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Abstract:

The goal of this research project is to investigate the three-dimensional structure of a specific peptide
segment of the retinal rod G protein, transducin, bound to light excited rhodopsin. This segment has
been shown to exhibit biological activity in much the same fashion as the full G protein. The segment
studied consists of a modified portion of the C-terminus of the alpha subunit of transducin that runs
from amino acid numbers 340 to 350. The peptide chain has been modified to prolong its biological
activity by the addition of N-terminal acylation, and the substitution of a lysine for an arginine in the
341 position.

This project studied this peptide segment using two-dimensional nuclear magnetic resonance and
computer refinement methods. The goal was to determine if the peptide has significant structure when
free in solution, in the presence of bovine rhodopsin in an unactivated state, and finally bound to
rhodopsin in its light excited form.

The NOESY build-up rates were somewhat similar for the dark- and light-bound experiments although
significantly more cross-peaks were observed in the light-bound experiments. The new cross-peaks
were mainly from sidechain interactions and interactions on the C-terminal end of the peptide. The
sidechain cross-peaks suggest more intimate binding in the light, and the increase in C-terminal
cross-peaks suggests that this end is important in the light binding. Measurement of the peptide-protein
exchange rates shows fast exchange on the cross-relaxation time scale. The final structures obtained
using iterative MARDIGRAS refinement are consistent with the idea of tighter binding in the light; the
dark-bound structures qualitatively show less overall agreement with each other than the light-bound
structures.

This project has yielded preliminary structures for the metarhodopsin 11-bound peptide segment. Work
continues in this laboratory to better define the dark- and light-bound structures and yield further
understanding of this protein interface.
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ABSTRACT

The goal of this research project is to investigate the three-dimensional
structure of a specific peptide segment of the retinal rod G protein, transducin, bound
to light excited rhodopsin. This segment has been shown to exhibit biological activity
in much the same fashion as the full G protein. The segment studied consists of a
modified portion of the C-terminus of the alpha subunit of transducin that runs from
amino acid numbers 340 to 350. The peptide chain has been modified to prolong its
biological activity by the addition of N-terminal acylation, and the substitution of a
lysine for an arginine in the 341 position.

This project studied this peptide segment using two-dimensional nuclear
magnetic resonance and computer refinement methods. The goal was to determine if
the peptide has significant structure when free in solution, in the presence of bovine
thodopsin in an unactivated state, and finally bound to rhodopsin in its light excited
form.

The NOESY build-up rates were somewhat similar for the dark- and light-
bound experiments although significantly more cross-peaks were observed in the light-
bound experiments. The new cross-peaks were mainly from sidechain interactions and
interactions on the C-terminal end of the peptide. The sidechain cross-peaks suggest
more intimate binding in the light, and the increase in C-terminal cross-peaks suggests
that this end is important in the light binding. Measurement of the peptide-protein
exchange rates shows fast exchange on the cross-relaxation time scale. The final
structures obtained using iterative MARDIGRAS refinement are consistent with the
idea of tighter binding in the light; the dark-bound structures qualitatively show less
overall agreement with each other than the light-bound structures.

This project has yielded preliminary structures for the metarhodopsin II-bound
peptide segment. Work continues in this laboratory to better define the dark- and
light-bound structures and yield further understanding of this protein interface.




CHAPTER 1
BACKGROUND AND LITERATURE REVIEW
Introduction

How cells detect their environment, respond to it and communicate these
responses to other areas of the cell or the entire organism are key research areas in
biological chemistry today. There are a variety of routes through which this
information is communicated - hormones, neurotransmitters, growth factors, and ion
channels that are selectively activated. All of the routes involve a receptor that can
specifically discriminate and respond to chemical signals from outside the cell. In
many cases the receptors are not themselves ion channels or enzymes, but are coupled
to specific enzymes to produce the desired cellular response. There are several
superfamilies of receptors that appear to have very similar structures within each
superfamily. The largest superfamily of receptors are coupled to amplifier proteins
called guanine-nucleotide-binding-proteins, or G proteins, and are called G protein

coupled receptors (GPCR).




Overview of G proteins

A review by Simon et al states that over 100 different G prot;ein coupled
receptors had been found in mammals by 1990(1). Current estimates are that there are
nearly 900 different GPCR in all species including insects and fungi (98). A classic
review by Gilman (2) in 1987 classifies and defines G proteins on the basis of their
structure and functions. His‘functional definition of G proteins is that they actlas
intermediates in transmembrane signalling by means of receptor-induced GTP binding.
The signalling pathway always consists of the sequence: Receptor -~ G protein -
Effector. As a structural deﬁnition; G proteins discovered to date are either
heterotrimers, consisting of «, B, and ¥ subunits or so-called “small G proteins” (1)
which appear to be homologous to a section of the heterotrimer ¢ subunit. These
small G proteins regulate cell growth, protein secretion and intracellular vesicle
interaction (3). This discussion will focus on th;e heterotrimeric G proteins, the class
in which the G proteins involved in vision are found. Among the receptors for the
heterotrimeric G proteins, virtually all are thought to have a heptahelical
transmembrane structure. The heterotrimeric G proteins are thought to exist in two
distinct states depending on the state of excitation of the receptor to which they are
bound (1).

Currently, the o subunits are believed to be key differentiators between G

proteins, whereas the  and y subunits are more similar to one another. Among all
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the known ¢« subunits, 20 % of the amino acids are fully conserved (4) and the «
subunits can be grouped into several different classes based on amino acid and

functional similarities (Tablp 1; reference 1).

Table 1. G protein designations and functions.

¢._Subunit Designation Function
G, stimulatory regulator of adenylyl cyclase
G, inhibitory regulator of adenylyl cyclase
G, stimulates phosphatidylinositol-specific
phospholipase C :
G, little currently known about function
G, , stimulates cGMP phosphodiesterase

Features of the Ge subunits to be noted are in the NH, and COOH terminal regions.
The NH, terminal region is believed to be involved in the interaction between the o
and By subunits and the receptor; and the extreme C terminal region is thought to be
involved with the recognition of specific receptors (1). A recent paper (5) changed
three of the four C terminal residues in a G, sequence to match those of a Gay, |
sequence and changed the receptor specificity vto-that of Ga,,.

The literature indicates that much less is known about the function and
structure of theb and y subunits. The review article by Simon et al (1) states that

four distinct GB subunits have been found in mammals, with over 80 % of their

amino acid sequences conserved. Tamir et al (6) investigated five different sources of
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GPBy and found only two highly conserved P forms. It is also postulated that the 30-
40 initial amino acids on the NH, terminal end of the B subunit is responsible for the
interaction with the y subunit (1). As for the y subunit, more diversity has been
found here, with up to seven different Gy sequences found (6). Tamir and co-workers
hypothesize that the GB subunits contain a common recognition site for various Ga&
subunits, while the Gy subunit is involved in receptor specificity.

In this research project the G protein involved is often referred to in the
literature as transducin or G, and is involved in the light activation of cGMP
phosphodiesterase (PDE) in retinal rod outer segments (ROS). G, is considered to be a
distinct type of G; protein by some researchers and it acts as an intermediate between
the transmembrane rhodopsin and the enzyme PDE bound to the cytoplasmic surface
of the membrane. Rhodépsin is able to function as a single photon detector in retinal
rods by virtue of G,, which acts as a pre-amplifier of the light signal and PDE which
acts as a power amplifier for the output signal of the receptor cell via the cGMP

cascade to be discussed further.

The Rhodopsin - G, Interaction

The rthodopsin - G, system has many advantageous features for study by
modern biophysical techniques. A key advantage of the system is the availability and
relative ease of isolatioﬁ of the rhodopsin protein and G,. Rhodopsin, along with its
associated lipids, can be rather easily isolated from bovine retinas (7). Since the

proteins in the rod outer segment are approximately 70% thodopsin (8), it is relatively
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easy to obtain rhodopsin in milligram amounts. Rhodopsih consists of two parts: the
protein opsin and the small chromophore retinal, which is closely related to vitamin
A9, 10).

If ease of obtaining rhodopsin is one of the advantages of this system, a major
complexity' of this system is the photocycle of rhodopsin. Shown in Figure 1 is a
diagram for the early events in the photocycle for rhodopsin, showing some of the
major intermediates, structures and absorption maxima of the chromophore at each
intermediate state (11). Several other intermediates have been described, including a
metarhodopsin III (MIIT) intermediate that can follow metarhodopsin II (MII) under

appropriate temperature and pH conditions (12).

RHODOPSIN m |
(498 nm) \\L
96

+_1ys?
hv BN N/
Lo
BATHORHODOPSIN

(543 nm) , N
LUMIRHODOPSIN SN SN N N h|lH

METARHODOPSIN I HY
(478 nm)

METARHODOPSIN T MT
(380 nm) y Hy0 ly5296
NH3
TRANS RETINAL S 2 Y e TN
lys2%
(387 nm) .

Figure 1. The rhodopsin photcycle. Shown are the changes in the chromophore
structure and the absorption maximum of each intermediate. [Taken from Nathans

(11)]
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