction. In addition, hazards
such as snow avalanches and snowmelt flooding may pose a
threat to both property and life.

" In Arctic Alaska, seasonal snow ié a dominant
feature of the landscape for nine months of each year.
Several problems have been identified which relate
directly to the spatial variation of this snowcover. 1In
regions lacking sufficient fresh water supply due to
lack of runoff or suitable reservoirs, for instance,
there is an interest in accumulating snOW‘intovlarge
drifts to serve as summer water sources (Slaughter et
al., 1975). in addition, the petroleum industry spends
millions of dollars annually, remoQing snow from .
materiel sites, drill pads, and roéds at their arctic
drilling locatipns? Furthermore, Federal regulations
designed to protect underlying arctic vegetation
stipulate, based on snowcover amount, when travel across
the arctic tundra is permissible. Only through-
knowledge of snow distribution patterns can this
. determinatiqh be made.accurately and thus fulfill its
intended obﬂective.

In Antarctica, a continent where more than 95
perceht of ‘the. land area is coveréd by a blanket of snow
and ice, blowing and drifting snow has been a

significant factor affecting all research and




4
exploration conducted there. The United States
Antarctic Research Program bases McMurdo and South Pole,
for instance, continually have to deal with drifting |
snow. The continent is a desert with low annual snow
accumulation, but since little of it melts, the subpiy
of snow for drifting is literally limitless. At McMurdo
Station, the buildings at‘the near-by air field are
virtuaily buried by dfifting snOW'dﬁring‘the long winter
" months. éfews spend much of fhe austral summer diggiﬁg‘
these buildings out and moving the snow far énough away
so it won't induce further drifting.\ At South Poie‘
Station, Qhere the air temperatﬁre never rises above
freezing, snow removal is a never ending task. In spite
of the crews' efforts, the station is slowly being
drifted under. .

Snowcover influences not only the acti§ities of
people, but also flora and fauna aré affected by its
distribution. Vegetation growth is influenced by spring
land summer snowmelt from drifts formed the previous
winter. In addition, winter whéaf crops in the northern
latitudes require the insulation provided by snowcover
to withstand low winter temperatures. The depth of snow
dictates where livestock, deer; elk; and moose can feed.
Also, microtine rodents living beneath the snow depend

on it for protection from predators and from extremes of
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wind énditémperature in_the énvironment.ab0ve.

Déspite the significant‘rolg that sndw accumulation
pattefns play in our lives and the world around ﬁs,
severe deficiencies exist in our ability to describe and
- .model the relevant processes and resulting snow
distributioﬁ. Here I attempt to fili some of  these
deficiencies as well as providé a contributipn to
disciplineé interested in describing.turbulent-sediment
‘ transport. |

. This research project studies the blowiﬁg and
drifting snow problem and develoés a phyéiéally based
model‘describing,its significant features. While the
cﬁrreﬂt knowledge base is concerned largely with one-
diménsional flows, a unique feature of this study is a
focus on two-dimensional flows.- The current state of
understanding and technology clearly indicates thé need
and capability té make the next step forward and
describe this more complex flow cénfiguration._ Recent
advances in modeling turbﬁlent two-phase flows providg‘
an exciting opportunity to use this information to
dévelop a coﬁputational model of snow transport
processes.

In blowing and drifting snow, two distinct flow
regimes are'found;. At the'surface is the saltation

layer. This layer is approximately 5 cm thick and is




6
..qharactefized by particles,repeatedly?impacting the
surface, dislodging gdditional particles ipto the air to
be brought back to the surface under the influence of
'gravity. Above this layer, the flow can be described as
a turbulent, two-phase mixture of air and snow
particles. These two layers are'highly couﬁled; and
therefore an accurate description of the génera; snow
transport process relies heavily on the descripﬁions of
motions contained within boﬁh of these léyers..

‘ A model is developed which descfibes the turbulent
air and snow mixture flowing above the saltatién layer.
* A saltation model is then adopted and the two models are
coupled.through their common boundary and used to
describe-the fundamental features of the blowing and -
drifting snow problem. Features to be described include
‘(1) the flow field of the turbulent air-snow mixture,
(2) the snow.concéntration field within the air-snow
mixture,’and (3) the resulting snow accumglation
profiles. Published experimental results are used to

evaluate the computational model.




CHAPTER 2

1

PREVIQUS WORK ON BLOWING AND DRIFTING SNow

Past studies of blowing and driftiﬁd snow can -
roughly be broken into twé general categories: those
studying the physical characteristics of the process,
and those modeling the process and effects.

Investigations of the physical characteristics of

'blowinq and drifting snow have been largely’

observational in nature. These studies include

measurements of particle size distributions, saltation

" parameters, flux profiles, aﬁd drift formations. around

natural‘and created obstructions to the flow.

Detaiied reviews of many of tﬁesé studies can be
found in Mellor (1965, 1970), Radok (1977), Male (1980),
Kind (1981), and Schmidt (1982a). - The results of these
reviews and the follbwing‘cited literature is not-
summarized here. They are presented as an indicatioh of
the information available on this sﬁbject. |

Particle size distributions have been measured by
Budd (1966), Budd et al. (1966), and Schmidt (1981,

1982b, 1984). Vertical flux profiles are described by
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Budd et al. (1966), Fohn (1980), Takeuchi (1980),
Schmidt (1982b, 1986a), Schmidt et al. (1982), and
Schmidt et al. (1984). Sublimation from blowiné snow
particles is discussed by Dyunin (1967); Séhmidt (1972,
1982b), Tabler '‘and Schmidt (1972), Lee (1975), Tabler
(1975a), Male (1980), and Benson (1982).

Studies focusing on the saltation process include
Bagnold (1941), Mellor and Radok (1960), Jenssen (1963),
owen (1964), Oura (1967), Oura et al. (1967), Kobayashi
(1972, 1979), Kind (1976), White and Schluz (1977),
Maeno et al. (1979), and Kind and Murray (1982). The
influence of snow surface hardness on snow transport is
studied by Dyunin-(19é3), Bagnold (1966), Narita (1978),
Schmidt (1980, 1981, 1986a, 1986b), and Martinelli and
Ozment (1985).

Measurement of snowdrift profilés in natural
topographic catchments include those made by Berg and
Caine (1975), Tabler (1975b), Benson (1982), Berg .
(1986), and Liston (1986). Profiles of snowdrifts
'formed by snow fences are’described by Tabler (1980).

The pfeceding studies represent a Worla-wide effort
to obtain a better understanding of the physical
principles‘governing drifting snow and the saltation
‘process. They are all observational. ‘

The second classification of the drifting snow
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studies encompasses thosé which model the drifting
proceés and/or éffects° The complexity of the factors
influencing snowdrift patterns fofmed by strqcturés and
‘terrain features has lead to the simulation of blowing
snow and drift formations using wind tunnels and water
fiumes. Finney (1934) introduced this technique using
‘sawdust and mica in a wind tunnel. In ofder to assure
quantitative scaling of the snowdrifts, certain
theoretical requirements mﬁst be:met, However, these
requiremenfs cannot be entirely reaiized, and
consequently compromises must be made if this. approach
is used (Iversen, 1979, 1980; Anno, 1984a; Kind, 1986).__
Reduced-scale model experiments, performed outsidé'in
natural conditions instead of within a wind tunnel, have
been used in an attempt.to avoid these restrictive
scaling requirements (Tabler and Jairell, 1981; Anno,
1984b) . |

Empirical models have also beeﬁ produced. Tabler
(lé75b) developed a multiple linear regression eqﬁation
which predicts equilibrium profiles of snowdrifts in
topographic catchments. This type of model is generally
considéred appropriate'oﬁly-for the conditions ﬁnderr
which the regression coefficients were originally
détermined. Similari&, Tabler (1980) developed

polynomial regression curves which describe equilibrium
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snowdrift profilés'produced by snow fences.

A computer simulation model which predicté the
accumulation of wind-blown snow particles in topographic
catchments is presented by Berg and'Caing (1975) and
Berg (1986). The model comprises a set of mathematical
relationships between airflow, topography, and snow
particle movement that determine regions where the
windspeed is below the threshold required for snow
transport and then consequently accumulates particles in
such regions.

Recently, computational and physical modeling
efforts have been implemented in an attempt to (1)
explain the physical processes associated with snow
transport and (2) develop predictive tools for these
processes. Decker and Brown (1983, 1985) utilized
modern mixture theory to study blowing snow in
mountainous terrain. This study was aimed at predicting
snow deposition patterns in mountainous terrain and
determining the nature of the dominant processes
Qoverning two phase flow of air and suspended snow
particles. Uematsu et al. (1989) developed a two-
dimensional finite element model of snowdrift
development. They solve the momentum equations assuming
a constant eddy or turbulent diffusivity.

The piéture that emerges from this review is that
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the vast majority of previous snow transport studies
have been observational in nature, and very little

computational modeling of the relevant flow features and

processes has been attempted.




12

CHAPTER 3
MATHEMATICAL MODEL DEVELOPMENT

In this chapter the governing equations and
turbulence modeling practices for both single-phase and
two-phase flows are presented. The governing equations
of fluid motion represent a description of the time and
spatial variation of velocity and pressure for the flow
of concern. 1In engineering and atmospheric sciences the
flows of interest are almost always turbulent. A
turbulent flow is characterized by fluid motion which is
eddying, highly random, unsteady, and three-dimensional.
These eddies cover a wide spectrum of sizes, ranging
from the size of the flow domain to many orders of
magnitude smaller, and they also cover a correspondingly
wide range of—fluctuation frequencies with the high
frequenciee being associated with the small eddies.
Commonly the turbulent fluctuations are removed from the
flow description by a suitable averaging of the
governing equations. This averaging leads to new terms
which contain unknown correlations between fluctuating

velocity components. A non-closed system of equations
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results since the number of unknown variables now
exceeds the number of equationé. To close the system of
equations a turbulence model must be deVelbped which
relates the new unknown quantities to the mean flow

field.

Turbulence Modeling for Single-Phase Flows

The governing equations of fluid motion aré based
on the universal conservation laws of mass and momentum.
The resulting continuity and momentum equations for a
Newtonian fluid are commonly referred to as the Navier-
Stokes equations and take the following form for an
incompressible fluid (Schlichting, 1979),

Continuity Equation:

oU;
- 1
= " O )
Momentum Equations:
oU; 60; 1 0P U,
——— - . -— — — ettt 2
ot 0x; p Ox; Ty 0x;0X; (2)

where U; is the instantaneous vélocity component in the
x; direction, t is time, P is pressure, p is the fluid
density, and v is the kinematic viscosity. Here the
Einstein summation convention on repeated indices has

been applied.
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The unsteady Navier-Stokes equations are generally
considered to be capable of describing turbulent flow.
Direct simulation of the turbulent flow is iméractical,
however, because the scale of the smallest eddies in
turbulent flow is typically 103 times the size of the
flow domain. A common estimation is that a numerical
grid containing 10° points would be required to resolve
just'l cm® of the flow. As.a conseguence, it is not
expécted that computers will be large and fast enough to
describe the flow field in this manner in the near
future.

The common approach used today is to solve for the
mean flow field using the equationé which have been
averaged over a time which is long compared with the
turbulence but short when compared to that of the mean
flow. In this approach, the instantaneous values of
velocity U; and the pressufe P are separated into mean

(overbars) and fluctuating (lower case) quéntities

U,

1

-TU,+u; , P=P+p (3)

and the mean quantities are given by

—_ 1 t, - 1 k2
U, = U,dt , P= P dt 4
. t,-t, e, + , t,-t, Jey ‘ (4)
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Carrying out the averaging procedure leads to the
following equations, where the overbars have been
drobped for efficiency, except where averages of
products of fluctuating terms are needed for clarity.

Continuity Equation:

oU;
5 = (5)
Momentum Equations:
ou; ou; 1 9P a (, 9U; :
Bt U, T Pk T ax | ox, “i“j) ()

These time averaged Navier-Stokes equations are
often called the Reynolds averaged equations after their
original developer, Osborne Reynolds, and they govern

the mean flow quantities U; and P. The time averaging

has led to new terms u;uy, in the momentum equations

which, when multiplied by p, are interpreted as stresses
associated with the turbulent motion. These turbulent
stress components are frequently many orders of
magnitude larger than the viscous stresses found in fhe
term containing v. These new terms must now be modeled
or described in terms of the mean flow variables in
order to create a closed.set of equatiﬁns.'

Existing turbulence models which approximate these
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terms range from simple models based on Prandtl's’
.mixing-length hypothesis (Schlichting, 1979) to those
that use differential fransport equations for the
individual turbulent stresses and fluxes. Extensive
reviews of the various models can be found in Rodi
(1982) and Lakshminarayana (1986).

| The simple models based on the Prandtl mixing-
length hypothesis suffer from several‘drawbacks. One
primary failing is that the hypothesis implies that the
turbulence is in ‘local equilibrium, consequently the
model is unable to account for the transport aﬂd history
effécts of turbulence. This leads to incorrectly '
predicting zero turbulence in flow.regions of uniform
mean velocity where the velocity gradient is zero.
Examples of this problem include the prediction of zero
turbulence in both the center of a pipe and in the flow
behind a uniform grid (qui, 1980). It is alsé worth
noting that since it is difficult to prescribe the
mixing-length distribution in any but the simplest
flows, these models are hot'applicable to more complex,
separating flows.

Efforts to develqp a more universal turbulence

model has led to what is known as the k-¢ model of Jones
and Launder (1972) . This is a two-equation model which

uses two partial differential transport equations to
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describe evolution of the turbulent kinetic energy k,
and the dissipation rate €, of the turbulent kinetic
energy. The turbulent kinetic energy k, where k is

defined to be

Ui

k= 2 Tg; - 5 (w2057 (7
and a length scale L, which describes the charécteristic
size of large eddies producing turbulent stresses, are
frequently viewed as the primary parameters which allow
description of turbulent flows. Since the rate of |
dissipation €.is proportional to k*2/L (kodi, 1980), a
description of the variation of k and € will allow a%
indirect description of the characteristic turbulent
length scale.

Inklaminar flows the viscous stresses are
proportional to the mean velocity gradients; with the

kinematic viscosity v of the fluid serving as the

proportionality constant. To develop the k-¢ model the

turbulent stresses u;u; are first assumed to be related

to the mean velocity gradients by Boussinesq's eddy

viscosity hypothesis

- oU; oU; 2
- ——.1— —-l -— — 3
Uy = Ve (axj ' axi) ko

(8)
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where v, is the turbulent viscosity and 84; is the
Kronecker Delta function. Here the turbulent viscosity

is a property of the flow rather than the fluid, and

174
t
it may vary greatly over the flow field. Equation 8

contains two new unknowns Ve

and the turbulent kinetic
energy k. Since it is difficult to derive an expression

directly for v,, it was reasoned, by dimensional

1 &4

analysis, that v,  is proportional to k%/e¢ where € is the

t
dissipation rate of k (Jones and Launder, 1972). Thus

it is assumed that

V= C, — “(9)

where C, is a constant. At this stage the problem has
‘been shifted from describing the Reynolds stresses, to

describing the distribution of k and €.

An exact equation for the Reynolds stresses u,u;

can be derived from tﬁe Navier-Stokes equations. To do
this, the time averaged momentum equations (Equation 6)
are subtracted from the time debendent Navier-Stokes
equations (Equation 2) for both velocity components i
and j. The equafion for u, is‘then multiplied by u; and
the equation for uj‘by u,, and the two resulting
equations are added. Time averaging this lasf eéuation,

and assuming the viscous diffusion term is negligible in
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high Reynolds number flows, yields (Hinze, 1975),

ot T 17 ax, " 3x, (2ru545) - ol ox, T 9x;
(10)
ou. aU; du; Jdu, du; du
- Tl ——2 o, i 3 P 1 il - g4 9%
Mt gy, T Wiy, T p( dx; ! axi) 2v ox; 0x,

When these three equations for the three normal
stresses (i=j=1,2,3) are summed, an exact equation for
the turbulent kinetic energy is obtained (Rodi, 1934),

3k 3k _ _ 3 uu; pl| U,
ot " Ui ox; axi[”i( 2 p)) %1% Tk,

J

(11)

In this equation the rate of change of k is balanced by
convective transport due to the mean flow, diffusive
transport due to velocity and pressure fluctuations,
production of turbulent kinetic energy due to the
combihation of Reynoids stresses and mean velocity
gradients, and dissipation of k by the transfer of
kinetic energy inté heat.

For this k equation to be applied to the momentum
equatioﬁs, the additional unknown terms in this‘equétion
must be modeled. Applying.the Boussinesq eddy viscosity

hypothesis, the term describing the production of k due
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to the interaction of Reynolds stresses and velocity

shear becomes

au; (aU- ou,\ aU;
S Uy = Ve |t j) : (12)
1 ox; 0x ox; | 0x;
The diffusive transport term is modeled as
- (u(ﬂ’_ﬁﬁ)] _ Ve (13)
i| == .
2 p o, Ox;

where o, is a constant. The last term describes the
product of the molecular kinematiclviscosity and the
fluctuating vorticity, or the rate of viscous
dissipatioﬁ of energy ¢,

Ju, du,
u; ou;

1

0x; 8x3

v - € Lo (14)
The final, most common form of the turbulent

kinetic energy transport equation is

ok ok o (Ve ok ou; , 0U;) 9U; _ 15
ot (ak axi)+v°(6xj+8xi 0x; ¢ (%)

U -
gt 1ox; | oxg
(1) (ii) (iii) (iv) (V)
where term (i)"fepresents the rate of change of k, term

(ii) describes convective transport of k, term (iii) is

the diffusive transport, term (iv) describes the
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production of k through shear, and tefm (v) is the rate
of viscéus dissipation. | |
An exact transport equation for € can also be.
derived from the Navier-Stokes equations for high

Reynolds number flows (Hanjalic and Launder, 1972),

Be , gy O 2v(auj u; | 9 aul) au,
(16)

7 \2
auj ou; du; _ oy? Pu; 9 ==
6xi 0x, axi 0x;0x,

where €' describes the fluctuating dissipation rate.
Again theré have been new terms introduced which must be
modeled in order to obtaln a closed set of equatlons
(Hanjalic and.Launder, 1972). The first term on the
right is a generation term which is modeled as

_ du; OJu; du; du;| _ v, (0U; ou; (17)
2V axl axl * ox; 8x3) caee_——(?ar " ox,

where ¢, is a modeling constant. The second and third

terms are modeled together in the form

ou; ou; ou; +2v2( Pu; ) P (18)
k

axl axl ax
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where c,, is a constant. The fourth term describes the

diffusion of € due to velocity fluctuations and becomes

g - Ve Oe 19
. Oc a,x.i ( )

where o, is a constant. The most common form of the

modeled € equation is

3 de _ 3 (Ve e
e U ox; axi('oe axi)
(20)
v t an an an _ €2
* Clee—?(axj * ox, ax; Cee g

where each term has a meaning similar to those found in
the k equation.

In engineering applicaéions the empirical constants
most frequently used in these equations are: C,

=1.92, o, = 1.0, o, = 1.3 (Launder and
k €

= 0.09,

¢ 2¢

e = 1.44, C

Spalding, 1974). These constants have been found to
successfully predict mean flow characteristics for ‘a
large variety of flows including flows having a'free
surface and those in&olving recirculation. Over the
past 15 years the k-¢ mbdel has been tested extensively
and has. found success for a variety of different flowé(
including free shear flows, wall boundary layers, flows
involving recirculation, and duct flows (Rodi, 1982).

Hanjalic and Launder (1980)  proposed that an
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additional term be added to increase the rate of
irrotational deformations in promoting turbulent energy
transfer. Rodi (1985) developed a buoyancy-extended k-e¢
model which is used to model horizontal shear layers
with stable stratification. This paper is essentially a
simplification of the transport equation model of Gibson
and Launder (1978).

A further step in turbulence model complexity is
the second-order closure schemes which employ fransport
equations to describe the individual stresses and
fluxes. This eliminates the assumption of local
isotropy found in the k-e¢ model. Although these models
contain fewer assumptions and are much more general than
the simpler models, they also contain additional terms
which must be modeled based on approximations and
assumptions of flow properties, some of which are still
unable to be measured. In addition, the large number of
partial differential equations involved make these
models computationally cumbersome. At this stage, these
very comblex models are considered to be subjects of
turbulence research and are not sufficiently refined for
application to practical problems. The stress and flux
transport equations can be reduced, however, to
algebraic equations which still maintain many of the

important characteristics of the more complex equations.
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These algebraic equations are then combined with the k
and € equations to simulate thé turbulent stresses
(Lakshminarayana, 1986). |

A completely different approach is called large
eddy simuiation. In this scheme the large scale
turbulence, which is responsible for the majority of the
flow-behavior, is simulated numerically while a model is
used to describe the small scale turbulence structure |
(Peyret and Taylor, 1983). This computationally tedious
method also shows much prpmise but is stillnlargely in

its developmental stages.

Turbulence Modeling for Two-Phase Flows

As early as 1945 résearch showed that adding a
dilute suspension of particles to a turbulent fluid
increases the flow rate under a given pressure gradient
(Sproull, 1961).' Hetsroni and Sokolov (1971) concluded
that the particles suppress the turbulence in the
dissipation rahge of small eddies and that the process
is dependent upon both particle‘size and concentration.
Moderrass et al. (1984) showed that, depending on
particle léading, the turbulent kinetic energy can be
reduced as much as 50 percent, theréby ihcreasing thé
carrier fluid velocity. This process is again

attributed to a decrease in turbulence dissipation
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resulting from particle-fluid interaction.

Two common approaches are taken to describe fluid-
particle flows, the trajectory approach and the two-
fluid approach. In the trajectory approach the
- turbulent flow field is first calculated assuming single
phase flow. Then particle velocities and trajectories
are calculated using the single-phase flow field. A
major shortcoming of this is the assumption that the
presence of particles does not influencé the motion of
the fluid. This results in what is known as a one-way
coupling of the phases. This method can be extended by
recalculating the flow field with the inclusion of the
calculated particle behavior. The particle trajectories
are again calculated based on the flow field and this
process is‘repeated until the flow field does not change
with subsequent iterations. 1In this manner the
trajectory approach is able to include the two-way
coupling which commonly characterizes two-phase flows
(érowe, 1982). Two-way coupling is also included when
using the two-fluid approach. This approach regards the
fluid and particulate phases as two interacting fluids
which are governed by their own mass balance and
momentum balance equations. |

In this study the author will consider only dilute

particle suspensions where the particulate phase volume

P
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fraction is small (of order 1073), and particle to
particle interactions can be considered negligible. For
this case, the governing equations of motion can be
described as taking the same férm as the previously
introducéd Navier-Stokes and Reynolds averaded
equations, where an additional source term F, has been
added to the right'side~of the momentum equations to
account for the force exerted upon the fluid by the
particles (Marble, 1970);

Two-phase turbulence closure modeling is a
relatively new field of study. Danon et al. (1977)
proposed a one—equafion, one-way coupled model for a
very lightly loaded flow. Melville and Bray (1979)
produced an algebraic model based on the Prandtl mixing-
length hypothesis for moderately loaded jets. Genchev
and Karpunov (1980) developed a mixing-length model
which includes an extra term which takes into account
the particle influence on turbulent motion. Their
results ére not compared to experimental data.
Elghobashi and Abou-Arab (1983) presented a complex,
two-equation closure scheme for two-phase flows which
attémpts to resolve some of the weaknesses of the
schemes of Danon et al. and Genchev and Karpunov.
Decker énd.Brown (1985) modeled the turbulent

fluctuations of the particulate phase based on the
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mixing-length hypothesis and applied it to a one-way
coupled mixture of air and snow.

One of the mosf advanced and extensively tested
modeling efforts has been that of Chen (1983) and Chen
and Wood (1984; 1985). It is assumed that the
pafticulate phase volume fraction is much less than
unity and made up of spherical particles of uniform
size.

Their model is based on the twq-equation k-¢€
turbulence model described previously. Here an
additional term, which results from including a
particle-fluid interaction force, is added to each of
the k and € turbulence equations. It is assumed that.
the particles follow the mean floﬁ, but that on the high
frequency turbulent fluctuation level, the particles do
not exactly follow the fluia and the resulting slip is a
hydrodynamic drag force F, which can be described by

Stokes law and takes~the‘form,

F, - _&M - (21)

t*

where U, and Vi'represent the fluid and particle
velocities, respectively. Po is the particulate phase
density, and t" = d% /18u is the characteristic response

time of the particles; d is the particle diameter, ,  is
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the density of the solid particulate material, and p is
the fluid viscosity. This approach appears to be valid
for the dilute mixture considered here. Experimental
data by Popper et al. (1974) and Yuu et al. (1978)
suggest that, to a first approximation, we can assume
that the particles follow the mean motion but not
necessarily the turbulent fluctuations.

A derivation of the turbulence kinetic énergy
equation with the inclusion of the Stokes drag force in
the momentum equations produces an additional term in
the k equation which takes the form (Chen and Wood,
1984), |

Pp ('uiVi ~ uiui) . (22).
Pt

where v, is the fluctuating particulate velocity. This
new term represents additional dissipation resulting
from particle slip at the turbulent fluctuation level.

This term is modeled by letting

e

- (ugvy - uzuy) = Zk(l _eXP(_Bk it::* )) (23)

where t, = 0.165 k/€, and B, is a constant set equal to
0.0825 (Chen and Wood, 1985).
'The dissipation rate equation for ¢ will also have

an additional term
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2 Ppl, 04 9vy Ouy (24)
E* P 8x3 8x3 8x3
which is modeled as
(B (E T o)) e
x; | 0x; 0%y A
where 7 = (Q/e)V2 is the Kolmogorov time scale

fréquently used to describe high freqﬁency eddies’ and B,
is a modeling‘constant;

These modeled terms, when added to-the right side
of the appropriate k“and € equations, produce a@ditional
dissipation which redﬁCe turbulent velocity 
fluctuations.

Since the two additional particulate terms depend
on the dimensionless particulate phase loading‘pp/p, an
additional transporf equation must be solved to
deterﬁine the particle concentration field. This
equation accounts for particulate mass cdnservation and

takes the following form (Rodi, 1984),

Wy w9 (Ve ow 26
at * Y1 ax, axi(otaxi) - (28)
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where the particulate concentration W= pp/p, and o, is
the turbulent Schmidt number = 0.5 for planar flows

(Reynolds, 1976).

Saltation Modeling

SaltatioQ is a process in which snow particles are
transported close to the ground, undergoing repeated
impacts Qith the snow covered surface. Initially loose
snow particles are entrained into the air stream by the
wind. After having gained momentum from the wind they
fall back to the ground‘to strike other snow particles
on the snow covered surface. Most of the time the
impacting particle reboﬁnds'from the surface and is
accelerated by the w1nd before it again falls to the
ground. Since the 1mpact with the surface is 1nelastlc,
fhe rebound veloc;ty is necessarily less than . the impact
velocity. Since the surface is rough, on a scale
comparable .to the particle size, the impacting particle
rebounds at an angle different than the impact angle.

In order to sustain saltation, the average vertical

- rebound velocity must equal the incident vertical
velocity. If it is less, the vertical velocity will die
out after several impacts and the particle will cease to
saltete. During impact a particle ﬁey also dislodge

additional snow particles from the snow surface. While

i
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some of these particles may then join the saltation
process, others may roll or bounce over short distances
to form a layer of reptating‘particles. As more'
particles are added to the airstream, the speed of the
wind in the saltating laYer is reduced. This reduces
the impact velocity of the saltating particles which in
turn decreases the average vertical rebound velocity.
In addition, as the impact velocity decreases, the
effectiveness of an impacting particle at ejecting more
particles into the flow decreases. Thus, snow particles
begin to settle out,of the saltating layer. As the
particles start to settle out,'fhe wind deceleration is
reversed, allowing more particles to be entrained. -2An
equilibriuﬁ is eventually reached for a given free
stream airflow, and only a certain number of particles
are maintained in the saltatlng layer. |

Measurements above a horizontal surface show a very
rapid decrease in mass flux with helght through the
saltation layer. 1In fact, Kind (1981),'u51ng data
provided by Oura (1967) and Kobayashi (1972), reported
that approximately 99 percent of the total saltating
mass flux is contained within the firsf 3 cm above the
surface.

The presence of saltation is depeﬁdent upon the

relative magnitudes of the shear strength of the snow
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surfaée and the shear stress at the surface produced by
the wind above. In order for snow particles to begin to
move, some threshold shear stress must be exceeded.
This threshold value ié dependent. upon such factors as
temperature, grain size, extent of grain bonding, and
surface hardness. Kind (1981) lists experimental
studies which have found threshold shear velocity values
ranging from 0.1 m/s for light dry snow, to 0.4 m/s for
old hardened snow.

One'saltatign model which has . found considérable
favor in the literature was developed by Iversen et al.
(1975) based én similitude arguménts. Schmidt (1982a)
has shown this modei to‘Successfully reproduce field

data collected by several researchers. The model takes

.the form

0, - C(-g)( gst) U2 (U, - Uy,) ' | (27)
where Q. is the total mass transport rate per unit
lateral dimension with units of kg/(m s), p is the fluid
density, g is the gravitational acceleration, V, is fhe
settling velocity of a snow pariicle, U, is the friction
or shear velocity, Uﬁ.is theuthreshold shear velocity,
and C is a constant set equal to 1.0.

Since the majorify of the mass flux is confined to
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the area very near the ground, -and a computation of the
turbulent flow field above the surface Qill provide
values of the surfaée shear velocity,'the conputed upper
flow field willibe used to drive the saltation model.
Here the turbulent layer's sole pﬁrpose.is to drive the
‘saltétion'model which is responsible for thebgreatest
contribution of.sﬁow transport.

As presented, the coupling between the turbulent.
and séltation layers has been assumed passive or one-
'way; i.e., the presence or lack of saltation does not
affect the solution of the turbulent flow field.
Initially, it appears‘that the two-way coupling which
occuré in the natural system is only a secondary
process. Consequently, the ohe-way coupling
apﬁroximation,will be assumed valid.

The saltation model provides fhe vertically.
integrated rate of snow'tranéport, Q. (%), within that
layer. Knowledge of the particulate concentration and
velocity fields allow computation of the vertically
integrated rate of snow transport within the turbulent

flow layer, Q,(x), where

0.(x) - f Ulx,z) wi(x,z) dz (28)
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Changes in the bed surface level (snow accumulation
or drift formation) result frém changes in Q, And Q,
with %. This change in surface level is described by
the vertically integrated mass continuity equation,

oh . 1 '3 o
-a—E +, p—bg (Qt + Qs) 0 . (29)

where h is the surface level with respect to a
horizontal datum, t = time, and p, is the bulk density
of snow. The accumulation of mass, and subsequent new

boundary configuration, necessitates a recomputation of

the turbulent flow: field.
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CHAPTER 4

TWO-PHASE TURBﬁLENT FLOW MODEL FOR BLOWING SNOW

Governing Equations

In the previous chapter the ground work was set for
developing a model for application to blowing and
drifting snow. As a rigorous test case for the model

the flow over a, two-dimensional obstruction, such as an

“infinitely long solid wall 2 meters high and aligned

perpendicular to the wind direction, will be considered

(Figure 1). Developing the governing equations for this

problem will begin with the Reynolds averaged equations.

Since the flow of interest will contain significant

.zones of recirculation, boundary layer approximations

will not apply and the Reynolds equations must be solved
in their full form. In addition to the two-dimensional
restriction, only steady state flows will be considered.
As such, the previously introduced Reynolds equations
and the k and € turbulence model equations will apply
with the neglect of the appropriate terms. Also, as

noted previously, since the kinematic viscosity v is




Figure 1. Computational domain boundary configuration.
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‘typically several orders of magnitude smaller than the
turbulent viscosity v,, the term cohtaining v in the
time averaged momentum equafiqns (Equation 6), will be
neglected. ‘
To establish the exact form that the momeﬁtum

equations will take, Equation 8 must be introduced into

Equation 6 to eliminate the u;u; term. When doing this

it is noted that the Kronecker Delta term in Equation 8
is a pressure-like'term which can be.absorbed into the
momentum equation préssure term. The diffusion terms in

the momentum equations now take the form
_i_'(vc(.?ﬂ N _‘?ﬂ)) "~ (30)
0x ox;  0x;)) -

This can be expanded for the dimensions x and z,
respectively, in the horizontal and vertical directions.
By applying the continuity equation (Eqﬁation 5) and the
propertyvthat in a discrete differencé”scheme products

aré‘interchangeable, the term becomes

—aa;(vc%)+%(vt-g-g) | (31)
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for the x momentum equation with velocity U. A similar
term is found for the z momentum equation with velocity
V. Combining this information and expaﬁding the other
indexed terms in the continuity equation and momentum
equations leads to three of the eqﬁations compriéing the
turbulent flow model. They will be listed with the
other equations at the end of this chapter.

The k and € equations include a production term,

resulting from shear, of the form

(32)

(ou, | 9U;\ 9u;
ox;  0x;) 9x;

When this is expanded in a manner similar to the term in

the momentum equation, this term becomes
ou ov\2
- - 2L 33
(32 ~ ) (33)
Together'the k and € equations contain five

modeliné constants, c¢

1 Cier Cper Oy and o, which must be

determined before the equations can be solved (Launder
and Spaldiﬁg, 1974). Values.for these constants were
listed in fhe previous chapter. How the constants were
obtained is discussed by Rodi- (1984). The value of c,,
was computed based on measurements of the‘decaf rate of
k behind gfids. Values for the diffusion constants o,

and o, were obtained by a computer. optimization
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procedure which involved applying the model to sevefal
laboratory shear flows aﬁd adjusting the constants to
achieve the best overall fit with experimental results.
The final two constants, c, and c¢,,, are evaluated by
considering local equilibrium shear layers occurring
near a wall. For atmospheric flows, as opposed to
~engineering or hydraulic flows, the values of ¢, = 0.03
and ¢,, = 1.16 have been suggested in the literature
(Sutton et al., 1986). Since these constants agree well
with atmospheric measurements (Lumley and Panofsky,
1964; Frost et al., 1975), I will adopt these
atmospheric values.

The exact form of the particulate source terms in
the k aﬁd € equations must also be determined. To do
thié, representative afmospheric profiles of velocity,
turbulent kinetic energy, and diésipation rate must be
established. |

A wide range of experimental and theoretical
studies have shown ﬁhat wind profiles within a surface
layef of nearly hydroétatically neutral stratification
can be closely approximatéd by a logarithmic equation.

This is commonly expressed in the form (Holton, 1979),

- ln(—z—) (34)

K Z,
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where U, is the shegr velocity, z is the height above
the surface, z, is the roughness length which is
dependent upon the roughness,of the:surface, and « = 0.4
is von Karman's constant. A roughness length of 2z, =
0.1 cm will be used as a representative value for snow
Hsuffaces_(Sorbjan, 1989). |

In a homogeneous, déutrally stratified boundary
layer the rate of dissipatioh above the visqous sublayer
is given by

3
e = O (35)
KZ

(Panofsky and Dutton, 1984;'Sorbjan, 1989). This is
'alsd consistent with expefimental data (Wyngaard and
Cote, 1971). Frost et al. (1975) provided atmosphefic
profiles of turbulent kinetic energy k for the same

conditions,

k- = (36)

This agrees with field measurements by Lumley and
Panofsky (1964). These profiles of U, k, and evgiven by
"Equations 34, 35, and 36 can all be computed upon |
choosing an appropriate value for U at a spécified
height z. For reference, in mid-latitude regions,

typical windspeeds experienced during snow transport
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events fall in the range 10 to 15 m/s,measured'at a
height of 10 m (Kind, 1981). .
.The form that the ﬁarticulate source terms in the‘k
and € equations take is stronglf dependent uﬁon the

relative magnitudes of time scales t*, t_, and 7. To

e’
compute t* for a spherical ice grain in air, note that
p, = 910 kg/m’, v = 13.3e-6 m’/s, and p’= 1.29 kg/m® for .
a pressure of one atmosphere and temperature of 0° C.
Applying a typical wind velocity of 10 m/s at 10 m, and
computing the values of theée time scales shows that for
snow pafticles having diameters d > 0.5 mm, t* >> 7.
This analysis also shows that t° and t, are of the same
order of magnitudé for this particle size range, and
that only when d € 0.1 mm is t" << t,. The implication
"of these results is that,‘for'this study, a restriction
of d 2 0.5 mm alléws the neglecting of the exponential
term in the € equétioﬁ particulate source term (Equation
25), while the k equation particulate source term
(Equation 23) must be ﬁsed in its full form.
‘The partiqle concentratioﬁ equation (Equation 26)

is valid as stated with fhe exception that a constanf
particle settling velocity V, will be added to the
vertical convection term. Here the author has assumed

that the particle'concentration field is convected

downward at a velocity additional to the vertical
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velocity of the fluid. A sufvey of published data
suggests that Vv, = 0.75 m/s is a representative still
air fall velocity for snow particleé of inferest inAthiS'

study (Mellor, 1965; Kind, 1981; Schmidt,  1982a).

Boundary Conditions

To sol?e the governing equations, boundary
éonditions must be applied at all boundaries of the
computational domain for all the dependent variables.
For this pfoblem cﬁnditions U, V, P, k, €, and w must
all 5e specified in some. form. A representative flow
démain is depicted in Figufe 1. The flow domain
contains an unrestricted inflow, outflow, and top
boundary as well as a solid lower boundary composed of
‘horizohtal suffaces and vertical walls. ' The appropriate
boundary conditions are defined as follows.

| Inflow boundary: '
v=2~0 .
U is given by Equation 34

EH_L = 0 for P

on

k is given by Equation 36
¢ is given by Equation 35

w is set equal to a constant, 0 < w £ 1.0
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Upper boundary:

a .
—éHL =0 for U, V, P, k, and €

w is set equal to a constant, 0 < w < 1.0
Ooutflow boundary:
o0) O foru, VvV, P, k, €, and w
an [ [ 14 ’ ’

Horizontal surfaces:

U

logarithmic
V=20
k and € are functions of the surface shear

stress through the friction velocity:U*

o()

——— - 6 for P and w
don

Vertical surfaces:

Uu=o0
V=0
a .
én) = 0 for P, Kk, and €
w=20

where n is the direction perpendicular to the boundary.
The horizontal and vertical surface type boundary
conditions warrant .additional discussion. The pressure '

boundary conditidn will bé discussed in Chapter 5. 1In
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developing the turbulence equations, the laminar flow
within thé‘viscous sublayer near a wall has been
neglected. Turbulence models have been developed which
account fof these effects, but since the gradients
encountered in the neér-wall region are typically very
steep, and consequently computationally expensive to
resolve, these'modeis are not commonly used. A far more
common scheme is to choose a computational domain which
is slightly removed from the solid boundary and apply
semi—empifi¢a1 wall functions to the gap bétwegn the
solid bouﬁdary and computational boundary.

The logarithmic profile given by Equation 34 is
used in this study for the U velocity boundary condition
on all horizontal surfaces including the top of the
wallgl U is set to zero on vertical walls. The V
component of velocity, which is perpendicular to
horizontal surfaces, is set equal to zero, and
considered negligibly small on vertical surfaces. - To
apply the log-wall boundary condifion, a profile given
by Equation 34 is aésumed to exist between the solid
surface at z = 0.0, a grid point on thé computational
domain boundary at z = z,, and the first interior grid
point at z = z,. The resulting two equations for U, and
' U, can be equated’ through their common U, and solved to

yield a boundary condition of the form




v, ' - (37)

The bbundary conditions for k and € are alsd
related to the friction or shear velocity U, and are
giyen by Equations 36 and 35, respectively, where z in
the € equation is now given by z = z,. These boundary
conditions can also be obtained by noting that in the .
region near the wall the Reynolds stresses are nearly
constant (Rodi, 1984).' Here convection and diffusion is
small and the production due to shear and viscous
dissipation terms are balanced.

For the particle concentration equation the
horizontal surface boundary condition can be obtained by
applying the concentration equation at that surface.
Since the only aiffusion influence present there is due
to the viscosity of the fiuid, and the only convective
component existing is due to the particle settling
velocity,'the equation reduces to the boundary condition
stated above. For the case of veftical surfaces, since
both convective and diffusive processes are negligible
or.noneQistent there, the concentration there cannot

rise above zero.
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Model Summary

Combining the above information yields the coupled,
highly non-llnear system of equations which models the
steady state, two-phase, two-d1mens1onal turbulent flow
field. The system of equatlons is found in Flgure 2,

Application of this model is restricted to
particulate volume fractions ¢ = 'pp/ps of order JLO'3 or
less. Since the solid material density of an ice grain
Cpg = 910 kg/nF, the particulate phase density cannot be
greater than order 1. With a fluid phase density p =
1.29 kg/m®, this corresponds to the restriction that the
particulate concentretion W = pp/p must be of order < 1.
This criterion is easily met in both blowing snow and
precipitating snow storms. For example, consider a snow
storm with a moderate to high snow accumulation rate of
2 cm/hr, a snow settlihg velocity of 0.75 m/s, and a
snow accumulation density of 200 kg/m’. Here w = pp/p =
0.001, which is still three orders of magnitude less
than required by the above restriction. In the'case of
blowing and drifting snow, Budd et al. (1966) showed the.
criterion to be satlsfled above 1 cm in the saltation
layer. Also, extrapolatlon of data presented by Schmidt

(1982b) suggests similar results.
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Figure 2. The system of partialldifferential equations
which models the steady state, two-phase,
two-dimensional turbulent flow field.
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CHAPTER 5

COMPUTATIONAL APPROACH TO MODEL SOLUTION

The six equation model presented in Figure 2

represents an imposing system of coupled partial

differential equations. Any solution of the full steady

or unsteady Navier-Stokes equations which 1ncludes a

turbulence model is a formidable task as. 111ustrated by

the follow1ng quote taken from ASCE (1988):

The development of such a code is typically
the result of teamwork by research groups at
universities, specialized laboratories or
institutes. A typical team working on the
development of a turbulence model-based code
may consist of two or more senior researchers,
two or more junior researchers, and often

- graduate students.... The duration of a code
development project may be from two to four
years.,

In light of this, an existing algorithm was implemented

and modified to fit the requirements of this particular

problem.

The SIMPLER finite control volume a1gor1thm

-descrlbed by Patankar (1980) was used to solve the

continuity, x and z momentum, k and € turbulence, and

perticle concentration equations. Since the details of
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Patankar's computational scheme is well documented in
his 1980 béok, only a broad outline of the method will
be presented here. 1In addition, problem specific
modifications and implementations will be discussed.

The SIMPLER acronym stands for Semi-Implicit Method
for Pressure-Linked Equations, Révised. The term semi-
implicit refers to the method by which é pressure
correction is related to a correction of the velocity as
the soiution progresses; In the Navier;stokes
equations, if the correct pressure field is given, then
solving.the momentum equations will lead to velocities
which satisfy the continuity equation. Since the
continuity equation is directly related to the pressure,
it can be feformul#ted into a Poissoﬁ equation for
pressure. The goal of the numérical.schemé is to
iteratively correct a guessed veioqity field in order to
produce a preséure field which is compatible with
continuity. SIMPLER can.ﬁe thought of as an iterative,
pseudo time dependent formulation in.which the
discretized equations are marched from an initial
condition, to the steady étate solution. To ensure that
the discretized equatiéns are linear‘during the current
iteration, some of the coefficients are evaluated at the

previous iteration level. For this specific application

the ‘algorithm consists of the following sequence of




steps:

1)

2)

3)

4)

5)

6)

7)

8)

9)
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Provide initial guesses for the U, V, k, e,
and w fields.

Compute a psﬁedo velocity from the momentum
equations in the absence of the pressure
tefms.

Solve a pressure equation for the pressuré

field.

‘Using this pressure field, solve the momentum

equations for the velocity.

Solve a pressure-correction equation.

Use this'pressure—correction information to
update the velocities.

Solve the k and € equations using these new
velocities. |

Solve the concentration w equation using the

‘new values for k and €.

Return to step 2.

SIMPLER and related échemes have been widely tested and

are a commonly used approach for solving incompressible

viscous flow problems (Fletcher, 1988).

SIMPLER is a second order implicit formulation

which is based on the concept of the control volume.

The computational domain is divided into a series of

control volumes, each of which encloses a grid point.
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The‘differential equation is then integrated over each
control voiume. This produces the desiréblé
characteristic of coarse gfids yielding solutions which
represent exact integ;al balances. fhe grid spacing can ..
be nonuniform in both the x and z directions. This |
allows effiéient use of computing energy by'enabiing the
user to define course gridé in regions where the
gfadients of the dependent variables are sméll.

Patankar (1978) introduced a harmonic meén approach
to describe the value of the diffusion coefficient
(viscosity) at control volume interfaces, based on
diffusion coefficient values at the main grid points
(control volume centers). This approach, as opposed to
using the arithmetic mean, correctly deals with large
step changes in the diffusion coefficient from one
control volume to anothér. As én example application, a
very largé viscous coefficient can be used to force the
velocity within a control volume to zero. The use of
the harmonic mean ensures that neighboring control
volumes consider. the velocity throughout that control
volume be zero. Effectively the zero velocity has been
transferred from the main grid point to the control
volume wall. The use of the harmonic mean has been
implemented in SIMPLER, and the details are included in’

Patankar (1980).
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To assist in the accurate numerical solution of
convection dohinated flows, an additional feature of
SIMPLER is the use of a weighted upwinding scheme where
the degree of upwinding imposed at each'grid point
depends on the ratio of the strengths of convection to
diffusion. Applying central differences to convection
dominated convection-diffusion problems can lead to
physically unrealistic results. This can genérally be
‘attributed to the formation of negative coefficients
(Patankar, 1980). Although this can be remedied by
refining the grid spacing, it is much more desirable to
develop a scheme which produces'reasonable results using
course grids. General upwipding at all grid points
would be one solution to the problem, but in
applications containing some regions not dominated by
convection this would not be an acceptable practice.
Patankar's approach is to compute the relative
influences of convection and diffusion, and then weight
the degree of upwinding accordingly. An additional
concern which must be accounted for is that the scheme
must be able to identify which direction is upwind,
since in complex flows with flow reversals this may vary.

throughout the domain.
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Application to the Tugbulent Flow Model °

To bring the model and assdciated boundary
conditions to solution, several pfoblem specific factors
must be addressed. In this section such concerns as
.source term linearization, gnderrelaxation of the
solution evolution, and declaring convergence will be
aiscusséd. |

Implementation of the SIMPLER algorithm ieads to a
fully implicit system of linear algebraic equations for
each discretized partial differential equation solved.
Since two-dimensional probiems lead to sparse syétems
coﬁtaining five diagonal sequences of .coefficients, |
considerable computer storage can be consumed by
nonessential zeros in thé systems'of equations if they
are stored in standard matrix form. To alleviate this
problem a sparse storage scheme has been implemented
which stores only the neceséary coefficients and an
index value describing their original positions, for
each system of equations. Each of these systems is
solved during every global iteration cycle. The Thomas
algorithm (Andefson et al., 1984) is used to solve the
systens of‘equationsL ?his is a highly efficient direct
solver for tridiagonal éystems of equations found in

' one;dimensipnal problems. To -apply the Thomas algorithm
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to the two-dimensional problems of interest in this
study, a grid line is chosen in the x or z direction and
the dependent variable is assumed known, from their
latest values, at-the grid lines on either side. The
algorithm can theﬂ be used to solve for the dependent
Vafiables along that center line. In the solution
implementation this iterative, line-by-line method is
first used to s&eep through the domain in the x ana then
the z direction, completing one iteration. The
iterati&ns are‘repeaféd until the maximum absolute
difference between successive iterations is less than
some set tolerance. If the x direction'sweep'is made in
the direction of the main flow, a tolerance of 107 is
typically achieved in fewer than seven iterations for
all equations except the one for‘pressure.

Ferziger (1990) néted thatiit is typical for
incompressible viscous flow solution schemes to spend
the majority of tﬁeir éomputing time solving the
pressure equation. Since it is only the pressﬁre
differences which are meaningful in these applications,
not thehabsolute value of pressure, it is common to
apply a normal pressure derivative equal to zero
éondition to all flow domain boundaries. Thié implies
ﬁhat the pressure field and the pressure field plus any

arbitrary constant are satisfactory solutions to the
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pressure equation. In this case a direct solution
method would indicate a singular system of équations,
while an iterative method like the Thomas iine-by—line
méthod will‘actually converge to a pressure field which
marches by a constant at each subsequent iteration.

The nonlinear'source terms in the partiai
differential equations for k and € must be liﬁearized,
and this linearization must ensure that the dependent
variébles k and € are always positive. This positive
status is critical for both physical fealisﬁ and
numerical'stabiiity. To implement the 1inearization,
the source terms S are cast in the form |

S = S, + Sy (44)

where S  is the constant part of S, and S, is the
coefficient of the dependent Qariable ¢ Fér the case
wﬁere the dependent vafiable is not required to be
positive, the S, term must be negative or zero. Again
this is réquired for physical reality and computational
stability. Fof always positive.variables, a poéitive or
zero S, ié an additional requirement (Patankar, 1980).

To place S in this form, one desirable approach is
to expand nonlinear terms in a Taylor series about the
value of the dependent variable at the previous

iteration, and keep the first two terms. This leads to -
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the equation

S@) ~ 509 + @ - ¢9(53)°  (45)

where the superscript o indicates thé value at the
previous iteration. Another option which can be used
separately or in conjunctioﬁ.with the Taylor expansion
is to collect éll pésitive source terms and set them
equal to S_. Thén all negative source terms are divided
by the dependent variable ¢ at the previous iteration
and the result is set equai to s, noting that S, was
multiplied by ¢ in the formulation for S (Equation 44).
Implementing these two schemes leads to the

following'formulations for the source terms. For the k

equation,
. - K2 [QU _ Qv
Sex = %5 (52 ~ o)
(46)
B = o - 1— bl § I8 —
s - Efi-eefose g
and for the € equation,
ou _ 9v\? €?
See = GGk~ 5] * o F
- (47)
€ 2
S¢e=—2C2€?— w

t*
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where k and € in these equations are provided from £he
previous iteration. Here the terms in~£he~k eqﬁation
have been linearized using the second approach, and the
terms in the equation have been linearized by first
performing the Taylor expansion and then grouping the
positive andlneéativé terms.

Obtaining convefged solutions té,highly nonlinear
systems of equations such as the one in this study isi
frequently difficult. To help ensure convérgence of theb
global iterations, an underrelaxation scheme is -
implemented and appliéd to the velocities, k, é} and the
turbulent viscosity v,. Underrelaxation is a wéy to
slow the iterative evolution of the solutipn. For the
~case of the turbulent viscosity the underrelaxation

[y

‘formula is

Ve =0 Vegew * (1 - @) Vigig (48)

where 0 < & <1 is a relaxation faétor. Héré the old:
values of the turbulent viscosity are.advanced oniy a
fractioh of the amounf suggested by the latest computed
values. Although more épmplex, the uhderrélaxafion
scheme for the‘dependent variables is éimilar in form
(Pafaﬁkar, 1980) . Relaxation factors a = 0.5 for U and
V, and @ = 0.75 fof k, €, and v,, have been‘found to

ensure éonvérged solutions in the applications .of- this
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study.
. The itérative,hature of‘the solution method
requires that some kipd of convefgehce criterion be
satisfied. Computing the residual of the discretized
equation, and‘requiring‘its magnitude to be some‘smali
number, can be used to avoid the illusion of a‘converged
solgtion caused byﬂslowly evélVing,‘underrelaxed,
dépendent variables. In the SIMPLER algorithm the
residual of the continuity equation is computed as part
of ‘the iterative solution and is readily available to
serve as one indicator of convergence. A further
requirement of a converged solution is thaf it must be
invariant with further refinements of the grid. ‘fhe
solutions presented in the following chapters méet this
criterion.

| For the model application addressing~flow over a
solid.wali, the use of vefy large viscous coefficients
to block out the appropriate control volumes will be
used to form the wall. ' As discussed earlier, this
procedure places a zero boundary condition at the wall
of the control volume. While this is a reasonable
boundary condition for laminar flows, it was shown in
Chapter 4 that a logarithmic condition is more
appropriate for turbulent flows. Since the control

volume blocking scheme will eventually be used to build
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snowdrifts which may cover large portions of the lower
boundary, it is desirable to develop a system which can
apply the logarlthmlc condltlon to horizontal block
surfaces lying parallel to. the domlnant fluid flow
-direction.

In the control volume formulation the goefficients
in a system of'equations represent the convective and
diffusive processes occurring at control volume faces.
To illustrate the transfer of boundary conditions to
interior points.in the domain, considerlthe control
volume adjacent'fo the top of a wall which has been
formed using a large viscosity. The equation for that
control volume includeé itself and four neighbors with
their associated coefficients. if this was a control
volume lying on a boundary, the nelghbor correspondlng
to the boundary would be, dependlng on the solutlon
scheme, transferred to the right-hand‘side of the systeh
of equations and the appropriate boundary condition |
'impiemented. Thé same idea can be aﬁplied to the block
on top of the wall, but in this case, when the wall
neighbor term has beeh transferred to the right-hand
side, a zero has replaéed the original coefficient in
the main matrix. This has uncoupled the top Contfol
~volume in the wall, and conéequently the re§t of the

control volumes betwéen there and the main rectangular
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domain boundary, from the control volume on top of the
'wall.. Since the uncoupled control volumeé are part of.
~ the solid'wall, no change has been produced in them by
removing their influénce on thé wall tqb control volume.
The technique can also be used to apply nonzero boundary
conditions to the vertical sides of blocked control
leumes.

This method of applying boundary conditions to
blocked surfaées édjacent to the fluid provides a way to
realistically model many complex flows. It can only be
applied to blocked control voluﬁe groups which extend
continuously to the main domain boundary.

The SIMPLER algorithm and problem specific details
outlined above have been‘implemented to Qolve the two-
phase turbulent flow and snowdrift model. Ihe computer
program uses an efficient combination of the MATLAB
computing package énd the Fortran programming language;
where MATLAB provides a desirable user environment and
graphics capability, and Fortran’programs are called to
do the major numerical”computing.. The.colléctioh of
programs used to sblve.the model is found in the

Appendix.
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'CHAPTER 6
COMPUTATIONAL RESULTS AND DISCUSSION

In this chapter the two-dimensional computational
model will be verified by'compariSOn with the results of
two experimental, single-phase, turbulent flow studies;
The model will then be used to describe the flow field
surrounding a solid vertical wall, with and without the
presence of pafticles. The distribution of the |
particulate field will also be presenfed. Finally, the
flow field computation will be used to compute the
evolution and equilibrium configuration of the .

subsequent snowdrifts.

Comparison of Model and Experiment

Two experimental studies of atmospheric flow over a
long, thin solid fence will be used to verify the model
6utput. The first study was a'fuli—scale field
experiment (Jacobs{ 1984), while the second study was
conducted in an atmospheric wind tunnel (Perera, 1981).

In Jacobs' experiment, wind flow profiles were

measured at nine locations aiigned perpendicular to a
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thin solid fence of height h = 2 m, length 64 m, and
thickness 0.02 m. The surface cover consisted of mowed
heather with roughness length 0.035 m. Wind speeds were
measufed using cup anemometers.

Duplicating this experiment with the computational
_model, by providing the appropriate solid boundary
configuration and incoming velocity profile, produced
the flow fieid depicted in Figure 3. All major features
of the flow have been simulated. Jacobs found a
recirculation eddy at fhe front of the fence, starting
near the surface at about -0.5 h, where h is the.fence
height, and reattaching on the fence at a height between
0.5 h and 1.0 h. The model plaées the eddy at
-approximately =-0.7 h and 0.6 h for the surface and
fence, respectively. Wind tunnel experiments have shown
similar results with values of.-0.5 h and 0.6 h (Good.
and Joubert;‘1968). ﬁehind thé fence Jacobs found a
recirculation eddy which started at the top of the fence
and extended a distance of befween 5 h and 10 h to the
ground surface. The model has produced a reattachment
point a distance 4.75 h from the fence. Other field
visualization studies have shown reattachment points of
6 h for closed barriers (Ogawa and Dioéy, 1980) .

Figﬁre 4 show a comparisqn‘of the veldcity fields

measured by Jacobs and computed by the model. Displayed
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Figure 3.

Turbulent Flow Field
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Computational solution of Jacobs®™ (1984) two-
dimensional, Tfull-scale field experiment of
flow over a solid fence.



x/h =-3.0 x/h =-1.0

Figure 4. Comparison of the velocity-deficit fields
measured by Jacobs (1984) ( ), and computed
by the model (-).
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is the velocity deficit measﬁfed at locations . x/h =
-3.0, -1.0, 1.0, 3.0, 5.0, and 15.0, where the velocity
deficit is défihed as the iﬁcoming veiocity profile
minus the velocity profile at that location, divided by
fhe incoming velocity at fencé height h. Thus, the
velocity deficit is a nondimensional measure of the
reduction of velocity due to the presence of the
barrier. The model can be seen to give a represeﬁtative
depiction of the measured velocity field. TInaccuracies
in field measurement tgchniques and variations in such
features as surface roughness‘and.wind apprpach
direction do not warfant a more detailed analysis of the
depicted velocity differences. ‘

Perera's experiment was also a two-dimensional,

‘ thin fence study, but here fhe roughness length was
significantly smaller at 0.00036 m. Wind speeds were
measured in a wind funnel using pulsed-wire anemometers.
These anemometers, unlike cup ahd hot-wire anemometeré,
‘have the ability to-distinQuish.between positive and
negative difections of wind flow.

A computatibnal réproduqtibn of this studf is found
in Figure 5. Again all major features of the flow have
been reproduced. Note that the smaller roughness length
has served to extend the windward recircqlation éddy to

approximately. -1.0 h at the surface, and to extend the
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Turbulent Flow Field
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Figure 5. Computational solution of Pererals (1981)
two-dimensional wind tunnel experiment of
flow over a solid fence.



67
lee eddy to approximately 5.5 h. Figure 6 compares the
experimental and model velocity deficit at locations
x/h = -1.25, 0.625, 1.25, 2.5, 5.0, and 15.0 for
Pereré's study. ﬁodel output is seen to be

satisfactory.
Flow Over a Solid Wall

The two-dimensional flow over a vertical wall will
be used as a test case for computations ofnflowlfields,
particle concentration, and snow accumulation pattern
evolution.. Fof thié test case, the wall is 2 m high and
0.5 m thick. The incoming velocity profile is defined
by Equation 34 with a 10 m velocity‘of 10 m/s and a
roughness length of 0.001 m. The computational domain
is set 0.01 m above the ground surface. The
computational grid, Figure 7; used in the computations
contains 26 contfol volumes in the x direction and 14 in
the z direction for a total of 564 grid points. When
viewing this plot note that the aspect rafio is far from
unity. fhe flow field for this configuration is given
in Figure 8 for the case where the particle
concentration w'is zéro.

In a precipitating snow stornm, particle
concentration w will be greater.than zero. As noted iﬁ

Chapter 4; a moderate to high snow accumulation rate of




x/h =-125 x/h = .625

x/h =125 x/h =25

x/h =5.0 x/h = 15.0
Velocity-Deficit: inflow

Figure 6. Comparison of the velocity-deficit fields
measured by Perera (1981) ( ), and computed
by the model ().
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Turbulent Flow Field

Distance (x/h)

Figure 7. Computational grid used in test case problem
considering flow over a solid wall 2 m high
and 0.5 m thick.
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Turbulent Flow Field

Distance (x/h)

Figure 8. Computed flow Ffield for the test case problem
of single-phase, turbulent flow over a solid
wall.
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2 cm/hr corresponds to a cbncentration of w = 0.001.
When this representative concentration is included in
the model no chaﬁge in the flow field is computed. At
the inflow boundary, the two negative source ferﬁs in
~each of the k and € équations are of the same magnitude‘
and follow similar pfofiles if.w at that boundary is set
equal to unity. In this case the dissipation has been
-roughly doubled due to the presence of particles. If w
is decreased by a factor 6f one-tenth, to 0.1, the
increase in dissipation is proportionately less. This
anaiysis suggests that particle concentrations of w =
0.01 will modify the values of k and € less than a few
percent. Consequently, the model indicates that snow
particle concentrations found in the natural system can
be considered passive and do not modify the structure of
the flow field.

While the modei‘shows the presence of particles is
of negligible‘iﬁporfande'in the prediction of wind
tranéported snows, otheridisciplines contain flows with
high enough concentrations to warrant further
investigation into the influence of these additional
dissipation térms. Examples of two-phase flows include
sedimen; transport in irrigation and'navigatidn canals,
rivers, estﬁaries,‘coastal waters, reservoirs, and

sedimentation basins; heavier-than-air gas and
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particulate dispersion such as pollutant dispersion from
a smoke stack and pollutant flow into a river or lake;
caal slurry transpoft_in pipés: biood flow; and a wide
variety of combustion processes rahging from pulverized
coal combustion to rocket exhaust plumés.

In addition to the computation for the single-phase
flow field‘presentgd above, the computational model was
~run for two cases of non-zero concentration.fields. For
tﬁesg simulations the concentration w was set equal to a
constant on the incoming and top boundaries, simulating
a precipitéting snow storm event having unusually high
particlé concentrations. For these two cases,
concenfrations of w = 0.2 and 0.4 were used. The flow
fields are depicted in Figurés 9'and 10. Figure 11
displays the compdted concentration at the horizontal
surfaces of the bottom boundary for the case w = 0.2.
Concentration is at a minimum immgdiately windward and
to the lee of the wall. There is a concentration shadow
-corresponding to the lee recirculation eddy, and the
peak at the position x/h = 0 represents the
concentration at the top of the wall.

When these two flow fields afe compared visually
with the case w = 0 (Figure 8),'it is obvious that the
size of both windward and lee recirculation eddies has

been reduced with increasing particle concentration.




Figure 9.
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Turbulent Flow Field

Distance (x/h)

Computed flow field for the test case problem
of two-phase, turbulent flow over a solid
wall, with concentration w = 0.2 at the
inflow and upper boundaries.
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Turbulent Flow Field

1 |

Distance (x/h)

Figure 10. Computed flow field for the test case
problem of two-phase, turbulent flow over a
solid wall, with concentration w = 0.4 at
the inflow and upper boundaries.



Figure 11.
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Surface Particle Concentration

Distance (x/h)

Ratio of computed concentration at the lower
horizontal boundary to the inflow
concentration; for the test case problem of
two-phase, turbulent flow over a solid wall,
with concentration w = 0.2 at inflow and
upper boundaries.



The reattachmént poiht for the lee eddy is x/h = 5.75,
4.5, aﬁd 3.25 for concentrations w = O, O.ZL'and,0.4,
respeétively; This behavior is indicative df an
increase in turbulent Qiscosity v,, Oor what may be
envisioned as a thickening of the fluid.

The addition of a negative source term on the right
hand side of a transport equation such as tﬁe k and €
-equatioﬁs; assuming that all othef factors remain the
same, will serve to reduce the value of the dependent
variablé in that partial differential eduation. Thus,
this might lead one to expect the computed value of k
and € to be reduced for the case w > 0. -Also note that
the new value for the turbulent viscosity v, given by
Equation 9 may or may not decrease in response to this
decrease in k and €. Chen and Wood (1985) conducted a
study applying the k-e¢ turbulence model with particulate
source terms to an axisymmetric jet. They show
reductions of k, €, and v, due to the presence of
concentrations in the range w = 0.22 to 0.85.

Profiles of k, €, v,, and U corresponding to the

e
flow fields éomputed for concentrations w = 0, 0.2, and
0.4 (Figures 8, 9, and 10) are plotted in Figures 12
‘through 15, for the cross sections x/h = =2.75, 2.75,
5.0, and 10.0. These quantities have been

nondimensionalized by dividing the parameter of interest
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x/h=5.0 x/h = 10.0

toWzh)

Figure 12. Profiles of turbulent kinetic energy k for
the cases concentration w = 0 (-), 0.2 (),
and 0.4 (-.-) at inflow and upper
boundaries.



Figure 13.
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x/h =-2.75 x/h = 2.75

x/h = 10.0

e/ e inflowzh)

Profiles of the dissipation rate of
turbulent Kkinetic energy e for the cases
concentration w = 0 (-), 0.2 ( ), and
0.4 (-.-) at inflow and upper boundaries.
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x/h - -2.75 x/h = 2.75
x/h = 5.0 x/h = 10.0
lowz=h)
Figure 14. Profiles of turbulent viscosity for the

cases concentration w = 0 (-), 0.2 (- ), and
0.4 (-.-) at inflow and upper boundaries.
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x/h = -2.75 x/h = 2.75

x/h = 5.0 x/h = 10.0

U/U;nf low(z=h)

Figure 15. Profiles of horizontal velocity U for the
cases concentration w = 0 (-), 0.2 ( ), and
0.4 (-.-) at inflow and upper boundaries.
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by its value at the inflow boundary at the wall height,
z = h. These plots show, with increasing concentration,
an increase in k, a decrease in €, an increase in v,
And a decrease in velocity above the barrier and an
increase in veiocity behind the barrier.

In the computational model, the influence of the
negative éource terms does decrease the value of k and
€, if a11 else is held constant; this was verified by
numerical experiment. But, in the true solution of the
‘ problem, the equations for k and € are coupled to the
continuity and x and =z momentum equations, and the
velocities contained within the k and € équations changé
as'k and é change. A relafed‘concefn lies witﬁ'the
produqtion due to shear source terms, which are highly
velocity dependent, ﬁresen; in the turbulénce equations.
In tﬁis appliéation, during the computation of the
solution, k and € can be thought of as being initially
reduced due to the presence of particles. This led to a
reduction in ut_which served to iﬁcrease the fluid
velocity. This increase in velocity, in pﬁrticular in
the region at the tbp and just.to'the lee of the wall,
produced an increase in the velocity shear and a
subsequeﬁt increése in the shear production source term.
This in turn led to a further modification of the vaiues

of k and €.
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The relative importance of the shear production
terms between the k and € equations can be seen by
looking at the coefficients which multiply the squared
velocity gradient term in each equation. At the inflow
boundary, the multiplication factors are of the same
magnitude at a position jusf above the surface. At the
wall top height z = h, the k equation multiplication
factor is an order of magnitude greater than that of the
€ equation; and at the top of the flow domain, the k
equation factor is two orders of magnitude gréater than
the € equation multiplication factor. As a consequence,
the shear production term at the wall top is roughly a
factor of 10 larger for the k equation than for the €
equation. The balance of these changes has led to an
increase in k and a decrease in € due to the addition of
the particulate source terms. The velocity grédients
encountered by Chen and Wood (1985) were much less
severe, and it is expected that the change in the shear
production term did not have the-dominance found in the

present study.
Snow Accumulation Patterns

The surface shear velocity U, is computed as part
of the turbulent flow field computation. :Thus, the

turbulent flow field can be readily'dSéd to run the
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saltation model (Equation 27) when a threshold shear
velocity U,, has been provided. The saltation model
implies that if the shear velocity is greater than the
threshold Qelocity, mass will be transported, and if the
shear velocity drops below this value, mass transport
will cease.
To develop snow accumulation patterns it is assumed

that snow will be deposited within the control volume
where the shear velocity drops below the threshold. |
Using the computational model's ability to block out
control volumes, it will then be assumed that enough
snow accumulates td £fill that control volume. When the
control volume‘has been blocked out a new lower boundary
configuration presents itself. The flow field is. then
recomputed and the process is repeated until an
equilibrium drift has been formed which contains no
regions of shear vélocity below the threshold. Since
the saltation model has been developed to describe the
mass flux over a uniform horizontal surface, any more
sophisticated application of the saltation model to this
more complex flow problgm was not attémpted. Also,
since it can be shown that the saltafing mass flux is at
least an order of magnitude greater than the
precipitating mass flﬁx during a typical snow storm

event, it will be assumed that the drift is formed
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through saltation mass transport only. As a consequence
of~this assumption, the yertically.integrated rate of
snow transport within the,tufbuient flow layer Q.(x),
described by Equation 28, will be set equal to zero in
Equation 29.

Since the drift is formed by blocking out
rectangular control volumes, step changes in the bottom
boundary result.' This leads toeunreelistic (lower)
velocities in the control volumes iﬁmediately followed
by a step. Therefore, for the purpose of computing
surface shear velocities to locate snow accumulation
regions, shear velocities are calculeted using the
velocity at the second control volume above the surface
instead of the first. This effectively produces a
smoothing of the shear velocity over the drift surface.

The equilibrium drift configuration computed for a
threshold shear,yelocity U,, = 0.2 is given in Figure
16. The evolution.of the profile is illustrated in
Figure 17. Here the numbers indicate the sequence in
which control volumes were blocked out as the drift
evolved. |

Figure 17 shows. the drift first forming windward of
the wall, iﬁ the region of the recirculation eddy, where
a shear velocity below the threshold is first

encountered. This drift builds at a position removed
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Turbulent Flow Field
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Figure 16. Equilibrium snowdrift and flow field
configuration computed for a threshold shear
velocity of U*t = 0.2 for the test case
single-phase, turbulent flow problem.
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21 27 53
11 20 26 32 37 52
12 10 19 25 31 36 41 45 54 58
13 4 9 18 24 30 35 40 44 48 51 57
14 5 3 8 17 23 29 34 39 43 47 50 56 60
15 6 | 2 7 16 22 28 33 38 42 46 49 55 59 61
Figure 17. Progression of snowdrift development for the
case Ut = 0.2. The numbers indicate the

sequence with which the model blocked
control volumes as the drift evolved to the
equilibrium configuration (Figure 16).
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from the wall and then fills in between the wall and the
drift. After the windward drift reaches eéuilibrium,
snow begins to accumulate in the lee of the wall. The
shoulder or scarp formation'found in the lee d;ift at
intermediate stages, for.example after the 41st blocked
control volume has been blocked, is a commonly observed
feature of snowdrift formation (Mellor, 1965; Tabler,
1975b) . As the lee drift extends downwinq of the wall
fhe flow field is modified such that accumulation éccurs
at locations windward of the main drift scérp. This
intuitively appealing result also occurs in a similar
fashion with the drift windward of the wall.

The lee equilibrium drift surface has a slope of 10
to 13 percent, dépending on how it is measured. Studies
considering embankment slopes descending from a level
plain are available for comparison. For this case
Fipney (1939) found that né‘snow accumulates on
embankment siopes of less than 17 pércent. Berg and
Caine (1975) and‘Tabler.(1975b) both found only small
accumulations on slopés of 17 percent for this same
slope configuration. For .an approach slope of
approximately 10 percent, Tabler's study found snow
accumulated on a lee slope‘of approximate;y 10 percent.
It is expected that the relafively steep windward |

snowdrift, and associated wind flow pattern, should
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induce a longer drift ﬁﬁan those proddcéd in the
vexamﬁles hqving-an appréach slope of zero. Since the
snow accumulation scheme is strongly dependent upon the
threshold shear velocity, increasing or decreasing its

value &ill govern the size of the equilibrium drift.
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CHAPTER 7
SUMMARY AND CONCLUSIONS

A physicaiiy Based eomputational model describing
two-phase, turbulent flow has teen developed and applied
- to the problem of biowiné and drifting snow. In
developing the hodel it hasvbeen assumed that ‘the flow
of interest is cpmpoeedlbf two distinct iayersl one
containing.an upper turbulent mixture of air and snow,
and a second containing the snow transported by
saltation process very close‘to the ground. This lowest
layer is considered to provide the majority of mass
transport which is deposited as snowdrifts and-ﬁroduces
the snow accumulation petterns found in the natural
system. |

The two layers are described by two different
models and they are coupled through their common
poundary. The turbulent flow mouel consists of'a
general solution of the time averaged, steady state,
two-dimensional Navier—stokee equations, where'the-k-
turbulence model has been used to close the system of

equations. The effect of particulates on the turbulent
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flow field is accounted for by computing the-particie
concentration field using a convection-diffusion
equation and a subsequent modification of the k-e
turbulence model. In this modification, the particulate
phasé is assumed to follow the mean flow, but on the
high frequency turbulent fiuctuation level, the
particles do not ekactly foilow the fluid. The
resulting slip‘betweeh the-phaseé is considered to be a
hydrédynamic drag force,

For the snow particle concentrations found during
heévily precipitating snow storms, the ﬁodel‘has‘shown'
that snow particles can be considered a passive additive
to the air flow; the snow is transported with the -
velocity of the fluid, and the particles have not
modified the turbulent or flow structure of the fluid.
For the case of much higher concentrations found within
other two-phase flows, the model shows the turbulence
and flow field to have been significantly modified by
the presence of particles.

A basic premise of the snow accumulation part of
the model is that the saltating mass flux is governed by
~ the fluid velocity just above the ground surface, and
that when the velocity just above the surface drops
below some threshold value, snow accﬁmulates in that

région. Implementation of these ideas into the model
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has lead to the cbmputation of snow accumulation
profiles which are very'similar to published field and
experimental data. Clearifktne ability ef the no&el to -
duplicatevthese measurements of snowdrift profiles rests
on an accurate modeled representation of the turbulent
flow field.

Benefits of this study have included‘an increased
understanding of the physical_precesses which govern‘
nulti-phase, turbulent atmospheric boundary layer flows,
and the computational capability of addressing
scientific and economic questions related to blowing and

drifting snow.
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APPENDIX

COMPUTER PROGRAMS
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Figure 18. MATLAB Programs.
z%%x%%%%%x%%%x%xx%x%%x%%%x%x%xx%x%x%%%%xxzxx%%%x%%%x%%%x%%%%%%%%%%

% SOLVE.M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ..................................................................
% This is the main driver program for SOLVing the momentum and

% k - epsilon equations describing the turbulent flow field.
L L R R R R
clear

% ...................................................................
% Provide maximum number of global iterations.

% ..................................................................

R L R R R R Rl
% Provide relaxation values for velocity and viscosity

% computations.

R R R R R R R il

relax_gamma = .75;

relax_k = .75;

relax_eps = .75;

relax = [.5*ones(1,max_iteration)l;

% Provide values of Pressure Control Volume size.in x and y
% directions.

R R R R R R by

dx_p = [3 2 1.5 1 .5 1/3*ones(1,6) 2/9 2/9 2/91;

dy_p = [8 6 4 3 2 1.5 1.25 1 .5 .5 .5 1 1. 5*ones(1 7) 2.25 3 5 ...
79 11 131;

Y ee-seccmmemee--e-cessses-emo-secsessssocCmo-smoseomeoRmSes oS ET

% Supply the constants used in applying tog-wall boundary
% conditions.

% ..................................................................
rough_length = .001; % (roughness length = z0 = .1 cm)
comp_bndry = .01; % (dist from ground sfc to computational bndry
4 =1 cm)

% ___________________________________________________________________
% set initial velocity fields.
% ..................................................................
vel_ét_10m = 10; % Incomming v(z = 10 meters),‘(m/s)

- % ..................................................................

% Provide positions of the top blocked off pressure control volumes
% for permanent walls or structures.
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i_pos = [81;
j_pos = [10]1;
j_pos_wall = j_pos;
b IR T T )
conc_cohst = 0.2;
% ..................................................................
INFO
BLOCKED
for iteration = 1:max_iteration
SOLV_VEL
SOLV_K
SOLV_EPS
SOLV_CON
end
b I I A I T I I I
% POST PROCESS THE DATA
f~=mmmm e s e e e - B I i T T R I e T T T T T T e

% COMPUTE VELOCITY VALUES AT PRESSURE GRID POINTS.

.5 * (ubc(2:1+1,2:J+1) + ubc(1:1,2:4+1)
.5 % (vbe(2:1+1,2:J+1) + vbe(2:1+1,1:4)

u
v

)
)

% Set gamma values to 'nan' in blocked off regions.

for k = 1:j_pos_len
gamma(i_pos(k):I,j_pos(k)) = nan + 0 * _..
. gamma(i_pos(k):I,j_pos(k));
end

RARRABRBRULEARARR AL LR IR LR R ERARR IR LR KT RA KRR R IR A RER U R KRR DHK B LT %

% INFO.M _
AAAABURBLURSALELALSUBBAERLRISLRISLEISERLAR SRS BLL UL BEBLB% B %% %% %

% THIS PROGRAM PROVIDES PROBLEM DEPENDENT FLOW INFORMATION
Y e eemmmermmamemammema-eemeeme--eesmacee-emmommeeemmmeemmm—mmcooaeo

% Compute the number of interior pressure nodes in the x and y
% directions.

1
J

length(dx_p);
length(dy_p);

% COMPUTE PRESSURE CONTROL VOLUME SIZE AND POSITION INFORMATION

[delx_p,dely_p,f_e,f_n,x_coords,y_coords,x_wall,y_walll = ...
CV_INFO(dx_p,dy_p,comp_bndry);

% Define constants used in turbulent flow computations.

ro =

1.3; % Density of Air, (kg/m*3).
k_visc =

13e-6; % Kinematic Viscosity of Air, (m*2/s).
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% SET
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ro_ice = 910;

d_particle = 5e-4;

ufall = .75; % settling velocity of particulate field
. % (m/s).

c_mu = .03;

Cl_eps = 1.16;

C2_eps = 1.92;

sigma_k = 1.0; =

sigma_eps = 1.3;

tstar = d_particle”2 ¥ ro_ice / (18%k_visc®ro);

kappa = .4; -

Ssc_num = .5; % Turbulent Schmidt Number.

pute the constants used in applying log-wall boundary
onditions. : .

log_const log(comp_bndry/rough_Llength) / ...
log((comp_bndry + .5 * dx_p(I))/rough_length);
kappa / ... ’

_log((comp_bndry +. .5 * dx_p(l))/rough_length);

tau_const

elop k, epsilon, and velocity inflow boundary-conditions.
Z = x_coords';

Utau_inflow = kappa * vel_at_10m / ...
log(10/rough_tength); % (10=ht. 2z)
eps_sbc = Utau_inflow”*3 ./ (kappa * Z(2:1+1));
k_sbec = Utau_inflow*2 / sqrt(C_mu) * ones(l,1);
vbes = Utau_inflow / kappa * log(Z/rough_length);

INITIAL VELOCITY FIELDS.
ubc = zeros(I+1,4+2);
for jJ = 1:4+1

vbe(:,j) = vbes;.
end
ustar = ubc;
vstar = vbec;
INITIAL TURBULENT VISCOSITY FIELDS.
gamma_inflow = ro # C_mu * k_sbc.”2 ./ eps_sbc;
for j = 1:4
km(:,j) = k_sbhc;

epsm(:,j) = eps_sbc;

gamma(:,j) = gamma_inflow;
end

km_old = km;

epsm_old = epsm;
conc = conc_const ®* ones(l,J);
éamma = 5e30 IN PERMANENTLY BLOCKED OFF REGIONS.

for k = 1:length(i6pos)
gamma(i_posCk):1,j_pos(k)) = 5e30 + ...
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. gamma(i_pos(k):I1,j_pos(k));

end
gamma_old = gamma;
gamma_orig = gamma;

% DEVELOP SPARSE STORAGE INDEXING SCHEME.

COLINDX;P = INDEX(I,Jd);
COLINDX_U = INDEX(I+1,J+2);
COLINDX_V = INDEX(I+2,J+1);

% SET FLAGS AND TOLERANCES.

flag_p = 1;
flag_vel = 0;
max_iter_p = 1%*J;
max_iter_vel = I%*J;

TOL_p = 1e-2;
TOL_vel = 1e-5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2%%%%%%%%%%%%%%%%%
% INDEX.M :
UABRARERUDLHIEARLERALIKRRERRBERRRERARRRERR R L REARR RN ALK LR R LKA AR LKA L% %

function COLINDEX = INDEX(I,J)

% Set up of an indexing, sparse storage scheme for the SIMPLER
% program. )

“col_count = (1:1%J)';
COLINDEX = zeros(I¥*J,5); .

COLINDEX(I+1:1%J,1) = col_count(1:1*%¢J-19));
COLINDEX(2:1%J,2) = col_count(1:1*J-1);
COLINDEX(:,3) = col_count;
COLINDEX(1:1%*J4-1,4) = col_count(2:1%J);
COLINDEX(1:1%¢J-1),5) = col_count(l+1:1*J);
. ‘for k = 1:J-1 '
COLINDEX(I®*k+1,2) = 0;
COLINDEX(I®*k,4) = 0; -
end :

Bb AL LD DAL L LB LA L LR LA ALLDAALG R AL EULLKEEURKRRRER KLU RRRLNRANAR L LY
% BLOCKED.M

4335533434444 444143442242 %243333 3333233333323 5211313008000
% Whenever a new c.v. is blocked off, BLOCKED.M must be run.

% Establish the coordinates of‘the top blocked off control volume.

i_pos =
j_pos = [1;

"
-
-
—

for i




- gamma_old
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for j = 124
if. gamma(i,j) >= 1e3
if gamma(i-1,]) < 1e3

i_pos = [i_pos il;"
j_pos = [j_pos ]l1;
end '
- end
end

end

rleng;hxj_poéo;
"gamma;

j_pos_Llen

% Set ubc and vbe velocities to zero

for q = 1:j_pos_Llen
ubc(i_pos(g):1+1,j_pos(q)+1)
vbe(i_pos(q)+1:1+2,]_pos(q))
vbe(i_pos(q)+1:1+42,j_pos(q)+1)
vbec(i_pos(q)+1:1+2,]_pos(q)+1);
end ’

nu

n oo

ustar
vstar

ubc;
vbec;

‘in blocked off regions. .

* ubc(i_pos(qg):1+1,]_pos(q)+1);
o vbc(| pos(q)+1.l+2 J_pos(q));
0*

1434333433343 4335353%3%33333 3343238318342 2332 1212121y

% SOLV_VEL.H

43442523+ 13 4144345443 3353533333%2123% 3583183332112t

disp< l****'k*********.*****ﬁ**ﬁ***ﬁ**ﬁ****"ﬁ****l)

Yemcmememm-ececccecommmmusesesememesmesmeessccc--c-csteemc-c-senennn=
% COMPUTE COEFFICIENTS AND BUILD U and V SYSTEHS OF EQUATIONS.
Yeaeeme-evammemese-s-cteemmesssesamesmammesesesss-co---sccescceuacusun
[gamma_bndry_ew,gamma_bndry_nsl}
gamma_corners = GAMMA2(gamma_bndry_ns,f_e);
[A_u,A_v]l = UV_COEF(ubc,vbc,dx_p,dy_p,delx_p,dely_p, ...
f_e,f_n,gamma,gamma_corners,ro);
% ..................................................................
% MODIFY THE COEFFICIENTS TO ACCOUNT FOR BOUNDARY CONDITIONS AND
% COMPUTE RIGHT HAND SIDE BOUNDARY CONDITION (FORCE) VECTORS.
e R P E R R R R R R R EEE RS S i il il S S
SET_BC
O L R R R R R R R R R R AR LR S i it
% COMPUTE UHAT AND VHAT.
% ..................................................................
Iuhat,vhat,A;u4main,A_v_main,sym_au,sum_av] S ...
UV_HAT(ubc,vbe,A_u,A_v,COLINDX_U,COLINDX_V,bu_bec,bv_bc);
% -------------------------------------------------------------------

= GAMMA1(gamma,f_e,f_n);

[A_p,b_pl = P_COEF(A_u,A_v,uhat,vhat,dx_p,dy_p,ro);
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SOLVE THE PRESSURE EQUATION (p.131), ASSUHME dp/dn 0 on
BOUNDARIES (p.130). .

solve pressure equation')
OHAS(A_p,COLINDX_P,b_p,zeros(l,Jd),TOL_p, ...
max_iter_p,flag_p);

T
-~
= -

-------------------------------------------------------------------

disp(!® sotve U - velocity equation')
A_u(:,3) = A_u(:,3)/relax(iteration);
b_u = dup + bu_bc + (1 - retax(iteration)) / ...
) retax(iteration) * A_u_main .* ustar;
ustar = THOMAS(A_u,COLINDX_U,b_u,ubc,TOL_vel, ...
max_iter_vel,flag_vel);

disp(! solve V - velocity e€quation')
A_v(:,3) = A_v(:,3)/relax(iteration);
b_v = .dvp + bv_bc + (1 - relax(iteration)) / ...
) relax(iteration) ¥ A_v_main .¥% vstar;
vstar = THOMAS(A_ v COLINDX_V, b v,vbe,ToL vel _— o
max_ lter vel,flag_vel);

CALCULATE HASS: SOURCE b_pp. (p.125, .126). THIS I'S THE AMOUNT BY
WHICH THE CONTINUITY EQUATION IS NOT SATISFIED FOR EACH CONTROL
" VOLUME.

SOLVE THE PPRIME EQUATION (p.125). ASSUME dp/dn=0 on
BOUNDARIES (p.130).

djsp(f' solve pressure correction eqyétion')' .
pprime = THOHAS(A;p,COLINQX_P,b_pp,zeros(l,J),TOL_p, e
oL . . max_iter_p,flag_p);

-------------------------------------------------------------------

[ubc,vbcl = COR_VEL(A_u_main,A_v_main,dx_p,dy_p, ...
. . . ; ustar vstar,pprlme),

COMPUTE AND. DISPLAY VELOCITY FIELD CONVERGENCE INFORHATION.




resid_cont = b_pp;
resid_cont(l,:) = 0.0 * resid_cont(l,:);
for k = 1:j_pos_len . r

i = i_pos(k);
j = j_pos(k);
resid_cont(i-1,j)
resid cont(l.l,j 1:j

end

n
+°

cont = [cont;iteration max(max(abs(resid_cont))) ..
sum(sum(abs(resid_cont)))/(1%J)1;

disp(! iteration maximum average!)
disp(!* continuity cont')
disp(cont) : .

= 0.0 * resid_cont(izl,j-1:j+1);

%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%

%

SET_BC.H

%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

bu_bc = zeros(l+1,J+2);

%
%

%
%

i
f

%

b
%

%

Since du/dn = 0 bndry require bu_bc = 0, nothing needs
for that b.c.

For Essential b.c.'s set main diag = 1, zero the other

that row and set bu_bc = b.c.
= 1;
or i = 1:1+1
A_u¢i,:) = (00 10 01; ‘
bu_bec(i,j) = 0.0; % not required
nd
= 1+1;
or j = 1:J+2
k = 1 + (j-1)RC1+1);
A_u(Ck,:) = (0.0 1 0 01;
bu_bec(i,j) = 0.0;
nd. '

v_bc = zeros(I+2,J4+1);
w and n bndfy's require nothing.
s boundari.

=1;

to be done

coeffs in
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for i = 1:1+2
A_v(i,z) = [0 0 10 01;
bv_bec(i,j) = vbes(i);
end .

% e bndry: must change a term in A_v. b is not changed.
% The b.c. is v0 = log_const * v1. :

J=1)%(1+2);
= log_const * A_v(k,2);

% Modify A_v to account for log_wall b.c.'s on top of blocked
control volumes.
for 1:j_pos_Llen
i —pos(q);

j_pos(q);

i+0j-1)%(1+2); .
_v(k,3) = A_v(k,3) - log_const * (- A_v(k,4));
A_v(k,4) = 0.0;
A_v(k+(1+2),3) = A_v(k+(1+2),3) - log_const * ...

' (- A_v(k+(1+2),4));

- ||

]
k

>0 nno

A_v(k+(1+2),4) = 0.0;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%
%¥ SOLV_K.H
33 T3t 4383225234252 %23423%33%2%23233233233232223 333222222231

% ...................................................................
% Note that since sigma_k = 1.0, gamma_k = gamma, where gamma is

% the turbulent viscosity. Therefore, I will use gamma in place
% of gamma k in the k computation.

%

% Compute G1, the kinetic energy production due to shear.
G1 = SHEAR(ubc,vbc,dx_p,dy_p,i_pos,j_pos,f_e,f_n);
Compute the surface shear stress. Also consider the tops of

blocked c.v.'s. Since u is small, Utau_s will be approxtmated
by zero in the presence of a blocked control volume.

3R 3 X

Utau = tau_const * .5 * abs(vbe(I+1,1:4) + vbe(I+1,2:J+1));
for k = 1:j_pos_Llen
Utau(j_pos(k)) = tau_const * .5 * ..
abs(vbc(i_pos(k),j_pos(k)) + vbc(i_pos(k),j_pos(k)+1));
end

% Compute source terms for k.

Sc_k1
Sp_k1

ro * ¢_mu * G1 .* km.”2 ./ epsm;
- ro ¥ epsm ./ km - ...

2 * ro * conc / tstar .* (1 - exp(-.5*tstar®*epsm ./ km));
[Sc_k,Sp_kl = SOURCE(Sc_k1,Sp_k1,dx_p,dy_p);
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% CALCULATE COEFFICIENTS.

[aE,aW,aN,aS8]1 = GE_COEF(ubc,vbec,dx_p,dy_p,delx_p,dely_p, ...
gamma_bndry_ew,gamma_bndry_ns,ro);

Modify the coefficient matrices to account for flux boundary

%

% conditions on west and north boundaries, da/dn = 0.
aW(1,:) = 0 * at(1,:);
aN(:,d) = 0 * al(:,d);

"% BUILD SOUTH AND EAST BOUNDARY CONDITION MATRICES.

sbc_k = zeros(l,Jd);

sbe_k(:,1) = as(:,1) .* k_sbec;

ebc_k = zeros(l,Jd);

1,:) = a€(l,:) .* (Utau.”2 / sqrt(C_mu));

% Transfer b.c.'s to account for'blocked control volumes.

aE_blocked = zeros(l,d);
for k = 1:j_pos_Llen
aE_bocked(i_pos(k)-1,j_pos(k)) = akE(i_pos(k)-1,j_pos(k));
aE(i_pos(k)-1,]j_pos(k)) = 0;
ebc_k(i_pos(k)-1,j_pos(k)) = ...
aE_blocked(i_pos(k)-1,j_pos(k)) * ...
(Utau(j_pos(k))*2/sqrt(C_mu));
end

% Set d/dn(k) = 0 bc's,on¥blocked vertical walls.

for i = 1:1
for j = J-1:-1:1
if gamma(i,j) >= 1e3
if gamma(i,j+1) < 1e3
as(i,j+1) = 0; - % da/dn = 0.
end
end
end
end

for i 1:1
for j = 2:4
if gamma(i,j) >= 1e3
if gamma(i,j-1) < 1e3 .
aN(i,j~1) = 0; % da/dn = 0.

end
end
end
end
U ememecmeeeseercacemdmseneSce-mNccGcmmeesssssecseEseemEmene ...~
% BUILD A_k MATRIX
R R L L L T R TR

aP = ((aE + aE_blocked) + aW + aN + aS - Sp_k) / relax_k;
A_k = [-aS(:) -aW(:) aP(:) -aE(:) -al(:));
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% SOLVE THE SYSTEH OF EOUATIONS FOR k

b_k = sbc_k + ebc_k + Sc_k + (1 - relax_k) * aP .%* km_old;
disp(! ~ solve k equation®)
km = THOMAS(A_k,COLINDX_P,b_k,km_old,TOL_ vel, ...

max_ lter vel,flag_vel);

if min(min(km)) < O
disp(!' Negative Values of k Found ')
end

km_old = km;

LEALAE LA SLLLE LA ISR LLKE AR LK LN LR LA ELE B RN ALY RAL AL LA AR R LLLAALALLY
% SOLV_EPS.H
S S s et e3 35 3 e 32323342 2333333332%3333332 %4344+ 333333844%333

%
% SOLVE FOR EPSILON. Note that G1 has already been computed in
4 SHEAR. Also, since we no longer need gamma, I-will set" -
% gamma_eps = gamma. '

%

% Compute source terms for epsilon.

Sc_eps1 = ro * (C_mu * C1_eps.* G1 .5'km + ... .
C2_eps * epsm.”2 ./ km);
Sp_epsl = - 2 * ro ¥ C2 -eps * epsm ./ km - ...

2 * ro ¥ conc / tstar;
[Sc_eps,Sp_eps] = SOURCE(Sc eps1 Sp_eps1,dx_p,dy_p);

% Compute gamma_eps and compute gamma_bndry's.

gamma = gamma / sigma_eps; )
'[gamma_pndry_ew,gamma_bndry_nsi = GAMHA1(gamma,f_e,f_n);

% CALCULATE COEFFICIENTS

laE,aW,aN,aS] = GE_COEF(ubc,vbc,dx_p,dy_p,delx_p,dely_p, ...
gamma_bndry_ew,gamma_bndry_ns,ro);

% Modify the coefficient matrices to account for flux boundary
% conditions on west and north boundaries, dd/dn = 0.

aW(1,:)
aN(:,d)

0 * aH(1,:);
0 * aN(:,J);

% BUILD SOUTH AND EAST BOUNDARY CONDITION MATRICES

= zeros(I,d);
£,1) = as(:,1) .* eps_sbc;
- ebc_eps = zeros(l,J); .
I,:) = aE(l,:) .* (Utau.”3 / (kappa * comp_bndry));

% Transfer b.c.'s to account for blocked control volumes.

aE_blocked = zeros(l,J);
for k = 1:j_pos_Llen
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aE_bocked(i_pos(k)-1,j_pos(k)) = aE(i_pos(k)-1,j_pos(k));
aE(i_pos(k)-1,j_pos(k)) = 0; °
ebc_eps(i_pos(k)-1,j_pos(k)) = ...
aE_blocked(i_pos(k)-1,]j_pos(k)) * ...
(Utau(j_pos(k))*3 / (kappa * comp_bndry));
end . '

% Set d/dn(eps) = 0 bc's on blocked vertical walls.

for i = 1:1
for j = J-1:-1:1
if gamma(i,j) >= 1e3
if gamma(i,j+1) < 1e3
as(i,j+1) = 0; % da/dn = 0.
end
end
end
end
for i 1:1

aN(i,j-1) = Q; % dd/dn = 0.

end
end
end
end
A T L R R LR
% BUILD A_eps MATRIX
% ..................................................................

aP = ((aE + aE_blocked) + aW + alN + aS - Sp_eps) / relax_eps;
A_eps = [-aS(:) -a¥W(:) aP(:) -aE(:) -aN(:)];

% SOLVE THE SYSTEM OF EQUATIONS FOR espilon.

b_eps = sbc_eps + ebc_eps + Sc_eps + (1 - relax_eps) * ...
aP .* epsm_old;
disp(! solve eps equation')
epsm = THOHMAS(A_eps,COLINDX_P,b_eps,epsm_old,TOL_vel, ...
max_iter_vel,flag_vel);

if min(min(epsm)) < 0
disp(' Negative Values of epsilon Found ')
end’

epsm_old = epsm;

‘%4 Compute the residuél for the k and epsilon systems of equations.

RESIDUAL
. % Compute gamma =.tuEBu[eht viscosity using new k and epsilon.
.. gamma ro * cémﬁii kmL‘Zn./ epsm + ro * k_visc;

" .gamma “reléx;gamma'*_gamma + (1 - relax_gamma) * gamma_old;

B
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%X RESET gamma = 5e30 IN BLOCKED OFF REGIONS.
for k.= 1:]j_pos_Llen
gamma(i_pos(k):1,j_pos(k)) = 5e30 + 0 * ...
. ’ gamma(i_pos(k):I,j_pos(k));
end ‘
gamma_old = gamma;
;422322352323 3333 3322333332333 33133303 2 03 101101310 s i s
% RESIDUAL.M ) ’
%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%

AtimesK = ATIMESX(km,A_k,COLINDX_P,relax_k);
R_k = AtimesK - sbc_k - ebc_k - Sc_k;

AtimesEps = ATIHESX(epsm,A_eps,COLINDX_P,relax_epsf;
R_eps = AtimesEps - sbc_eps - ebc_eps - Sc_eps;

% Elliminate blocked regions from consideration.

for g = 1:j_pos_Llen
R_k(i_pos(q):1,j_pos(q)) =
R_eps(i_pos(q):1,j_pos(q))
end

k(i_pos(q):1,j_pos(q));

0
= R_eps(i_pos(q):1I,j_pos(q));

*R-
0 ¥

R_keps = [R_keps [max(mgx(abs(k_k)));max(max(abs(R_eps)))]];
1333434353435 43 4344321332835 32 212212 1212223221242 22212 1122
ing;;i§§;iz%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ubc_conc = Ufall + ubc;

% CALCULATE COEFFICIENTS

tgamma_bndry_ew,gamma_bndry_ns] = ... Co
: GAMMA1(gamma/Sc_num,f_e,f_n);
[aEc,aWc,aNc,aSc) = GE_COEF(ubc_conc;vbc,dx_p,dy_p, tee
delx_p,dely_p,gamma_bndry_ew,gamma_bndry_ns,ro);

% Set B.C.'s for w.

conc_sbc
conc_wbc

conc_const * ones(l,1);
conc_const * ones(1,4J);

% BUILD'SOUTH AND WEST BOUNDARY CONDITION HATRICES

sbc_conc = zeros(1,d);
sbc_conc(:,1) = aSc(:,1) .* conc_sbc;
‘wbc_conc = zeros(Il,d);
wbc_conc(1,:) = aHe(1,:) .* conc_ubc;

% Modify the coefficient matrices to account for flux boundary
% conditions on N and E boundaries, da/dn = 0.

aNc(:z,d) = 0 * alNc(:,d);
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% The following will help impose 8 zero conc bc at this point
4 on the bndry. It also preserves the .blocked out status on
% the boundary.

for j = 1:4
if aEc(I,j) < 1e5
aEc(l,j) = 0.0;
end. '
end

% Impose w = 0 bc's on b(ocked vertical walls.
% Set da/dn = 0 on uwest (top) of blocks.
for k = 1:2j_pos_Llen

aEc(i_pos(k)-1,j_pos(k)) = 0;
end ‘ '

X BUILD A_conc MATRIX

aPc = aEc +.ch + aNc + aSc;
A_conc = [-aSc(:) -aWec(:) aPc(:) --~aEc(:) -aNc(:)1;

%'-'-"---‘---------"---".--“'? ----------------------------------
% SOLVE THE SYSTEM OF EQUATIONS FOR ¥

b_conc = sBc_conc + wbe_cone;

disp(' - solve concentration equation')

conc = THOMAS(A_conc,COL!NDX_P,b_conc,conc,TOL_vel, .
max_iter_vel, flag_vel);

1412 5%32223132222333222223 1212322 11 r 111223211 11221353 %
% DRIFT.M : :
RARE R ERR R BB L RA R BB AL AL RRA LA AT L RKRL AL LR K UKL XL LR AL XL LA RLAAANLLL%%

% This program is used to compute the snowdrift evolution.
% Import the initial flowfield solution.

load testcase
% Start developing snow drifts.
Ufau_threshold = .2;

% Compute the surface shear stress to be used in snow drift

% development computation. The smoothing constant is used to

% compensate for the step changes in surface produced by blocking
% control volumes. 1t assumes a logarithmic profile from. the

% velocity computed at the second control volume above the -

% surface, down to the surface. The factor 2 is added to

% optimize the relationship between the representative values of
% the surface shear stress, the threshold shear stress, and the

% size of the equilibrum snow drift. ;

smoothing_const = 2 * log(x_coords(I+1)/rough_Llength)/ l..
- log(x_coords(l)/rough_Llength);

Utau_drift = tau_const * (smoothing_const * abs(v(I-1,:)));
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% Compute the shear stress at the top of the blocks.

for k.= 1:j_pos_Llen

. Utau_drift(1,j_pos(k)) = tau_const * smoothing_const * ...
_ : abs(v(i_pos(k)-2,j_pos(k)));

end '

% Locate the first cell where Utau is below Utau_threshold.

for j = 1:4
if Utau_drift(j) < Utau_threshold
ii = J; '
break
end
end

% SET.INITIAL VELOCITY FIELDS.

ubc = zeros(l+1,J+2);

for j = 1:4+1
vbe(:,j) = vbes;

end ‘ :

ustar = ubc;

vstar = vbc;

% SET INITIAL TURBULENT VISCOSITY FIELDS.

for j = 1:4
km(:,j) = k_sbc;
epsm(:,j) = eps_sbc;
gamma(:,j) = gamma_inflow;
end .

km_old = km;
epsm_old = epsm;

% Set gamma = large. - for ﬁeuly blocked off control volume and reset
% existing blocked off regions to high gamma values.

for k = 1:j_pos_Llen Coe
gamma(i_pos(k):I,j_pos(k)) = 5e30 + 0 * ..,
gamma(i_pos(k):I, j_pos(k));
if j_pos(k) == jj
gamma(i_pos(k)-1,jj) = 5e30;
end
end -
gamma(I,jj) = 5e30;

%# Recompute the flow field;

BLOCKED
max_iteration = 30;
cont = [I;

for iteration = 1:max_iteration
SOLV_VEL
soLv_K
SOLV_EPS

end




% COMPUTE VELOCITY VALUES AT PRESSURE GRID POINTS.

.5 * (ubc(2:1+1,2:4+1) + ubc(1:1,2:4+1));
.5 % (vbc(2:1+1,2:J4+1) + vbec(2:1+1,124));

u
v

% Set grid point velocity values to zero in blocked off regions.

for k = 1:j_pos_Llen
gamma(i_pos(k):I,j_pos(k)) = nan + 0 * ...
. gamma(i_pos(k):I,]_pos(k));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure 19. Fortran Progranms.

%%%%%%%%%%%%%%%%%%%%%%%%%%%2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ CV_INFO.FOR
RREXXREXREIRKAAKRLAA L LR RS A IR LI AL AL E LRSI RS A I AL L AL LR AL L AL LLLLLL Y
c

subroutine CV_INFO(delx_p,dely_p,f_e,f_n,x_crds,y_crds,
+ x_wall,y wall,dx_p,dy_p,cmp_bn,I11,44d) -

integer®4 11,44

real*8 dx_pbc(62),dy_pbc(62),delx_p(ll+1),dely_p(JJ+1)
real*8‘f_e(ll+1),f_n(JJ+1),dx_p(ll),dy_p(JJ),cmp_bn,temp
real*8 x_crds(II+2),y_crds(JdJd+2),x_wal2(61)

real*8 x_wall(II+1),y_wall(JJd+1)

. €

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccpcé
c
¢ PRESSURE CONTROL VOLUME SIZE AND POSITION INFORMATION
c .
c Include exterior boundary pressure grid points.
c . .

dx_pbc(1) = 0.0

do 10 i = 2,11+1

dx_pbc(i) = dx_p(i-1)

10 continue

dx_pbc(II+2) = 0.0

dy_pbc(1) = 0.

do 15 j = 2,JJ

) dy_pbc(j) =
15 continue

dy_pbc(Jd+2) = 0.0

dy_p¢i-1)

(2]

Compute the distance between pressure grid points.

do 20 i = 1,11+1% .
delx_p(i) = .5-* (dx_pbec(i) + dx_pbc(i+1))
20 ° continue
' do 25 j = 1,JJ+1
dely_p(j) = .5 * (dy_pbc(j) + dy_pbec(j+1))
25 continue

Compute the distance between the pressure grid points and the
control volume wall. (The following is true because the grid
points do pressure are defined to be in the center of the
control volume.) And then compute f_e and f_n. These two
‘steps are combined below. . ‘

do 30 i = 1,11+17
f_e(i) = .5 * dx_pbe(i+1) / delx_p(i)
30 continue
do 35 j = 1,d4441 o
f_n(j) = .5 ¥ dy_pbec(j+1) / dely_p(ij)
35 continue

Compute the x and y coordinates of the pressure c.v. grid'points,
including boundaries. ’ '

0O000
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temp = cmp_bn
do 40 i = I11+2,1,-1
x_crds(i) = temp + .5 * dx_pbc(i)
temp = temp + dx_pbec(i) S
40 continue “ ‘

temp = 0.0
do 45 J = 1,4J+2
y_crds(j) = temp + .5 * dy_pbec(]j)
temp = temp + dy_pbc(j)
45 continue ’

[1]

Compute the x and y coordinates of the pressure c.v. walls.

X_wal2(1) = cmp_bn
x_wall(II+1) = x_wal2(1)
do 50 i = 2,11+1
x_wal2(¢i) = x_wal2(i-1) + dx_p(IlI-i+2)
x_wallCII-i+2) = x_wal2(i) .
50 "continue

y_wall(¢1) = 0.0
do 55 j = 2,44+1
y_wall¢j) = y_wall(j-1) + dy_p(j-1)
55 continue . '

return
end

1333355334433 % 333335 533333394333333333334%32252 4328833233823 8% 382 dA
c CV_INFOG.FOR

3437433443333 334%333334%3333233223 2232233233233 2338%338233 233287
c ‘ .
SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS)
INTEGER NLHS,NRHS

INTEGER*4 PLHS(*), PRHS(¥). ,
INTEGER*4 CRTMAT, REALP, GETSIZ

¢ Declare integers to be used as pointers.

INTEGER*4 delxP,delyP,f_eP,f_nP,x_crdP,y_crdpP
INTEGER*4 x_walP,y_walP,dx_pP,dy_pP,cmpbnpP

¢ Declare local variables.
INTEGER®4 I, J, dummy
¢ Get size of input argument.

. CALL GETSIZ(PRHS(1),dummy,1)
CALL GETSIZ(PRHS(2),dummy,J)

c .
¢ Create matrices for return arguments.
c .
PLHS(1) ="CRTMAT(1,1+1,0)
PLHS(2) = CRTHMAT(1,4+1,0)
PLHS(3) -= CRTHAT(1,1+1,0)
PLHS(4) = CRTHAT(1,J+1,0)
= CRTMAT(1,1+2,0)

PLHS(5)
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PLHS(6) = CRTHAT(1,4+2,0)
PLHS(7) = CRTHAT(1,1+1,0)
PLHS(8) = CRTHAT(1,J4+1,0)
c
¢ Assign pointers to the various parameters.
c
delxP = REALP(PLKS(1))
delyP = REALP(PLHS(2))
f_eP = REALP(PLHS(3))
f_nP = REALP(PLHS(4))
x_crdP = REALP(PLHS(5))
y_crdP = REALP(PLHS(6))
Xx_walP = REALP(PLHS(7))
y_walP = REALP(PLHS(8))
[+ -
dx_pP = REALP(PRKS(1))
dy_pP = REALP(PRKS(2))
cmpbnP = REALP(PRHS(3))
c
¢ Do the actual computation in a subroutine.
c : .
CALL CV_INFO(%VAL(dele),%YAL(delyP),%VAL(f_eP),%VAL(f_nP),
+ XVAL(x_crdP),XVAL(y_crdP),XVAL(x_ualP),%VAL(y_HalP),
+ XVAL(dx_pP),%XVAL(dy_pP),XVAL(cmpbnP),I,J)
* RETURN s
END

x%%x%xzxzxxz%xzx%xzxzzxx%xzxxzzx%%xzzzxzxx%xzxzxzxzzxxxzzx%%x%%%x%%
¢ GAMMA1.FOR
x%xxxxxxxxxxxx%xxxxxxxxxxx%xxxxxxxxxxxxzxxxzx%xxz%xxxxxxzxxx%x%%xx%
c *

subroutine GAHMA1(g_b_eu,g_b_ns,gamma,f_e,f_n,II,JJ)
c

integer*4 11,4¢ .

real*8 g_b_eu(lI+1,JJ),9_b_ns(lI,JJ+1),gamma(II,JJ)

real*8 g_eu(60+2,60),g_ns(60,60+2),f_e(lI+1),f_n(JJ+1)'
c
€CCCCCCCCCCCECCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCECCcecee
c GAMMA INTERPOLATIONS FOR u, v, k, and epsilon COMPUTATIONS.
c This provides gamma information on c.v. walls.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCECCCCCCECececEcee
c
Gamma must be input

Example: gamma = [30 30 30
30 30 30
10 30 303

Include gamma .just outside of n, s boundaries.
Include gamma just outside of e, W boundaries.

DOO0OO0OO0OO0OO0OO0O0O

do 10 i = 1,
g_ns(i,1) gamma(i,1)
do 20 j 2,dd+1
g_ns(i,j) = gamma(i,j-1)
20 continue
g_ns(i,dJ+2) = gamma(i,dd)
10 continue
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do 30 j = 1,44 .
g_ew(1,J) = gamma(t,j)
do 40 i = 2,11+1
g_euw(i,j) = gamma(i-1,j)

40 continue -
" g_ew(l1+2,j) = gamma(ll,j)
30 continue ‘ -
c : .
c Compute gamma (diffusion coefficient) at the n, s control
c volume boundaries using equation 4.9, p. 45.
c
do 50 i = 1,11
do 60 J = 1,JdJd+1 .
g_b_nsCi,j) = 1 /7°¢Ct - f_nCj)) /
+ g_ns(i,j) + f_n(j) /7 g_nsCi,j+1))
60 continue
50 continue
c .
c Compute gamma (diffusion coefficient) at the e, w control
c volume boundaries using equation 4.9, p. 45.
c
do 70 j = 1,44
do 80 i = 1,11+1
g_b_ew(i,j) = 1 /7 €1 - f_e(id)) /
+ g_ew(i,j) + f_e(i) / g_ew(i+1,]))
80 continue
70 continue
c —~
return
end

13345334 44333453339333333333 3333333383233 2338333882223 80022t e e
¢ GAMMA1G.FOR . L
P e Y22 ¥4 24384435433 433352233233 3833333338334 5433238 324483
c .
SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS)
INTEGER NLHS,NRHS
INTEGER®4 PLHS(*), PRHS(*®)
INTEGER®*4 CRTMAT, REALP, GETSIZ
¢ Declare inteéers to be used as pointers.
INTEGER*4 gb_ewP,gb_nsP,gammaP, f_eP, f_nP
¢ Declare local variables.
INTEGER¥*4 1, J
¢ Get size of input argument.
CALL GETSIZ(PRHS(1),1,4J)

c Create matrices for return arguments.

PLHS(1)
PLHS(2)

CRTMAT(I+1,J,0)
CRTMAT(I,J+1,0)

¢ Assign pointers to the‘various-parameters.




122

REALP(PLHS (1))
REALP(PLHS(2))

gb_ewupP
gb_nsP

(LI}

gammaP =.REALP(PRHS(1))
f_eP = REALP(PRHS(2))
f_nP = REALP(PRHS(3))

0

Do the actual computation in a subroutine.

CALL GAMMAT(%VAL(gb_euP), %VAL(gb nsP) %VAL(gammaP),
+ XVAL(f_eP),%VAL(f_nP),1,J)

RETURN

END

%%%%%%%%*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%
¢ GAMMA2.FOR

. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c
) subroutine GAHHAZ(Q_cnrs,g_p_ns,f_e,II,JJ)
c h
integer®*4 11,44
real*8 g_ cnrs(ll+1 JJ+1) g_b_ns(li,dd+1)
. real#*8 'f e(II+1),g_nseu(60+2 60+1) -
c ‘ .
' €CCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c GAMMA INTERPOLATIONS FOR u AND v COMPUTATIONS
c This provides gamma. at c.v. corners to be used in u, v
c computations.

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccgc
[

c Include e, W boundary control for gamma computed on the n, s

c - control volume boundarles.'
c

do 10 j = 1,J4Jd+1 .
rg_nsew(1,j) = g_b_ns(1,j)
"do 20 i = 2,11+1
g nseu(v,j) =
20 continue
. g_nsew(l1+2,j) = g_b_ns(11,j)
10 continue : :

g_b_ns(i-1,])

Compute the value of gamma .at the corners of the pressure
control volumes.

onooo

do 30 j = 1,J4d+1
do 40 i = 1,11+1 i
g_cnrs(i,j) = 1/ ((1 - f_eCi)) / g_nseuw(i,j) +
+ _ . ) f_e(i) / g_nsew(i+1,]))
40 - continue ’
*30 continue

return
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ GAMMARG.FOR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[

SUBROUTINE USRFCN(NLHS PLHS,NRHS,PRHS)
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INTEGER NLHS,NRHS
- INTEGER®4 PLHS(*), PRHS(™)
INTEGER®*4 CRTMAT, REALP, GETSIZ

¢ Declare integers to be used as pointers.

INTEGER*4 g_cn}sP,gb_nsP,f_eP

¢ Declare local variables.
INTEGER™4 I; J

¢ Get size of input argument.

CALL GETSIZ(PRHS(1),1,4)

o= J-1-

¢ Create matrices for return arguhentsr
PLHSC1) = .CRTHAT(I+1,J+1,0)

¢ Assign pointers to the various parameters.

g_cnrsP = REALP(PLHS(1))

gb_nsP = REALP(PRHS(1))
f_eP = REALP(PRHS(2))

Do the actual computation in 8 subroutine.

(1]

CALL GAHHAZ(%VAL(Q cnrsP),X¥VAL(gb_nsP), XVAL(f -eP),I,d)
RETURN
END

AR A A AL LA LA AL AL A AL E L LA L L LA AL LA L LA AL AN A LA A AL AL LA LA AL AL EXELLLLS
¢ UV_COEF.FOR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c
subroutine UV_COEF(A_u,A_v,ubc,vbc,dx_p,dy_p,delx_p,dely_p,
+ f_e,f_n,gamma,g_cnrs,ro,l1,d4J)

integer®4 11, J4J

real*8 A_u((II+1)*(Jd+2),5),A_v((I1+42)*(Jd+1),5)

real®*8 ubc(lI+1,JJ+2),vbc(II+2,4d+1),dx_p(I1),dy_p(JJd)
real®8 delx_p(1I+1),dely_p(did+1),f_e(l1+1),f_n(JdJd+1)

real*8 gamma(II,Jd),g_cnrs(II+1,dJ+1),ro0

real*8 ue,uw,vn,vs,De,Dw,Dn,Ds,pe,pw,pn,ps,fe,fw,fn,fs,zero
zero = 0.0

¢ CALCULATE THE COEFFICIENTS AU (p.99, 121)

do 21 i = 1,11+1
k= i + (j=1) * (11+1)

vh = f_e(i) * vbec(i,]) + (1-f_e(i)) * vbe(i+1,]j)
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Dn = g_cnrs(i,j) * delx_p(i) /7 dely_p(])
fn = ro * delx_p(i) * vn
pn = fn / Dn
pn = (1..- .1 * dabs(pn))**5.
A_u(k,4) = 0.0
A_uck,2) = 0.0
A_u(k,5) = -(Dn * dmaxi1(zero,pn) + dmax1(-fn,zero))
A_u(k,1) = 0.0 . .
A_uck,3) = - A_u(k,5)
21 continue
] = JJd+2
= 1,11+1

do 22 i

k = i + (j-1) = (I11+1)

vs = f_e(i) * vbe(i,j-1) + (1-f_e(id)) * vbc(i+1,j-1)
Ds = g_cnrs(i,j-1) * delx_p(i) 7/ dely_p(j-1)
fs = ro * delx_p(i) * vs
ps = fs / Ds .
ps = (1. - .1 * dabs(ps))**5
A_uCk,4) = 0.0 '
A_u(k,2) = 0.0
A_u(k,5) = 0.0 .
A_u(k,1) = -(Ds * dmax1(zero,ps) + dmax1(fs,zero))
A_u(k,3) = - A_u(k,1)
22 continue
i=1 ,
do 23 j = 2,JdJ+1

k =i + (j-1) * (11+41)

ue
vn
vs

De
Dn
Ds

fe
fn
fs

pe
pn
ps

pe.

pn
ps

unu nnu uun U unan

«5 ® (ubc(i,j)+ubcCi+t,j))
f_e(i) ® vbe(i,]) + (1-f_eCi)) * vbe(i+1,])
f_eC(i) * vbe(i,j-1) + (1-f_e(i)) * vbe(i+1,j-1)

gamma(i,j-1) * dy_p(j-1) /7 dx_p(i)
g_cnrs(i,j) - delx_p(i) / dely_p(j)
g_cnrs(i,j-1) delx_p(i) 7/ dely_p(j-1)

‘% %

%

ue
vn
VS

ro * dy_p(j-1)
ro * delx_p(i)
ro * delx_p(i)

% %

fe / De
fn / Dn
fs / Ds

(1. - .1 * dabs(pe))**5
(1. - .1 * dabs(pn))¥**5
(1. - .1 * dabs(ps))**5
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A_u(k,4) = -(De * dmax1(zero,pe) + dmaxi(-fe,zero))
A_u(k,2) = 0.0 )
A_u(Ck,5) = -(Dn * dmax1(zero,pn) + dmaxi1(-fn,zero))
A_u(k,1) = -(Ds * dmax1(zero,ps) + dmaxi(fs,zero))
A_u(k,3) = - A_u(k,4) - A_u(k,5) - A_u(k,1)
continue
i = 11+41

do 24 J = 2,d44+1

k =1 + (j-1) * (1I+1)

uWw = .5 ¥ (ubc(i-1,j)+ubec(i,]))

vh = f_e(i) * vbe(i,j) + (1-f_e(i)) * vbe(i+1,]))

vs = f_e(i) ® vbe(i,j-1) + (1-f_e(i)) * vbe(i+1,j-1)

Dw = gamma(i-1,j-1) * dy_p(j-1) /7 dx_p(i-1)

"Dn = g_cnrs(i,j) - ® delx_p(i) / dely_p(j)

Ds = g_cnrs(i,j-1) * #elx_p(i) / dely_p¢ji-1)

fw = ro * dy_p(j-1) * uw

fn = ro ® delx_p(i) * vn

fs = ro * delx_p(i) ¥* vs

pWw = fu / Dwu

pn = fn / Dn

ps = fs / Ds

pu = (1. - .1 * dabs(pw))**5

pn = (1. - .1 * dabs(pn))**$

ps = (1. - .1 * dabs(ps))**5
A_u(k,4) = 0,0
A_u(k,2) = -(Du * dmaxi(zero,pw) + dmax1(fuw,zero))
A_u(k,5) = -(Dn * dmaxi(zero,pn) + dmaxi(-fn,zero))
A_utk,1) = -(Ds * dmax1(zero,ps) + dmaxt(fs,zero))
A_u(k,3) = - A_u(k,2) - A_u(k,5) - A_u(k,1)

. continue

do 10 j = 2,44+1
do 20 i = 2,11

k = i + (J-1) * (11+1)

ue = .5 ¥ (ube(i,j)+ubec(i+1,]))

uw = .5 * (ubc(i-1,j)+ubc(i,j))

vh = f_e(i) ® vbe(i,j) + (1-f_e(i)) * vbe(i+1,])

vs = f_e(i) ® vbec(i,j-1) + (1-f_e(i)) * vbe(i+t,j-1)
De = gamma(i,j-1) * dy_p(j-1) / dx_p(i)

Dw = gamma(i-1,j-1) ®* dy_p(€j-1) / dx_p(i-1)

DPn = g_cnrs{i,j) * delx_p(i) / dely_p(j)

Ds = ‘g_cnrs(i,j-1) * delx_p(i) / dely_p(j-1)

fe = ro * dy_p(j-1) * ue




c
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+ dmax1(-fe,zero))
+ dmax1(fw,zero))
+ dmax1¢(-fn,zero))
+ dmax1(fs,zero))
A_uCk,5) - A_u(k,1)

fw = ro * dy_p(j-1) * uw
fn = ro * delx_p(i) * vn
fs = ro * delx_p(i) * vs
pe = fe / De
pw = fu / Du
pn = fn / Dn
ps = fs / Ds
pe = (1. - .1 * dabs(pe))**5
pw = (1. - .1 * dabs(pu))**5
pn = (1. - .1 * dabs(pn))**5
ps = (1. - .1 * dabs(ps))**5
A_u(k,4) = -(De * dmax1(zero,pe)
A_u(k,2) = -(bw * dmax1(zero,pu)
A_u(k,5) = -(bn * dmax1(zero,pn)
A_u(k,1) = -(bs * dmax1(zero,ps)
A_u(k,3) = - A_ulk,4) - A_u(k,2) -
continue
continue

€CCCCCCCCCCECCCECCCCCECCCCECCCECECECCCEECCCCCCCCCCCCCCCCCCCCCCCCCCC

[
c
c

CALCULATE THE COEFFICIENTS OF AV (p.99, 121)

51

f_n(j) * ubc(i,j) + (¥-f_n(j)) * ubc(i,j+1)

f_nCj) * ube(i-1,j) + (1-f_n(j)) * ubc(i-1,j+1)
g_cnrs(i-1,j) ¥* dely_p(j) /7 delx_p(i-1)

i=1
do 51 j = 1,4J+1
k = i + (j-1) * (11+2)
ue =
De = g_cnrs(i,]) u dely_p(j) /7 delx_p(i)
fe = ro ®* dely_p(j) ® ue
pe = fe / De
pe = (1. - .1 * dabs(pe))**5
A_v(k,4) = -(De * dmaxi(zero,pe) + dmaxi1(-fe,zero))
A_v(k,2) = 0.0 ‘ '
A_v(k,5) = 0.0
A_v(k,1) = 0.0
A_v(k,3) = - A_v(k,4)
continue
i=11+2
do 52 j = 1,d44+1
k = 1 4+ (j-1) * (11+2)
uw =
Duw =
fu = ro * dely_p(j) * uw
pyw = fu / Du .
pe = (1. - .1 * dabs(pH))**%*5

A_v(k,4) =

0.0
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A_v(k,2) = -(Dw * dmax1(zero,pu) + dmax1(fuw,zero))
A_v(k,5) = 0.0
A_v(k,1) = 0.0
A_v(k,3) = - A_v(k,2)
continue
i=1
do 53 i = 2,11+1
K= 1 + (J-1) * (11+2)
ue =-f_n(j) * ube(i,j) + (1-F_n¢j)) * ubc(i,j+1)
uw = f_n(j) * ube(i-1,]) + (1-f_n(j)) * ubc(i-1,j+1)
vn = .5 ¥ (vbec(i,j) + vbe(i,j+1))
De = g_cnrs(i,j) * dely_p(j) /7 delx_p(i)
Dw = g_cnrs(i-1,j) * dely_p(j) /7 delx_p(i-1)
Dn = gamma(i-1,]) ® dx_p(i-1) /7 dy_p(])
fe = ro * dely_p(J) * ue
fw = ro % dely_p(j) * uw
fn = ro * dx_p(i-1) ®* vn
pe = fe / De
puw = fu / Dy
pn = fn / Dn
pe = (1. - .1 * dobs(pe))**5
pw = (1. - .1 * dabs(pw))**5
pn = (1. - .1 * dabs(pn))**5
A_v(k,4) = -(De * dmax1(zero,pe) + dmax1(-fe,zero))
A_v(k,2) = -(Dw * dmax1(zero,pw) + dmaxi(fw,zero))
A_v(k,5) = -(Dn * dmax1(zero,pn) + dmax1(-fn,zero))
A_v(k,1) = 0.0
A_v(k,3) = - A_v(k,4) - A_v(k,2) - A_v(k,5)
53 continue
J o= 44 + 1
do 54 i = 2,11+1

k =4 + (j-1) * (11+42)

ue
UwW

vSs.

De
Dw
Ds

fe
fu

fs

f_n
f_n
.5 (vbe(i,j)
g_cnrs(i,j)

g_cnrs(i-1,])
gammadi-1,j-1)

ro *Hdelf_p(j)
ro * dely_p(j)
ro ¥ dx_p(i-1)

+

.

*.

%

(j) % ch(i,j) + (]of_n(j)) * ch(i,j+1)
(j) * ch(iﬂ1,j) + (1-f_n(j)) * ubc(i'1,j+1)
*

vbe(i,j-1))

dely_p(j) / delx_p(i)
dely_p(j) 7 delx_p(i-1)
dx_p(i-1) / dy_p(i-1).

ue
uu
vS$s
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50

A_v(k,4)
A_v(k,2)
A_v(k,5)
A_v(k,1)
A_v(k,3)
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-(De * dmax1(zero,pe) + dmax1(-fe,zero))
-(Dw * dmax1(zero,pu) + dmaxi(fuw,zero))

-(Ds *»dmak1(zero,ps) + dmax1(fs,zero)).

pe = fe / De

pew = fu / Dw

ps = fs / Ds

pe = (1. - .1 * dabs(pe))?*5

pPWw = (1. - .1 * dabs(pu))=*5
-ps = (1. - .1 * dabs(ps))**=5

= 0.0

= - A_v(k,4) - A_v(k,2) - A_v(k,1)
continue ‘

do 40 j = 2,44

do 50

k = i

A_v(k,4)
A_v(k,2)
A_v(k,5)
A_v(k,1)
A_v(k,3)

i=2,11+1
+ (J-1) * (11+2)
ue = f_n(j) * ubc(i,j) + (1-f_nCj)) * ubc(i,j+1)
uw = f_n(j) * ube(i-1,j) + (i1-f_n(j)) * ube(i-1,j+1)
vhn = .5 ¥ (vbe(i,j) + vbe(i,j+1)) )
vs = .5 # (vbc(i,j) + vbe(i,j-1))
De = g_cnrs(i, ) * dely_p(j) / delx_p(i) .
Du = g_cnrs(i-1,j) = dely_p(j) / delx_p(i-1)
Dn = gamma(i-1,j) * dx_p(i-1) /7 dy_p(i)
Os = gamma(i-1,j-1) * dx_p(i-1) 7/ dy_p(j-1)
fe = ro * dely_p(j) * ue
fu = ro * dely_p(j) * uwm
fn = ro * dx_p(i-1) * vn-
fs = ro * dx_p(i-1) * vs
.pe = fe / De
- pa = fu / Du
pn = fn / Dn
ps = fs / Ds
pe = (1. - .1 * dabs(pe))**5
pe = (1. - .1 * dabs(pu))**5
ph = (1. - .1 * dabs(pn))*¥5
ps = (1. - .1 * dabs(ps))**5
= -(De * dmaxi(zero,pe) + dmaxi1(-fe,zero))
= -(Dw * dmax1(zero,pu) + dmax1(fw,zero))
= -(Dn * dmax1(zero,pn) + dmax1(-fn,zero))
= -(Ds * dmaxi(zero,ps) + dmax1(fs,zero))
= - A_v(k,4) - A_v(k,2) - A_v(k,5) - A_v(k,1)
continue
ue

contin

return
end




‘-.;,129‘

. %%%%%%%%%%%%%X%%%%%%%%%%%X%%X%%%%XXX%%%%%XX%%%%%%%%%%%%%%%%%%%%%%%%
c UV_COEFG. FOR '
%%%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-c

SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS)

INTEGER NLHS,NRHS

INTEGER*4 PLHS(®), PRHS(¥)

INTEGER*4 CRTHAT, REALP, GETSIZ

¢ Declare integers to be used as pointers.

INTEGER®4 A_uP,A_vP,ubcP,vbcP,dx_pP,dy_pP,dlx_pP,dly_pP
INTEGER*4 f_eP,f_nP,gammaP,g_cnrP,roP

¢ Declare local variables.
INTEGER®4 1, J
¢ Get size_of input argument.
CALL GETSIZ(PRHS(9),1,d)
¢ Create matrices for return arguments.

PLHSC1)
PLHES(2)

CRTHAT((I+1)%(J+2),5,0)
CRTHAT((I+2)*(J+1),5,0)

¢ Assign pointers to the various parameters.

A_uP = REALP(PLHS(1))
A_VP = REALP(PLHS(2))
[
ubcP = REALP(PRHS(1))
vbeP = REALP(PRHS(2))

dx_pP = REALP(PRHS(3))
dy_pP = REALP(PRHS(4))
dlx_pP = REALP(PRHS(5))
dly_pP = REALP(PRHS(6))
f_eP = REALP(PRHS(7))
f_nP = REALP(PRHS(8))
gammaP = REALP(PRHS(9))
g_cnrP = REALP(PRHS(10))
roP = REALP(PRHS(11))

¢ Do the actual computation in a subroutine.

CALL UV_COEF(%VALCA_uP),%VALCA_VP),

+ %¥VAL(ubcP),XVAL(vbcP), %VAL(dx_pP),XVAL(dy_pP),

+ %ZVAL(dLx_pP),XVAL(dly_pP),%4VAL(f_eP),XVAL(f_nP),
+ %VAL(gammaP),%XVAL(g_cnrP), %VAL(roP),1,J)

RETURN

END

%%%%%%%%%%%%%%%x%%%%%%%i%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ UV_HAT.FOR
BhALAERBEURREULRUKXLEELRERREERLARE LR ELELXXEEXXER KRR XX KRR RRLL LY
c
subroutine UV_HAT(uhat,vhat,A_u_mn,A_v_mn,sum_au,sum_av,
+ - ubc,vbec,A_u,A_v,IND_U,IND_V,bu_bc,bv_bc,Iu,du,lv, dv)
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integer*4 Iu,Jdu,lv,Jv,INDX_U(1200,5),INDX_V(1200,5)

real*8 uhat(lu,Ju),vhat(Iv,dv),ubc(lu,du),vbe(lv,dv)

real®8 A_u(lu®*Ju,5),A_v(Iv®Jdv,5),bu_bc(lu,du),bv_bec(lv,Jv)

real*8 IND_U(CIu*Ju,5),IND_V(Iv®Jv,5),ubc2(¢(1200),vbc2(1200)
~real®*8 A_u_mn(lu,Ju),A_v_mn(lv,dv),sum_au(lu,Ju)

.real*8 sum_av(lv,Jdv)

c .
CCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCECECCCECCCCCCCCCCCECECCCECCCCCCC
. c . . . "

do 2 j = 1,5
do 3 i = 1,Iu"Ju
INDX_UCi,j) = IDNINTCIND_UC(Ci,j))
3 continue '
"2 continue

(SO

do 4 = 1,5
do 5 i = 1,1v®Jv
_ INDX_V(i,j) = IDHINTCIND_V(i,j))
5 continue
4 continue

c Compute uhat.

do 10 j = 1,Jdu
do 15 1 = 1,1u
k = i+¢(j-1)*1lu
ubc2(k) = ubec(i,j)
A_u_mn(i,j) = A_u(k,3)
15 continue '
10 continue

do 20 jj =
do 25 ii =
sum_au(ii
k = 1i+(]j

if (INDX_U(k,j).ne.0) then
if (j.ne.3) then. . .
sum_au(ii,jj) = sum_au(ii,jj)-A_ulk,j)*ubc2(INDX_U(k,j))
endif :
endif
30 continue :
uhat(ii,jj) = (sum_au(ii,jj) + bu_be(¢ii,jj)) /7 A_u_mn(ii,jj)
25 continue '
20 " continue

[+)

Compute vhat.

do 35 j = 1,Jdv
do 40 § = 1,1v
k = i+(j-1)*1v
vbe2(k) = vbe(i,])
~A_v_mn(i,j) = A_v(k,3)
40 continue
35 continue

1,dv
1,1v
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sum_av(ii,jj) = 0.0
k = §i+(jj-1)*1v
do 55 j = 1,5

if (INDX_V(k,j).ne.0) then
if (j.ne.3) then ; '
sum av(ll.JJ) = sum_av(ii,jJ)-A_v(k,j)*vbc2CINDX_V(k,j))
endif o :
endif
55 continue .
. vhat(ii,jj) = (sum_av(ii,jj) + bv_be(ii,jj)) /7 A_v_mn(ii,jj)
50 continue
45 continue

return
end

%%%%x%%%%%xx%%x%xxzxxxzzx%x%%x%xxxxx%xxx%xx%x%%%x%%x%x%xzx%xxzxzxzx
c UV_HATG.FOR
%%%%%%%%xx%%%x%%xx%%x%xx%x%x%xx%xx%x%xx%xxxxx%x%%x%x%%%x%x%x%%%x%%%
[

SUBROUTINE USRFCN(NLKS,PLHS; NRHS, PRHS)

INTEGER NLHS,NRHS ‘

INTEGER®4 PLHS(*), PRHS(*) ‘

INTEGER*4 CRTHAT, REALP, GETSIZ

¢ Declare integers to be used as pointers. -

INTEGER*4 uhatP,vhatP,A_umP,A_vmP,ubcP,vbecP A_uP,A_vP
INTEGER*4 sum_uP,sum_vP,IND_UP,IND_VP,bu_bcP,bv_bcP

¢ Declare local variables.
INTEGER*4 lu, Ju, IV, Jv
c Get size of input argument.

CALL GETSIZ(PRHS(1),Iu,duw)
CALL GETSIZ(PRHS(2),Iv,JV)

¢ Create matrices for return arguments.

PLHSC1) = CRTMAT(Iu,Ju,0)
PLHS(2) = CRTMAT(Iv,Jv,0)
PLHS(3) = CRTMAT(Iu,Ju,0)
PLHSC4) = CRTMAT(IV,Jv,0)
PLHS(5) = CRTMAT(Iu,Ju,0)
PLHS(6) = CRTMAT(Iv,dv,0)

(1]

Assign poi

nters to the various parameters.

uhatP = REALP(PLHS(1))
vhatP = REALP(PLHS(2))
A_umP = REALP(PLHS(3))
A_vmP = REALP(PLHS(4))
sum_uP = REALP(PLHS(S5))
sum_vP = REALP(PLHS(6))
[+
ubcP = REALP(PRHS(1))
vbcP = REALP(PRHS(2))
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A_uP = REALP(PRHS(3))

. A_VP = REALP(PRHS(4))
IND_UP = REALP(PRHS(5))
IND_VP = REALP(PRHS(6))
bu_bcP = REALP(PRHS(7))
bv_bcP = REALP(PRHS(8))

¢
¢ Do the actual computation in a subroutine.
c

CALL UV_HAT(%VAL(uhatP),%VAL(vhatP),%VAL(A_umP),%VAL(A_vas,

+ %¥VAL(sum_uP),%VAL(sum_vP),%VAL(ubcP),%VAL(vbcP),
+ XVALCA_uP),%ZVAL(CA_vP),%¥VALCIND_UP),%VALCIND_VP),
+ %VAL(bu_bcP),%VAL(bv_bcP),Iu,du,lIv,dv)

RETURN -

END

1924423323131 1852233335333 33331433333%4333333¢43433333333334%%7
¢ P_COEF.FOR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c
subroutine P_COEF(A_p,b_p,A_u,A_v,uhat,vhat,dx_p,dy_p,
+ ro,11,44)

integer¥*4 11,44
real®8 A_p(lI®JJd,5),b_pCIl,dd),A_uCCliI+1)"(¢Jd+2),5)
real®8 A_v((II1+2)®(Jd+1),5),dx_p(I1),dy_p(JdJ)
real*8 ro,uhat(11+1,JJ+2),vhat(I1+2,dd+1)
c . .
€CCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCECCCCCCECCCCCCCCECCECCCCCCCCECCCCC
[
¢ CALCULATE THE COEFFICIENTS OF THE PRESSURE EQUATION (p.125,
c 130, 133)

For ue and uw we have,

000

do 10 j = 2,JJd+1
do 20 i = 2,11
k i+C)-1)%*(C11+1)
L (i=1)+(j-2)*11
A_pCl,4) = - ro * dy_p(j-1)%%*2 / A_u(k,3)
A_p(l+1,2) = A_p(L,4)

20 continue :
A_pC()-1)*11,4) =
A_p(Cj-2)%11+1,2)

10 continue

0.0
= 0.0

c For vn and vs we have,

do 30 i = 2,11+1

Z,JJ

Cj-1)*C¢11+2)

i-1)+(j-2)*11

,S) = - ro ¥ dx_p(i-1)**2 /7 A_v(k,3)
I11,1) = A_p(L,5) .

A_pCi-1,1) = 0.0
A_p(C(JdJ-1)*11+(Ci-1), 5) = 0.0
30 continue
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[+]

Build A_p(:,3). ‘ : ’ ; .

do 50 i = 1,I11%4J
A_p(i,3) = - (A_p(i,1) + A p(l.Z) + A_p(i,4) + A_p(i,5))
50 continue

[+]

Compute b_p from uhat and vhat.

c
do 60 j = 1,44
do 70 i = 1,11 .
b_pCi,j) = ro * dy_p(j) * (uhat(l,j+1) - uhat(i+1,j+1)) +
+ ro * dx_p(i) * (vhat(i+1,]) - vhat(i+1,j+1))
70 continue -

60 continue

return
end

1333 4%3333%3334%334333332333283332333 823322333883 5832333 8823383383
¢ P_COEFG.FOR
%%%%xxxxxxxxxxxxx%xx%%%%z%%x%%xxxxz%xxxxxxxxxxxxxxz%xzx%xxzx%%%%%%%
‘e

SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS)
INTEGER NLHS,NRHS
INTEGER™4 PLHS(*™), PRHS(*)
INTEGER*4 CRTMAT, REALP, GETSIZ
c Declare'integers to be used as pointers.
INTEGER*4 A_pP,b_pP,A_uP,A_vP,uhatP,vhatP,dx_pP,dy_pP,roP
¢ Declare local variables.
INTEGER¥*4 I, J, dummy
¢ Get size of input argument.

CALL GETSIZ(PRHKS(5),dummy,1)
CALL GETSIZ(PRHS(6),dummy,d)

¢ Create matrices for return arguments.

PLHS(1)
PLHS(2)

CRTHAT(I*J,5,0)
CRTMAT(I1,J4,0)

¢ Assign pointers to the various parameters.

A_pP = REALP(PLHS(1))
b_pP = REALP(PLHS(2))
c B
" A_uP = REALP(PRHS(1))
A_VP = REALP(PRHS(2))
uhatP = REALP(PRHS(3))
.vhatP = REALP(PRHS(4))
dx_pP = REALP(PRHS(5))

dy_pP = REALP(PRHS(6))
roP = REALP(PRHS(7))

[+]

Do-the actual computation in a subroutine.
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CALL P_COEF(XVAL(A_pP),%VAL(b -PP),XVAL(A_uP),XVAL(CA _vpP),
+ . %VAL(uhatP) XVAL(vhatP) XVAL(dx _PP), XVAL(dy pP),
+ XVAL(roP),1,4d)

RETURN

END

123222323543 33 4353323333383 335233 3333338334333 33%3%33323%3%382 30884
¢ THOMAS.FOR
%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c
subroutine THOMAS(xnew,a,CINDX,bmtrx, Xguess, TOL,maxit1,
+ ll JJ,H,flag)

integer®4 11,Jd,M,INDX(900,5),maxit

real®8 xnew(ll,JdJ),a(H,5), CINDX(H,5),bmtrx(I1,JJd)

real*8 b(900), xO _old(900),d(%900),a sub(60 3), bd _sub(60)
real*8 x sub(60) dif,maxdif,T0L, x0(900) P(60) 0(60) max1t1
real*8 mdlf p,xguess(ll Jd), md|f _2,flag

CCCCCCCCCCCCCCCCCCCCCCCCCCECCCEECCCCCEECCCCCCCCCCCCCCCCECCCECEECCECCC
c This solves a block tridiagonal matrix using the Thomas
c Algorithm (in both directions). For A in sparse storage mode.

CCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC‘CC‘CCCCC
c ..

maxit = IDNINT(maxit1)

c .

mdif_2 99999.9
c
do 2 j = 1,
do 3 i =
INDX(CT, ]
continue
continue

H

w = N

IDNINT(CINDX(Ci,j))

N W

do 4 j = 1,44
do 5 i = 1,11
X0Ci+(j-1)*I1) = xguess(i,])
b(i+(j-1)*I11) = bmtrx(i,j)
continue
continue

S

c Implement the Algorithm.
L = 1
90 if (l.le.maxit) then

do 6 i = 1,H
x0_old(i) = x0(i)
[ continue

do 10 j ='1,44

do 15 kk = 1
d(kk) = 0.0
do 20 ll = 1,5,4
if CINDX(kk,ll).ne.0) then
d(kk) = d(kk) + aCkk,ll) * xOCINDX(kk,tl))
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endif
20 continue
15 continue
c i h
do 25 kk = 1,11
do 30 LL = 1,3
a_sub(kk,ltt) = a¢(j-1)*11+kk,ll+1)
30 continue
25 continue
c

do 35 kk = 1,11 , ‘
bd_sub(kk) = b((j-1)*1I+kk) - d((j-1)*11+kk)
35 continue :

c
P(1) = - a_sub(1,3) / a_sub(1,2)
Q1) = bd_sub(1) / a_sub(1,2)
a_sub(11,3) = 0.0
c
do 40 i = 2,11
PCi) = - a_sub(i,3) / (a_sub(i,2) + a_sub(i,1) * P(i-1))
c
Q(i) = (bd_sub(i) - a_sub(i,1) * a(i-1)) /
+ . (a_sub(i,2) + a_sub(i,1) * P(i-1))
40 continue
c
x_sub(Il) = a(l1)
c
do 45 i = 11-1,1,-1
x_sub(i) = P(i) * x_sub(i+1) + Q(i)
45 continue
c

do 50 kk = 1,11
X0¢(j-1)*11+kk) = x_sub(kk)
. 50 continue
c
10 continue
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEECCCCCCe
c N
do 11 j = 1,11
c
do 16 kk = 1
d(kk) = 0.0
do 21 1l = 2,4,2
if (lNDX(kk ll) ne.0) then
d(kk) = d(kk) + a(kk ll) * xOCINDXCkk,LU))
endif
21 continue
16 continue

do 26 kk = 1,4
do 31 L = 1,
a_sub(kk, 1l
31 continue
26 continue

J
3 .
) = a((kk-1)*11+j,2*LL-1)

do 36 kk = 1,44
bd_sub(kk) = b((kk-1)*II+j) - d((kk-1)¥I11+])
36 continue '
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.c
P(1) = - a_sub(1,3) /7 a_sub(1,2)
Q1) = bd_sub(1) 7/ a_sub(1,2)
a_sub(JJ,3) = 0.0
c
‘ do 41 i = 2,44 . )
P(i) = - a_sub(i,3) 7/ (a_sub(i,2) + a_sub(i,1) * P(i-1))
c ‘
Q¢i) = (bd_sub(i) - a_sub(i,1) * a¢i-1)) /
+ Ca_sub(i,2) + a_sub(i,1) * P(i-1))
41 continue )
c
X_sub(JJ) = QCJJ)
¢ .
do 46 i = JJd-1,1,-1 , ‘
x_sub(i) = P(i) ¥ x_sub(i+1) + Q(i) .
46 continue ‘ '
c
do 51 kk = 1,44
X0C((kk-1)*11+j) = x_sub(kk)-
51 continue
c
11 continue
c

cececeeecceeccececcececgeccecccccecceccececccccececccccccecceccecccecccccccecceeceee

maxdif = 0.0
do 60 kk = 1,H ]
dif = dabs(x0(kk) - x0_old(kk))
maxdif = dmax1(dif,maxdif)
60 continue
c . .
if (flag.EQ.0.0) then
c
if (maxdif.LT.TOL) then
print®, ITERATION RESIDUAL NORHW'
print*, |, maxdif '
L = maxit. + ¥ ’
endif :
c
else
c
mdif_p = dabs(mdif_2 - maxdif) !
if (mdif_p.LE.TOL) then
print®, 1 ITERATION RESIDUAL NORM?
print*, |, mdif_p ’
L = maxit + 1
endif
mdif_2 = maxdif
c ‘
endif
c
L =1 + 1
c
go to 90
endif
c

if (L.EQ.maxit+1) then
print®*, VMAXIMUM #*%% JTERATION *%#%% EXCEEDED®
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print¥*, ¢ ITERATION RESIDUAL NORHM!
print*, Ll-1, maxdif ’
endif

do 70 jJ = 1,44
do 80 i = 1,11
xnew(i,j) = x0Ci+(j-1)¥*11)
80 continue
70 continue

return
end

st I IR R SR I SR AR R TR R T2 R A 222 AR 2R
¢ THOMASG.FOR
1T T3 F At AT Rt s3 2323380433282 %33 2283222333222 %338%%2"
. .

SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS)

INTEGER NLHS,NRHS

INTEGER*4 PLHS(*), PRHS(¥)

INTEGER*4 CRTHMAT, REALP, GETSI1Z

INTEGER™4 *néuP,aP,C!HDXP,bexgﬁesP,TOLP,maxitP,flagP
INTEGER*4 I, J, H

CALL GETSIZ(PRHS(4),1,J)

PLHS(1) =_c§rnAf(:,J,0)

M=1*

xnewP = REALP(PLHS(1))

aP = REALP(PRHS(1))
CINDXP = REALP(PRHS(2))
bP = REALP(PRHS(3))
xguesP = REALP(PRHS(4))
TOLP = REALP(PRHS(5))
maxitP = REALP(PRHS(6))
flagP = REALP(PRHS(7))

CALL THOMAS(%VAL(xnewuP),%¥VAL(aP),XVAL(CINDXP),%VAL(DP),
+ ' %VAL(xguesP), %VAL(TOLP) XVAL(maxitP),1,J,H,
+ " %VAL(flagP))

RETURN

END

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

¢ P_FORCE.FOR

%%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c
subroutjne P_FORCE(dup,dvp,p,dx_p,dy_p,11,4J)

c : .

integer®*4 11,44

real*§ dup(ll+1 JJ+2),dvp(l11+2, JJ+1) pCl1,dd),dx_ p(ll)

real*8 dy_p(dd)

c

ccccccccqccccccccccccccccccccccccccccccccccccccccccccccccccccccchc
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i=1
do 11 i = 1,11+1
dup(i,j) = 0.0
11 continue

J = Jde2
do 12 i = 1,11+1
dup(iy.i) = 0.0

12 continue

i=1 .

do 13 j = 2,dJ9+1
dup(i,j) = 0.0

13 continue :

i=11+1
do 14 j = 2,4J+1
dup(i,j) = 0.0

14 continue

do 15 j = 2,J04+1
do 16 i = 2,11 . -
dup€i,j) = dy_p¢j-1) * (pCi-1,j-1) - pCi,j-1)»
16 continue
15 continue
c .
cccececececcceccceccceccecceccee
c
i=1
do 17 i = 1,11+2
dvp(i,j) = 0.0
17 continue
J = Jdd+1
do 18 i = 1,11+2
~dvp(i,j) = 0.0
18 continue

i=1
do. 19 J = 2,44
dvp(i,j) = 0.0
19 continue

i=11+2 .
do 20 j = 2,44
dvp(i,j) = 0.0
20 continue

do 21 j 2,4dd
do 22 i = 2,11+1
dvp(i,j) = dx_p(i-1) * (p(i-1,j-1) - pCi-1,]))
22 continue '
21 continue

return
end

%%%%%%%%%X%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%
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.¢ P_FORCEG.FOR ,
%%x%%%%x%xxzx%xzxxzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx%xx%z%%%
c. T
,SUBROUTINE‘USRFCN(NLHS,PLHS,NRHS,PRHS)
INTEGER NLHS,NRHS
INTEGER®4 PLHS(®), PRHS(®)
INTEGERY4 CRTHMAT, REALP, GETSI2
¢ Declare integers to be used as pointers,
INTEGER*4 dupP,dvpP,pP,dx_pP,dy_pP
¢ Declare local variables.
INTEGER*4 I, J
¢ Get size of input argument.
CALL GETSIZ(PRHS(1),1,4)

¢ Create matrices for return arguments.

PLHS(1)
PLHS(2)

CRTHAT(I+1,J442,0)
CRTMAT(I+2,4+1,0)

‘c Assign pointers to. the vqrious'parameters.

dupP = REALP(PLHS(1))
dvpP = REALP(PLHS(2))

PP = REALP(PRHS(1))
dx_pP = REALP(PRHS(2))
dy_pP = REALP(PRHS(3))

0

Do the actual computation-in a subroutine.

CALL P_FORCE(XVAL(dupP),XVAL(dvpP),XVAL(pPP),
+ XVAL(dx_pP),%XVAL(dy_pP),1,d)"
RETURN

END

) %2%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

¢ CONT_EQ.FOR .
b 2233235343533 5433523332333 5333 3833833323322 3%8 %88 343348%20 8%
c . ]
subroutine CONT_EO(b_pp,ystqr,vstar,dx_p,dy_p,ro,II,JJ)
c

integer®4 11,44

real*8 b_pp(ll,dd),ro,dx_p(I1),dy_p(di)

real*8 ustar(IlI+1,JJ+2),vstar(lI+2,4J+1)
c
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCECCC
c . .
¢ CALCULATE MASS SOURCE b_pp (p.125, 126) |
c THIS IS THE AMOUNT BY WHICH THE CONTINUITY EQUATION IS NOT
c SATISFIED FOR EACH CONTROL VOLUME.
c .

do 50 j = 1,44
do 60 i = 1,11
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b_pp(i,j) = ro * dy_p(j) * (ustar(i,j+1) -~ ustar(i+1,j+1)) +
+ ro * dx_p(i) * (vstar(i+1,j) - vstar(i+1,j+1))
c ) .

60 continue

50 continue

return
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ CONT_EQG.FOR
%%%%%%%%%%%%%X%%%%%%%%%X%%%%%%%X%X%XX%X%%%X%%X%%%%%%%%%%%%%%%%%%%A%
c

SUBROUTINE USRFCN(NLHS,PLHS, NRHS,PRHS)

INTEGER NLHS,NRHS

INTEGER™4 PLHS(®*), PRHS(¥)

INTEGER*4 CRTHAT, REALP, GETSIZ

¢ Declare integers to be used as pointers.
INTEGER*4 b_ppP,ustarP,vstarP,dx_pP,dy_pP,roP
¢ Declare local variables.
INTEGER*4 1, Jd, dummy
¢ Get size of input argument.

CALL-GETSIZ(PRHS(3),dummy,I)
CALL GETSIZ(PRHS(4),dummy,d)

¢ Create matrices for return arguments.
PLHS(1) = CRTMAT(I,J,0)

¢ Assign pointers to the various parameters.
b_ppP = REALP(PLHS(1))
ustarpP REALP(PRHS(1))
vstarP REALP(PRHS(2))
dx_pP = REALP(PRHS(3))

dy_pP = REALP(PRHS(4))
roP = REALP(PRHS(5))

[+]

Do the actual computatlon in a subroutine.

CALL CONT EQ(%VAL(b _ppP),%¥VAL(ustarpP), XVAL(vstarP),
+ %VAL(dx_pP) XVAL(dy_pP),%VAL(roP),1,4)

RETURN .

END

x%%xx%%xx%xxxxxxxxxx%x%xxxx%xxxxxxxx%xxxxxxxxx%xx%xx%xx%%xx%%%x%%%%
¢ COR_VEL.FOR
%%%%xxxxxxxx%xxxxxxxxxxx%xxxxxxx%%xxxxzxxxxxxzxxxxxxx%x%x%%x%x%%%%%
c
subroutine COR_VEL(ubc,vbc,Aumain,Avmain,
+ . dx_p,dy_p,ustar,vstar,pprime,11,JJ)
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c
integer®4 11,44 :
real*8 ubc(ll+1,JJ+2),vbc(II+2,JJ+1),ustaf(ll+1,JJ+2)
real*8 vstar(ll+2,JJ+1),Aumain(lr+1,{J+2),Avmain(lI+2,JJ+1)
real®8 dx_p(Il),dy_p(Jd),pprime(Il,JJd) ‘
c

CCCCCCECCECCCCCCCCCCCCCCCCCCCCCECCCCCCCCECCCCCECCCCCCCCECCCCCECCCCCere
c .
¢ CORRECT THE VELOCITY FIELD USING PPRIME (p.123)

c
) j=1 .
do 11 i = 1,11+1
ube(i,j) = ustar(i,j)
11 continue
c
j = Ju+2
do 12 i = 1,11+1
ubc(i,j) = ustar(i,j)
12 continue
c )
i=1
do 13 j = 2,4d+1
ube(i,j) = ustar(i,j)
13 continue ’
[+
i=11+1 )
do 14 j = 2,d441
ubc(i,j) = ustar(i,j)
14 continue
c
do 15 j = 2,JJ+1
do 16 i = 2,11 ] .
ubc(i,j) = ustar(i,j) + dy_p(¢i-1) / Aumain(i,j) *
+ : (pprime(i-1,j-1) - pprime¢i,j-1))
16 continue :
15 continue
c

CCCCCCLCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCECCCCCCECCCCCECCCCCCCCCCCECEEe
¢ .
i=
do 17 i = 1,11+2
vbe(i,]) = vstarci,j)
17 continue .

J = Jdd+1t
do 18 i = 1,11+2.
vbe(i,j) = vstar(i,])
18 continue

star(i,j)
19 continue

< G

star(t,j)
20 continue
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do 21 j = 2,44
do 22 i = 2,11+1 : .
vbe(i,j) = vstar(i,j) + dx_pCi-1) / Avmain(i,j) *
+ (pprime(i-1,j-1) - pprime(i-1,]))
22 continue .

21 continue

return
end

Y Y Y Y ¥y 42593425293 544352353233352332333383333338844323 32254344
¢ COR_VELG.FOR
L Yt Yy 43593485 4433424352235 3352%333383 3333433334353 2385%]
[

SUBROUTINE USRFCN(MLHS,PLHS,NRHS,PRHS)

INTEGER NLHS,NRHS

INTEGER*4 PLHS(*), PRHS(¥*).

INTEGER*4 CRTMAT, REALP, GETSIZ

¢ Declare integers to be used as pointers.

INTEGER"4 ubcP,vbcP,AumaiP,AvmaiP,ustarP,vstarpP
INTEGER¥4 dx_pP,dy_ pP,pprlmP

¢ Declare local variables.
INTEGER®*4 I, J, dummy
¢ Get size of input argument.

CALL GETSIZ(PRHS(3),dummy,I)
CALL GETSIZ(PRHS(4),dummy,d)

¢ Create matrices for return arguments.

PLHS(1)
PLHS(2)

CRTMAT(I+1,J+2,0)
CRTHAT(I+2,4+1,0)

¢ Assign pointers to the various parameters.

ubcP
vbcP

REALP(PLHS(1))
REALP(PLHS(2))

AumaiP = REALP(PRHS(1))
AvmaiP REALP(PRHS(2))
dx_pP = REALP(PRHS(3))

dy_pP = REALP(PRHS(4))

ustarP = REALP(PRHS(5))
vstarP = REALP(PRHS(68)).
pprimP = REALP(PRHS(7))

Do the actual computation in a subroutine.

(4]

CALL COR VEL(%VAL(ubcP) ZVAL(vbeP) ,%VAL(AumaiP),XVAL(AvmaiP),
+ ®VAL(dx_pP), %VAL(dy pP) XVAL(ustarP),%VAL(vstarP),
+ %VAL(pprlmP) d) -

RETURM

END )




143

xz%%x%%xxxxx%xx%x%%xxzxxzxxxxx%x%xxxxxxxxxxxx%z%x%xx%%xxx%%%%%%%%%%
¢ SHEAR.FOR
PR 20 2P 490333 4 $443333433 393333333333 32 3388334483343 8%33% 3004
c .

subroutine SHEAR(G1,ubc,vbc,dx_p,dy_p,i_pos,j_pos,f_e,f_n,
+ I1,dd,J_LEN)

integer®*4 11, JJ J LEN
real¥*8 G1(¢I11,44), ubc(ll+1 Jd+2),vbe(I1+42,3d+1),dx_p(11)
real*8 dy_p(JJd),f_e(IlI+1),f_n(dd+1),u _cent(é60, 60+2) ‘
real®8 v cent(60+2 60),u Hall(60 60+1) v_uall(60+1 60)
real*8 j_pos(J_LEH),i_pos(J_LEN) ’
c . .
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCC
c Compute the production of Kinetic Energy due to SHEAR, G1

61 = (du/dy - dv/dx)*2

for’ each pressure control volume.
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

COmpute u at center of pressure c.v.
do 10 j 1,dd+2
do 20 = 1,11
u_cent(i,j) = .5 * (ube(i,j) + ubc(i+1,]j))
20 continue
10 continue

O0O00000O0

Compute u at walls of pressure c.v.

0

do 30 j 1,dd+1
do 40 = 1,11
u_wall(i,j) = f_n(j)*u_cent(i,jd+(1.-f_n(j))*u_cent(i,j+1)
40 continue '
30 continue

c
c Compute v at center of pressure c.v.
c
do 50 j = 1,44
do 60 i = 1,11+2
v_cent(i,j) = .5 * (vbe(i,j) + vbe(i,j+1))

60 continue

50 continue
c
c Compute v at pressure c.v. walls.
c

do 90 j = 1,J4
do 95 i = 1,11+1
v_wall(i,j) = f_e(i) * v_cent(i,j) +
+ (1 - f_eCi)) * v_cent(i+t,]j)

95 continue -

90 continue
c
c Set u and v velocities on walls = 0.0
c

do 25 k = 1,J_LEN
i = IDNINT(i_pos(k))
j = IDNINT(j_pos(k))
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do 35 L = i,
u_wall(l,)
u_wall(l,]j

35 continue

do 45 | = i,II+1

v_wall(l,j). = 0.0
45 continue
25 continue

1
) = 0.0
+1) = 0.0

[ .
c Compute G1 for each pressure control volume.
c .
do 70 j = 1,4
do 80 i = 1,11 . .
G1¢T,j) = (Cu_wall(i,j+1) - u_wallc¢i,j)) / dy_p(J) -
+ . (v_wall(i+1,j) - v_wall(i,j)) / dx_p(i))**2
80 continue o
70 continue
c
return
end

%%%%%%%%%%%%%%%%%%%%%%%%%i%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ SHEARG.FOR ’
RERRBRBLBRAAULEREK AL LKA L LR AL R B RELLK I A LA AR A A LS XSS R LS L L AL SLLLLY
c

SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS)

I'NTEGER NLHS,MRHS )

INTEGER*4 PLHS(¥®), PRHS(¥)

INTEGER*4 CRTMAT, REALP, GETSIZ

¢ Declare integers to be used as pointers.
INTEGER¥"4 G1P,ubcP,vbcP,dx_pP,dy_pP,f_eP,f_nP,i_posP,j_posP
¢ Declare local variables.
INTEGER*4 I, J, J_LEN, dummy
¢ Get size of input argument.

CALL GETSIZ(PRHS(3),dummy,1l)

CALL GETSIZ(PRHS(4),dummy,J)

CALL GETSIZ(PRHS(é),dummy,J_LEN)
¢ Create matrices for return arguments.

PLHS(1) = CRTHMAT(I,d,0)
¢ Assign pointers to the various parameters.
G1P = REALP(PLHS(1))
ubcP = REALP(PRHS(1))
vbecP = REALP(PRHS(2))
dx_pP = REALP(PRHS(3))
dy_pP = REALP(PRHS(4))
i_posP = REALP(PRHS(5))

j_posP = REALP(PRHS(6))
f_eP = REALP(PRHS(7))
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f_nP = REALP(PRHS(8))
c .
¢ Do the actual computation in a subroutine.

c
CALL SHEAR(XVAL(G1P),%VAL(ubcP),%VAL(VbcP),%VAL(dx_pP),
+ . RVAL(dy_pP),%VAL(i_posP),%VAL(]j_posP),
+ %VAL(f_eP),%VAL(f_nP),I,J,d_LEN).
RETURN
END

E Yy Y 2 Y 2 Y 4232325233131 33 3234333838483 333333333333 38833324342 4%%3
¢ SOURCE.:FOR .
Yy 2y 3 1232223233239 3382 3333333834233 3243333 345334344430
c

subroutine SOURCE(b_Sc,a_Sp,Sc,Sp,dx_p,dy_p,11,4J)
c

integer®*4 11,44

) real*8 b_Sc(ll,JJ),a_Sp(II,JJ),Sc(II,JJ),Sp(Il,JJ)

real*8 dx_p(Il),dy_p(JJ)
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCECEEe
c .
¢ Compute source terms.
c

do 10 j = 1,44
do 20 i = 1,11
b_Sc(i,j) = Se(i,j) * dx_p(i) ¥ dy_p(])
: a_SpCi,j) = Sp(i,j) * dx_p(i) * dy_p(jy
20 continue.

10 continue

return
end

Y Y e 3 2242332323422 3 4332333123333 3332535335543 33433 333
¢ SOURCEG.FOR .
1332223232223 1131111213333t 5333 59313333843 3334333343 434
[
SUBROUTINE USRFCN(NLHS,PLHS,NRHS,PRHS) -
INTEGER NLHS,NRHS
INTEGER®4 PLHS(¥*), PRHS(¥)
INTEGER®™4 CRTHAT, REALP, GETSIZ

¢ Declare integers to be used Ss pointers. .

INTEGER*™4 b_ScP,a_SpP,SCP,SpP,dx_bP,dy_pP

¢ Declare local vgr%ables. ’
INTEGER*4 I, J, dummy

¢ Get size of input argument.

CALL GETSIZ(PRHS(3),dummy,1)
CALL GETSIZ(PRHS(4),dummy,J)

¢- Create matrices for return arguments.

PLHS(1) = CRTHMAT(I,J,0)

v
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PLHS(2) = CRTHAT(1,J,0)

Assign pointers to the various parameters.

(2]

b_ScP
a_SpP

REALP(PLHS(T))
REALP(PLHS(2))

ScbP
SpP
dx_pP = REALP(PRHS(3))
dy_pP = REALP(PRHS(4))

REALP(PRHS(1))
REALP(PRHS(2))

[+]

Do the actual computation in a subroutine.

CALL SOURCE(%VAL(b_ScP),%VAL(a_SpP),%VAL(ScP),%VAL(SpP),
+ %VAL(dx_pP),%VAL(dy_pP),1,d)

RETURN

END

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ GE_COEF.FOR (General phi Equation COEFficients) '
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c

subroutine GE_COEF(aE,aW,aN,as,

+ ubc,vbc,dx_p,dy_p,delx_p,dély_p,g_b_eu,g_b_ns,ro,II,JJ)

integer*s4 11, J4¢

real*8 aBE(Il,dJd),au(II, Jd),aN(l1,dd),asSCIl,dd)

real*8 ubc(lI+1,JJ+2),vbc(Il+2,JJ+1),dx_p(lr),dy_p(JJ)
real*8 delx_p(lI+1),dely_p(JdJ+1)

real“8 g _b_euw(II+1,Jd),9_b_ns(11,JJd+1),ro

real*8 De,Dw,Dn,Ds,Pe,Pw,Pn,Ps,Fe,Fw,Fn,Fs,zero

zero = 0.0
¢ CALCULATE THE COEFFICIENTS aP, for the general phi equation.

do 10 j = 2,J44d+1

do 20 i 2,11+1
c
Fe = ro * ubc(i,]) * dy_p(j-1)
Fw = ro * ubc(i-1,j) * dy_p(j-1) s
Fn = ro % vbe(i,i) * dx_p(i-1) ’
Fs = ro * vbe(i,j-1) * dx_p(i-1)
c
De = g_b_ew(i,j-1) * dy_p(€j-1) / delx_p(i)
Dw = g_b_ew(i-1,j-1) * dy_p(j-1) 7/ delx_p(i-1)
Dn = g_b_ns(i-1,]) * dx_p(i-1) / dely_p(})
Ds = g_b_ns(i-1,j-1) * dx_p(i-1) 7 dely_p(j-1)
c
Pe = Fe / De
P = Fu / Dw
Pn = Fn / Dn
Ps = Fs / Ds
c
Pe = (1. - .1 % dabs(Pe))**5
Pw = (1. - .1 * dabs(Pw))**5
Pn = (1. - .1 * dabs(Pn))*=5

Ps (1. - .1 * dabs(Ps))**5
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aE(i-1,j-1) = De * dmaxi(zero,Pe) + dmax1(-Fe,zero)
a¥(i-1,j-1) = bw * dmax1(zero,Pw) + dmax1(Fw,zero)
aN(i-1,j-1) = Dn * dmaxi(zero,Pn) + dmax1(-Fn,zero)
aS(i-1,j-T) = Ds ® dmaxi(zero,Ps) + dmax1(Fs,zero)
c
20 continue
10 continue
c
‘return
end

BUBBRIAD BRI RE BRI EE LB L L LT SR E BRI BRI AT BRL I LRI BRI BRSRDRT BT BRDBRIB% %%
¢ GE_COEFG.FOR : '
BUABEI DL E B LIS I AL I LT LRI L LLL IS I IR I L LRI AR L LR LAISRE RS HRI LRSI LLBLLSL L%
c , .
SUBROUTIME USRFCN(NLHS,PLHS,NRHS,PRHS)

INTEGER NLHS,NRHS

INTEGER*4 PLHS(*), PRHS(®)

INTEGER*4 CRTMAT, REALP, GETSIZ

¢’ Declare integers to be used as poihters.

INTEGER*4 aeP,awP,anP,asP,g_euwP,g_nsP,roP
INTEGER*4 ubcP,vbceP,dx_pP,dy_pP,dlx_pP,dly_pP

¢ Declare local variables.

INTEGER*4 I, J, dummy

¢ Get size of input argument.
CALL GETSIZ(PRHS(3),dummy,1)
CALL GETSIZ(PRNS(4),dummy,d)

¢ Create matrices for return arguments.

CRTMAT(I,J,0)
CRTMAT(I,d,0)
CRTMAT(I,J,0)
CRTMAT(1,J,0)

PLHS(1)
PLHS(2)
PLHS(3)
PLHS(4)

(1]

Assign pointers to the various parameters.
REALP(PLHS(1))
REALP(PLHS(2))
REALPC(PLHS(3))
REALP(PLHS(4))

aeP
auwp
anpP
asP

ubcP
vbeP
dx_pP =
dy_pP =
dlx_pP
dly_pP
g_ewP
g_nsP
roP = R

REALP(PRHS(1))
REALP(PRHS(2))
REALP(PRHS(3))
REALP(PRHS(4))

= REALP(PRHS(5))

= REALP(PRHS(6))
REALP(PRHS(7))
REALP(PRHS(8))
EALP(PRHS(9)) "
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¢ Do the actual computation in a subroutine.
c
CALL GE_COEF(%VAL(aeP),%VAL(auP),%¥VAL(anP),%¥VAL(asP),

+ . %VAL(ubcP),%VAL(vbcP) AVAL(dx_pP),%VAL(dy_ pP),
+ XVAL(dUx_pP),%VAL(dly_pP),

+ %VAL(g_euP) %¥VAL(g_nsP),%VAL(roP),1,J)

RETURN ’

END

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ ATIMESX.FOR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4%

subroutine ATlMESX(atx,phl,A_phl,lND_P,relax,lp,Jp)
c .
integer*4 1p,Jdp,INDX_P(1200,5)
real*8 phi(lp,dp),atx(lp,dp)
real*8 A_phi(Ip*Jp,5),relax,IND_P(Ip*Jp,5),phi2(1200)
c .
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCECCCCCE
c .
do 2 j = 1,5
do 3 i = 1,
i, IDNINTCIND_P(Ci,j))
3 continue
2 continue

(1]

Compute A times X.

phi2(k) =
A_phi(k,3)
15 continue
10 continue

do 20 jj

do 25 i

atx(i

k = i -

do 30 j =

if (INDX

atx(ii,jj

endif

30 continue
25 continue
20 continue

-ty s
nu

0
p

o Sme e

)

1

PCk,j).ne.0) then

Y = atx(ii,jj) + A_phi(k,j) * phi2(CINDX_P(k,]j))

return
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
¢ ATIMESXG.FOR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c

SUBROUTINE USRFCN(NLHS PLHS, NRHS PRHS)

INTEGER NLHS,NRHS

INTEGER™4 PLHS(*), PRHS(*)
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INTEGER*4 CRTMAT, REALP, GETSIZ.
Declaré integers to be used as pointers.
INTEGER*4'atxP,phiP,A_phiP,IND_PP,relaxP
Declare locél variables. ' ‘
INTEGER*4 Ip, Jp
Get siée of input argument,
CALL GETSIZ(PRHS(1),Ip,dp)
Create matrjces'for return arguments.
PLHS(T1) = CRTMAT(Ip,Jdp,0)
Assign pointers to the various parameters.
atxP = REALP(PLHS(1))

phiP = REALP(PRHS(1))

A_phiP = REALP(PRHS(2))
IND_PP = REALP(PRHS(3)).
relaxpP =

REALP(PRHS(4))
Do the actual computation in a subroutine.

CALL ATIMESX(%VAL(atxP),%VAL(phiP),%VAL(A_phiP),%VAL(IND_PP),
+ #VAL(relaxP),Ip,dp) ’
RETURN . .

END

Y F e Y A A A 8123438333332 32332353232 33333353 3534323343334 31
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. Figure 20. MATLABvPIQtting.Prpgrams.

.%%%%%%%%%%%%%%x%%%%%%%%%%%%%%%%%x%%%x%%xx%%z%%%%%%%%%%x%%%%%%%xx%%%
% ARROWS.HM
%%%%%%%%%%%%%%%%%x%%%%%%%%x%%%x%x%%%x%%%%%x%%%%%x%%%%%%%%%x%%%%%%%

% Plot the flow f1eld using ‘arrows to. indicate direction-and
%_ magnltude. ’

. XX 01 .71 .71.%;
LYY [0 0 .12 0 -.121.";
arrow = xx + yy.*sqrt( 1),-

_€ = .5 * fliplr(x_ coords(z.l+1)),
_c2 = .5 * y coords(2: J+1),
c = y_c2 - y_c2(j_pos_uall);

|*<*<><

[xx,yyl = meshdom(y_c,x
GRID = xx + yy.¥*sqrt(-1
GRID = GRID(:);

X v(:);

Y -u(:);

z (x + y.*sqrt(-1)).';

scale = 1 ./ max(max{(abs(z))); .

a = mag * scale * arrow * 'z + ones(5,1) * GRID.';
plot(real(a),imag(a),'-'), xlabel('Distance (x/h)"'),
ylabel('Height (z/h)"'), .

title('Turbulent Flow Field!'),
hold on,boxesw,hold off

_c);
bH

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%A%
% BOXES.H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Draw boxes around control volumes.

hold on

Xx_w = .5 * x_wall;

y_uw2 = .5 * y_-wall;

y_W = y_w2 - .5 * (y_ HZ(j pos wall) + y_ HZ(] _pos_wall+1));

for j = 1:4d

for i = 1:1

if gamma(i,j) == nan
xbox = [x_w(i) x_w(i+1) x_w(i+1) x_w(i) x_w(idl;
ybox = [y_w(j) y_w(j) y_w(j+1) y_uw(j+1) y_u(j));
box = ybox + xbox .* sqrt(-1);
plot(box,'-1)

end

if gamma_orig(i,j) >= 1e3

xbox = [x_w(i) x_w(i+1) x_w(¢i+1) x_w(i) x_w(idl;
ybox = L[y_w(j) y_w(]) y_w(j+1) y_w(j+1) y_w(j)];
box = ybox + xbox .¥* sqrt(-1); -

plot(box,*-*)
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q_max = (x_uW(i)-x_uw(i+1))/.01;
for q = 1:q_max S
t = q % .01; )
Xxline = [x_w(i)-t x_w(id)-t];
yline = [y_uw(j) y_w(j+1)1;
plot(yline,xline,'-1")
end
end
end
"end
hold off

RERKRLELRKRARREKKR B AL LKL LKL LR L ARX AKX KA EL R ERKRLEKL R LARL IS LSRR RRAEBELGE
% STAIRS.HM
131221222123 1322333 1 103 ¥ iy syt ity ssye333344933541333445 %

% Draw 'stair steps.

fﬁnction [xo,yol = stairs(dy_p,dh,y_coords, j_pos_wall)

y_coords = .5 ®* y coords;

y_coords = y_coords - y_coords(j_pos_wall); !
J = length(dy_p); . : . ) .
nn = 2 * J;

yy = zeros{(nn+2,1);

XX = Yy;

tt = y_coords(:)' - .5 * .5 * dy_p;

xx{(1:2:nn) = tt;

xx(2:2:nn) = tt;

xx{nn+i:nn+2) = tt(J) + .5 * [dy_p(J);dy_p(d)];
yy(2:2:nn) = dh;

yy(3:2:nn+1) = dh;

% Don't include the left and right sides.

X0
Yo

xx(2:nn+1);
yy(2:nn+1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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