The asymmetric Rh(I) catalyzed [4+2] cycloisomerization reaction: new homochiral bisphosphine ligands
by Lydia McKinstry

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry
Montana State University
© Copyright by Lydia McKinstry (1994)

Abstract:
Intramolecular [4+2] cycloisomerization of ene-dienes and dien-ynes was effected with novel Rh(I) templates. The efficiency of cyclization was affected by steric and electronic influences within the ligand sphere. Asymmetric [4+2] cycloisomerization was mediated by Rh(I) complexes modified by ligands. Highly flexible and general procedures for the synthesis of new homochiral bisphosphine ligands have been developed. These new methods were used in the preparation of two generations of carbon-based homochiral bisphosphines. Additionally, a rational approach to the synthesis of a class of homochiral ferrocenyl ligands bearing chirality at phosphorus was introduced.
THE ASYMMETRIC Rh(I) CATALYZED [4+2] CYCLOISOMERIZATION REACTION: NEW HOMOCHIRAL BISPHOSPHINE LIGANDS

by

Lydia McKinstry

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemistry

MONTANA STATE UNIVERSITY
Bozeman, Montana

July, 1994
APPROVAL

of a thesis submitted by

Lydia McKinstry

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

July 21, 1994
Date

Chairperson, Graduate Committee

Approved for the Major Department

July 20, 1994
Date

Head, Major Department

Approved for the College of Graduate Studies

7/25/94
Date

Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted "the exclusive right to reproduce and distribute my dissertation for sale in and from microfilm or electronic format, along with the right to reproduce and distribute my abstract in any format in whole or in part."

Signature Lynda McKinstry
Date July 21, 1994
To Katherine A. and David A. McKinstry

and Constantine C. Gober
ACKNOWLEDGEMENTS

For his encouragement, patience and friendship, Professor Tom Livinghouse deserves special thanks. His wisdom and skill have made our collaboration exciting and challenging. Professors Arnold Craig, Brad Mundy and Lee Spangler provided invaluable guidance throughout the course of this endeavor. The skills and services of Miss Susan Clark, Mr. Lee David and Dr. Joe Sears are also appreciated. Former and present graduate students Dr. Steve Dunham, Mr. Klark Hanson, Dr. Scott Harring, Mr. Rich Hughes and Dr. Paul McGrane deserve thanks for their inspiration and expertise. Mr. Derek Sheehan not only conspired to make a portion of this research a success but was always available for discussion. Financial support was provided by: The Petroleum Research Fund; The Alfred P. Sloan Foundation; The National Science Foundation; and The National Institutes of Health. In addition, the Johnson Matthey Corporation is acknowledged for providing a discounted sample of RhCl₃·3H₂O. The preparation of this manuscript was not possible without the word processing skills and patience of Mrs. Barb Hamblet. Most importantly, the ever present generosity, inspiration, tolerance and faith of my family and friends are the unrelenting well-springs of my strengths. Thank you all and God bless you forever.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>4</td>
</tr>
<tr>
<td>Chiral Phosphine Ligands</td>
<td>5</td>
</tr>
<tr>
<td>Monophosphines</td>
<td>5</td>
</tr>
<tr>
<td>Diphosphines</td>
<td>16</td>
</tr>
<tr>
<td>Transition Metal Complexes as Catalysts in Asymmetric Synthesis</td>
<td>26</td>
</tr>
<tr>
<td>Hydrogenization</td>
<td>28</td>
</tr>
<tr>
<td>Carbon-Carbon Bond Formation</td>
<td>29</td>
</tr>
<tr>
<td>Simple Isomerization</td>
<td>30</td>
</tr>
<tr>
<td>Olefin Dimerization</td>
<td>33</td>
</tr>
<tr>
<td>Olefin Cycloisomerization</td>
<td>34</td>
</tr>
<tr>
<td>Intramolecular [4+2] Cycloisomerization</td>
<td>37</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>43</td>
</tr>
<tr>
<td>Rh(I) Catalyzed [4+2] Cycloisomerization</td>
<td>43</td>
</tr>
<tr>
<td>Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerization</td>
<td>45</td>
</tr>
<tr>
<td>Electronic and Torsional Derivatives of (+)-DIOP</td>
<td>47</td>
</tr>
<tr>
<td>Enantioselective [4+2] Cycloisomerization</td>
<td>49</td>
</tr>
<tr>
<td>Homochiral Bisphosphino Hexane and Pentane Ligands</td>
<td>54</td>
</tr>
<tr>
<td>Phosphine–Borane Decomplexation with HBF₃·OMe₂</td>
<td>55</td>
</tr>
<tr>
<td>Electron Rich Homochiral Bisphosphines</td>
<td>58</td>
</tr>
<tr>
<td>Design of Phosphorus-Centered Homochiral Bisphosphino Ferrocene Ligands</td>
<td>62</td>
</tr>
<tr>
<td>TABLE OF CONTENTS—Continued</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>Page</td>
</tr>
<tr>
<td></td>
<td>70</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>71</td>
</tr>
<tr>
<td>Ligand Synthesis -- Phosphine Substituents</td>
<td>74</td>
</tr>
<tr>
<td>Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)</td>
<td>74</td>
</tr>
<tr>
<td>Bis(2-trifluoromethylphenyl)phosphine (5a)</td>
<td>75</td>
</tr>
<tr>
<td>Bis(2-methylphenyl)phosphine Oxide (4b)</td>
<td>76</td>
</tr>
<tr>
<td>Bis(2-methylphenyl)phosphine (5b)</td>
<td>76</td>
</tr>
<tr>
<td>Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)</td>
<td>76</td>
</tr>
<tr>
<td>Bis[3,5-bis(trifluoromethyl)phenyl]phosphine (5c)</td>
<td>77</td>
</tr>
<tr>
<td>Bis(4-methoxy-2-methylphenyl)phosphine Oxide (4d)</td>
<td>77</td>
</tr>
<tr>
<td>Bis(4-methoxy-2-methylphenyl)phosphine (5d)</td>
<td>78</td>
</tr>
<tr>
<td>Boronato-dicyclohexyl phosphine (27a)</td>
<td>78</td>
</tr>
<tr>
<td>Boronato-diphenyl phosphine (27b)</td>
<td>79</td>
</tr>
<tr>
<td>4-Lithio-3-methylanisole</td>
<td>79</td>
</tr>
<tr>
<td>Bis(4-methoxy-2-methylphenyl)-N,N-dimethylaninophosphine (31)</td>
<td>80</td>
</tr>
<tr>
<td>Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)</td>
<td>81</td>
</tr>
<tr>
<td>Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)</td>
<td>82</td>
</tr>
<tr>
<td>Ligand Synthesis-Tartaric Acid Series</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>(1,4-diphosphines)</td>
<td>82</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis(carbomethoxy)-2,2-dimethyl-1,3-dioxolane (100a)</td>
<td>82</td>
</tr>
<tr>
<td>(4S,5S)-4,5-Bis(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (101a)</td>
<td>83</td>
</tr>
<tr>
<td>(4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2,2-dimethyl-1,3-dioxolane (6a)</td>
<td>84</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[bis(2-trifluoromethyl-phenyl) phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3f)</td>
<td>85</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[bis(2-methylphenyl) phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3e)</td>
<td>86</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoromethyl) phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3d)</td>
<td>87</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3h)</td>
<td>88</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[boronatodicyclohexyl phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (33)</td>
<td>88</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[dicyclohexylphosphino]methyl]-2,2-dimethyl-1,3-dioxolane (32)</td>
<td>89</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis(carbomethoxy)-2-methyl-2-phenyl-1,3-dioxolane (100b)</td>
<td>90</td>
</tr>
<tr>
<td>(4S,5S)-4,5-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)</td>
<td>90</td>
</tr>
<tr>
<td>(4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2-methyl-2-phenyl-1,3-dioxolane (6b)</td>
<td>91</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[[diphenylphosphino]methyl]-</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2-methyl-2-phenyl-1,3-dioxolane (3b)</td>
<td>92</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[bis(2-trifluoromethyl phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)</td>
<td>93</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis(carbomethoxy)-2-t-butyl-1,3-dioxolane (100c)</td>
<td>94</td>
</tr>
<tr>
<td>(4S,5S)-4,5-Bis(hydroxymethyl)-2-t-butyl-1,3-dioxolane (101c)</td>
<td>95</td>
</tr>
<tr>
<td>(4S,5S-4,5-Bis[(p-tosyloxy)methyl]-2-t-butyl-1,3-dioxolane (6c)</td>
<td>95</td>
</tr>
<tr>
<td>(4R,5R)-4,5-Bis[(diphenylphosphino) methyl]-2-t-Butyl-1,3-dioxolane (3c)</td>
<td>96</td>
</tr>
<tr>
<td>Ligand Synthesis—Hexane Series (1,4-diphosphines)</td>
<td>97</td>
</tr>
<tr>
<td>(2S,5S)-2,5-Hexandiol (102)</td>
<td>97</td>
</tr>
<tr>
<td>(2S,5S)-2,5-Bis-(p-tosyloxy)hexane (30)</td>
<td>97</td>
</tr>
<tr>
<td>(2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b)</td>
<td>98</td>
</tr>
<tr>
<td>(2R,5R)-2,5-Bis[bis(2-trifluoromethyl-phenyl) phosphino]hexane (15a)</td>
<td>99</td>
</tr>
<tr>
<td>(2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)</td>
<td>100</td>
</tr>
<tr>
<td>(2R,5R)-2,5-Bis(boronato dicyclohexylphosphino)hexane (26a)</td>
<td>101</td>
</tr>
<tr>
<td>(2R,2R)-2,5-Bis[boronato-Bis(4-methoxy-2-methylphenyl)phosphino]hexane (26c)</td>
<td>102</td>
</tr>
<tr>
<td>(2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b)</td>
<td>103</td>
</tr>
<tr>
<td>(2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)</td>
<td>104</td>
</tr>
<tr>
<td>Ligand Synthesis—Cyclohexane (1,4-diphosphine)</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>(1S,2S)-1,2-Bis[(boronato-dicyclohexylphosphino)methyl] cyclohexane (25a)</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand Synthesis—Pentane Series (1,3-diphosphines)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2R,4R)-2,4-Bis([bis(2-trifluoromethylphenyl)phosphino] pentane (16a)</td>
<td>106</td>
</tr>
<tr>
<td>(2R,4R)-2,4-Bis(boronato-dicyclohexylphosphino)pentane (24)</td>
<td>107</td>
</tr>
<tr>
<td>(2R,4R)-2,4-Bis(dicyclohexylphosphino)pentane (19)</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate Synthesis—Ene-dienes and Dien-ynes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl-4-methyl-2(E),4-pentadienoate (103)</td>
<td>108</td>
</tr>
<tr>
<td>4-Methyl-2(E),4-pentadien-1-ol (104)</td>
<td>109</td>
</tr>
<tr>
<td>8-Methyl-4-oxo-1,6(E),8-nonatriene (7a)</td>
<td>110</td>
</tr>
<tr>
<td>8-Methyl-4-oxo-6(E),8-nonadien-1-yn (105)</td>
<td>112</td>
</tr>
<tr>
<td>8-Methyl-4-oxo-1-(trimethylsilyl)-6(E),8-nonadien-1-yn (10)</td>
<td>112</td>
</tr>
<tr>
<td>4-Oxo-1,6(E),8(E)-decatriene (7c)</td>
<td>113</td>
</tr>
<tr>
<td>4-Oxo-6(E),8(E)-decadien-1-yn (1)</td>
<td>115</td>
</tr>
<tr>
<td>4-Oxo-1-(trimethylsilyl)-6(E),8(E)-decadien-1-yn (106)</td>
<td>115</td>
</tr>
<tr>
<td>1-Chloro-4-methyl-2(E),4-pentadiene (107)</td>
<td>116</td>
</tr>
<tr>
<td>4,4-Bis(carboethoxy)-8-methyl-1,6(E),8-nonatriene (108)</td>
<td>117</td>
</tr>
<tr>
<td>4,4-Bis(hydroxymethyl)-8-methyl-1,6(E),8-nonatriene (109)</td>
<td>118</td>
</tr>
</tbody>
</table>
4,4-Bis(methoxymethyl)-8-methyl-1,6(E), 8-nonatriene (7b) .. 119

Rh(I) Mediated Alkene Cycloisomerizations 121

1,3,5α,7αβ-Tetrahydro-5-methyl-4-(trimethylsilyl)-isobenzofuran (11a) 121

1,3,3αβ,6,7,7αβ-hexahydro-5-methylisobenzofuran (8a) 122

[4+2] cycloisomerization of 7a with homochiral bisphosphine ligands 123

3αβ,6,7,7αβ-Tetrahydro-2,2-bis(methoxymethyl)-5-methyldindan (8b) 124

[4+2] cycloisomerization of with homochiral bisphosphine ligands 125

1,3,5,7αβ-Tetrahydro-6-methyl-4-(trimethylsilyl) isobenzofuran (11) 126

[4+2] cycloisomerization reaction of 10 with homochiral bisphosphine ligands 127

1,3,3αβ,4,5α,7αβ-hexahydro-5-methylisobenzofuran (8c) 127

[4+2] cycloisomerization of 7c with homochiral bisphosphine ligands 128

1,3,3αβ,4,5α,5β,6,7,7αβ-Octahydro-4-hydroxy-5-methylisobenzofuran (9a) 128

3αβ,4α,5β,6,7,7αβ-Hexahydro-4-hydroxy-2,2-bis(methoxymethyl)-5-methyldindan (9b) ... 129

1,3,3αβ,4α,5β,6-Hexahydro-4-hydroxy-5-methyl-7-(trimethylsilyl)isobenzofuran (12) . 130

1,3,3αβ,4α,5α,6β,7,7αβ-Octahydro-4,5-bis(hydroxy)-6-methylisobenzofuran (9c) ... 131
Preparation of Esters of (R)-α-Methoxy-α-trifluoromethylphenylacetic Acid	132
Ferrocene Ligand Synthesis	133
Bis(dimethylamino)-4-methoxyphenyl phosphine (39a)	134
Bis(dimethylamino)-2-trifluoromethylphenyl phosphine (39b)	134
Bis(dimethylamino)-phenyl phosphine (39c)	135
Chloro-(dimethylamino)-4-methoxyphenyl phosphine (40a)	135
Chloro-(dimethylamino)-2-trifluoromethyl-phenyl phosphine (40b)	135
Chloro-(dimethylamino)-phenyl phosphine (40c)	135
(2R,4S,5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)	136
(2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)	137
(2R,4S,5R)-3,4-Dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane (38c)	137
1-(Tri-n-butylstannyl)-1'-[(Rp)-N-methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))] amino-boronato-(4-methoxyphenyl)phosphino] ferrocene (42a)	138
1-(Tri-n-butylstannyl)-1'-[(Rp)-N-Methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))] amino-boronato-(2-trifluoromethyl-phenyl)phosphino]ferrocene (42b)	139
1-(Tri-n-butylstannyl)-1'-[(Rp)-N-Methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))] amino-boronatophenylphosphino]ferrocene (42c)	140
TABLE OF CONTENTS—Continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (37a)</td>
<td>140</td>
</tr>
<tr>
<td>1,1'-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-trifluoromethylphenyl)phosphino]ferrocene (37b)</td>
<td>142</td>
</tr>
<tr>
<td>1,1'-Bis[(Rp)-N-methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronatophenylphosphate]ferrocene (37c)</td>
<td>142</td>
</tr>
<tr>
<td>1,1'-Bis[boronato-fluoro-(4-methoxyphenyl)phosphino]ferrocene (36a)</td>
<td>142</td>
</tr>
<tr>
<td>1,1'-Bis[boronato-fluoro-(2-trifluoromethylphenyl)phosphino]ferrocene (36b)</td>
<td>143</td>
</tr>
<tr>
<td>1,1'-Bis[boronato-methyl-(4-methoxyphenyl)phosphino]ferrocene (35a)</td>
<td>144</td>
</tr>
<tr>
<td>1,1'-Bis[boronato-methyl-(2-trifluoromethylphenyl)phosphino]ferrocene (35b)</td>
<td>145</td>
</tr>
</tbody>
</table>

APPENDIX ... 146

REFERENCES ... 342
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solvent Effects on Catalysis</td>
</tr>
<tr>
<td>2</td>
<td>Monodentate Phosphite Ligands</td>
</tr>
<tr>
<td>3</td>
<td>Rh(I)-Catalyzed [4+2] Cycloisomerizations</td>
</tr>
<tr>
<td>4</td>
<td>Monodentate Phosphine Ligands</td>
</tr>
<tr>
<td>5</td>
<td>Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations Mediated by Homochiral Bisphosphines</td>
</tr>
<tr>
<td>6</td>
<td>Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations of 7a</td>
</tr>
<tr>
<td>7</td>
<td>Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations of 7b</td>
</tr>
<tr>
<td>8</td>
<td>Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations of 10</td>
</tr>
<tr>
<td>9</td>
<td>Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations of 7c</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure	Page
1 | Examples of Three Types of Chiral Monophosphines
2 | Ferrocenyl Monophosphine Ligands
3 | Examples of Three Types of Chiral Disphosphines
4 | (4R,5R) DIOP Ligands
5 | Chiral Ferrocenyl Phosphines
6 | Axially Dissymmetric Bisphosphines
7 | (S)-DOPA
8 | The Chiral Conformations of a Saturated Five-Membered Chelate Ring
9 | Asymmetric Olefin Dimerization
10 | Asymmetric Intramolecular [2+2+2] Cycloisomerization
11 | Internal Diastereoselectivity in the Rh(I) Catalyzed [4+2] Cycloisomerization of Olefins
12 | Commercial Homochiral Bisphosphines
13 | Annular Dependency of Cyclization
14 | Homochiral Bisphosphines Derived from (L)-Tartaric Acid
15 | Ene-Diene and Diene-Yne Substrates
16 | Absolute Configuration of Cycloadducts
17 | Electron Deficient Bisphosphines Derived from (2S,5S)-2,5-dihydroxy-hexane and (2S,4S)-2,4-Dihydroxy pentane
18 | Decomplexation of Bisphosphine-Borane Adducts
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Electron Rich Homochiral Bisphosphine-Boranes</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>1H NMR Spectrum of Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)</td>
<td>147</td>
</tr>
<tr>
<td>21</td>
<td>13C NMR Spectrum of Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)</td>
<td>148</td>
</tr>
<tr>
<td>22</td>
<td>31P NMR Spectrum of Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)</td>
<td>149</td>
</tr>
<tr>
<td>23</td>
<td>1H NMR Spectrum of Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)</td>
<td>150</td>
</tr>
<tr>
<td>24</td>
<td>13C NMR Spectrum of Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)</td>
<td>151</td>
</tr>
<tr>
<td>25</td>
<td>31P NMR Spectrum of Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)</td>
<td>152</td>
</tr>
<tr>
<td>26</td>
<td>1H NMR Spectrum of Bis(4-methoxy-2-methylphenyl)phosphine Oxide (4d)</td>
<td>153</td>
</tr>
<tr>
<td>27</td>
<td>31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)phosphine Oxide (4d)</td>
<td>154</td>
</tr>
<tr>
<td>28</td>
<td>31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)phosphine (5d)</td>
<td>155</td>
</tr>
<tr>
<td>29</td>
<td>1H NMR Spectrum of Boronato-dicyclohexyl phosphine (27a)</td>
<td>156</td>
</tr>
<tr>
<td>30</td>
<td>13C NMR Spectrum of Boronato-dicyclohexyl phosphine (27a)</td>
<td>157</td>
</tr>
<tr>
<td>31</td>
<td>31P NMR Spectrum of Boronato-dicyclohexyl phosphine (27a)</td>
<td>158</td>
</tr>
<tr>
<td>32</td>
<td>1H NMR Spectrum of Boronato-diphenyl phosphine (27b)</td>
<td>159</td>
</tr>
<tr>
<td>33</td>
<td>13C NMR Spectrum of Boronato-diphenyl phosphine (27b)</td>
<td>160</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>34</td>
<td>31P NMR Spectrum of Boronato-diphenyl phosphine (27b)</td>
<td>161</td>
</tr>
<tr>
<td>35</td>
<td>1H NMR Spectrum of 4-Bromo-3-methylanisole</td>
<td>162</td>
</tr>
<tr>
<td>36</td>
<td>13C NMR Spectrum of 4-Bromo-3-methylanisole</td>
<td>163</td>
</tr>
<tr>
<td>37</td>
<td>1H NMR Spectrum of Bis(4-methoxy-2-methylphenyl)-N,N-dimethylamino-phosphine (31)</td>
<td>164</td>
</tr>
<tr>
<td>38</td>
<td>31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)-N,N-dimethylamino-phosphine (31)</td>
<td>165</td>
</tr>
<tr>
<td>39</td>
<td>1H NMR Spectrum of Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)</td>
<td>166</td>
</tr>
<tr>
<td>40</td>
<td>13C NMR Spectrum of Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)</td>
<td>167</td>
</tr>
<tr>
<td>41</td>
<td>31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)</td>
<td>168</td>
</tr>
<tr>
<td>42</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2,2-dimethyl-1,3-dioxolane (100a)</td>
<td>169</td>
</tr>
<tr>
<td>43</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2,2-dimethyl-1,3-dioxolane (100a)</td>
<td>170</td>
</tr>
<tr>
<td>44</td>
<td>1H NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (101a)</td>
<td>171</td>
</tr>
<tr>
<td>45</td>
<td>13C NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (101a)</td>
<td>172</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>46</td>
<td>1H NMR Spectrum of (4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2,2-dimethyl-1,3-dioxolane (6a)</td>
<td>173</td>
</tr>
<tr>
<td>47</td>
<td>13C NMR Spectrum of (4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2,2-dimethyl-1,3-dioxolane (6a)</td>
<td>174</td>
</tr>
<tr>
<td>48</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-trifluoromethylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3f)</td>
<td>175</td>
</tr>
<tr>
<td>49</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-trifluoromethylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3f)</td>
<td>176</td>
</tr>
<tr>
<td>50</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-trifluoromethylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3f)</td>
<td>177</td>
</tr>
<tr>
<td>51</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3e)</td>
<td>178</td>
</tr>
<tr>
<td>52</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3e)</td>
<td>179</td>
</tr>
<tr>
<td>53</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3e)</td>
<td>180</td>
</tr>
<tr>
<td>54</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoromethyl)phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3d)</td>
<td>181</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>55</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoromethyl)phenyl]phosphino)methyl]2,2-dimethyl-1,3-dioxolane (3d)</td>
<td>182</td>
</tr>
<tr>
<td>56</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoromethyl)phenyl]phosphino)methyl]2,2-dimethyl-1,3-dioxolane (3d)</td>
<td>183</td>
</tr>
<tr>
<td>57</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino)methyl]2,2-dimethyl-1,3-dioxolane (3h)</td>
<td>184</td>
</tr>
<tr>
<td>58</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino)methyl]2,2-dimethyl-1,3-dioxolane (3h)</td>
<td>185</td>
</tr>
<tr>
<td>59</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino)methyl]2,2-dimethyl-1,3-dioxolane (3h)</td>
<td>186</td>
</tr>
<tr>
<td>60</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]2,2-dimethyl-1,3-dioxolane (33)</td>
<td>187</td>
</tr>
<tr>
<td>61</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]2,2-dimethyl-1,3-dioxolane (33)</td>
<td>188</td>
</tr>
<tr>
<td>62</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]2,2-dimethyl-1,3-dioxolane (33)</td>
<td>189</td>
</tr>
<tr>
<td>63</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[(dicyclohexylphosphino)methyl]2,2-dimethyl-1,3-dioxolane (32)</td>
<td>190</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>64</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[(dicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (32)</td>
<td>191</td>
</tr>
<tr>
<td>65</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2-methyl-2-phenyl-1,3-dioxolane (100b)</td>
<td>192</td>
</tr>
<tr>
<td>66</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2-methyl-2-phenyl-1,3-dioxolane (100b)</td>
<td>193</td>
</tr>
<tr>
<td>67</td>
<td>1H NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)</td>
<td>194</td>
</tr>
<tr>
<td>68</td>
<td>13C NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)</td>
<td>195</td>
</tr>
<tr>
<td>69</td>
<td>13C NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)</td>
<td>196</td>
</tr>
<tr>
<td>70</td>
<td>1H NMR Spectrum of (4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2-methyl-2-phenyl-1,3-dioxolane (6b)</td>
<td>197</td>
</tr>
<tr>
<td>71</td>
<td>13C NMR Spectrum of (4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2-methyl-2-phenyl-1,3-dioxolane (6b)</td>
<td>198</td>
</tr>
<tr>
<td>72</td>
<td>1H NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b)</td>
<td>199</td>
</tr>
<tr>
<td>73</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b)</td>
<td>200</td>
</tr>
<tr>
<td>74</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b)</td>
<td>201</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>75</td>
<td>1H NMR Spectrum of $(4R,5R)$-4,5-Bis[[bis(2-trifluoromethyl phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)</td>
<td>202</td>
</tr>
<tr>
<td>76</td>
<td>13C NMR Spectrum of $(4R,5R)$-4,5-Bis[[bis(2-trifluoromethyl phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)</td>
<td>203</td>
</tr>
<tr>
<td>77</td>
<td>31P NMR Spectrum of $(4R,5R)$-4,5-Bis[[bis(2-trifluoromethyl phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)</td>
<td>204</td>
</tr>
<tr>
<td>78</td>
<td>1H NMR Spectrum of $(4R,5R)$-4,5-Bis(carboxmethoxy)-2-t-butyl-1,3-dioxolane (100c)</td>
<td>205</td>
</tr>
<tr>
<td>79</td>
<td>13C NMR Spectrum of $(4R,5R)$-4,5-Bis(carboxmethoxy)-2-t-butyl-1,3-dioxolane (100c)</td>
<td>206</td>
</tr>
<tr>
<td>80</td>
<td>1H NMR Spectrum of $(4S,5S)$-4,5-Bis(hydroxymethyl)-2-t-butyl-1,3-dioxolane (101c)</td>
<td>207</td>
</tr>
<tr>
<td>81</td>
<td>13C NMR Spectrum of $(4S,5S)$-4,5-Bis(hydroxymethyl)-2-t-butyl-1,3-dioxolane (101c)</td>
<td>208</td>
</tr>
<tr>
<td>82</td>
<td>1H NMR Spectrum of $(4S,5S)$-4,5-Bis[(p-tosyloxy)methyl]-2-t-butyl-1,3-dioxolane (6c)</td>
<td>209</td>
</tr>
<tr>
<td>83</td>
<td>13C NMR Spectrum of $(4S,5S)$-4,5-Bis[(p-tosyloxy)methyl]-2-t-butyl-1,3-dioxolane (6c)</td>
<td>210</td>
</tr>
<tr>
<td>84</td>
<td>1H NMR Spectrum of $(4R,5R)$-4,5-Bis[(diphenylphosphino)methyl]-2-t-Butyl-1,3-dioxolane (3c)</td>
<td>211</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>13C NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-t-Butyl-1,3-dioxolane (3c)</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>31P NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-t-Butyl-1,3-dioxolane (3c)</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>1H NMR Spectrum of (2S,5S)-2,5-Hexandiol (102)</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>13C NMR Spectrum of (2S,5S)-2,5-Hexandiol (102)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>1H NMR Spectrum of (2S,5S)-2,5-Bis-(p-tosyloxy)hexane (30)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13C NMR Spectrum of (2S,5S)-2,5-Bis-(p-tosyloxy)hexane (30)</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>1H NMR Spectrum of (2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b)</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13C NMR Spectrum of (2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b)</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>31P NMR Spectrum of (2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>1H NMR Spectrum of (2R,5R)-2,5-Bis[bis(2-trifluoromethyl-phenyl) phosphino]hexane (15a)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>13C NMR Spectrum of (2R,5R)-2,5-Bis[bis(2-trifluoromethyl-phenyl) phosphino]hexane (15a)</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>31P NMR Spectrum of (2R,5R)-2,5-Bis[bis(2-trifluoromethyl-phenyl) phosphino]hexane (15a)</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>1H NMR Spectrum of (2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES—Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>13C NMR Spectrum of (2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)</td>
<td>225</td>
</tr>
<tr>
<td>99</td>
<td>31P NMR Spectrum of (2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)</td>
<td>226</td>
</tr>
<tr>
<td>100</td>
<td>1H NMR Spectrum of (2R,5R)-2,5-Bis(boronato dicyclohexylphosphino)hexane (26a)</td>
<td>227</td>
</tr>
<tr>
<td>101</td>
<td>13C NMR Spectrum of (2R,5R)-2,5-Bis(boronato dicyclohexylphosphino)hexane (26a)</td>
<td>228</td>
</tr>
<tr>
<td>102</td>
<td>31P NMR Spectrum of (2R,5R)-2,5-Bis(boronato dicyclohexylphosphino)hexane (26a)</td>
<td>229</td>
</tr>
<tr>
<td>103</td>
<td>1H NMR Spectrum of (2R,2R)-2,5-Bis[boronato-Bis(4-methoxy-2-methylphenyl)phosphino]hexane (26c)</td>
<td>230</td>
</tr>
<tr>
<td>104</td>
<td>31P NMR Spectrum of (2R,2R)-2,5-Bis[boronato-Bis(4-methoxy-2-methylphenyl)phosphino]hexane (26c)</td>
<td>231</td>
</tr>
<tr>
<td>105</td>
<td>1H NMR Spectrum of (2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)</td>
<td>232</td>
</tr>
<tr>
<td>106</td>
<td>13C NMR Spectrum of (2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)</td>
<td>233</td>
</tr>
<tr>
<td>107</td>
<td>31P NMR Spectrum of (2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)</td>
<td>234</td>
</tr>
<tr>
<td>108</td>
<td>1H NMR Spectrum of (2R,5R)-2,5-Bis[bis(4-methoxy-2-methylphenyl)phosphino]hexane (21c)</td>
<td>235</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>109</td>
<td>13C NMR Spectrum of (2R,5R)-2,5-Bis[bis(4-methoxy-2-methyl-phenyl)phosphino] hexane (21c)</td>
<td>236</td>
</tr>
<tr>
<td>110</td>
<td>31P NMR Spectrum of (2R,5R)-2,5-Bis[bis(4-methoxy-2-methyl-phenyl)phosphino] hexane (21c)</td>
<td>237</td>
</tr>
<tr>
<td>111</td>
<td>1H NMR Spectrum of (1S,2S)-1,2-Bis[(boronato-dicyclohexyl-phosphino)methyl] cyclohexane (25a)</td>
<td>238</td>
</tr>
<tr>
<td>112</td>
<td>13C NMR Spectrum of (1S,2S)-1,2-Bis[(boronato-dicyclohexyl-phosphino)methyl] cyclohexane (25a)</td>
<td>239</td>
</tr>
<tr>
<td>113</td>
<td>31P NMR Spectrum of (1S,2S)-1,2-Bis[(boronato-dicyclohexyl-phosphino)methyl] cyclohexane (25a)</td>
<td>240</td>
</tr>
<tr>
<td>114</td>
<td>31P NMR Spectrum of (2R,4R)-2,4-Bis[bis(2-trifluoromethylphenyl)phosphino] pentane (16a)</td>
<td>241</td>
</tr>
<tr>
<td>115</td>
<td>1H NMR Spectrum of (2R,4R)-2,4-Bis(boronato-dicyclohexyl-phosphino)pentane (24)</td>
<td>242</td>
</tr>
<tr>
<td>116</td>
<td>13C NMR Spectrum of (2R,4R)-2,4-Bis(boronato-dicyclohexyl-phosphino)pentane (24)</td>
<td>243</td>
</tr>
<tr>
<td>117</td>
<td>31P NMR Spectrum of (2R,4R)-2,4-Bis(boronato-dicyclohexyl-phosphino)pentane (24)</td>
<td>244</td>
</tr>
<tr>
<td>118</td>
<td>1H NMR Spectrum of (2R,4R)-2,4-Bis(dicyclohexylphosphino)pentane (19)</td>
<td>245</td>
</tr>
<tr>
<td>119</td>
<td>31P NMR Spectrum of (2R,4R)-2,4-Bis(dicyclohexylphosphino)pentane (19)</td>
<td>246</td>
</tr>
</tbody>
</table>
LIST OF FIGURES—Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1H NMR Spectrum of Ethyl-4-methyl-2(E),4-pentadienoate (103)</td>
<td>247</td>
</tr>
<tr>
<td>121</td>
<td>13C NMR Spectrum of Ethyl-4-methyl-2(E),4-pentadienoate (103)</td>
<td>248</td>
</tr>
<tr>
<td>122</td>
<td>1H NMR Spectrum of 4-Methyl-2(E),4-pentadien-1-ol (104)</td>
<td>249</td>
</tr>
<tr>
<td>123</td>
<td>13C NMR Spectrum of 4-Methyl-2(E),4-pentadien-1-ol (104)</td>
<td>250</td>
</tr>
<tr>
<td>124</td>
<td>1H NMR Spectrum of 8-Methyl-4-oxo-1,6(E),8-nonatriene (7a)</td>
<td>251</td>
</tr>
<tr>
<td>125</td>
<td>13C NMR Spectrum of 8-Methyl-4-oxo-1,6(E),8-nonatriene (7a)</td>
<td>252</td>
</tr>
<tr>
<td>126</td>
<td>1H NMR Spectrum of 8-Methyl-4-oxo-6(E),8-nonadien-1-yne (105)</td>
<td>253</td>
</tr>
<tr>
<td>127</td>
<td>13C NMR Spectrum of 8-Methyl-4-oxo-6(E),8-nonadien-1-yne (105)</td>
<td>254</td>
</tr>
<tr>
<td>128</td>
<td>1H NMR Spectrum of 8-Methyl-4-oxo-1-(trimethylsilyl)-6(E),8-nonadien-1-yne (10)</td>
<td>255</td>
</tr>
<tr>
<td>129</td>
<td>13C NMR Spectrum of 8-Methyl-4-oxo-1-(trimethylsilyl)-6(E),8-nonadien-1-yne (10)</td>
<td>256</td>
</tr>
<tr>
<td>130</td>
<td>1H NMR Spectrum of 4-Oxo-1,6(E),8(E)-decatriène (7c)</td>
<td>257</td>
</tr>
<tr>
<td>131</td>
<td>13C NMR Spectrum of 4-Oxo-1,6(E),8(E)-decatriène (7c)</td>
<td>258</td>
</tr>
<tr>
<td>132</td>
<td>1H NMR Spectrum of 4-Oxo-6(E),8(E)-decadien-1-yne (1)</td>
<td>259</td>
</tr>
<tr>
<td>133</td>
<td>13C NMR Spectrum of 4-Oxo-6(E),8(E)-decadien-1-yne (1)</td>
<td>260</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>134</td>
<td>1H NMR Spectrum of 4-Oxo-1-(trimethylsilyl)-6(E),8(E)-decadien-1-yne (106)</td>
<td>261</td>
</tr>
<tr>
<td>135</td>
<td>13C NMR Spectrum of 4-Oxo-1-(trimethylsilyl)-6(E),8(E)-decadien-1-yne (106)</td>
<td>262</td>
</tr>
<tr>
<td>136</td>
<td>1H NMR Spectrum of 1-Chloro-4-methyl-2(E),4-pentadiene (107)</td>
<td>263</td>
</tr>
<tr>
<td>137</td>
<td>13C NMR Spectrum of 1-Chloro-4-methyl-2(E),4-pentadiene (107)</td>
<td>264</td>
</tr>
<tr>
<td>138</td>
<td>1H NMR Spectrum of 4,4-Bis(carboethoxy)-8-methyl-1,6(E),8-nonatriene (108)</td>
<td>265</td>
</tr>
<tr>
<td>139</td>
<td>13C NMR Spectrum of 4,4-Bis(carboethoxy)-8-methyl-1,6(E),8-nonatriene (108)</td>
<td>266</td>
</tr>
<tr>
<td>140</td>
<td>1H NMR Spectrum of 4,4-Bis(hydroxy-methyl)-8-methyl-1,6(E),8-nonatriene (109)</td>
<td>267</td>
</tr>
<tr>
<td>141</td>
<td>13C NMR Spectrum of 4,4-Bis(hydroxy-methyl)-8-methyl-1,6(E),8-nonatriene (109)</td>
<td>268</td>
</tr>
<tr>
<td>142</td>
<td>1H NMR Spectrum of 4,4-Bis(methoxy-methyl)-8-methyl-1,6(E),8-nonatriene (7b)</td>
<td>269</td>
</tr>
<tr>
<td>143</td>
<td>13C NMR Spectrum of 4,4-Bis(methoxy-methyl)-8-methyl-1,6(E),8-nonatriene (7b)</td>
<td>270</td>
</tr>
<tr>
<td>144</td>
<td>1H NMR Spectrum of 1,3,5α,7αβ-Tetrahydro-5-methyl-4-(trimethylsilyl)-isobenzofuran (110)</td>
<td>271</td>
</tr>
<tr>
<td>145</td>
<td>13C NMR Spectrum of 1,3,5α,7αβ-Tetrahydro-5-methyl-4-(trimethylsilyl)-isobenzofuran (110)</td>
<td>272</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>1H NMR Spectrum of 1,3,3aβ,6,7,7aβ-hexahydro-5-methylisobenzofuran (8a)</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>13C NMR Spectrum of 1,3,3aβ,6,7,7aβ-hexahydro-5-methylisobenzofuran (8a)</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>1H NMR Spectrum of 3aβ,6,7,7aβ-Tetrahydro-2,2-bis(methoxy- methyl)-5-methylindan (8b)</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>13C NMR Spectrum of 3aβ,6,7,7aβ-Tetrahydro-2,2-bis(methoxy- methyl)-5-methylindan (8b)</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1H NMR Spectrum of 1,3,5,7aβ-Tetrahydro-6-methyl-4-(trimethylsilyl) isobenzofuran (11)</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>13C NMR Spectrum of 1,3,5,7aβ-Tetrahydro-6-methyl-4-(trimethylsilyl) isobenzofuran (11)</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>1H NMR Spectrum of 1,3,3aβ,4,5a', 7aβ-hexahydro-5-methylisobenzofuran (8c)</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>13C NMR Spectrum of 1,3,3aβ,4,5a', 7aβ-hexahydro-5-methylisobenzofuran (8c)</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>1H NMR Spectrum of 7aβ-Octahydro-4-hydroxy-5-methylisobenzofuran (9a)</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>13C NMR Spectrum of 7aβ-Octahydro-4-hydroxy-5-methylisobenzofuran (9a)</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>1H NMR Spectrum of 3aβ,4α,5β,6,7,7aβ-Hexahydro-4-hydroxy-2,2-bis(methoxy- methyl)-5-methylindan (9b)</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>157</td>
<td>13C NMR Spectrum of 3αβ,4α,5β,6,7,7αβ-Hexahydro-4-hydroxy-2,2-bis(methoxy-methyl)-5-methylindan (9b)</td>
<td>284</td>
</tr>
<tr>
<td>158</td>
<td>1H NMR Spectrum of 1,3,3αβ,4α,5β,6-Hexahydro-4-hydroxy-5-methyl-7-(trimethylsilyl)isobenzofuran (12)</td>
<td>285</td>
</tr>
<tr>
<td>159</td>
<td>13C NMR Spectrum of 1,3,3αβ,4α,5β,6-Hexahydro-4-hydroxy-5-methyl-7-(trimethylsilyl)isobenzofuran (12)</td>
<td>286</td>
</tr>
<tr>
<td>160</td>
<td>1H NMR Spectrum of 1,3,3αβ,4α,5α,6β,7,7αβ-Octahydro-4,5-bis(hydroxy)-6-methylisobenzofuran (9c)</td>
<td>287</td>
</tr>
<tr>
<td>161</td>
<td>13C NMR Spectrum of 1,3,3αβ,4α,5α,6β,7,7αβ-Octahydro-4,5-bis(hydroxy)-6-methylisobenzofuran (9c)</td>
<td>288</td>
</tr>
<tr>
<td>162</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Racemate)</td>
<td>289</td>
</tr>
<tr>
<td>163</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3a)</td>
<td>290</td>
</tr>
<tr>
<td>164</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3b)</td>
<td>291</td>
</tr>
<tr>
<td>165</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3c)</td>
<td>292</td>
</tr>
<tr>
<td>166</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3d)</td>
<td>293</td>
</tr>
<tr>
<td>167</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3e)</td>
<td>294</td>
</tr>
<tr>
<td>168</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3f)</td>
<td>295</td>
</tr>
<tr>
<td>169</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3g)</td>
<td>296</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>170</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 21b)</td>
<td>297</td>
</tr>
<tr>
<td>171</td>
<td>1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13b (Racemate)</td>
<td>298</td>
</tr>
<tr>
<td>172</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13b (Ligand 3a)</td>
<td>299</td>
</tr>
<tr>
<td>173</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13b (Ligand 3e)</td>
<td>300</td>
</tr>
<tr>
<td>174</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13b (Ligand 3f)</td>
<td>301</td>
</tr>
<tr>
<td>175</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13c (Racemate)</td>
<td>302</td>
</tr>
<tr>
<td>176</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13c (Ligand 3a)</td>
<td>303</td>
</tr>
<tr>
<td>177</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13c (Ligand 3b)</td>
<td>304</td>
</tr>
<tr>
<td>178</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13c (Ligand 3c)</td>
<td>305</td>
</tr>
<tr>
<td>179</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 13c (Ligand 3d)</td>
<td>306</td>
</tr>
<tr>
<td>180</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 14 (Racemate)</td>
<td>307</td>
</tr>
<tr>
<td>181</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 14 (Ligand 3a)</td>
<td>308</td>
</tr>
<tr>
<td>182</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 14 (Ligand 3b)</td>
<td>309</td>
</tr>
<tr>
<td>183</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 14 (Ligand 3e)</td>
<td>310</td>
</tr>
<tr>
<td>184</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 14 (Ligand 3f)</td>
<td>311</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>185</td>
<td>1H NMR Spectrum of MTPA derivates (R) and (S) of 14 (Ligand 3g)</td>
<td>312</td>
</tr>
<tr>
<td>186</td>
<td>1H NMR Spectrum of Bis(dimethylamino)-4-methoxyphenyl phosphine (39a)</td>
<td>313</td>
</tr>
<tr>
<td>187</td>
<td>13C NMR Spectrum of Bis(dimethylamino)-4-methoxyphenyl phosphine (39a)</td>
<td>314</td>
</tr>
<tr>
<td>188</td>
<td>1H NMR Spectrum of Bis(dimethylamino)-phenyl phosphine (39c)</td>
<td>315</td>
</tr>
<tr>
<td>189</td>
<td>1H NMR Spectrum of Chloro-(dimethylamino)-4-methoxyphenyl phosphine (40a)</td>
<td>316</td>
</tr>
<tr>
<td>190</td>
<td>13C NMR Spectrum of Chloro-(dimethylamino)-4-methoxyphenyl phosphine (40a)</td>
<td>317</td>
</tr>
<tr>
<td>191</td>
<td>1H NMR Spectrum of (2R,4S,5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)</td>
<td>318</td>
</tr>
<tr>
<td>192</td>
<td>13C NMR Spectrum of (2R,4S,5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)</td>
<td>319</td>
</tr>
<tr>
<td>193</td>
<td>31P NMR Spectrum of (2R,4S,5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)</td>
<td>320</td>
</tr>
<tr>
<td>194</td>
<td>1H NMR Spectrum of (2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)</td>
<td>321</td>
</tr>
<tr>
<td>195</td>
<td>13C NMR Spectrum of (2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)</td>
<td>322</td>
</tr>
<tr>
<td>196</td>
<td>31P NMR Spectrum of (2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)</td>
<td>323</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>197</td>
<td>1H NMR Spectrum of 1-(Tri-n-butylstannyl)-12-[(Rp)-N-methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxy-phenyl)phosphino] ferrocene (42a)</td>
<td>324</td>
</tr>
<tr>
<td>198</td>
<td>31P NMR Spectrum of 1-(Tri-n-butylstannyl)-12-[(Rp)-N-methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxy-phenyl)phosphino] ferrocene (42a)</td>
<td>325</td>
</tr>
<tr>
<td>199</td>
<td>1H NMR Spectrum of 1-(Tri-n-butylstannyl)-12-[(Rp)(-N-Methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato(2-trifluoromethylphenyl)phosphino] ferrocene (42b)</td>
<td>326</td>
</tr>
<tr>
<td>200</td>
<td>31P NMR Spectrum of 1-(Tri-n-butylstannyl)-12-[(Rp)(-N-Methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato(2-trifluoromethylphenyl)phosphino] ferrocene (42b)</td>
<td>327</td>
</tr>
<tr>
<td>201</td>
<td>1H NMR Spectrum of 1-(Tri-n-butylstannyl)-12-[(Rp)-N-Methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronatophenylphosphino]ferrocene (42c)</td>
<td>328</td>
</tr>
<tr>
<td>202</td>
<td>31P NMR Spectrum of n-butylstannyl)-12-[(Rp)-N-Methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronatophenylphosphino]ferrocene (42c)</td>
<td>329</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>203</td>
<td>1H NMR Spectrum of 2-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxy-phenyl)phosphino]ferrocene (37a)</td>
<td>330</td>
</tr>
<tr>
<td>204</td>
<td>13C NMR Spectrum of 2-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxy-phenyl)phosphino]ferrocene (37a)</td>
<td>331</td>
</tr>
<tr>
<td>205</td>
<td>31P NMR Spectrum of 2-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxy-phenyl)phosphino]ferrocene (37a)</td>
<td>332</td>
</tr>
<tr>
<td>206</td>
<td>1H NMR Spectrum of $^1,1'$-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-tri-fluoromethylphenyl)phosphino]ferrocene (37b)</td>
<td>333</td>
</tr>
<tr>
<td>207</td>
<td>31P NMR Spectrum of $1,1'$-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-tri-fluoromethylphenyl)phosphino]ferrocene (37b)</td>
<td>334</td>
</tr>
<tr>
<td>208</td>
<td>31P NMR Spectrum of $1,1'$-Bis[(Rp)-N-methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-phenyl-phosphino]ferrocene (37c)</td>
<td>335</td>
</tr>
<tr>
<td>209</td>
<td>1H NMR Spectrum of $1,1'$-Bis[boronato-fluoro-(4-methoxyphenyl)phosphino]ferrocene (36a)</td>
<td>336</td>
</tr>
<tr>
<td>210</td>
<td>31P NMR Spectrum of $1,1'$-Bis[boronato-fluoro-(4-methoxyphenyl)phosphino]ferrocene (36a)</td>
<td>337</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>211</td>
<td>1H NMR Spectrum of 1,1'-Bis[boronato-fluoro-(2-trifluoromethyl-phenyl)phosphino]ferrocene (36b)</td>
<td>338</td>
</tr>
<tr>
<td>212</td>
<td>31P NMR Spectrum of 1,1'-Bis[boronato-fluoro-(2-trifluoromethyl-phenyl)phosphino]ferrocene (36b)</td>
<td>339</td>
</tr>
<tr>
<td>213</td>
<td>1H NMR Spectrum of 1,1'-Bis[boronato-methyl-(2-trifluoromethyl-phenyl)phosphino]ferrocene (35b)</td>
<td>340</td>
</tr>
<tr>
<td>214</td>
<td>31P NMR Spectrum of 1,1'-Bis[boronato-methyl-(2-trifluoromethyl-phenyl)phosphino]ferrocene (35b)</td>
<td>341</td>
</tr>
</tbody>
</table>
Abstract

Intramolecular [4+2] cycloisomerization of ene-dienes and dien-ynes was effected with novel Rh(I) templates. The efficiency of cyclization was affected by steric and electronic influences within the ligand sphere. Asymmetric [4+2] cycloisomerization was mediated by Rh(I) complexes modified by ligands. Highly flexible and general procedures for the synthesis of new homochiral bisphosphine ligands have been developed. These new methods were used in the preparation of two generations of carbon-based homochiral bisphosphines. Additionally, a rational approach to the synthesis of a class of homochiral ferrocenyl ligands bearing chirality at phosphorus was introduced.
INTRODUCTION

Current demand for highly enantioenriched biologically active substances, such as pharmaceuticals and pesticides, is exceedingly high. As a result, the demand for efficient synthetic methodologies which can invoke asymmetric selection in chemical transformations is also very high. Presently there are numerous techniques in practice which utilize chiral compounds, as mediators or auxiliaries, to effect such chemical selection. The most common method involves the use of a stoichiometric quantity of a given reagent, for instance a chiral resolving agent. Although this technique has made a significant impact on asymmetric synthesis, it is often disadvantageous because reclamation of the chiral reagent can be both time consuming and costly. Additionally, chiral resolution of a racemic mixture involves the preparation and consumption of both the desired and the unwanted enantiomers, rendering the overall process 50% efficient at best. In contrast, the distinguishing feature of a catalyst is the in situ reusability of a single molecule. Hence, a single chiral molecule (or a substoichiometric quantity) can generate thousands of chiral products. It is the potential low cost and high efficiency associated with chiral catalysis that has made this methodology particularly attractive for study.

For over three decades, synthetic chemists have participated in the development of homogeneous catalyst
systems that consist of transition metal complexes. The well known Wilkinson’s catalyst [(Ph,P),RhCl], discovered in 1966, is perhaps the most important of these reagents. First used as a homogeneous catalyst for the hydrogenation of olefins, today it is used extensively in many chemical transformations including hydrosilylation, hydroboration, oxidation and double bond isomerization. In order to further the potential of such "Wilkinson-like" complexes, the rhodium center was quickly modified by other alkyl and aryl phosphorus ligands. In fact, the discovery of Wilkinson’s reagent initiated extensive research into the catalysis of chemical processes with transition metal-phosphorus complexes.

More importantly, research concerning transition metal catalysts bearing chiral phosphine ligands became increasingly widespread. These catalyst systems were designed to effect the stereo- and regiochemical outcome of a wide range of organic reactions. At the forefront of this research was the use of Rh(I)-monophosphine and Rh(I)-bisphosphine catalysts to effect the asymmetric hydrogenation of β-substituted α-acylaminoacrylic acid derivatives. The successful synthesis of optically pure α-amino acids constitutes a powerful example of how chiral transition metal complexes could be used as catalysts to generate chiral products.
Popular throughout the last two decades have been investigations of the utility of a vast selection of newly synthesized chiral molecules as ligands for transition metal mediated asymmetric reactions. Much of the current research focuses on the importance of ligand-metal interactions to the efficiency of asymmetric selectivity. These studies should lead to the design of new ligand systems specifically tailored to effect stereocontrol in selected chemical transformations.

Due to our interest in transition metal catalyzed enantioselective processes, the object of the following research was the development of highly flexible and general procedures for the synthesis of three generations of homochiral bisphosphine ligands of determinate structural variation. It was also our goal to determine how ligand structure might influence the efficiency of Rh(I) catalyzed intramolecular [4+2] cycloisomerization reactions. In addition, our interest in such ligand-metal interactions led us to an investigation of the stereoinductive strength of several novel homochiral bisphosphine ligands in the Rh(I) catalyzed asymmetric [4+2] cycloisomerization of olefins.
BACKGROUND

A substantial portion of all asymmetric synthesis currently draws upon catalysis with chiral transition metal templates. The employment of this process has become so widespread that it would not be practical to discuss it here in its entirety. The application of asymmetric catalysis to hydrogenation\(^3\) and hydroformylation\(^7\) reactions no longer constitutes the bulk of research into this methodology. In fact, examples of reactions that have more recently been successfully catalyzed by chiral transition metal complexes include hydroboration,\(^5\) double-bond migration,\(^6\) hydrosilylation,\(^7\) hydrocyanation,\(^8\) olefin codimerization,\(^9\) carbon-carbon cross-coupling,\(^10\) cyclopropanation,\(^11\) and epoxidation.\(^12\) As the number of new catalyst systems increases, it is likely that the application of this methodology will continue to expand.

The majority of all the transition metal complexes used in homogeneous catalysis contain manganese, nickel, cobalt, copper, rhodium, ruthenium, palladium or platinum. In addition, although chiral phosphorus ligands are prevalent in these complexes, there are many cases in which amines, amides, alcohols and sulfoxides have proven to be good chiral ligands as well.\(^13\)
Chiral Phosphine Ligands

The first instance of an optically active phosphorus compound was in 1911, in which Meisenheimer and Lichtenstadt were investigating the bonding properties and stereochemistry of Phosphorus-III, -IV and -V compounds.14 Despite this early report, it was not until the 1960s that chemists were able to efficiently synthesize compounds containing asymmetric phosphorus atoms.15 As a result, research into methods for preparing such chiral compounds has increased dramatically over the past two decades.

Monophosphines

According to Kagan, a chiral monophosphine can contain either a chiral organic unit in the vicinity of an achiral phosphorus (Type I), a chiral phosphorus unit (Type II), or both (Type III) (Figure 1).13
Figure 1. Examples of Three Types of Chiral Monophosphines

Many of the chiral monophosphorus compounds such as Type I and Type II were first designed to be used as ligands in the Rh(I) catalyzed asymmetric hydrogenation of α-acylamino-acrylic acids (Eq. 1).3c

\begin{equation}
\text{HO-OC}_{3}H
\text{NHCOPh}
\text{H}
\text{CO}_{2}H
\xrightarrow{H_{2}}
\text{HO-OC}_{3}H
\text{NHCOPh}
\text{H}
\text{CO}_{2}H
\end{equation}

\text{Rh(P'_2 Cl (cat.))}

\text{P' = \text{\text{2C}}_7H__3C_7H__3Ph}

90 % Optical Purity

Eq. 1

The most common method employed for the synthesis of Type I monophosphines involves nucleophilic substitution of a \textit{p}-tosyloxy (or halide) derivative of a commercially available chiral compound with the desired metallophosphide (Eq. 2).17
Many Type I and Type III monophosphines were designed with a second ligating function (i.e. amine or alcohol) incorporated into one or more of the organic substituents. These difunctionalized monophosphines could then serve as \textit{bidentate} chiral ligands in such reactions as the nickel-catalyzed asymmetric Grignard cross-coupling reaction (Eq. 3).10

\begin{equation}
\begin{array}{c}
\text{NiCl}_2L^+ \\
(0.5 - 1.0 \text{ mol } \%)
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{Et}_2\text{O}, 0\degree\text{C} \\
>95 \% \text{ yield}
\end{array}
\end{equation}

\begin{equation}
94 \% \text{ ee}
\end{equation}

\textbf{Eq. 3}

In the presence of such nickel-phosphine catalysts the reaction of 1-phenylethylmagnesium chloride with vinyl bromide has been shown to proceed in high yield with high enantiomeric excess.21
Two important chelating monophosphines, also used in nickel (or palladium) catalyzed Grignard cross-coupling reactions, are \((S)\)-FePN and \((R)\)-(R)-PPFA (Figure 2).\(^{22,23}\)

![Figure 2. Ferrocenyl Monophosphine Ligands](image)

These were the first ferrocenyl phosphine ligands (Type I), and were synthesized by an alternate method consisting of the reaction of ferrocenyl lithium with the desired phosphine chloride (Eq. 4).

![Eq. 4](image)

The first method for preparing Type II chiral monophosphines was advanced by Mislow.\(^{24}\) This approach combined the separation of diastereomeric menthyl
phosphinates (via fractional crystallization) with stereoselective phosphine oxide reduction (Scheme I).

Mislow demonstrated that acyclic alkyl phosphinates can be converted to phosphine oxides, with high stereoselectivity, upon reaction with alkyl and aryl Grignard reagents.24,25

Horner and Balzer reported that the reduction of a phosphine oxide with trichlorosilane (HSiCl\textsubscript{3}) proceeds with overall retention of configuration.26 However, by combining this reagent with a strongly basic tertiary amine, such as Et\textsubscript{3}N, both inversion and retention products are formed due
to competing inter- and intramolecular reduction processes.27 Inversion of configuration was attributed to the intermolecular reduction of the phosphine oxide by a trichlorosilylanion formed in the presence of a basic tertiary amine. In light of this, Mislow demonstrated that the reduction proceeded with complete inversion of configuration with hexachlorodisilane (\(\text{Si}_2\text{Cl}_6\)).28

Several more recent methods have been described for the synthesis of Type II chiral monophosphines which also rely upon stereoselective phosphine oxide reduction. These methods utilize enantiopure chiral pool molecules to form 1,3,2-oxazaphospholidines (Scheme 2),25 or cyclic phosphinites (Scheme 3).29
In both of these early methods, the phosphorus heterocycles were treated with alkyl halides via an Arbusov-like reaction. This transformation occurred with an overall retention of configuration at phosphorus. In the former case (Scheme 2), removal of the chiral auxiliary was accomplished by a well documented acid catalyzed alcoholysis reaction to form the corresponding alkyl phosphinate in high enantiomeric purity.

In contrast to Mislow's acyclic phosphinates, Brown and co-workers prepared cyclic phosphinates by treating 1,3,2-oxazaphospholidines with t-butylhydroperoxide (Eq. 5).

These authors determined that the reaction of cyclic phosphinates with aryl Grignard reagents resulted in the formation of phosphine oxides with an overall retention of configuration at phosphorus. According to Brown, approach of the Grignard reagent trans-axially to the P-O bond of the
oxazaphospholidine ring is disfavored in cyclic phosphinates vs. acyclic phosphinates, due to non-bonded interactions with the amino-methyl group. In addition, there is a limited number of possible positions for the electronegative substituents around the phosphorus center during transition state formation. These limitations govern the stereofacial approach of the incoming aryl Grignard nucleophile (Scheme 4).

Scheme 4

Furthermore, a pseudorotation within the penta-coordinate transition state is favored by the 5-membered oxazaphospholidine ring which results in a net retention of
configuration at phosphorus. Brown also observed that smaller carbon nucleophiles (e.g., CH₃MgCl) resulted in the formation of some inversion products. According to the above interpretation, these reagents are not as susceptible to steric approach control. Therefore, the nucleophile can attack both trans-axially to the P-N bond and trans-axially to the P-O bond of the oxazaphospholidine ring, resulting in both retention and inversion products, respectively.

Stereochemical control is also lower for organolithium reagents which, according to Brown, can be attributed to a lower Lewis-acidity of the Li⁺ counterion.

Juge and Brown have utilized a thermal condensation reaction between (-)ephedrine and bis(diethylamino)phenyl phosphine, followed by treatment with BH₃·S(CH₃)₂ (BMS) in-situ to form the 1,3,2-oxazaphospholidine-borane (Scheme 5).

\[
\begin{align*}
\text{PhP(NEt}_2\text{)}_2 + \text{HO-} & \quad \overset{1) \Delta}{\rightarrow} \overset{2) \text{BMS}}{\text{PhP(NEt}_2\text{)}_2 + \text{HO-}} \\
\end{align*}
\]

Scheme 5
Cleavage of the P-O bond with an organolithium reagent gives rise to the corresponding amino phosphine-borane in high diastereomeric excess. The explanation for this observed retention of configuration is similar to that described for cyclic phosphinate ring-opening reactions with Grignard reagents. In this case, retention of configuration has been attributed to both steric approach control and the strong affinity the lithium ion has for the negative BH₃ of the phosphorus-boron dipole.³² Acid methanolysis results in the formation of a phosphinite-borane which can be converted to a phosphine-borane, with complete inversion of configuration, upon treatment with an organolithium reagent. Rather than utilizing a reduction step to obtain the free phosphine, Imamoto, Ward and LeCorre have demonstrated that removal of the boronato moiety from tertiary phosphine boranes occurs with retention of configuration in the presence of excess secondary or tertiary amines such as morpholine, diethylamine or DABCO (Eq. 6).³⁵,³⁶,³⁷

\[
\begin{align*}
\text{BH}_3 & \quad \text{Et}_2\text{NH} \\
\text{H}_3\text{C} & \quad 50 \degree \text{C}, 8\text{h} \\
\text{Ph} & \quad \text{OCH}_3
\end{align*}
\]

Eq. 6

In 1993, Corey provided a new route to chiral monophosphines via phosphine sulfides.³⁸ This method is reminiscent of that reported by Juge³⁴ in that a camphor
derivative (chiral pool) is condensed with dichlorophenyl phosphine, followed by treatment with \(S_8 \) in situ to give a 1,3,2-oxathiaphospholidine (Scheme 6).

Corey reported that the reaction of 1,3,2-oxathia-phospholidines with organolithium reagents forming the corresponding acyclic thiophosphinates, proceeds with nearly complete retention of configuration. This observation is in accordance with the findings of Inch and co-workers, who demonstrated that the conversion of a cyclic thiophosphinate to an acyclic thiophosphinate by cleavage with organolithium reagents occurs with retention of configuration at phosphorus. Treatment of the acyclic thiophosphinates (Scheme 6) with methyllithium gives rise to the corresponding methylphosphine sulfides in very high yield with complete inversion of configuration. Subsequent
reduction with \(\text{Si}_2\text{Cl}_6 \) proceeds with retention of configuration to yield the free phosphine in >99% enantiomeric excess. This result is in contrast to that observed for the reduction of phosphine oxides with \(\text{Si}_2\text{Cl}_6 \). Mislow and Zon have suggested that the regioselective attack on sulfur vs. phosphorus by the tricholorosilyl anion is favored by the formation of a transition state that is stabilized by \((\pi r-\pi d)\) bonding.\(^{39}\)

Two other methods for preparing monophosphines with asymmetric phosphorus atoms have been reported. Both require a resolution step and either (1) a displacement reaction on chiral phosphinites with organometallic reagents,\(^{30}\) or (2) the electrolytic reduction of a benzyl phosphonium salt.\(^{40}\)

Diphosphines

Although not formally defined, the classification scheme for diphosphines is generally the same as that for monophosphines. There are two major categories: (1) diphosphines consisting of two achiral phosphorus centers connected by a chiral organic backbone (Type A, e.g. DIOP); and (2) diphosphines which contain one or two asymmetric phosphorus centers (Type B, E.G. biPAMP). A third category of diphosphines includes those which consist of one or two asymmetric phosphorus centers connected by a chiral organic skeleton (Type C) (Figure 3).
Figure 3. Examples of Three Types of Chiral Diphosphines

Over the past three decades, very few of the Type C diphosphines have been reported. In 1992 Burgess and co-workers synthesized a few of these "DIOP-DIPAMP hybrids" by the methodology depicted in Scheme 7.³¹ Arylphenylphosphide...
anions were prepared by the reduction of diarylphenylphosphines with sodium/potassium alloy. Burgess demonstrated that the aryl group bearing ortho substituents (e.g., OMe) was cleaved chemoselectively. Furthermore, if such an aryl group were absent, chemoselective cleavage of the least electron rich aryl group would then occur.

Reaction of the resulting arylphenylphosphide anions with (4R,5R)-trans-4,5-bis[(p-tosyloxy)methyl]-2,2-dimethyl-1,3-dioxolane formed the Type C diphosphines in statistical diastereomeric ratios. The separation of diastereomers, in most cases, was accomplished by chromatographic separation of the corresponding molybdenum tetracarbonyl adducts. Burgess examined the ability of these hybrid ligands to induce asymmetric selection in several transition metal mediated reactions. Their findings were interesting but predictable. Constructive and destructive interference between the phosphorus and carbon stereocenters was observed. Moreover, they found that in some instances the chirality at phosphorus was not the most influential of the two forces, despite its proximity to the metal center.

In 1971 Kagan and Dang developed the Type A diphosphine DIOP (Figure 3). An explosion of research into the synthesis of 1,2-,1,3- and 1,4-diphosphines quickly followed. These efforts intensified because of the high degree of asymmetric induction observed when such ligands were utilized in transition metal catalyzed processes.
The most common method for the synthesis of these types of diphosphines is based on the double displacement of a chiral ditosylate (or dihalide), available from chiral pool molecules (e.g., tartaric acid), with a disubstituted metallophosphide. Examples of this include the preparation of DIOP (Scheme 8) and various derivatives (Figure 4). By this general method, several

![Dimethyl-L-tartrate](image)

Scheme 8

\[
\begin{align*}
Ar' = Ar'' &= 2-CH_3C_6H_4; 3-CH_3C_6H_4; 4-CH_3C_6H_4; \\
3,5-(CH_3)2-C_6H_3 & \text{ (ref. 43)} \\
Ar' = Ar'' &= 2-OCH_3C_6H_4; 3-OCH_3C_6H_4 & \text{ (ref. 60)} \\
Ar' = Ar'' &= 1-C_{10}H_7; 2-C_{10}H_7 & \text{ (ref. 61)} \\
Ar' = Ar'' &= 4-NMe_2C_6H_4 & \text{ (ref. 42a)} \\
Ar' = Ar'' &= 3,5-(CH_3)2-4-OCH_3C_6H_2 & \text{ (ref. 42b)} \\
Ar' = Ar'' &= Et; i-Pr; \alpha-C_8H_{11} & \text{ (ref. 42c and 42e)} \\
Ar' = 4-NMe_2C_6H_4, Ar'' = 4-ClC_6H_4; Ph & \text{ (ref. 42f)} \\
Ar' = Ph, Ar'' &= 2-OCH_3C_6H_4; 4-OCH_3C_6H_4; 4-CH_3C_6H_4; \alpha-C_8H_{11} & \text{ (ref. 42g and 42h)}
\end{align*}
\]

Figure 4. (4R,5R) DIOP Ligands
1,2-, 1,3- and 1,4-diphosphines have been synthesized. Bakos prepared the chiral 1,3-diphosphines (2R,4R)- and (2S,4S)-2,4-bis(diphenylphosphino)pentane from the corresponding chiral 1,3-diols (Scheme 9). In a like manner, many carbocyclic 1,4-diphosphines have been synthesized from cyclic trans-dicarboxylic acids (Scheme 10).

Brunner and Kagan used dienes derived from commercially available terpenes in a Diels-Alder reaction with 1(E),2-Bis(diphenylthiophosphino)ethylene to synthesize similar chiral 1,2-diphosphines.

An interesting family of ligands are the ferrocenyl diphosphines. These compounds are considered to be
1,4-diphosphines and display both planar chirality, imparted by the ferrocene, and carbon chirality. Hayashi and Kumada have prepared many of these ligands (both mono- and diphosphine) from a commercially available chiral ferrocenylamine (Eq. 7).23,48,49,50

![Chemical Structures](image)

Eq. 7

Figure 5. Chiral Ferrocenyl Phosphines
Recently, several derivatives have been prepared in which various carbon sidechains are attached via a nucleophilic displacement at the "pseudo-benzylic" position (Figure 5). These ligands have been found to impart enantioselectivity in palladium and nickel catalyzed coupling reactions as well as in rhodium catalyzed hydrogenation and hydroboration reactions.

The axially dissymmetric diphosphine, BINAP, (Figure 6) has been shown to be an unusually effective ligand in rhodium catalyzed asymmetric hydrogenation (99% ee), and double bond migration (95% ee) reactions. Noyori originally synthesized BINAP by forming 2,2'-dilithio-1,1'-binaphthyl and quenching the dianion with ClPPh2. Optical resolution of the resulting racemate was accomplished with (−)-Bis(μ-chloro)bis[(S)-N,N-dimethyl-1-phenylethylamine-2C,N]dipalladium(II). Later, Noyori prepared optically pure BINAP, as well as several derivatives, by optical resolution of a racemic bisphosphine oxide with chiral organic acids such as camphorsulfonic acid and dibenzoyl tartaric acid. This resolution method, originally developed by Meisenheimer and Lichtenstadt, has also been utilized in the synthesis of several novel biphenyl diphosphine ligands (Figure 6).

Synthesized by Knowles in 1974, (R,R)-DIPAMP (Figure 3) was one of the first Type B diphosphines to be
employed in transition metal catalyzed asymmetric hydrogenations. In fact, since its development, the

\[(-)^-\text{MeO-BIPHEP} \]

Figure 6. Axially Dissymmetric Bisphosphines
Monsanto Corporation has utilized a rhodium-DIPAMP catalyst in the commercial preparation of

\[\text{HO} \]

\[\text{HO} \]

\[\text{NH}_2 \]

\[\text{CO}_2\text{H} \]

Figure 7. \((S)-\text{DOPA}\)
\((S)-3,4\)-dihydroxyphenylalanine \((S)-\text{DOPA}\), a drug used in the treatment of Parkinson’s disease.

One synthesis of \((R,R)-\text{DIPAMP}\) consists of an oxidative coupling of two \(\text{o-anisylmethylphenylphosphine oxide}\)
residues, followed by reduction to the diphosphine (Scheme 11).57,58 Imamoto has synthesized several new homochiral bisphosphines, as well as (R,R)-DIPAMP, by coupling two analogous phosphine-borane precursors (Scheme 12).35 Likewise, Corey demonstrated the generality of Cu (II) catalyzed oxidative coupling when he prepared (R,R)-DIPAMP from two phosphine-sulfide monomers (Scheme 13).38
Imamoto has prepared optically pure secondary phosphine-borane monomers by the reduction of secondary phosphine chlorides with LiAlH₄ in the presence of BH₃ (Eq. 8).³⁵ᵇ

The resulting menthylxyphosphine-boranes could be separated by fractional crystallization and used either in (1) nucleophilic substitution reactions (as metallophosphides) which were found to proceed with complete retention of configuration,³⁵ᵇ or (2) palladium catalyzed cross-coupling reactions with alkyl or aryl iodides (Scheme 14).⁵⁹ The stereoselectivity of the palladium catalyzed cross-coupling reaction is highly dependent on solvent polarity and base strength.

Displacement of the menthylxy group can be effected with an organolithium reagent (inversion) in a manner
Scheme 14

analogous to that described by Juge. Alternatively, Imamoto demonstrated a reductive removal of the menthyloxy group using lithium naphthalenide or Li/NH, with retention of configuration at phosphorus. By combining these new methods with the copper promoted oxidative coupling reaction, Imamoto has synthesized a variety of new homochiral mono- and bisphosphine ligands (Scheme 15).

It is the aforementioned methodologies put forth by Juge, Brown and Imamoto that dominate the current research in this area of ligand synthesis.

Transition Metal Complexes as Catalysts in Asymmetric Synthesis

There are a great number of useful synthetic transformations catalyzed by transition metal complexes. Of
Scheme 15

these, homogeneous catalysis of hydrogenation, hydroformylation and oxidation63 reactions have been studied most extensively. Much of the work concerning transition metal mediated hydrogenation has set precedence for the investigation of carbon-carbon bond forming processes such as olefin cycloisomerization.64,65 Many of these reactions may be made stereoselective through a modification of the active catalytic center via coordination of an appropriate chiral ligand. For instance in hydrogenation and hydroformylation reactions, rhodium complexes containing chiral mono- and bisphosphine ligands have been utilized to induce asymmetric product formation3,7.

\textbf{Scheme 15}

\begin{itemize}
 \item a) NaH, CH\textsubscript{3}I;
 \item b) NaH, I-(CH\textsubscript{2})\textsubscript{n}I;
 \item c) \textit{i}. BuLi \textit{ii}. CuCl\textsubscript{2};
 \item d) Li+ C\textsubscript{10}H\textsubscript{8}-;
 \item e) CH\textsubscript{3}Li;
 \item f) 2-I-1-(OCH\textsubscript{3})C\textsubscript{6}H\textsubscript{4}, Pd(PPh\textsubscript{3})\textsubscript{4}, K\textsubscript{2}CO\textsubscript{3}.
\end{itemize}
Hydrogenation

Soluble transition metal catalyst systems which consist of rhodium-phosphine complexes have been used extensively for the asymmetric hydrogenation of olefins and other unsaturated molecules. Initial work in this area of homogeneous catalysis focused on the use of neutral Rh(I) species modified by chiral monophosphine ligands such as neomethylidiphenylphosphine (NMDPP) and methylpropylphenylphosphine. Hydrogenations mediated by Wilkinson type complexes ([L₃RhCl]) resulted in the formation of product mixtures which were slightly enriched in one enantiomer. Uniquely high enantioselectivities were observed in the hydrogenation of α-acetamidocinnamic acids when the chiral monophosphine o-anisylcyclohexylmethylphosphine was used. The high degree of stereoselectivity observed in this case has been rationalized as having resulted from a rigid chelation between the o-methoxyphenyl substituent on a bound ligand and an uncoordinated metal site. The notion that structural rigidity within the ligand-metal complex is responsible for high degrees of stereoisoduction was confirmed by numerous reports in which chiral chelating bisphosphines coordinated to rhodium gave rise to high enantiomeric excesses. Most of the monophosphine complexes
did not display the "structural rigidity" necessary for a high degree of asymmetric induction.

It is well documented that in the five-membered chelate rings of CHIRAPhOS \(^{70}\) PROPHOS \(^{71}\) and NORPHOS \(^{72}\) the carbon substitution one center away from phosphorus (absent in DIPHOS \(^{73}\)) prevents the rapid interconversion from one chiral conformation to the other (Figure 8). \(^{74}\) The substituents at the asymmetric carbon atoms tend to occupy the equatorial positions around the chelate ring resulting in a fixed conformation. The aryl substituents on each phosphorus atom are therefore differentiated in quasi-axial and quasi-equatorial arrangements. For many asymmetric processes the conformational array of aryl substituents governs the facial approach and subsequent binding of the prochiral substrate, resulting in enantiomerically enriched product mixtures.

Carbon-Carbon Bond Formation

Some very promising synthetic transformations involve transition metal catalyzed carbon-carbon bond forming reactions. In addition to rhodium-mediated hydrogenation, carbon-carbon bond formation in hydroformylation,
hydrocyanation and cyclopropanation reactions has also been studied quite extensively with respect to transition-metal catalyzed asymmetric synthesis. The asymmetric cross-coupling reaction of alkenyl or aryl halides and allylic compounds, with organometallic reagents, catalyzed by nickel or palladium complexes have also received extensive investigation throughout the past decade. In contrast, the asymmetric catalysis of olefin isomerization, particularly cycloisomerization, has been examined to a lesser degree. In the realm of homogeneous catalysis, iron, cobalt, nickel, ruthenium, rhodium and iridium have been used in conjunction with various ligand systems as chiral templates for asymmetric olefin isomerization.

Simple Isomerization

Asymmetric double-bond migration in prochiral allylic alcohols and amines (and derivatives) catalyzed by transition-metal complexes is interesting for two major reasons (Eq. 9): (1) the process is potentially very useful because functionality at the terminus can be converted to more reactive moieties (i.e. aldehydes, enamines, etc.) and (2) the use of prochiral olefins prompts
the design and generation of tailored chiral catalyst systems which can induce asymmetry in the products as well as govern the formation of the various structural isomers (i.e. cis and trans).

Botteghi utilized a Rh(I)-(-)-DIOP complex for the catalysis of asymmetric isomerization in simple allylic alcohols (Eq. 10). Although their optical yields were very low, these authors demonstrated that asymmetric induction by the catalyst was occurring to a small degree during the enol tautomerization step. Cationic Rh(I)-BINAP complexes effected moderate levels of asymmetric induction in the isomerization of 3,3-disubstituted allylic alcohols (Eq. 11).

\[
\begin{align*}
\text{Eq. 10} & \\
\text{Eq. 11} \\
\text{Cationic Rh(I) complexes such as } [\text{Rh-BINAP(diene)}]^+ \\
& \text{(diene=1,5 cyclooctadiene, norbornadiene) have more}
\end{align*}
\]
effectively been used to isomerize tertiary and secondary allylic amines to trans enamines and imines respectively (Eq. 12). Several rhodium and ruthenium complexes have also been employed for the isomerization of cyclic and acyclic allylamides. Chiral Co(II)-diphosphine complexes have been commonly used for asymmetric isomerization of allylic amines. The best results, however, have been obtained with the cationic complex \([\text{Rh-(BINAP)(COD)}]^+\text{ClO}_4\) (Eq. 13). This enantioselective isomerization is currently being used in the commercial production of menthol (Eq. 14).
Utilizing a nickel catalyst prepared from $[\text{Ni}(\eta^2\text{-C}_3\text{H}_5)\text{Cl}]_2$, $[(\text{C}_2\text{H}_5)_3\text{Al}_2\text{Cl}_3]$ and a chiral monophosphine, Bogdanovic and co-workers established a mechanism for the asymmetric hydrovinylation of various olefins. Moderate to good ee's were obtained with a nickel-aluminum complex modified by (-)-isopropyldimethylphosphine, for the reaction

$$\text{Eq. 14}$$

Figure 9. Asymmetric Olefin Dimerization
of 1,3-cyclooctadiene, norbornene and norbornadiene with ethylene (Figure 9).9

Olefin Cycloisomerizations

In addition to rhodium, complexes containing transition metals such as palladium, nickel, cobalt, chromium, iron and titanium have also been used in the catalysis of inter- and intramolecular olefin cycloisomerizations.80 The trimerization of alkynes and nitriles,81 in the presence of metal catalysts, are of interest primarily because of their utility in benzenoid and steroid synthesis.82 The inter- and intramolecular [2+2+2] cycloisomerization of acetylenes has been effected with high chemoselectivity using Wilkinson's catalyst.83 An asymmetric intermolecular [2+2+2] cycloisomerization has also been reported in which the reaction of norbornadiene and monosubstituted acetylenes is mediated by a chiral cobalt-bisphosphine catalyst (Figure 10).84 Lautens obtained high enantioselectivities (78-91% ee) in this process, by utilizing S,S-CHIRAPHOS and R-PROPHOS as chiral modifiers for the metal center.84

Since acid and base catalysts are widely utilized to accelerate organic reactions, a great deal of effort has been devoted to the development of chiral Lewis acids for asymmetric olefin cycloaddition reactions. Usually
generated in situ from a Lewis acid and a chiral auxiliary, these reagents have been used to promote various asymmetric reactions including the Diels-Alder and the [2+2] cycloaddition reactions.\cite{85}

The earliest work involved catalysis of the Diels-Alder reaction with chiral aluminum and europium reagents (Eq. 15).\cite{86,87} The importance of this early work was that it established precedence for the development of chiral auxiliaries which could interact with Lewis acids in such a manner as to invoke high levels of asymmetric induction.

In addition to aluminum, several chiral titanium, boron and ruthenium reagents were derived from homochiral organic moieties such as tartaric acid and binaphthol.\cite{88,89,90,92} Asymmetric intermolecular [2+2] cycloisomerization between

\[\text{Co(acac)}_3, S,S-\text{Chiraphos} \]

\[\text{4 eq. } \text{Et}_2\text{AlCl, PhH} \]

\[.91\% \text{ ee} \]
oxazolidin-2-one derivatives of \(\alpha,\beta\)-unsaturated acids and ketene dithioacetals, have been catalyzed by such chiral titanium reagents and result in very high enantiomeric excesses (Eq. 16).\(^{91a}\) Vinyl sulfides and alkynyl sulfides have also been used in this reaction, and in the latter case almost complete asymmetric induction is observed.\(^{91b}\) Some of the highest reported enantiomeric excesses for the Lewis acid catalyzed asymmetric Diels-Alder reaction have resulted from the use of chiral titanium\(^{88}\) (Eq. 17) and aluminum reagents.\(^{92}\)

\[
\begin{align*}
\text{Eq. 16} & \\
\text{Eq. 17}
\end{align*}
\]
Intramolecular [4+2] Cycloisomerization

Our interest in the Rh(I) catalyzed [4+2] cycloisomerization reaction was initiated in early 1990 when we discovered that certain Rh(I) complexes could accelerate an intramolecular [4+2] cycloisomerization reaction (at low temperatures) between electronically similar components (Scheme 16). There have been few reports concerning

![Diagram of intramolecular [4+2] cycloisomerization reaction]

transition metal catalyzed intermolecular [4+2] cycloisomerization, and only one regarding the intramolecular variation. These reports include the use of complexes with titanium, iron, nickel and rhodium as catalysts for such reactions.

In 1989, Wender reported the catalysis of intramolecular [4+2] cycloaddition of dienynes with Ni(0)

Scheme 16
The Ni(0) catalyzed reaction, however, was limited. Wender found that this metal complex could not effect the cyclization of substrates bearing enedienes as precycloaddends nor could they achieve high levels of diastereocontrol in the reaction. In contrast to systems containing Fe(0) and Ni(0), the Rh(I) catalyst systems developed in these laboratories do not display polymerization products from substrates containing non-terminal alkyne functionality. These Rh(I) complexes can also be utilized as catalysts in the cyclization of both ene-diene and dien-yne precyclic substrates. More importantly, this process has been shown to be highly stereoselective.

Preliminary investigations included a survey of the influences of solvent polarity and temperature on the Rh(I) catalyzed, intramolecular [4+2] cycloisomerization of 1-(2-propynyloxy)-2,4-hexadiene (1). Upon warming (55 °C) a solution (THF) of 1 in the presence of 10 mol % of commercial (Ph₃P)₃RhCl, under argon, the desired cycloadduct 2 was formed. An increase in solvent polarity (2,2,2-trifluoroethanol over THF or ethanol) resulted in a significant enhancement of the rate and efficiency of cyclization (Table 1).

There have been numerous reports concerned with the enhancement of both the rate and selectivity of transition metal catalyzed processes by electronic and/or steric
Table 1. Solvent Effects on Catalysis

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>N.R.</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>2-3 hours</td>
</tr>
<tr>
<td>Ethanol</td>
<td>2-3 hours</td>
</tr>
<tr>
<td>Trifluoroethanol</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Glacial Acetic Acid</td>
<td>N.R.*</td>
</tr>
</tbody>
</table>

* Intercepts reactive rhodium intermediate.

In an effort to further enhance the efficiency of [4+2] cyclization, through ligand modification, several new Rh(I) complexes were generated in situ. A variety of tertiary phosphites were initially employed as monodentate ligands in order to elucidate the electronic and steric parameters of the reaction. The desired catalytic complexes were formed in situ by the addition of the ligands (2 equiv) to a solution of [RhCl(C₈H₁₄)₂]₂ in CH₂Cl₂ (or THF), followed by dilution with 2,2,2-trifluoroethanol (TFE) and subsequent addition of the precyclic substrate. In consonance with the findings of van Leeuwen and Roobeek, it was demonstrated that through the coordination of electron deficient phosphite ligands the rate and efficiency of cyclization were
greatly enhanced (Table 2). Of particular significance was the highly active complex \([i-C_3F_6HO)_3P]_2RhCl\), which was found to be effective in THF solutions at temperatures as low as

Table 2. Monodentate Phosphite Ligands

<table>
<thead>
<tr>
<th>Phosphite</th>
<th>(x)</th>
<th>(\theta)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>((CF_3CH_2O)_3P:)</td>
<td>39</td>
<td>110</td>
<td>N.R.</td>
</tr>
<tr>
<td>((i-C_3F_6HO)_3P:)</td>
<td>51</td>
<td>130</td>
<td>fast</td>
</tr>
<tr>
<td>((i-C_3F_6HO)_2(iC_3H_7O)P:)</td>
<td>41</td>
<td>130</td>
<td>slow</td>
</tr>
<tr>
<td>((i-C_3F_6HO)_2(Ph)P:)</td>
<td>39</td>
<td>135</td>
<td>slow</td>
</tr>
</tbody>
</table>

in THF solutions at temperatures as low as 25 °C. The parameters \(x\) and \(\theta\) refer to the electronic and steric properties, respectively, of the phosphite ligands. The "cone angle," \(\theta\), describes the limit of the van der Waals radii of atoms on the ligand. As determined by van Leeuwen and Roobeek, the electron donating phosphites have low \(x\) values, while electron withdrawing phosphites have high \(x\) values. As shown in Table 2, the combined effect of "cone angle" and electronic index is crucial to rate enhancement.

In research pursued concurrently with that presented in this thesis, Derek Sheehan, of our laboratories, determined the generality of the rhodium-catalyzed intramolecular \([4+2]\) cycloisomerization reaction for the preparation of 5/6 and
6/6 ring systems. A summary of these results appears in Table 3.

Table 3. Rh(I)-Catalyzed [4+2] Cycloisomerizations

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>(Yield %)</th>
<th>Reaction Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTBDMS OTBDMS</td>
<td>OTBDMS</td>
<td>96 %</td>
<td>(Ph₃P)₃RhCl - TFE 55 °C, 15 min</td>
</tr>
<tr>
<td>MeO₂C MeO₂C</td>
<td>MeO₂C MeO₂C</td>
<td>90 %</td>
<td>(Ph₃P)₃RhCl - TFE 55 °C, 15 min</td>
</tr>
<tr>
<td>OTBDMS OTBDMS</td>
<td>OTBDMS</td>
<td>93 %</td>
<td>(Ph₃P)₃RhCl - TFE 55 °C, 45 min</td>
</tr>
<tr>
<td>MeO₂C MeO₂C</td>
<td>MeO₂C MeO₂C</td>
<td>87 %</td>
<td>([i-C₃F₆H₂O)₃P]₂Rh⁺ THF, 55 °C, 15 min</td>
</tr>
<tr>
<td>MeO₂C MeO₂C</td>
<td>MeO₂C MeO₂C</td>
<td>78 %</td>
<td>(Ph₃P)₃RhCl - TFE 55 °C, 45 min</td>
</tr>
<tr>
<td>OTBDMS OTBDMS</td>
<td>OTBDMS</td>
<td>96 %</td>
<td>([i-C₃F₆H₂O)₃P]₂Rh⁺ THF, 55 °C, 15 min</td>
</tr>
<tr>
<td>TBDMSO TBDMSO</td>
<td>TBDMSO TBDMSO</td>
<td>96 %</td>
<td>([i-C₃F₆H₂O)₃P]₂RhCl THF, 55 °C, 15 min</td>
</tr>
<tr>
<td>TBDMSO TBDMSO</td>
<td>TBDMSO TBDMSO</td>
<td>89 %</td>
<td>([i-C₃F₆H₂O)₃P]₂RhCl THF, 55 °C, 18 hr</td>
</tr>
</tbody>
</table>
Another major focus of Sheehan's research was an examination of the internal diastereoselectivity of the cyclization process. He demonstrated that the Rh(I) catalyzed [4+2] cycloisomerization of various 4-substituted ene-dienes and dien-ynes (using 5 mol % Rh(L)_n) proceeds with excellent to complete diastereocontrol (Fig. 11).
RESULTS AND DISCUSSION

The object of this research was to determine the influences of bisphosphine ligand structure on the stereochemical outcome of Rh(I) catalyzed intramolecular \([4+2]\) cycloisomerizations. It was also our goal to design highly flexible methods for the preparation of three structurally varied families of homochiral bisphosphine ligands.

Rh(I) Catalyzed \([4+2]\) Cycloisomerization

Elucidation of the electronic and steric parameters of the Rh(I) catalyzed \([4+2]\) cycloisomerization reaction with regard to monophosphine ligands was conducted in a preliminary study. Accordingly, several Rh(I) complexes were generated *in situ* by the addition of various monodentate trisubstituted phosphines (2 equiv.) to a solution of \([\text{RhCl}(\text{C}_8\text{H}_{14})_2]\) in \(\text{CH}_2\text{Cl}_2\) (or THF), followed by dilution with TFE and subsequent addition of substrate. A summary of these results appears in Table 4. The overall trend is similar to that found with the phosphite ligands: coordination of the metal to electron deficient phosphines results in rapid cyclization of precycloadducts. Although it is difficult to separate the steric and electronic effects of phosphine substitution, the observed enhancement
with \((2-CF_3C_6H_4)_3P\): (Table 4, entry 2) vs. \((4-CF_3C_6H_4)_3P\): (entry 4), suggests that a favorable conformation exists

Table 4. Monodentate Phosphine Ligands

<table>
<thead>
<tr>
<th>Entry</th>
<th>(\text{Ar})</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(C_6F_5)</td>
<td>87%</td>
</tr>
<tr>
<td>2</td>
<td>(2-CF_3C_6H_4)</td>
<td>36%</td>
</tr>
<tr>
<td>3</td>
<td>(2-CH_3C_6H_4)</td>
<td>17%</td>
</tr>
<tr>
<td>4</td>
<td>(4-CF_3C_6H_4)</td>
<td>16%</td>
</tr>
<tr>
<td>5</td>
<td>(n-C_6H_5)</td>
<td>14%</td>
</tr>
<tr>
<td>6</td>
<td>(2-(OCH_3)C_6H_4)</td>
<td>9%</td>
</tr>
<tr>
<td>7</td>
<td>(4-(OCH_3)C_6H_4)</td>
<td>80%</td>
</tr>
</tbody>
</table>

with the 2-trifluoromethylphenyl, contributing to the rate increase. Since a quantitative analysis of the electronic and steric parameters \(\alpha\) and \(\Theta\) of these ligands has not been conducted, it is difficult to interpret the rate enhancement observed with the electron rich tris(4-methoxyphenyl)phosphine (Table 4, entry 7).

In general, electron donating ligands enhance the oxidative addition of a substrate to the transition-metal center. Shaw reported that both the size and basicity of phosphine ligands affect oxidative addition of substrate to \(\text{IrL}_2\text{Cl(CO)}\) complexes.\(^{100}\) These researchers found that the rate of oxidative addition can be increased with increasing
phosphine basicity, and decreased with increasing ligand size.10b Our result obtained with the highly basic \((n\text{-Bu})_3\text{P}:(\text{Table 4, entry 5}),\) in which \([4+2]\) cycloisomerization was sluggish, suggests that the rate enhancement may be occurring primarily at the \textit{reductive elimination} step of the catalytic cycle (Scheme 16).

\textbf{Asymmetric Rh(I) Catalyzed \([4+2]\) Cycloisomerization}

Previously observed diastereococontrol in cycloisomerizations catalyzed by \textit{achiral} bisphosphine-rhodium complexes (Figure 11) demonstrated the possibility

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{Commercial Homochiral Bisphosphines}
\end{figure}
that enantioselective [4+2] cycloisomerization could occur by utilizing chiral bisphosphine ligands. To this end, we initially surveyed a variety of commercially available bisphosphines as a prelude to ligand design (Figure 12).

It was demonstrated that there is indeed a structural and conformational dependence for the catalysis of this reaction. Furthermore, the bisphosphines which formed flexible 7-membered chelate rings proved most effective in terms of the overall rate of cyclization. These findings are in agreement with a study conducted by Sheehan in which the rate of cyclization increased with increasing tether length (Figure 13).98 The rigid carbon skeletons of BINAP52

![Figure 13. Annular Dependency of Cyclization](image)

and BPPM101 ligands (Figure 12) result in decreased flexibility within the chelate ring. This suggests that the bisphosphine-rhodium complexes which possess a high degree of angular freedom may be more effective as catalysts for the asymmetric [4+2] cycloisomerization. An investigation of the effects of dihedral angle variations on cyclization efficiency is currently being pursued in our laboratories.
Electronic and Torsional Derivatives of (+)-DIOP

Based on the aforementioned preliminary studies, we initially chose a family of ligands (3a-3g, Figure 14) derived from commercially available (2R,3R)-tartaric acid. This feature guaranteed both control of the absolute stereochemistry of the ligand and the formation of a flexible 7-membered chelate ensemble. In this family of ligands the conformational bias of the dioxolane ring was subject to facile modification through alteration of the 1,3 dioxolane substituents at the 2-position. In addition, the electronic and steric characteristics of the ligating

![Chemical Structures](image)

3a: Ar = Ph; R¹ = R² = CH₃
3b: Ar = Ph; R¹ = Ph; R² = CH₃
3c: Ar = Ph; R¹ = t-C₄H₉; R² = CH₃
3d: Ar = 3,5-(CF₃)₂C₆H₃; R¹ = R² = CH₃
3e: Ar = 2-CH₃C₆H₄; R¹ = R² = CH₃
3f: Ar = 2-CF₃C₆H₄; R¹ = R² = CH₃
3g: Ar = 2-CF₃C₆H₄; R¹ = Ph; R² = CH₃
3h: Ar = 2-CH₃-4-(OCH₃)C₆H₃; R¹ = R² = CH₃

Figure 14. Homochiral Bisphosphines Derived from (L)-Tartaric Acid

phosphorus centers could be easily adjusted by the substitution of different aryl moieties bound to phosphorus. The resulting set of homogeneous ligands consisted of
electronic and torsional derivatives of the commercially available \((4R,5R)\)-(+)\-DIOP ligand \(3a\).

The synthesis of this family of Type A bisphosphine ligands involved double substitution of the corresponding \((4R,5R)\)-4,5-bis\((p\)-tosyloxymethyl\)-1,3-dioxolanes\(^3d\) with various diaryl metallophosphides. The ligands \(3b\-3g\) were prepared as follows (Scheme 17). The formation of the

\[
\begin{array}{c}
\text{Ar}_2\text{PH} \quad \text{KH, THF} \quad [\text{Ar}_2\text{P}^- \text{K}] \quad \text{0.5 eq. 6, THF, -78 °C} \\
\text{5a - e} \\
\end{array}
\]

\(5a\-e\):

a: \(\text{Ar} = 2\-\text{CF}_3\text{C}_6\text{H}_4\)

b: \(\text{Ar} = 2\-\text{CH}_3\text{C}_6\text{H}_4\)

c: \(\text{Ar} = 3.5\-(\text{CF}_3)_2\text{C}_6\text{H}_3\)

d: \(\text{Ar} = 2\-\text{CH}_3\-4\-(\text{OCH}_3)\text{C}_6\text{H}_3\)

e: \(\text{Ar} = \text{Ph}\)

\[
\begin{array}{c}
\text{ArMgX, (2 eq.)} \quad (\text{EtO})_2\text{P}^-\text{Na} \quad \text{H}^+ \quad \text{H}_2\text{O}
\end{array}
\]

\(4a\-d\):

\(4a\-d\):

a: \(\text{Ar} = 2\-\text{CF}_3\text{C}_6\text{H}_4\)

b: \(\text{Ar} = 2\-\text{CH}_3\text{C}_6\text{H}_4\)

c: \(\text{Ar} = 3.5\-(\text{CF}_3)_2\text{C}_6\text{H}_3\)

d: \(\text{Ar} = 2\-\text{CH}_3\-4\-(\text{OCH}_3)\text{C}_6\text{H}_3\)

\[
\begin{array}{c}
\text{Ph}_2\text{SiH}_2 \quad \text{200 °C} \quad \text{Ar}_2\text{PH} \quad \text{5a - d}
\end{array}
\]

\(4a\-d\):

\(5a\-d\):

a: \(\text{Ar} = 2\-\text{CF}_3\text{C}_6\text{H}_4\)

b: \(\text{Ar} = 2\-\text{CH}_3\text{C}_6\text{H}_4\)

c: \(\text{Ar} = 3.5\-(\text{CF}_3)_2\text{C}_6\text{H}_3\)

d: \(\text{Ar} = 2\-\text{CH}_3\-4\-(\text{OCH}_3)\text{C}_6\text{H}_3\)

\text{Scheme 17}

The desired potassium diarylphosphide was effected by deprotonation (KH, THF) of the corresponding diarylphosphine (5a-5e) at -78 °C. To the resulting deep red solutions were

\[
\begin{array}{c}
\text{KH, THF} \quad [\text{Ar}_2\text{P}^- \text{K}] \quad 0.5 \text{ eq. 6, THF, -78 °C}
\end{array}
\]

\(6a\-c\):

\(6a\-c\):

a: \(\text{R}^1 = \text{R}^2 = \text{CH}_3\)

b: \(\text{R}^1 = \text{CH}_3; \text{R}^2 = \text{Ph}\)

c: \(\text{R}^1 = \text{CH}_3; \text{R}^2 = \text{t-Bu}\)

\text{Scheme 18}
added 0.5 equivalent of a (4R,5R)-4,5-bis(p-tosyloxymethyl)-1,3-dioxolane (6a-6c) in THF (-78 °C). The resulting mixtures were subsequently stirred at 25 °C until disubstitution was complete, as determined by TLC and GC analysis. Following the method of Hobbs,61 the diaryl monophosphine precursors were prepared as shown in Scheme 18. Treatment of sodium diethylphosphinite with the desired aryl Grignard reagent (2 equiv.) in THF (or Et\textsubscript{2}O), followed by acidic work-up gave rise to the corresponding diarylphosphine oxides (4a-4d). Subsequent reduction with diphenylsilane afforded the diaryl phosphines 5a-5d in nearly quantitative yields.

Enantioselective [4+2] Cycloisomerization

The use of these new bisphosphine ligands as chiral modifiers in the Rh(I) catalyzed [4+2] cycloisomerization reaction resulted in moderate to good levels of enantioselection in representative ene-diene and diene-yne substrates (7a-c and 10, Figure 15). The catalytic species were generated \textit{in situ} by the addition of the bisphosphine ligand (1 equiv./equiv. Rh) to a solution of \([\text{RhCl(C}_8\text{H}_{14})_2]_2\) in CH\textsubscript{2}Cl\textsubscript{2} (or THF) in a manner analogous to that described previously. The enantioselectivity of the cyclization was quantified by conversion of the product bicycles 8a, b and 11 to a diastereomeric mixture of Mosher’s esters102 13a, b.
Figure 15. Ene-diene and Diene-yne Substrates

and 14 via hydroboration / oxidation [(a) BMS, (b) H₂O₂, OH⁻] followed by esterification. For the cycloadduct 8c, catalytic bis-hydroxylation (OsO₄/NMO) followed by selective esterification of the equatorial hydroxyl of the resulting diol 9c, was used to prepare the Mosher ester 13c. In all cases, the corresponding racemic Rh(I) catalyzed cyclizations were performed by using (i-C₃F₆HO)₃P: as the achiral modifier so that accurate product analysis and ee determinations could be made. The results obtained for the asymmetric Rh(I) catalyzed intramolecular [4+2] cycloisomerization of ene-dienes and diene-ynes are summarized in Table 5.
The absolute stereochemistry of the cycloadducts was assigned by using the method first described by Mosher.102 As shown in the Newman projections (Figure 16), the methyl group syn to the phenyl ring is further upfield in 13a\textit{(R)} due to through-space interaction with the phenyl moiety on the MTPA ester. The ratios of diastereomers for 13a, 13c and 14 were measured by integration of the ester methine proton resonances, which were well resolved at 300 MHz, at

\begin{align*}
\text{13a} \quad &\text{(R)} \\
\text{13a} \quad &\text{(S)}
\end{align*}

Figure 16. Absolute Configuration of Cycloadducts

4.81 and 4.91 ppm for 13a, at 4.85 and 4.95 ppm for 13c and at 4.82 and 4.92 ppm for 14. The ester methine proton resonances for the two diastereomeric esters of 13b were
Table 5. Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations Mediated by Homochiral Bisphosphines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cycloadduct<sup>a</sup></th>
<th>Ligand</th>
<th>Isolated Yield (%)</th>
<th>Ester</th>
<th>de<sup>ab</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8a</td>
<td>3a</td>
<td>86</td>
<td>13a</td>
<td>7 (R)</td>
</tr>
<tr>
<td>2</td>
<td>8a</td>
<td>3b</td>
<td>79</td>
<td>13a</td>
<td>20 (S)</td>
</tr>
<tr>
<td>3</td>
<td>8a</td>
<td>3c</td>
<td>73</td>
<td>13a</td>
<td>11 (S)</td>
</tr>
<tr>
<td>4</td>
<td>8a</td>
<td>3d</td>
<td>85</td>
<td>13a</td>
<td>2 (R)</td>
</tr>
<tr>
<td>5</td>
<td>8a</td>
<td>3e</td>
<td>72</td>
<td>13a</td>
<td>42 (S)</td>
</tr>
<tr>
<td>6</td>
<td>8a</td>
<td>3f</td>
<td>79</td>
<td>13a</td>
<td>62 (R)</td>
</tr>
<tr>
<td>7</td>
<td>8a</td>
<td>3g</td>
<td>92</td>
<td>13a</td>
<td>10 (R)</td>
</tr>
<tr>
<td>8</td>
<td>8b</td>
<td>3a</td>
<td>83</td>
<td>13b</td>
<td>10 (R)</td>
</tr>
<tr>
<td>9</td>
<td>8b</td>
<td>3e</td>
<td>69</td>
<td>13b</td>
<td>67 (S)</td>
</tr>
<tr>
<td>10</td>
<td>8b</td>
<td>3f</td>
<td>83</td>
<td>13b</td>
<td>28 (R)</td>
</tr>
<tr>
<td>11</td>
<td>8c</td>
<td>3a</td>
<td>84</td>
<td>13c</td>
<td>73 (R)</td>
</tr>
<tr>
<td>12</td>
<td>8c</td>
<td>3b</td>
<td>73</td>
<td>13c</td>
<td>47 (S)</td>
</tr>
<tr>
<td>13</td>
<td>8c</td>
<td>3c</td>
<td>72</td>
<td>13c</td>
<td>54 (S)</td>
</tr>
<tr>
<td>14</td>
<td>8c</td>
<td>3d</td>
<td>76</td>
<td>13c</td>
<td>2 (R)</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>3a</td>
<td>89</td>
<td>14</td>
<td>52 (R)</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>3b</td>
<td>76</td>
<td>14</td>
<td>87 (S)</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>3e</td>
<td>81</td>
<td>14</td>
<td>37 (S)</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>3f</td>
<td>99</td>
<td>14</td>
<td>42 (S)</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>3g</td>
<td>91</td>
<td>14</td>
<td>13 (R)</td>
</tr>
</tbody>
</table>

^aEster de = cycloadduct ee. ^bR or S refers to the stereochemistry of the carbon bearing the MTPO group in the esters 13a-c and 14.

Resolved at 500 MHz at 4.82 and 4.86 ppm. Absolute stereochemical assignments for the Mosher's esters 13b, c and 14 were made in a similar fashion.

The data suggests that both the magnitude and the absolute sense of asymmetric induction are affected by this homogeneous set of bisphosphines.

Torsional alteration of the 1,3-dioxolane ring, via ketal substitution, has been suggested to result in a
perturbation of the conformational array of the aryl substituents on phosphorus.9,85,88,103,104

The observed reversal in the absolute sense of asymmetric induction when ligands 3b and c were used relative to 3a (entries 2, 3, 12, 13 and 16) may have been due to an altered "edge-face"103 arrangement of the aryl groups. Both the facial approach and subsequent binding of the substrate to the rhodium center may have been significantly adjusted.

Such conformational alteration may also arise from the substitution of bulky groups at the 2-position of the respective phenyl rings on phosphorus. Substantial variations in ee's, relative to 3a, were observed when ligands 3e and 3f [bearing 2-(methyl)phenyl and 2-(trifluoromethyl)phenyl phosphine substituents respectively] were used (entries 5-6, 9-10 and 17-18). The aryl substituents in these cases were expected to exert a large degree of steric "pseudochirality" at phosphorus.105 However, a reversal of absolute stereoinduction was observed only for the ligand bearing a 2-(methyl)phenyl substituent (3e) compared to 3a (entries 5, 9 and 17). For the dien-yne substrate 10, however, the employment of ligands 3e or 3f as the chiral modifiers did induce reversed absolute stereoinduction suggesting that the asymmetric mode of cyclization may also be substrate dependent (entry 18). Furthermore, a comparison of entries 1, 4, 11 and 14 reveals
that the magnitude of asymmetric induction is not influenced by electronic effects alone, but rather a combination of electronic and steric factors. That torsional effects derived from 1,3-dioxolane substitution may interfere with electronic/steric perturbations at phosphorus can be ascertained by comparing entries 2, 7, 16 and 19. The first instances of reversed absolute stereoinduction derived from bisphosphine structure variations, within a homogeneous set, have been established for carbocyclizations with the preceding examples.

Homochiral Bisphosphino Hexane and Pentane Ligands

Our motivation for developing a second generation of homochiral bisphosphine ligands originated more from our interests in ligand design than from our desire to optimize the asymmetric [4+2] cycloisomerization reaction. The series II ligands described below are divided into two categories: (1) electron rich and (2) electron deficient bisphosphines. Within each of these subclasses, we prepared novel, Type A homochiral bisphosphines which would give rise to both 6- and 7-membered transition-metal chelates.

In a manner similar to that previously described the electron deficient bisphosphines 15a,b and 16a were prepared from (2S,5S)-2,5-dihydroxyhexane and (2S,4S)-2,4-dihydroxypentane respectively (Figure 17).
A solution of the respective ditosylates (0.5 equiv. in DMF) was added to a preformed solution (THF) of the desired potassium diarylphosphide at -50 °C. The resulting mixtures were then stirred at 25 °C until complete alkylation had occurred. Since these ligands constitute 1- and 2-carbon homologs of CHIRAPHOS, a degree of structural rigidity should be guaranteed by their chiral carbon frameworks through the conformational limitations within the potential chelate rings.

Phosphine-Borane Decomplexation with HBF₄·OMe.

In a concurrent study aimed at the rational design of homochiral monophosphine precursors in which chirality resides at phosphorus, we discovered a facile method for the efficient decomplexation of phosphine-boranes. Typical procedures employed for converting such complexes into free-phosphines involve heating the borane-adducts with a large excess of a secondary amine (e.g., morpholine or
diethylamine35b or a stoichiometric quantity of DABCO.37 This method finds its limitations in that hindered, highly basic phosphines typically require more vigorous reaction conditions for successful amine mediated exchange.

In a model system, treatment of DPPE·(BH$_3$)$_2$ (Eq. 18, (17)) with a variety of acids,59b including CH$_3$SO$_3$H [(5 equiv/equiv BH$_3$), CH$_2$Cl$_2$, -5 °C → 25 °C, 12 h] followed by hydrolysis (NaHCO$_3$ aq., 0 °C) (Eq. 18).106 Of the various acids examined, HBF$_4$·OMe$_2$ proved to be the most effective in terms of rate and isolated yield of free phosphine. Although reaction conditions can be modified to suit a particular phosphine-borane, we utilized a standard set of conditions (Eq. 18) for the decomplexation of representative bisphosphine-boranes (Figure 18).

1H NMR analysis of methyldiphenylphosphine-borane (22) decomplexation with HBF$_4$·OMe$_2$ (1 equiv) in CDCl$_3$, revealed consumption of 22 with concomitant formation of a product possessing a down field shifted methyl doublet of doublets at 2.41 ppm ($J_{\text{H-P}}=15.22$ Hz and $J_{\text{H-F}}=5.82$ Hz) (Eq. 19). In addition, 31P NMR analysis revealed the formation of a product possessing an upfield shifted resonance at 1.98 ppm.

\[
\begin{align*}
\text{Ph}_2\text{P}^+ & \quad \text{PPh}_2 \\
\text{H}_3\text{B}^- & \quad \text{BH}_3
\end{align*}
\]

a) HBF$_4$·OMe$_2$

\[
\begin{align*}
\text{Ph}_2\text{P}^+ & \quad \text{PPh}_2
\end{align*}
\]

b) NaHCO$_3$ (aq.) or K$_2$CO$_3$ (anh.)

\[
\text{PM}_2\text{P} \quad \text{H}_3\text{B}^-
\]

Eq. 18

Eq. 19
Figure 18. Decomplexation of Bisphosphine-Borane Adducts

\[\text{BH}_3 \quad HBF_4 \cdot OMe_2 \]

Eq. 19

(doublet of multiplets, $J^{P-F}=521$ Hz). The appearance of these new resonances is consistent with the intermediacy of the phosphine-fluoroborane complex 23.

An alternative work-up may also be employed in order to eliminate the aqueous hydrolysis step. A solution of the fluoro-borane intermediate (derived from the reaction of DPPE·($\text{BH}_3)_2$ (17) and HBF$_4$·OMe$_3$) can be treated with excess
anhydrous K$_2$CO$_3$ for several hours. The free phosphine 18a is subsequently obtained in essentially quantitative yield by filtration and concentration in vacuo (Eq. 18).

Electron Rich Homochiral Bisphosphines

Through the use of the above decomplexation procedure the novel electron rich bisphosphines 19, 20a and 21a-c (Figure 18) were prepared from the corresponding diborane

![Chemical structures of electron rich homochiral bisphosphine-boranes](image)

Figure 19. Electron Rich Homochiral Bisphosphine-Boranes adducts 24, 25a and 26a-c (Figure 19). Accordingly, alkylation of lithium boronatodialkylphosphide (or boronatodiarylphosphide) in DMF (or THF/HMPA) at -50 °C (or -78 °C) with the desired ditosylate (28, 29 or 30) (Scheme 19) provided the bisphosphine-borane adducts in

![Chemical structures of electron rich homochiral bisphosphine-boranes adducts](image)
excellent yields (Figure 19). Decomplexation (HBF₄·OMe₂, CH₂Cl₂, -5 °C → 25 °C) provided the corresponding homochiral bisphosphines in excellent yields (Figure 18).

The secondary boronatophosphines 27a and b were prepared from commercially available dicyclohexylphosphine and diphenylphosphine respectively, by treatment with 1.1 equivalents of BH₃·S(CH₃)₂ (10.2 M solution containing free SMe₂). The preparation of the boronatodiarilphosphine 27c was as follows (Scheme 20). To a solution of Cl₂PNMe₂ in Et₂O (0 °C), was added 2 equivalents of 4-lithio-3-methylanisole. The mixture was warmed slowly to 25 °C. After distillation (in vacuo) the resulting N,N-dimethylaminodiarylpshpine (31) was treated with anhydrous HCl (Et₂O, 0 °C). Subsequent filtration and concentration of the chlorodiarylpshpine was then followed by reduction/complexation (LiAlH₄/BH₃·S(CH₃)₂) in a manner analogous to that described by Imamoto (Eq. 8).
The electron rich ligand Cy-DIOP (32), derived from (L)-tartrate, was also prepared by the reaction of lithium boronatodicyclohexylphosphide with (4\textit{R}, 5\textit{R})-4,5-bis(\textit{p}-tosyloxymethyl)-2,2-dimethyl-1,3-dioxolane (THF, -78 °C) to give the bisphosphine-borane adduct (33) in 86% yield (Scheme 21). Decomplexation of 33 could not be effected by treatment with HBF₄·OMe₂ without significant ketal cleavage (Eq. 20). The Cy-DIOP bisphosphine was, however, obtained in high yield from 33 by treatment with excess morpholine (100 °C). This procedure constitutes the most efficient
synthesis to date of this highly electron rich bisphosphine.42c

\begin{equation}
\begin{array}{c}
\text{O} \\
\text{P(\text{C}_6\text{H}_{11})_2} \\
\text{P(\text{C}_6\text{H}_{11})_2} \\
\text{O} \\
\text{P(\text{C}_6\text{H}_{11})_2} \\
\text{P(\text{C}_6\text{H}_{11})_2}
\end{array}
\xrightarrow{\text{HBF}_4\cdot\text{OMe}_2} \text{33}
\begin{array}{c}
\text{O} \\
\text{NH} \\
\text{P(\text{C}_6\text{H}_{11})_2} \\
\text{P(\text{C}_6\text{H}_{11})_2}
\end{array}
\begin{array}{c}
\text{100\degree C}
\end{array}
\begin{array}{c}
\text{O} \\
\text{P(\text{C}_6\text{H}_{11})_2} \\
\text{P(\text{C}_6\text{H}_{11})_2}
\end{array}
\end{equation}

Eq. 20

The conventional methods for preparing such electron rich phosphines, involving alkylation of strongly basic dialkyl (or diaryl) metallophosphides with a homochiral ditosylate (or dihalide),42c often results in diminished yields. This occurs as a consequence of competing side reactions (e.g., base mediated elimination). The previously described procedure, when utilized with the HBF\textsubscript{4}•OMe\textsubscript{2} decomplexation method, is a convenient and highly efficient method for synthesizing a wide range of stereochemically varied mono- and bisphosphines.

Concurrent with the above research we briefly examined the efficacy of the hexane derived ligands (21a–c) as chiral modifiers for the asymmetric [4+2] cycloisomerization reaction. Through the use of (2\textit{R},5\textit{R})-2,5-bis(diphenylphosphino)hexane (21b), we obtained an ee of 72\% for the cycloisomerization of precycloadduct 7a (Eq. 21). This result was not surprising since ligand homochirality was now in a closer proximity to the actual site of catalysis.
Design of Phosphorus-Centered Homochiral Bisphosphino Ferrocene Ligands

Our interests in designing ligands for asymmetric catalysis also encouraged the development of a third generation of homochiral bisphosphines in which the chirality resides at phosphorus. The introduction of an efficient method for preparing a set of sterically and electronically distinguished ferrocenyl bisphosphines (34a-c) was our specific goal (Scheme 22).

Retrosynthetic analysis suggested the diborane adducts 35a-c to arise from hydrogen fluoride cleavage of both phosphorus-nitrogen bonds of the bis(boronatoaminophosphino)ferrocenes (35a-c) followed by alkylation of the resulting bis(fluorophosphino)ferrocenes (36a-c). The former step in which the ephedrine moiety would be removed was anticipated to proceed without a loss of the stereochemistry at phosphorus. We envisioned the utilization of a strategy established by Juge32 and Brown34.
for the formation of boronatodiarylamino phosphines from oxazaphospholidine-boranes (Eq. 22). Accordingly, tandem

\[
\begin{align*}
34 & \quad \text{a: } \text{Ar} = 4-(\text{OCH}_3)\text{C}_6\text{H}_4 \\
35 & \quad \text{b: } \text{Ar} = 2-\text{CF}_3\text{C}_6\text{H}_4 \\
36 & \quad \text{c: } \text{Ar} = \text{Ph}
\end{align*}
\]

Scheme 22

ring opening of the desired oxazaphospholidine boranes with 1,1'-dilithioferrocene could likely give rise to the bis(boronato-aminophosphino)ferrocenes 37a-c. In the course
of these investigations we devised an improved procedure for synthesizing 2-substituted 3,4-dimethyl-5-phenyl oxazaphospholidine-borane derivatives (38a-c). The pursuit of this initial strategy for preparing homochiral ferrocenyl bisphosphines is described below.

The synthesis of oxazaphospholidine-boranes was originally described by Juge and Brown (Scheme 5). These approaches utilize a thermal condensation of bis(diethylamino)phenyl phosphine with (-)-ephedrine followed by borane complexation. The thermal condensation reaction described for these procedures was found to be very unreliable for a diverse set of bis(diethyl)aryl phosphines. The methodology developed in our laboratories involved initial phosphorus-oxygen bond formation, via ionic coupling with chloro(dimethyl)amino phosphines, followed by thermal cyclization. Borane complexation was then achieved in situ with BH$_3$$\cdot$S(CH$_3$)$_2$. This highly efficient method has been utilized in our laboratories to prepare a wide range of oxazaphospholidine derivatives. Also, several of these chiral precursors are currently being incorporated into the synthesis of electronically and sterically differentiated homochiral bisphosphine ligands.

Bis(dimethylamino)arylphosphines 39a,b (Scheme 23) derived by the reaction of the requisite organolithium (or Grignard) reagents with chloro-bis(dimethylamino)phosphine (-78 °C → 20 °C) were treated with 1.0 equivalent of PCl$_3$,
(0 °C → 20 °C) to give the corresponding chloro(dimethylamino)arylphosphines (40a,b). Dropwise addition of the desired chloro(dimethylamino)arylphosphine

\[
\begin{align*}
\text{Cl-P(NMe}_2\text{)}_2 \quad &\text{Ar-M} \quad -78 ^\circ\text{C} \\
(M = \text{Li, MgX}) \quad &\text{Ar-P}^\text{NMe}_2 \quad \text{PCI}_3 \\
0 ^\circ\text{C} \rightarrow 20 ^\circ\text{C} \quad &\text{Ar-P}^\text{Cl} \\
39 \quad &40
\end{align*}
\]

a: Ar = \text{CH}_{3}\text{C}=\text{C} \quad b: Ar = \text{C}_{3}\text{F}_{3}

Scheme 23
to a preformed solution of monolithiated (-)-ephedrine in 1,2-DME (-50 °C) was followed by vigorous stirring and warming to 20 °C (Scheme 24). Subsequent thermal cyclization was achieved by heating at reflux for 12-18 h with concomitant expulsion of Me\textsubscript{2}NH. Borane complexation (1.1 equiv. of BH\textsubscript{3}·S(CH\textsubscript{3})\textsubscript{2}, 0 °C) was then accomplished in situ to form the corresponding oxazaphospholidine-borane complexes (38a,b) in excellent yield after recrystallization.

\[
\begin{align*}
\text{HO-} &\ \text{Ph} \\
\text{N-} &\ \text{CH}_3 \quad \text{a) n-BuLi} \\
1,2\text{-DME, } &\text{50 °C} \\
\text{b) 40a,b} \\
-50 °\text{C} \quad &\text{38a,b}
\end{align*}
\]
The bis(boronatoamino-phosphino)ferrocenes (37a-c) were prepared by the sequential alkylation the desired oxazaphospholidine-boranes with lithioferrocene. As shown in Scheme 25, monolithiation of bis(tri-n-butylstannyl)ferrocene with n-BuLi (THF, -78 °C, 1 h) followed by addition of 38a-c (1.05 equiv. in THF, -78 °C) with warming to -20 °C afforded reaction mixtures containing the lithium alkoxides 41a-c. Subsequent reaction with CH₃I (10 equiv., -20 °C) gave rise to the tri-n-butyl stannylferrocenyl aminophosphine-boranes (42a-c). The second oxazaphospholidine moiety was added in an analogous manner to afford the bis(boronato-aminophosphino)ferrocenes 37a-c in good yields. A concurrent study conducted by Meiqun
Jiang, formerly of these laboratories, revealed that the acid catalyzed methanolysis of aminophosphine borane derivatives proceeded in excellent yield with high stereoselectivity. In agreement with the findings of Juge,34 Jiang obtained the highest selectivities with CH\textsubscript{3}OH in the presence of 0.125 M H\textsubscript{2}SO\textsubscript{4} or alternatively CH\textsubscript{3}SO\textsubscript{3}H.114a

In a similar manner, we treated the ferrocenyl aminophosphine-boranes 37a–c with 0.125 M H\textsubscript{2}SO\textsubscript{4} in CH\textsubscript{3}OH at 0 °C with warming to 20 °C (Scheme 26). To our dismay, the ferrocene component proved to be quite unstable under these reaction conditions. This led to the pursuit of alternative methods for the conversion of ferrocenylaminophosphine-boranes to subsequent ligand precursors.

The hydrofluorination of 37a–c with HF*(Py)n (5 equiv./equiv. P–N) in CHCl\textsubscript{3}/CH\textsubscript{3}CN was conducted at -40 °C for 5 days to give rise to the corresponding fluorophosphine borane complexes (36a–c) in excellent yield (Scheme 26). Both 1H and 31P NMR as well as HPLC (non-chiral) analysis indicated formation of a single product, which suggested the reaction proceeded with either complete inversion or complete retention of configuration at phosphorus. Displacement of the resulting fluorophosphine-borane derivatives with CH\textsubscript{3}MgCl (Et\textsubscript{2}O or THF, -78 °C) revealed that the hydrofluorination reaction may not have been stereoselective since phosphorus stereochemistry had indeed
been scrambled in the two step reaction sequence (Scheme 27).

Scheme 26

This observation was verified in studies conducted by Jiang in which several related mono-aminophosphine-borane complexes were treated with HF·(Py)n. According to Jiang, in every case the fluorophosphine boranes were formed in essentially racemic mixtures as determined by chiral HPLC. Jiang further demonstrated that neither solvent polarity, temperature nor phosphorus structure significantly improved the stereochemical outcome in this reaction.
We rationalized the observed racemization as having been due to a strong affinity of the phosphine for unsolvated fluoride ions. Umezawa reported that in HF-(amine)$_n$ reagents, the concentration of free fluoride increases with less basic amines130. Even in the polar solvent CH$_3$CN, the fluoride concentration must have been exceedingly high. A thorough investigation of the hydrofluorination of mono-aminophosphine-boranes was conducted by Jiang114a. Furthermore, the utilization of BF$_3$·OEt$_2$ as a fluoride ion scavenger is currently under investigation in our laboratories.

Within the scope of ferrocene ligand synthesis, the search for efficient methods to circumvent these stereochemical problems is ongoing in our laboratories as the rational design of homochiral bisphosphines continues.
CONCLUSION

Highly versatile methods for synthesizing homochiral 1,4 and 1,3 bisphosphines of two discreet structural families have been developed. A homogeneous set of electronic and torsional derivatives of the bisphosphine $(4R,5R)$-$(+)$-DIOP have been efficiently prepared from commercially available (L)-tartaric acid. The comprehensive synthesis of novel, electron-rich, carbon-centered, homochiral 1,4 and 1,3-bisphosphines was achieved via a newly developed, facile method for phosphine-borane decomplexation. The influence of 1,4-bisphosphine structure on the efficiency and stereochemical outcome of Rh(I) catalyzed intramolecular [4+2] cycloisomerizations of enedienes and dien-ynes was investigated. Both the magnitude and absolute sense of asymmetric induction were affected by ligand architecture. Furthermore, a practical approach to the synthesis of a family of sterically and electronically distinguished homochiral bisphosphinoferrocene ligands was introduced. The installation of homochirality at phosphorus was achieved, for ligand precursors, through the use of 2-substituted 3,4-dimethyl-5-phenyl oxazaphospholidine-borane complexes prepared by a substantially improved method.
EXPERIMENTAL

Physical Data: 1H NMR and 13C NMR were measured at 300 and 75 MHz, respectively, with a Bruker AC-300 spectrometer. 31P NMR was measured at 202 MHz with a Bruker AM-500 spectrometer. 1H NMR chemical shifts are reported as δ values in ppm relative to the residual protons of CDCl$_3$ (7.24) or C$_6$D$_6$ (7.15). 13C NMR chemical shifts are reported as δ values in ppm relative to CDCl$_3$ (77.0) or C$_6$D$_6$ (128.0). 31P NMR chemical shifts are reported as δ values in ppm relative to H$_3$PO$_4$ (85%) (0.0) or triphenylphosphine (-6.0). 1H NMR and 31P NMR coupling constants are reported in Hz and refer to real or apparent multiplicities which are indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); p (pentet); sx (sextet); br (broad); m (multiplet); app d (apparent doublet); app t (apparent triplet); dd (doublet of doublets); etc.

High-resolution mass spectra were measured on a VG Analytical 7070E spectrometer by Dr. L. J. Sears. Infrared spectra were recorded with either a Bruker IFS 25 IR, a Perkin-Elmer 1800 FTIR or a Perkin-Elmer 237B grating IR. Melting points were determined with either a Fisher-Johns or a Mel-Temp.II melting point apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 MC polarimeter. Elemental Analysis was performed by Desert Analytics, Tucson, AZ.
Chromatography: Analytical gas chromatography was performed on a Varian Model 3700 Gas Chromatograph equipped with a flame ionization detector, a Hewlett-Packard 3390A reporting integrator and a 15m X 0.54mm ID column with DB5 (or SE-45 or equivalent) bonded phase. Preparative gas chromatography was performed on a Varian Model 3300 Gas Chromatograph equipped with a thermal conductivity detector, a Hewlett-Packard 3390A reporting integrator and a 1.8m X 4mm column with a 10% silicone OV-17 chromosorb adsorbent phase.

High Performance Liquid Chromatography was performed on an IBM LC/9533 Ternary Gradient Liquid Chromatograph equipped with an IBM LC/9523 Variable UV Detector. For general analytical separations an IBM 250mm X 4.5mm ID column packed with IBM 5µm spherical silica was used in conjunction with a Linear Model 156 chart recorder. For chiral separations a CHIRALPAK® AD 250mm X 4.6mm ID column packed with Amylose tris(3,5-dimethylphenyl carbamate) coated on a 10µm silica-gel substrate was used in conjunction with a Hewlett-Packard 3390A reporting integrator.

Thin layer chromatography was performed on plates supplied by Alltech Associates (K42-G). Visualization of plates was accomplished by one or more of the following: a) UV illumination; b) exposure to I$_2$ vapor; c) KMnO$_4$ oxidation; or d) anisaldehyde derivatization. All column
chromatography was performed according to Still117 on E. Merck 230-400 ASTM mesh, 0.040-0.063 mm particle size, silica gel 60. Solvent systems used for elution are reported in % volume/volume.

Materials: Tetrahydrofuran (THF), 1,2-dimethoxyethane (1,2-DME), benzene, heptane and hexane were distilled from K. Diethyl ether (Et\textsubscript{2}O) was distilled from Na-benzophenone. Dimethylformamide (DMF) was distilled from CaH\textsubscript{2} at 20 torr, while dichloromethane (CH\textsubscript{2}Cl\textsubscript{2}), acetonitrile (CH\textsubscript{3}CN), toluene, 2-butanol and 2,2,2-trifluoroethanol (TFE) were distilled from CaH\textsubscript{2} at atmospheric pressure under an inert atmosphere of argon or nitrogen. Purification of methanol was accomplished by distillation from Mg(OCH\textsubscript{3})\textsubscript{2} under an atmosphere of argon.

The molarities indicated for organolithium reagents were established by titration with a standard solution of 2-butanol in xylene using 1,10-phenanthroline as indicator. Grignard reagents were titrated in the same manner. Periodically these reagents were titrated for total base content with a standard solution of potassium biphthalate using phenolphthalein as indicator.

All reactions were carried out under an atmosphere of argon or nitrogen in oven-dried vessels. Concentrations were performed under reduced pressure with a Buchi rotary evaporator and "drying" of an organic solution was accomplished with anhydrous Na\textsubscript{2}SO\textsubscript{4} or MgSO\textsubscript{4}.

Ligand Synthesis -- Phosphine Substituents

Bis(2-trifluoromethylphenyl)phosphine Oxide (4a). An oven-dried three-necked round-bottomed flask was fitted with a pressure equalizing addition funnel, condenser and magnetic stirring bar. The vessel was charged with Mg powder (-50 mesh, 99+%)(4.86 g, 0.200 mol) and purged with nitrogen. THF (20 mL) was then added followed by 2-bromobenzotrifluoride (4.13 g, 0.0180 mol) by syringe. The reaction mixture was gently heated in order to initiate the Grignard reaction. The remainder of the 2-bromobenzotrifluoride (41.4 g, 0.184 mol) was dissolved in THF (60 mL) and added to the activated Mg mixture over a period of 1 h. Subsequently, the reaction mixture was refluxed for an additional 2 h. Meanwhile, an oven-dried, round-bottomed flask was charged with NaH (60% oil dispersion, 4.00 g, 0.100 mol) and the oil was removed by trituration with pentane (3 x 15 mL). THF (75 mL) was then added and the flask was purged with nitrogen. The mixture was cooled to 0 °C and freshly distilled diethyl phosphite (13.8 g, 0.100 mol) was added dropwise over a period of 15 min. The grey slurry was then warmed to 25 °C and stirred for an additional 1 h. The resulting solution of sodium diethyl phosphite was added via cannula to the 2-trifluoromethylphenylmagnesium bromide mixture at 0 °C over a period of 1 h. Subsequently, the reaction mixture
was refluxed for 8 h. After cooling to 0 °C, conc. HCl (40 mL) in cold water (80 mL) was added slowly whereupon a small quantity of tan ppt. formed in the red solution. This mixture was poured into a separatory funnel containing Et₂O (200 mL) and water (100 mL). The organic layer was separated and the aqueous layer was extracted with Et₂O (2 x 20 mL). The organic layers were combined, washed with water (2 x 10 mL), dried (MgSO₄) and the solvents were evaporated under reduced pressure. The resulting tan solid was purified by bulb-to-bulb sublimation (160 °C, 25 μtorr) to yield 24.4 g (72%) of 4a as a yellow crystalline material: mp 124.2-126.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.54 (d sept., J = 2.8, Jp-H = 537 Hz, 1H, P-H), 7.96 (m, 1H, Ar-H), 7.92 (m, 1H, Ar-H), 7.77 (m, 2H, Ar-H), 7.70 (m, 4H, Ar-H); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 134.5 (CH), 134.4 (CH), 132.7 (CH), 132.0 (CH), 131.9 (CH), 130.0 (C), 127.0 (CH), 125.5 (C), 121.7 (C); ³¹P NMR (202 MHz, CDCl₃) δ 9.0 (d, Jp-H = 538 Hz); IR (KBr) 1314, 1170, 1118, 1036, 940, 770, 700, 516 cm⁻¹. Anal. Calcd for C₁₄H₉F₆OP: C, 49.69; H, 2.68; F, 33.72. Found: C, 49.40; H, 2.67; F, 33.83.

Bis(2-trifluoromethylphenyl)phosphine (5a). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with 4a (1.50 g, 4.66 mmol) and purged with nitrogen. Diphenylsilane (903 mg, 4.89 mmol) was then added by syringe
at 25 °C. The reaction mixture was heated and stirred at 140 °C for 30 min whereupon it became homogeneous. The solution was then stirred at 210 °C, for 2.5 h. Subsequently, the phosphine was distilled directly from the reaction mixture (40 °C, 10 μtorr) to provide 1.40 g (93%) of 5a as a clear viscous oil.

Bis(2-methylphenyl)phosphine Oxide (4b). The reaction of 2.0 equivalents of 2-methylphenylmagnesium bromide (9.8 g, 0.050 mol) with sodium diethyl phosphite (4.0 g, 0.025 mol) in Et₂O (50 mL) was carried out as described for the 2-trifluoromethylphenyl analogue 4a.

Bis(2-methylphenyl)phosphine (5b). The reduction of 4b (1.50 g, 6.51 mmol) with diphenylsilane was carried out as described above for 4a.

Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c). The reaction of 2.0 equivalents of 3,5-bis(trifluoromethyl)phenylmagnesium bromide (15.9 g, 0.050 mol) with sodium diethyl phosphite (4.0 g, 0.025 mol) in Et₂O (50 mL) was carried out as described for the 2-trifluoromethylphenyl analogue 4a. When the reaction was complete, the mixture was cooled to 0 °C and conc. HCl (8.5 mL) in cold water (16.5 mL) was added slowly. This mixture was poured into a separatory funnel containing Et₂O (50 mL) and water (25 mL). The organic layer was separated and the aqueous layer was extracted with Et₂O (2 x 5 mL). The organic layers were
combined, washed with water (2 x 2.5 mL), brine (5 mL),
dried (MgSO₄) and the solvents were evaporated under reduced
pressure. The resulting tan solid was washed with a 30%
Et₂O / pentane solution (4 x 10 mL) to yield 8.18 g (69%) of
4c as a light yellow solid. This material was further
purified by sublimation: mp 122.7-124.5 °C; ¹H NMR
(300 MHz, CDCl₃) δ 8.29 (d, J_H-P = 506 Hz, 1H, P-H), 8.20 (s,
2H, Ar-H), 8.16 (s, 2H, Ar-H), 8.13 (s, 2H, Ar-H); ¹³C NMR
(75 MHz, CDCl₃, ¹H decoupled) δ 132.5 (C), 130.7 (CH), 127.2
(CH), 124.3 (C), 120.7 (C); ³¹P NMR (202 MHz, CDCl₃) δ 14.3
(dt, J = 11.8 Hz, J_P-H = 505 Hz); IR (film) 1370, 1285, 1190,
1150, 910 cm⁻¹. Anal. Calcd. for C₁₆H₇F₁₂OP: C, 40.51; H,
1.49; F, 48.09. Found: C, 40.27; H, 1.41; F, 47.71.

Bis[3,5-bis(trifluoromethyl)phenyl]phosphine (5c). The
reduction of 4c (1.50 g, 3.15 mmol) with diphenylsilane was
carried out as described above for 4a. The phosphine was
distilled directly from the reaction mixture (65 °C,
10 µtorr) to provide 1.29 g (89%) of 5c as a white solid.

Bis(4-methoxy-2-methylphenyl)phosphine Oxide (4d). The
reaction of 2.0 equivalents of 4-methoxy-2-methylphenyl-
magnesium bromide¹¹⁹ (10.5 g, 0.050 mmol) with sodium diethyl
phosphite (4.0 g, 0.025 mol) in Et₂O (50 mL) was carried out
as described for the 2-trifluoromethylphenyl analogue 4a.
¹H NMR (500 MHz, C₆D₆) δ 8.06 (d, J_H-P = 471 Hz, 1H, P-H),
7.67 (dd, J = 15.1, 9.1 Hz, 2H, Ar-H), 6.66-6.57 (m, 4H, Ar-
H), 3.38 (s, 6H, OCH₃), 2.23 (s, 6H, CH₃); ³¹P NMR (202 MHz, C₆D₆) δ 13.9 (d with fine structure, J_{P-H} = 471 Hz); IR (film) 3003, 2940, 2838, 2280, 1600, 1567, 1489, 1464, 1305, 1240 cm⁻¹.

Bis(4-methoxy-2-methylphenyl)phosphine (5d). The reduction of 4d (1.22 g, 5.00 mmol) with diphenylsilane was carried out as described above for 4a to yield the phosphine 5d as a viscous clear oil: ³¹P NMR (202 MHz, CDCl₃) δ -62.4 (d, J = 218 Hz).

Boronato-dicyclohexyl phosphine (27a). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with dicyclohexylphosphine (431 mg, 2.22 mmol) and purged with argon. Et₂O (3.0 mL) was then added and the solution was cooled to 0 °C. BH₃·S(CH₃)₂ (0.33 mL of a 10.1 M solution in S(CH₃)₂, 3.33 mmol) was then added slowly by syringe. The reaction mixture was warmed slowly to 25 °C and stirred for an additional 2 h. The solvents were evaporated under reduced pressure and the resulting residue was triturated with Et₂O (3 x 2.0 mL) to give 456 mg (99%) of 27a as a white solid: mp 78.6 - 80.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.11 (app d sx, J = 4.9 Hz, J_{H-P} = 351 Hz, P-H), 1.80 (m, 10H, CH₂), 1.71 (br, 2H, P-CH), 1.25 (m, 10H, CH₂), 0.40 (br q, J_{H-B} = 94.7 Hz, 3H, BH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 29.4, 29.2, 28.8, 28.6, 27.7, 26.7, 26.5, 26.3,
79

25.7; 31P NMR (202 MHz, CDCl$_3$) δ 17.3 (br d, $J_{p-H} = 351$ Hz); IR (film) 2929, 2853, 2382, 2350, 1449, 1062 cm$^{-1}$. Anal. Calcd. for C$_{12}$H$_{26}$BP: C, 67.93; H, 12.36; P, 14.61. Found: C, 68.14; H, 12.02; P, 14.50.

Boronato-diphenyl phosphine (27b). The reaction of diphenylphosphine (1.86 g, 10.0 mmol) with BH$_3$·S(CH$_3$)$_2$ (1.08 mL of a 10.2 M solution containing free S(CH$_3$)$_2$, 11.0 mmol) was carried out as described for 27a. The phosphine-borane adduct was isolated (1.96 g, 98%) as a viscous clear oil: 1H NMR (300 MHz, CDCl$_3$) δ 7.68-7.61 (m, 2H, Ph-H), 7.50-7.41 (m, 8H, Ph-H), 6.29 (dq, $J = 6.9$ Hz, $J_{p-H} = 378$ Hz, 1H, P-H), 1.65-0.5 (br q, $J_{H-B} = 97.3$ Hz, 3H, BH$_3$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 133.1 (CH), 132.9 (CH), 131.6 (CH), 129.2 (CH), 129.0 (CH), 128.5 (C); 31P NMR (202 MHz, CDCl$_3$) δ 0.8 (d, $J_{p-H} = 337$ Hz); IR (film) 2388, 1483, 1438, 1109, 1059 cm$^{-1}$.

4-Lithio-3-methylanisole. An oven-dried, 250 mL, three-necked, round-bottomed flask was fitted with a pressure equalizing addition funnel, glass stopper, condenser, magnetic stirring bar and glass beads. The vessel was purged with argon and charged with Et$_2$O (20 mL). The stopper was removed and replaced with a conical funnel while a constant flow of argon was passed through the flask. Lithium wire, doped with 1% Na (0.385 g, 55.0 mmol, prewashed with toluene), was held with forceps over the
funnel and cut with clean scissors into 2 mm pieces such that they dropped directly into the ether. 4-Bromo-3-methylanisole119 (5.02 g, 25.0 mmol) in Et\textsubscript{2}O (50 mL) was added slowly to the lithium / Et\textsubscript{2}O suspension, via addition funnel, so that the suspension was maintained at a reflux. Upon completion of the addition, the yellow solution was stirred vigorously for an additional 3 h at room temperature.

Bis(4-methoxy-2-methylphenyl)-N,N-dimethylaminophosphine (31). An oven-dried, 250 mL, three-necked, round-bottomed flask was fitted with a pressure equalizing addition funnel, 2 glass stoppers and a magnetic stirring bar. The vessel was purged with argon, charged with Me\textsubscript{2}NPCl\textsubscript{2}109 (1.83 g, 12.5 mmol) in Et\textsubscript{2}O (50 mL) and cooled to -78 °C. 4-Lithio-3-methyl anisole (3.20 g, 25.0 mmol) in Et\textsubscript{2}O (approx. 70 mL) was added slowly via addition funnel. Upon completion of the addition, the mixture was then warmed slowly to 25 °C. After dilution with anhydrous Et\textsubscript{2}O (20 mL), the solution was filtered under argon through Activity II neutral alumina. Concentration of the solution followed by purification by distillation (160-165 °C, 5 μtorr) gave 3.33 g (84%) of 31 as a highly viscous clear oil: 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 6.99 (dd, J = 3.9, 8.4 Hz, 2H, Ar-H), 6.70 (m, 4H, Ar-H), 3.78 (s, 6H, OCH\textsubscript{3}), 2.65 (d, J = 8.2 Hz, 6H, N(CH\textsubscript{3})\textsubscript{2}), 2.27 (s, 6H, CH\textsubscript{3}); 31P NMR (202 MHz, CDCl\textsubscript{3}) δ 49.7 (s).
Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c).

Method A: An oven-dried, 250 mL, three-necked, round-bottomed flask was fitted with a glass stopper, gas outlet and magnetic stirring bar. The vessel was purged with argon, charged with 31 (0.850 g, 2.68 mmol) in Et₂O (107 mL) and cooled to 0 °C. Dry HCl (0.219 g, 6.00 mmol) was slowly bubbled into the solution. A white precipitate formed and the reaction was warmed to 25 °C. After stirring at 25 °C for 5 h the Me₂NH₂Cl⁻ salts were filtered off (under argon) and the filtrate was concentrated *in vacuo*. The resulting bis(4-methoxy-2-methylphenyl)chloro phosphine was dissolved in THF (1.5 mL) and added slowly via addition funnel to an oven-dried, round-bottomed flask containing LiAlH₄ (0.122 g, 3.20 mmol), BH₃·S(CH₃)₂ (0.32 mL of a 10.2 M solution containing free S(CH₃)₂, 3.25 mmol) and THF (2.0 mL), at 0 °C. Upon completion of the addition, the mixture was warmed to 25 °C and stirred for an additional 2 h. After the reaction was quenched with 5 M HCl (1.5 mL) and ice (3.0 g), the mixture was diluted with Et₂O (4.0 mL). The organic phase was separated and the aqueous phase was extracted with Et₂O (2 x 2.0 mL). The organic layers were combined, washed with brine (5.0 mL), dried (MgSO₄) and solvents were evaporated under reduced pressure. The viscous beige residue was purified by flash chromatography on silica gel (20% EtOAc / hexane for elution) to give 317 mg (42%) of 27c as a white crystalline solid: mp 97.3-99.9 °C; ¹H NMR
(300 MHz, CDCl₃) δ 7.50 (dd, J = 8.9, 13.6 Hz, 2H, Ar-H), 6.76 (br s, 4H, Ar-H), 6.39 (dq, J = 6.5 Hz, JH-P = 376 Hz, 1H, P-H), 3.79 (s, 6H, OCH₃), 2.28 (s, 6H, CH₃), 1.54-0.4 (br envelope, 3H, BH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 162.3 (C), 143.9 (C), 143.7 (C), 135.8 (CH), 135.6 (CH), 117.1 (CH), 117.0 (CH), 111.8 (CH), 111.6 (CH), 75.2 (C), 70.3 (C), 55.2 (CH₃), 21.1 (CH₃); ³¹P NMR (202 MHz, CDCl₃) δ -17.0 (d, J = 415 Hz); IR (film) 2358, 1599, 1564, 1489, 1455, 1303, 1242, 1079 cm⁻¹; high resolution mass spectrum calcd. for C₁₆H₁₉O₂P (M⁺-BH₃) 274.1124, found 274.1122.

Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c).

Method B: The reaction of Bis(4-methoxy-2-methylphenyl)phosphine (5d) (0.750 g, 2.74 mmol) with BH₃•S(CH₃)₂ (0.30 mL of a 10.2 M solution containing free S(CH₃)₂, 3.01 mmol) was carried out as described for 27a. The phosphine borane adduct was isolated (758 mg, 2.63 mmol, 96%) as a white crystalline solid.

Ligand Synthesis-Tartaric Acid Series
(1,4-diphosphines)

(4R,5R)-4,5-Bis(carbomethoxy)-2,2-dimethyl-1,3-dioxolane (100a). An oven-dried, round-bottomed flask was fitted with a short path distillation apparatus and magnetic stirring bar. The vessel was charged with dimethyl-L-tartrate (17.8 g, 100 mmol), 2,2-dimethoxypropane (12.5 g, 120 mmol), benzene (40 mL) and (1S)-(+)−10-camphorsulfonic
acid (38.0 mg, 0.160 mmol). The reaction mixture was heated slowly and methanol was collected as the distillate over a period of 3 h. Subsequently, the reaction mixture was cooled to 25 °C, anhydrous Na₂CO₃ (21.2 g, 200 mmol) was added and the mixture was stirred for 30 min. The excess Na₂CO₃ was removed by filtration and the solvents were evaporated under reduced pressure. The resulting oily residue was distilled (70 °C, 125 μtorr) to yield 17.3 g (89%) of the title compound as a colorless oil: ^1^H NMR (300 MHz, CDCl₃) δ 4.68 (s, 2H, CH), 3.70 (s, 6H, OCH₃), 1.39 (s, 6H, CH₃); ^1^C NMR (75 MHz, CDCl₃, ^1^H decoupled) δ 170.0 (C), 113.7 (C), 76.8 (CH), 52.6 (CH₃), 26.2 (CH₃); IR (film) 2994, 2958, 1758, 1440, 1376, 1214, 1112, 1014, 860 cm⁻¹.

(4S,5S)-4,5-Bis(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (101a). An oven-dried, round-bottomed flask was fitted with a pressure equalizing addition funnel, rubber septum and magnetic stirring bar. The vessel was charged with LiAlH₄ (1.21 g, 32.0 mmol), Et₂O (75 mL) and purged with nitrogen. The grey suspension was cooled to -5 °C and a solution of 100a (3.32 g, 15.0 mmol) in Et₂O (25 mL) was added dropwise over a period of 1 h. The reaction mixture was warmed to 25 °C for 10 min and subsequently refluxed for an additional 1 h. After cooling to 0 °C, excess LiAlH₄ was quenched slowly with water (10 mL). The resulting white slurry was filtered through a pad of celite. After rinsing
the solids with a 50% THF / EtOAc solution (4 x 10 mL), the filtrate was collected, washed with brine and dried (Na₂SO₄). The solvents were evaporated under reduced pressure to yield 2.29 g (94%) of the crude alcohol as an oil. This material was purified by bulb-to-bulb distillation to yield 2.11 g (87%) of the title compound as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.96 (m, 2H, CH), 3.76 (dd, J = 2.2, 10.9 Hz, 2H, CH₂), 3.66 (dd, J = 2.2, 10.9 Hz, 2H, CH₂), 2.44 (br s, 2H, OH), 1.40 (s, 6H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 115.7 (C), 80.3 (CH), 62.1 (CH₂), 27.0 (CH₃); IR (film) 3368, 2962, 1260, 1022, 800, 686 cm⁻¹.

(4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2,2-dimethyl-1,3-dioxolane (6a). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with 101a (2.00 g, 12.3 mmol), CH₂Cl₂ (30 mL) and pyridine (2.04 g, 25.8 mmol). The mixture was cooled to 0 °C and then p-toluenesulfonyl chloride (4.92 g, 25.8 mmol) was added in small portions over a period of 1 h. The mixture was stirred at 0 °C for an additional 19 h. Subsequently, the resulting white slurry was diluted with CH₂Cl₂ (15 mL) and poured into a separatory funnel containing 10% aqueous HCl (10 mL). The organic layer was separated and washed twice more with 10% aqueous HCl (10 mL) saturated aqueous NaHCO₃ (10 mL) and dried (Na₂SO₄). Solvent was evaporated under reduced pressure to yield 5.27 g (91%)
of 6a as a beige solid. This material was recrystallized from abs. ethanol to yield 4.81 g (83%) of the title compound as a white crystalline solid: mp 75.7-78.3 °C; ^1H NMR (300 MHz, CDCl_3) δ 7.77 (d, J = 8.2 Hz, 4H, Ar-H), 7.34 (d, J = 8.2 Hz, 4H, Ar-H), 4.05 (m, 4H, CH_2), 3.98 (m, 2H, CH), 2.45 (s, 6H, CH_3), 1.28 (s, 6H, CH_3); ^13C NMR (75 MHz, CDCl_3, ^1H decoupled) δ 145.2 (C), 132.5 (C), 130.0 (CH), 127.9 (CH), 110.8 (C), 75.0 (CH), 68.4 (CH_2), 26.7 (CH_3), 21.6 (CH_3); IR (KBr) 2985, 2935, 1597, 1359, 1236, 1191, 1174, 1097, 989, 973, 854, 835, 813, 785, 664, 554, 513 cm⁻¹.

(4R,5R)-4,5-Bis[(bis(2-trifluoromethylphenyl)phosphino)methyl]-2,2-dimethyl-1,3-dioxolane (3f). The following procedure is a modification of one described by Hobbs and Knowles. An oven-dried, round-bottomed flask was charged with KH (35% oil dispersion, 253 mg, 2.21 mmol) and the oil was removed by trituration with pentane (3 x 2 mL). The flask was then purged with argon and cooled to -78 °C. A solution of 5a (677 mg, 2.10 mmol) in THF (1.75 mL) was added in a dropwise manner over 10 min. The reaction was stirred at -78 °C for an additional 15 min, then warmed to 25 °C. After stirring at 25 °C for 5 min, the reaction was re-cooled to -78 °C, and a solution of 6a (470 mg, 1.00 mmol) in THF (3.0 mL) was added slowly via syringe. The mixture was warmed to 25 °C and stirred for an additional 12 h. The solvents were
evaporated under reduced pressure and the resulting residue was dissolved in degassed Et₂O (10 mL). This solution was washed with degassed water (3 x 5 mL). The organic layer was separated, dried (MgSO₄) and the solvents evaporated in vacuo to yield a light yellow solid material. Purification was achieved by recrystallization (under argon) from abs. ethanol to yield 670 mg (87%) of the title compound as a white crystalline solid: mp 140.6-142.9 °C; [α]₂⁵ -27.0 (c = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.67 (m, 4H, Ar-H), 7.51 (m, 8H, Ar-H), 7.43 (m, 4H, Ar-H), 4.00 (m, 2H, CH), 2.40 (dd, J = 5.1, 15.9 Hz, 2H, CH₂), 2.25 (dd, J = 5.1, 15.9 Hz, 2H, CH₂), 1.26 (s, 6H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 134.0 (CH), 133.6 (CH), 131.6 (CH), 131.5 (CH), 128.9 (CH), 126.7 (C), 121.2 (C), 109.3 (C), 79.1 (CH), 79.0 (CH), 32.8 (CH₂), 32.5 (CH₂), 26.9 (CH₃); ³¹P NMR (202 MHz, CDCl₃) δ -33.6 (septet, J = 50 Hz); IR (KBr) 3075, 2984, 2929, 2893, 1594, 1573, 1308, 1262, 1169, 1112, 1033, 764 cm⁻¹. Anal. Calcd. for C₃₅H₂₈F₁₂O₂P₂: C, 54.56; H, 3.66; F, 29.59; P, 8.04. Found: C, 54.55; H, 3.58; F, 29.38; P, 8.0 (min).

(4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino)methyl]-2,2-dimethyl-1,3-dioxolane (3e). Prepared according to the method of Kagan:⁺⁺ [α]₂⁵⁺⁺ -36.6 (c = 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.04 (m, 16H, Ar-H), 3.78 (app sx, J = 5.1 Hz, 2H, CH), 2.48 (s, 6H, Ar-CH₃), 2.31 (s, 6H, CH₃), 2.25 (m, 4H, CH₂), 1.32 (s, 6H, CH₃); ¹³C NMR (75 MHz,
CDCl$_3$, 1H decoupled) δ 131.8 (CH), 130.9 (CH), 130.1 (CH), 128.7 (CH), 128.5 (C), 126.2 (C), 125.9 (CH$_3$), 108.8 (C), 104.4 (CH), 31.0 (CH$_2$), 27.2 (CH$_3$); 31P NMR (202 MHz, CDCl$_3$) δ -43.9 (s); IR (film) 3054, 2932, 2872, 1450, 1228, 746, 716 cm$^{-1}$.

(4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoromethyl)phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3d).
The reaction of 2.05 equivalents of potassium bis[3,5-bis(trifluoromethyl)phenyl phosphide (577 mg, 1.16 mmol) with 6a (267 mg, 0.568 mmol) in THF (3.0 mL) was carried out as described above for the preparation of 3f. After the usual workup, the organic layer was separated, dried (MgSO$_4$) and the solvents evaporated in vacuo to yield a beige solid. This material was purified by recrystallization (under argon) from abs. ethanol to yield 486 mg (82%) of the title compound as a white crystalline solid: mp 123-127 °C; [\alpha]$_D$ 25 -9.0 (c = 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$) δ 7.85 (m, 12H, Ar-H), 4.04 (app sx, J = 4.3 Hz, 2H, CH), 2.37 (m, 4H, CH$_2$), 1.28 (s, 6H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 132.9 (CH), 132.6 (CH), 124.8 (C), 123.6 (C), 123.3 (C), 121.2 (C), 109.9 (C), 79.4 (CH), 79.2 (CH), 31.1 (CH$_3$), 30.9 (CH$_3$), 26.6 (CH$_3$); 31P NMR (CDCl$_3$) δ -17.2 (s); IR (film) 3040, 1385, 1270, 1212, 1130, 764 cm$^{-1}$. Anal. Calcd. for C$_{39}$H$_{24}$F$_{24}$O$_2$P$_2$: C, 44.93; H, 2.32; F, 43.74. Found: C, 45.16; H, 2.20; F, 43.70.
(4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3h). The reaction of 2.10 equivalents of potassium bis-4-methoxy-2-methylphenyl)phosphide (656 mg, 2.10 mmol) with 6a (470 mg, 1.00 mmol) in THF (4.75 mL) was carried out as described above for the preparation of 3f: mp 43.5-53.2 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.14 (dd, \(J = 8.2, 3.6\) Hz, 2H, Ar-H), 7.03 (dd, \(J = 8.3, 3.9\) Hz, 2H, Ar-H), 6.72-6.62 (m, 8H, Ar-H), 3.77 (s, 6H, OCH\(_3\)), 3.75 (s, 6H, OCH\(_3\)), 3.73 (m, 2H, CH), 2.44 (s, 6H, CH\(_3\)), 2.28 (s, 6H, CH\(_3\)), 2.16 (m, 4H, CH\(_2\)), 1.33 (s, 6, CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), \(^1\)H decoupled) \(\delta\) 159.9, 134.2, 133.1, 132.1, 127.7, 115.9, 115.6, 111.8, 111.4, 79.8, 78.5, 55.0, 53.3, 31.7, 31.6, 27.2, 21.6, 21.3, 21.1; \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta\) -48.5 (s).

(4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (33). An oven-dried, round-bottomed flask was fitted with a magnetic stirring bar and rubber septum. The vessel was charged with 27a (312 mg, 1.50 mmol) and THF (4.0 mL), purged with argon and cooled to -78 °C. n-BuLi (0.52 mL of a 2.86 M solution in heptane, 1.50 mmol) was added dropwise to the reaction mixture over a period of 10 min. The reaction was stirred at -78 °C for an additional 10 min, then warmed to 25 °C for 5 min. Upon cooling to -78 °C, a solution of 6a (346 mg, 0.735 mmol) in THF (4.0 mL) was added slowly via syringe. The mixture was then allowed to warm slowly to 25 °C. After
stirring at 25 °C for 9 h, 10% aqueous HCl (2 mL) was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with Et₂O (4 x 5 mL). The organic layers were combined, washed with water (2 x 5 mL), dried (MgSO₄) and the solvents were evaporated under reduced pressure. The resulting white solid was recrystallized from cold heptane to yield 302 mg (86%) of the title compound as a white crystalline solid: mp 181.9-185.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.92 (m, 2H, CH), 2.05-1.50 (m, 3OH, CH₂ and C₆-H envelope), 1.35 (s, 6H, CH₃), 1.45-1.10 (m, 19H, C₆-H envelope), 0.90-0.30 (br envelope, 6H, BH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 32.8, 32.4, 32.2, 31.8, 27.4, 27.2, 27.1, 26.8, 26.1, 25.9, 22.6, 22.2; ³¹P NMR (202 MHz, CDCl₃) δ 25.4 (s).

(4R,5R)-4,5-Bis[(dicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (32). An oven-dried, round-bottomed flask was fitted with a magnetic stirring bar and rubber septum. The vessel was charged with 33 (138 mg, 0.25 mmol), morpholine (2.0 mL) and purged with argon. The reaction was stirred at 100 °C for 2 h. The solvent was removed in vacuo and the resulting residue was recrystallized from abs. ethanol (degassed) to yield 128 mg (98%) of the title compound as a white crystalline solid: mp 176.8-180.0 °C; ¹H NMR (300 MHz, C₆D₆) δ 4.17 (app q, J = 3.9 Hz, 2H, CH), 2.14-1.48 (overlapping multiplets, 28H, C₆-H), 1.50 (s, 6H,
(4R,5R)-4,5-Bis(carbomethoxy)-2-methyl-2-phenyl-1,3-dioxolane (100b). The reaction of 1,1-dimethoxy-1-phenylethane (16.1 g, 0.120 mol) with dimethyl-L-tartrate (17.8 g, 0.100 mol) was carried out as described above for 100a. Upon evaporation of the solvent in vacuo, the resulting oily material was distilled (105 °C, 0.25 μtorr) to yield 25.8 g (92%) of the title compound as a colorless oil. 1H NMR (300 MHz, CDCl₃) δ 7.49 (m, 2H, Ph-H), 7.30 (m, 3H, Ph-H), 4.87 (d, J = 5.5 Hz, 1H, CH), 4.80 (d, J = 5.5 Hz, 1H, CH), 3.85 (s, 3H, CH₃), 3.54 (s, 3H, CH₃), 1.79 (s, 3H, CH₃); 13C NMR (75 MHz, CDCl₃; 1H decoupled) δ 169.5 (C), 169.3 (C), 141.6 (C), 128.4 (CH), 128.0 (CH), 125.5 (CH), 113.3 (C), 77.3 (CH), 76.5 (CH), 52.8 (CH₃), 52.3 (CH₃), 28.1 (CH₃); IR (film) 2998, 2956, 1751, 1688, 1440, 1376, 1342, 1250, 1199, 1138, 1096, 1070, 1026, 880, 768, 704 cm⁻¹.

(4S,5S)-4,5-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b). The reduction of 100b (4.21 g, 15.0 mmol) with LiAlH₄ (1.21 g, 32.0 mmol) was carried out as described above for the preparation of diol 101a from 100a. Upon evaporation of the solvent under reduced pressure, 2.46 g (73%) of 101b was obtained as a white crystalline solid: mp 68.3-71.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.46 (m, 2H, CH)
Ph-H), 7.37-7.30 (m, 3H, Ph-H), 4.14 (m, 1H, CH), 3.90 (m, 1H, CH), 3.72 (m, 2H, CH₂), 3.55 (dd, J = 5.1, 8.2 Hz, 2H, CH₂), 1.91 (brs, 2H, OH), 1.67 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 128.4 (CH), 128.3 (CH), 128.0 (CH), 126.6 (C), 125.2 (CH), 124.8 (CH), 109.6 (C), 79.0 (CH), 78.5 (CH), 62.5 (CH₂), 62.2 (CH₂), 28.9 (CH₃); IR (KBr) 3292, 3004, 2946, 2904, 2876, 1374, 1244, 1198, 1052, 1024, 912, 704 cm⁻¹.

(4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2-methyl-2-phenyl-1,3-dioxolane (6b). The title compound was prepared from 101b (2.00 g, 8.90 mmol), toluenesulfonyl chloride (3.38 g, 17.8 mmol), pyridine (1.41 g, 17.8 mmol) and CH₂Cl₂ (25 mL) in a manner described above for 6a. Upon evaporation of solvent under reduced pressure, a light yellow solid was obtained. This material was recrystallized from abs. ethanol to yield 3.98 g (84%) of 6b as a white crystalline solid: mp 168.2-169.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 7.5 Hz, 2H, Ar-H), 7.65 (d, J = 7.5 Hz, 2H, Ar-H), 7.35 (d, J = 8.0 Hz, 2H, Ar-H), 7.26-7.22 (m, 5H, Ph-H), 4.13 (d, J = 4.6 Hz, 2H, CH₂), 4.06 (app q, J = 6.1 Hz, 1H, CH), 3.80 (m, 2H, CH₂), 3.64 (dd, J = 5.4, 10.3 Hz, 1H, CH), 2.44 (s, 6H, CH₃), 1.51 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 132.4, 129.9, 128.2, 128.0, 127.9, 127.8, 124.7, 110.9, 76.0, 75.6, 68.6, 68.5, 28.6, 21.5; IR (KBr) 3068, 1306, 2996, 2956, 1598, 1356, 1190, 1176, 1058, 964, 874, 814, 570, 556 cm⁻¹.
(4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b). An oven-dried, round-bottomed flask fitted with a rubber septum and magnetic stirring bar was charged with KH (35% oil dispersion, 253 mg, 2.21 mmol) and the oil was removed by trituration with pentane (3 x 2 mL). The flask was then purged with argon, cooled to -40 °C and charged with a solution of diphenylphosphine (391 mg, 2.10 mmol) in DMF (1.75 mL) in a dropwise manner over a period of 10 min. During this time H₂ evolved and the solution became dark red. The reaction was stirred at -40 °C for an additional 10 min, then warmed to 25 °C for 5 min. Upon cooling to -40 °C, a solution of 6b (533 mg, 1.00 mmol) in DMF (3.0 mL) was added slowly via syringe. The mixture was warmed to 25 °C and stirred for an additional 12 h. Subsequently, solvents were evaporated under reduced pressure and the resulting residue was dissolved in degassed anhydrous Et₂O (10 mL). This solution was washed with degassed water (3 x 5 mL), brine (5 mL), dried (MgSO₄) (all under argon) and the solvent evaporated in vacuo to yield 499 mg (89%) of 3b as a beige, highly viscous oil. Attempts to crystallize this material were unsuccessful: [α]D²⁵ ≈ -7.0 (c = 1.0, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.5-7.1 (m, 25H, Ar-H), 4.05 (app p, J = 6.6 Hz, 1H, CH), 3.75 (app p, J = 6.2 Hz, 1H, CH), 2.46 (dd, J = 5.4, 14.3 Hz, 1H, CHH), 2.41 dd, J = 7.2, 14.3 Hz, 1H, CHH), 2.20 (dd, J = 7.7, 13.8 Hz, 1H, CHH), 2.12 (dd,
(4R,5R)-4,5-Bis[[bis(2-trifluoromethyl phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g). The reaction of 2.1 equivalents of potassium bis(2-trifluoromethylphenyl)phosphide (757 mg, 2.10 mmol) with 6b (533 mg, 1.00 mmol), in DMF (4.75 mL), was carried out as described above for the preparation of 3b. Upon workup, evaporation of the solvents in vacuo yielded an orange foamy material. Chromatographic purification (under argon) on degassed silica gel (15% EtOAc / hexane (degassed) for elution) provided 633 mg (76%) of 3g as a white foam. Attempts to crystallize this material were unsuccessful:

$[\alpha]_D^{25} -13.0$ (c = 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$) δ 7.70-7.65 (m, 5H, Ph-H), 7.53-7.41 (m, 12H, Ar-H), 7.25 (m, 2H, Ar-H), 7.17 (m, 2H, Ar-H), 4.14 (app p, J = 6.2 Hz, 1H, CH), 3.83 (app p, J = 6.5 Hz, 1H, CH), 2.41 (app p, J = 3.1 Hz, 2H, CH$_2$), 2.14 (m, 2H, CH$_2$), 1.46 (s, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 140.9, 138.8, 138.6, 138.5, 136.3, 136.2, 133.7, 133.6, 132.6, 132.3, 131.5, 129.7, 127.4, 127.1, 121.3, 114.1, 85.1, 84.1, 33.6; 31P NMR
(202 MHz, CDCl₃) δ -33.2 (app dp, J = 25, 52 Hz); IR (KBr) 3854, 3066, 2960, 2934, 1442, 1312, 1262, 1172, 1114, 1036, 768, 692 cm⁻¹. Anal. Calcd. for C₄₀H₃₀F₁₂O₂P₂: C, 57.70; H, 3.63; F, 27.40. Found: C, 59.19; H, 3.76; F, 27.80.

(4R,5R)-4,5-Bis(carbomethoxy)-2-t-butyl-1,3-dioxolane (100c). The following procedure is a modification of one described by Seebach. An oven-dried, round-bottomed flask was charged with dimethyl-L-tartrate (3.56 g, 20 mmol), trimethylacetaldehyde (5.5 mL, 50 mmol), benzene (30 mL) and (1S)-(−)-10-camphorsulfonic acid (10 mg, 0.04 mmol). The mixture was refluxed for 20 h with azeotropic removal of water. The solvent was removed in vacuo and the residue was dissolved in Et₂O (30 mL), washed with saturated aqueous Na₂CO₃ (2 x 10 mL), water (10 mL) and brine (10 mL). The organic layer was then dried (MgSO₄) and the solvent was removed by evaporation under reduced pressure. Bulb-to-bulb distillation of the resulting residue (82 °C, 0.25 μtorr) afforded 3.67 g (74%) of the title compound as a clear oil.

¹H NMR (300 MHz, CDCl₃) δ 4.85 (s, 1H, t-BuCH), 4.74 (d, J = 4.3 Hz, 1H, CH), 4.64 (d, J = 4.3 Hz, 1H, CH), 3.79 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 0.94 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 170.3 (C), 169.2 (C), 112.8 (CH), 77.0 (CH), 52.5 (CH₃), 33.9 (C), 24.0 (CH₃); IR (film) 2960, 2876, 1804, 1752, 1486, 1438, 1410, 1366, 1216, 1120, 1044, 972 cm⁻¹.
(4S,5S)-4,5-Bis(hydroxymethyl)-2-t-butyl-1,3-dioxolane (101c). The reduction of 100c (2.46 g, 10.0 mmol) with LiAlH₄ (794 mg, 21.0 mmol) was carried out as described above for the preparation of diol 101a from 100a. Upon evaporation of the solvent under reduced pressure, 1.53 g (81%) of 101c was obtained as a white crystalline solid: mp 47.7-49.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.70 (s, 1H, t-BuCH), 3.93 (ddd, J = 4.0, 4.6, 7.1 Hz, 2H, CH), 3.82 (dd, J = 4.0, 11.6 Hz, 2H, CH₂), 3.71 (dd, J = 7.1, 11.6 Hz, 2H, CH₂), 2.06 (br s, 2H, OH), 0.90 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 110.1 (CH), 78.6 (CH), 78.0 (CH), 62.3 (CH₂), 34.3 (C), 24.1 (CH₃); IR (KBr) 3264, 2974, 2940, 2884, 1482, 1406, 1392, 1358, 1136, 1122, 1052, 1040, 1020, 982 cm⁻¹.

(4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2-t-butyl-1,3-dioxolane (6c). The title compound was prepared from 101c (1.50 g, 7.9 mmol), tolenesulfonfyl chloride (3.00 g, 15.8 mmol), pyridine (1.25 g, 15.8 mmol) and CH₂Cl₂ (20 mL) in a manner described above for 6a. Evaporation of solvent under reduced pressure yielded a white solid. Purification of this material was accomplished by recrystallization from abs. ethanol to give 3.35 g (85%) of 6c as a white crystalline solid: mp 111-113 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 4H, Ar-H), 7.33 (d, J = 8.1 Hz, 4H, Ar-H), 4.53 (s, 1H, t-BuCH), 4.00 (m, 6H, CH₂, CH), 2.44 (s, 6H, Ar-CH₃), 0.76 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃, ¹H
decoupled) δ 145.1 (C), 132.5 (C), 129.9 (CH), 127.9 (CH),
110.8 (CH), 75.1 (CH), 68.3 (CH₂), 33.9 (C), 23.8 (CH₃),
21.5 (CH₃); IR (KBr) 2960, 2906, 2870, 1598, 1366, 1352,
1190, 1178, 1122, 1094, 1012, 982, 918, 808, 784, 682, 570,
552 cm⁻¹.

(4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-t-butyl-1,3-dioxolane (3c). The reaction of 2.1 equivalents of potassium diphenylphosphide (471 mg, 2.10 mmol) with 6c
(499 mg, 1.00 mmol), in THF (4.75 mL), was carried out as described for the preparation of 3b. Upon evaporation of solvent under reduced pressure, 463 mg (88%) of a clear oil was obtained. This material solidified upon standing in abs. ethanol. Recrystallization from abs. ethanol afforded 447 mg (85%) of 3c as a white crystalline material: mp
79.7-81 °C; [α]₂⁵° -10.0 (c = 1.0, CHCl₃); ¹H NMR (300 MHz,
CDCl₃) δ 7.44-7.40 (m, 8H, Ar-H), 7.28-7.23 (m, 12H, Ar-H),
4.56 (s, 1H, t-BuCH), 4.00 (app p, J = 6.6 Hz, 1H, CH), 3.90
(app p, J = 6.6 Hz, 1H, CH), 2.32 (m, 4H, CH₂), 0.70 (s, 9H,
C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 138.4 (C),
138.0 (C), 133.1 (CH), 132.8 (CH), 132.7 (CH), 132.6 (CH),
128.6 (CH), 128.4 (CH), 109.5 (CH), 80.9 (CH), 79.8 (CH),
34.2 (C), 32.5 (CH₂), 32.3 (CH₂), 24.2 (CH₃); ³¹P NMR
(202 MHz, CDCl₃) δ -22.5 (d, J = 152 Hz); IR (KBr) 3070,
3052, 2958, 2932, 2900, 2870, 1480, 1434, 1408, 1366, 1096,
1046, 998, 980, 740, 722, 696, 502 cm⁻¹; high resolution
mass spectrum calcd. for C_{33}H_{36}O_{2}P_{2}(M^+) 526.2193, found 526.2190.

Ligand Synthesis—Hexane Series (1,4-diphosphines)

(2S,5S)-2,5-Hexandiol (102). The title compound was prepared from acetonylacetone (5.71 g, 0.050 mol) according to the method of Lieser.\(^{120}\) The mixture was filtered through celite and the solids were rinsed with EtOAc (4 x 50 mL). The filtrate was collected and the organic layer separated. The aqueous layer was continuously extracted with EtOAc for 3 days. The combined organics were dried (MgSO\(_4\)) and concentrated under reduced pressure to yield a beige viscous oil. Purification of this material was accomplished by column chromatography on silica gel (EtOAc for elution) to yield 4.49 g (75%) of 102 as a white solid. Recrystallization from t-butyl-methyl ether afforded 3.96 g (67%) of 102 as a white crystalline solid: mp 50.4-53.2 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 3.78 (m, 2H, CH), 3.15 (br s, 2H, OH), 1.53 (m, 4H, CH\(_2\)), 1.17 (d, J = 6.2 Hz, 6H, CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), \(^{1}\)H decoupled) \(\delta\) 68.1 (CH), 35.9 (CH\(_2\)), 23.6 (CH\(_3\)).

(2S,5S)-2,5-Bis-(p-tosyloxy)hexane (30). The title compound was prepared from 102 (1.18 g, 10.0 mmol), toluenesulfonyl chloride (3.80 g, 20.0 mmol), pyridine (1.58 g, 20.0 mmol) and CH\(_2\)Cl\(_2\) (30 mL) in a manner described above for 6a. Upon evaporation of solvent under reduced
pressure, a white solid material was obtained. Recrystallization from heptane:methylcyclohexane (1:9) afforded 3.54 g (83%) of 30 as a white crystalline solid: mp 94.5-97 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.75 (d, \(J = 8.2\) Hz, 4H, Ar-H), 7.32 (d, \(J = 8.2\) Hz, 4H, Ar-H), 4.50 (m, 2H, CH), 2.43 (s, 6H, Ar-CH\(_3\)), 1.54 (m, 4H, CH\(_2\)), 1.11 (d, \(J = 6.3\) Hz, 6H, CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), \(^1\)H decoupled) \(\delta\) 144.6 (C), 134.8 (C), 129.8 (CH), 127.7 (CH), 79.0 (CH), 31.7 (CH\(_3\)), 21.6 (CH\(_2\)), 20.8 (CH\(_3\)); IR (KBr) 3004, 2980, 2954, 2930, 1598, 1450, 1438, 1378, 1323, 1308, 1294, 1189, 1171, 1096, 892, 852, 820, 758, 688, 578, 544, 522 cm\(^{-1}\).

\((2R,5R)\)-2,5-Bis(diphenylphosphino)hexane (21b). Method A: An oven-dried, round-bottomed flask was charged with KH (35% oil dispersion, 253 mg, 2.21 mmol) and the oil was removed by trituration with pentane (3 x 2 mL). The vessel was then purged with argon and cooled to -40 °C. A solution of diphenylphosphine (391 mg, 2.10 mmol) in DMF (2.0 mL) was added in a dropwise manner over a period of 10 min. The reaction mixture was warmed to 0 °C and stirred for 1 h after which it was warmed to 25 °C and stirred for an additional 15 min. Upon cooling to -40 °C, a solution of 30 (427 mg, 1.00 mmol) in DMF (3.0 mL) was added via syringe and the mixture was stirred at 25 °C for 18 h. After the usual workup (see preparation of 3b), evaporation of the solvent under reduced pressure yielded 405 mg (89%) of a
white solid. This material was recrystallized from degassed methylcyclohexane at 0 °C to give 382 mg (84%) of 21b as a white crystalline solid: mp 179.3-183.6 °C; [α]$_D^{25}$ +7.0 (c = 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$) δ 7.67 (m, 8H, Ar-H), 7.5-7.3 (m, 12H, Ar-H), 2.25 (m, 2H, CH), 1.61 (m, 4H, CH$_2$), 1.07 (d, J = 7.1 Hz, 3H, CH$_3$), 0.09 (d, J = 7.1 Hz, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) 131.4, 130.9, 128.4, 32.8, 32.1, 27.6, 11.9; 31P NMR (202 MHz, CDCl$_3$) δ -1.8 (s); IR (KBr) 3068, 3052, 2956, 2930, 2880, 2852, 1480, 1458, 1432, 1376, 1196, 1092, 1068, 1026, 738, 696, 658, 510 cm$^{-1}$; high resolution mass spectrum calcd. for C$_{30}$H$_{32}$P$_2$(M$^+$) 454.1982, found 454.1979.

(2R,5R)-2,5-Bis[bis(2-trifluoromethylphenyl)phosphino]hexane (15a). The reaction of 2.1 equivalents of potassium bis(2-trifluoro-methylphenyl)phosphide (757 mg, 2.10 mmol) with 30 (427 mg, 1.00 mmol), in DMF (50 mL), was carried out as described above for the preparation of 21b (method A).

Upon evaporation of the solvent under reduced pressure, 684 mg (94%) of a light yellow solid was obtained. This material was recrystallized from methylcyclohexane to give 596 mg (82%) of 15a as a white crystalline solid: mp 182-186 °C; [α]$_D^{25}$ +39.0 (c = 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$) δ 7.70-7.35 (m, 16H, Ar-H), 2.03 (m, 2H, CH), 1.57 (m, 2H, CH$_2$), 1.29 (m, 2H, CH$_2$), 0.91 (d, J = 6.6 Hz, 3H, CH$_3$), 0.87 (d, J = 6.6 Hz, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled)
decoupled) δ 135.9 (C), 133.8 (CH), 133.1 (CH), 131.2 (CH),
128.9 (CH), 126.9 (C), 126.7 (C), 32.0 (CH₂), 31.8 (CH₂)
31.1 (CH), 15.9 (CH₃), 15.7 (CH₃); ¹³¹P NMR (202 MHz, CDCl₃) δ
-20.3 (unresolved septet, J = 44 Hz); IR (KBr) 3072, 2974,
2964, 2936, 2882, 1594, 1572, 1470, 1442, 1384, 1311, 1260,
1172, 1110, 1036, 958, 876, 770, 746, 738, 690, 646, 596,
524, 512 cm⁻¹. Anal. Calcd. for C₃₄H₂₈F₁₂P₂: C, 56.71; H,
3.88; F, 31.38; P, 8.53. Found: C, 56.72; H, 3.88; F,
31.13; P, 8.05.

(2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane
(26b). An oven-dried, round-bottomed flask was fitted with
a magnetic stirring bar and rubber septum. The vessel was
purged with argon, cooled to -78 °C and charged with 27b
(100 mg, 0.50 mmol) and THF (1.5 mL). n-BuLi (88.0 µL of a
5.80 M solution in heptane, 0.51 mmol) was added dropwise
via syringe over a period of 10 min. The reaction was
stirred at -78 °C for an additional 10 min then warmed to 25
°C for 10 min. After cooling to -40 °C, a solution of 30
(102 mg, 0.24 mmol) in DMF (1.0 mL) was added slowly via
syringe. Upon completion of the addition, the mixture was
then warmed slowly to 25 °C. After stirring at 25 °C for 9
h, the mixture was diluted with Et₂O (2.0 mL) and added to
10% aqueous HCl (3.0 mL) contained in a separatory funnel.
The organic layer was separated and the aqueous layer was
extracted with Et₂O (4 x 2.0 mL). The organic layers were
combined, washed with water (2 x 2.0 mL), brine (2.0 mL),
dried (MgSO₄) and the solvents were removed in vacuo. The resulting beige residue was purified by flash chromatography on silica gel (20% EtOAc / hexane for elution) to yield 83.3 mg (72%) of 26b as a white solid: mp 153.4-154.8 °C;

\(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 7.68-7.62 (m, 8H, Ph-H), 7.47-7.36 (m, 12H, Ph-H), 2.37 (app sept., \(J = 7.4\) Hz, 2H, CH), 1.52 (m, 4H, CH₂), 1.04 (d, \(J = 6.9\) Hz, 3H, CH₃), 0.98 (d, \(J = 6.9\) Hz, 3H, CH₃), 1.45-0.20 (br envelope, 6H, BH₃);

\(^13\)C NMR (75 MHz, CDCl₃, \(^1\)H decoupled) \(\delta\) 132.7 (CH), 132.6 (CH), 132.5 (CH), 132.4 (CH), 131.1 (CH), 128.9 (C), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.3 (C), 29.5 (CH), 29.4 (CH), 28.7 (CH₂), 28.2 (CH₂), 13.7 (CH₃);

\(^31\)P NMR (202 MHz, CDCl₃) \(\delta\) 23.9 (s); IR (film) 2928, 2385, 1436,1107, 1064 cm\(^{-1}\); high resolution mass spectrum calcd. for C₃₀H₃₂P₂(M\(^+\)-B₂H₆) 454.1982, found 454.1980.

\((2R,5R)-2,5\text{-Bis(boronato dicyclohexylphosphino)hexane (}26a)\). The reaction of lithium boronatodicyclohexylphosphide (112 mg, 0.525 mmol) with 30 (107 mg, 0.25 mmol) was carried out as described for the boronato diphenylphosphine analogue (26b). After the described workup, evaporation of the solvents under reduced pressure yielded a white residue. This material was purified by crystallization from 10% EtOAc / hexane to yield 112 mg (90%) of 26a as a white crystalline solid: mp 203.2-205.4 °C;

\(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 1.95-1.60 (m, 35H, Cy-H envelope), 1.55-1.20 (m, 15H, CH, CH₂ and Cy-H envelope),
1.18 (d, J = 7.0 Hz, 3 H, CH₃), 1.16 (d, J = 7.0 Hz, 3H, CH₃), 0.8—0.5 (br envelope, 6H, BH₃); ¹³C NMR (75 MHz, CDCl₃, ᵃH decoupled) δ 31.6, 31.5, 31.2, 31.1, 30.5, 30.4, 28.2, 27.9, 27.8, 27.7, 27.3, 27.2, 26.1, 25.4, 25.0, 14.6; ³¹P NMR (202 MHz, CDCl₃) δ 31.1 (br s); IR (film) 2927, 2853, 2362, 2342, 1067 cm⁻¹; high resolution mass spectrum calcd. for C₃₀H₇₉BP₂(M⁺—BH₃) 492.2196, found 492.4185.

(2R,2R)—2,5-Bis[boronato-bis(4-methoxy-2-methylphenyl)phosphino]hexane (26c). The reaction of lithium [bis(4-methoxy-2-methylphenyl)boronato]phosphide (154 mg, 0.525 mmol) with 30 (107 mg, 0.250 mmol) was carried out as described for the boronato diphenylphosphine analogue (26b). After the described workup, evaporation of the solvents under reduced pressure yielded a white solid. This material was purified by crystallization from methylcyclohexane to yield 143 mg (87%) of 26c as a white crystalline solid: mp 149.3—153.1 °C; ᵃH NMR (300 MHz, CDCl₃) δ 7.77 (dd, J = 11.5, 10.5 Hz, 2H, Ar-H), 7.49 (app t, J = 10.5 Hz, 2H, Ar-H), 6.77 (app d, J = 8.5 Hz, 4H, Ar-H), 6.66 (app d, J = 17.2 Hz, 4H, Ar-H), 3.81 (s, 6H, OCH₃), 3.79 (s, 6H, OCH₃), 2.54 (m, 2H, CH), 2.08 (s, 6H, CH₃), 1.99 (s, 6H, CH₃), 1.76 (m, 4H, CH₂), 1.09 (d, J = 6.7 Hz, 3H, CH₃), 1.04 (d, J = 6.8 Hz, 3H, CH₃), 1.9—0.2 (br envelope, 6H, BH₃); ¹³C NMR (75 MHz, CDCl₃, ᵃH decoupled) δ 161.7, 161.0, 144.7, 144.2, 135.8, 135.3, 134.1, 133.6, 129.7, 127.6, 117.6, 111.1, 79.5, 55.0, 28.1, 27.7, 21.7,
20.3, 14.4; 31P NMR (202 MHz, CDCl$_3$) δ 21.4 (s); IR (film)
2933, 2383, 1598, 1565, 1489, 1464, 1302, 1237, 1075 cm$^{-1}$;
high resolution mass spectrum calcd. for C$_{38}$H$_{46}$O$_2$P$_2$(M$^+$-B$_2$H$_6$)
630.3030, found 630.3028.

(2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b).

Method B: A flame-dried test tube (16 mm x 100 mm) equipped with a stirring flea was charged with 26b (48.2 mg, 0.10 mmol), CH$_2$Cl$_2$ (1.0 mL) and purged with argon. After cooling the mixture to -5 °C, HBF$_4$·OMe$_2$ (134 mg, 1.0 mmol) was added by syringe. An exothermic reaction ensued and gas evolved. The reaction mixture was then warmed to 25 °C and stirred for an additional 12 h. Subsequently, the mixture was diluted with degassed anhydrous Et$_2$O (2.0 mL) and added to degassed, saturated aqueous NaHCO$_3$ (5.0 mL) contained in a small Erlenmeyer flask. The mixture was stirred vigorously under argon for 10 min. then poured into a separatory funnel. The organic layer was separated and the aqueous layer was extracted (under argon) with degassed, anhydrous Et$_2$O (2 x 2.0 mL). The organic layers were combined, washed with degassed water (2 x 3.0 mL), brine (3.0 mL), dried (MgSO$_4$) (all under argon) and the solvents were removed in vacuo. The resulting white solid was recrystallized from degassed methylcyclohexane at 0 °C to give 45.3 mg (99%) of 21b as a white crystalline solid.
(2R, 5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a).
The reaction of (26a) (49.8 mg, 0.10 mmol) with HBF₄•OMe₂ (134 mg, 1.0 mmol), in CH₂Cl₂ (1.0 mL), was carried out as described above for the decomplexation of 26b. Upon evaporation of solvents under reduced pressure 43.5 mg (91%) of 21a was obtained as a white solid: mp 184.6-187.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.96-1.60 (m, 35H, Cy-H envelope), 1.60-1.05 (m, 15H, CH₂ and Cy-H envelope), 1.18 (d, J = 7.2 Hz, 3H, CH₃), 1.13 (d, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 35.9, 35.1, 30.2, 29.4, 28.7, 28.5, 27.0, 26.9, 26.8, 26.6, 26.5, 26.3, 26.1, 13.3; ³¹P NMR (202 MHz, CDCl₃) δ 11.1 (s); IR (film) 2929, 2852, 1449, 1157 cm⁻¹; high resolution mass spectrum calcd. for C₃₀H₅₅P₂(M⁺-H) 477.3783, found 477.3780.

(2R, 5R)-2,5-Bis[bis(4-methoxy-2-methylphenyl)phosphino]hexane (21c). The reaction of 26c (65.8 mg, 0.10 mmol) with HBF₄•OMe₂ (134 mg, 1.0 mmol), in CH₂Cl₂ (1.0 mL), was carried out as described above for the decomplexation of 26b. Upon evaporation of solvents under reduced pressure, 60.5 mg (96%) of 21c was obtained as a white crystalline solid: mp 178.4-181.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.17-7.08 (m, 4H, Ar-H), 6.71-6.63 (m, 8H, Ar-H), 3.78 (s, 6H, OCH₃), 3.74 (s, 6H, OCH₃), 2.44 (s, 6H, CH₃), 2.37 (s, 6H, CH₃), 2.10 (m, 2H, CH), 1.47 (m, 4H, CH₂), 0.92 (d, J = 7.7 Hz, 3H, CH₃), 0.87 (d, J = 7.7 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 159.7, 144.8, 144.6, 133.2, 132.5, 115.7,
105

115.6, 111.7, 54.9, 52.0, 31.5, 30.5, 29.6, 21.4, 16.1, 15.8; \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta -32.4\) (s); IR (film) 2925, 2852, 1595, 1564, 1483, 1464, 1296, 1238, 1071 cm\(^{-1}\); high resolution mass spectrum calcd. for C\(_{38}\)H\(_{48}\)O\(_4\)P\(_2\)(M\(^+\)) 630.3030, found 630.3028.

Ligand Synthesis—Cyclohexane (1,4-diphosphine)

\((1S,2S)-1,2\)-Bis[(boronato-dicyclohexylphosphino)methyl]cyclohexane (25a). The reaction of lithium boronatodicyclohexylphosphide (56.1 mg, 0.263 mmol) with \((1S,2S)-1,2\)-di(p-tosyloxymethyl)cyclohexane\(^{121}\) (56.5 mg, 0.125 mmol) was carried out as described for 26b in THF (2.0 mL). After the described workup, evaporation of the solvents under reduced pressure yielded 59.2 mg (89%) of 25a as a white residue. This material was purified by recrystallization from heptane (distilled from K) to give a white crystalline solid: mp 93.6-96.2 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 2.00-1.46\) (br envelope, 32H, Cy-H), 1.45-1.00 (br envelope, 26H, Cy-H), 0.90-0.40 (br envelope, 6H, BH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 38.7, 38.6, 33.9, 33.2, 33.1, 32.7, 32.6, 27.8, 27.1, 27.0, 26.9, 26.6, 26.1, 25.8, 24.9, 23.8, 23.4; \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta 25.8\) (s); IR (film) 2927, 2853, 2372, 1447, 1063 cm\(^{-1}\); high resolution mass spectrum calcd. for C\(_{38}\)H\(_{60}\)BP\(_2\)(M\(^+\)-BH\(_4\)) 517.2274, found 517.4264.
(2R,4R)-2,4-Bis[[bis(2-trifluoromethylphenyl)phosphino]pentane (16a). An oven-dried, round-bottomed flask was charged with KH (35% oil dispersion, 425 mg, 3.71 mmol) and the oil was removed by trituration with pentane (3 x 4 mL). The vessel was then purged with nitrogen and cooled to -78 °C. A solution of Bis(2-trifluoromethyl-phenyl)phosphine (1.20 g, 3.71 mmol) in THF (4.0 mL) was added in a dropwise manner over a period of 10 min. A bright red solution formed and the mixture was stirred at -78 °C for 30 min, then warmed to 0 °C for 1 h. Upon cooling to -78 °C, a solution of (2S,4S)-2,4-di(p-tosyloxy) pentane (0.75 g, 1.82 mmol) in THF (5.0 mL) was added slowly via syringe. The mixture was warmed slowly to 25 °C and stirred at this temperature for 10 h. Degassed H2O was added (10 mL) and the solvents were removed in vacuo. The resulting aqueous mixture was extracted with degassed Et2O (3 x 10 mL) under argon. The combined organic layers were washed with brine (degassed) 2 x 5 mL, dried (MgSO4) and the solvents were evaporated under reduced pressure to yield an orange-brown residue. This material was purified by crystallization from abs. ethanol (degassed) to give 0.92 g (71%) of the title compound as a white crystalline solid: 31P NMR (202 MHz, CDCl3) δ -31.5 (d of m).
(2R,4R)-2,4-Bis(boronato-dicyclohexylphosphino)pentane (24). An oven-dried, round-bottomed flask was fitted with a magnetic stirring bar and rubber septum. The vessel was purged with argon, cooled to -78 °C and charged with 27a (54.7 mg, 0.263 mmol) and THF (0.5 mL). n-BuLi (40.3 μL of a 7.17 M solution in heptane, 0.289 mmol) was added dropwise via syringe over a period of 10 min, followed by the addition of HMPA (0.5 mL). The reaction was stirred at -78 °C for 30 min then warmed to 0 °C for 20 min. After cooling to -40 °C, a solution of (2S,4S)-2,4-di(p-tosyloxy)pentane122 (51.5 mg, 0.125 mmol) in DMF (0.5 mL) was added slowly via syringe. Upon completion of the addition, the mixture was then warmed slowly to 25 °C. After stirring at 25 °C for 3 h, the mixture was diluted with Et₂O (1.0 mL) and added to 10% aqueous HCl (1.5 mL) contained in a separatory funnel. The organic layer was separated and the aqueous layer was extracted with Et₂O (4 x 1.0 mL). The organic layers were combined, washed with water (2 x 2.0 mL), brine (2.0 mL), dried (MgSO₄) and the solvents were removed in vacuo. The resulting beige residue was purified by flash chromatography on silica gel (10% EtOAc / hexane for elution) to yield 58 mg (91%) of 24 as a white solid. This material was recrystallized from hexane at 0 °C: mp 91.1-104.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.04-1.57 (br envelope, 24H, CH and Cy-H), 1.50-1.12 (br envelope, 24H, CH₂ and Cy-H), 0.86 (app t, J = 6.1 Hz, 6H, CH₃), 1.01-0.20 (br envelope, 6H, BH₃);
13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 34.9, 34.5, 26.5, 26.4, 25.9, 25.7, 24.8, 22.3, 13.9; 31P NMR (202 MHz, CDCl$_3$) δ 24.1 (s); IR (film) 2929, 2852, 2365, 1449, 889 cm$^{-1}$; high resolution mass spectrum calcd. for C$_{29}$H$_{56}$BP$_2$(M$^+$-BH$_4$) 477.1961, found 477.3950.

(2R,4R)-2,4-Bis(dicyclohexylphosphino)pentane (19).

The reaction of 24 (19.8 mg, 0.041 mmol) with HBF$_4$•OMe$_2$ (54.9 mg, 0.41 mmol), in CH$_2$Cl$_2$ (0.5 mL) was carried out as described for the decomplexation of 26b. Upon evaporation of the solvents, under reduced pressure 17.0 mg (91%) of 19 was obtained as a white solid: mp 182.3-184.9 °C; 1H NMR (300 MHz, CDCl$_3$) δ 2.03 (m, 2H, CH), 1.95-1.64 (m, 22H, Cy-H envelope), 1.53 (s, 2H, CH$_2$), 1.47-1.15 (m, 22H, Cy-H envelope), 1.17 (d, J = 7.1 Hz, CH$_3$), 1.12 (d, J = 7.0 Hz, CH$_3$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 31.8, 31.1, 30.0, 28.1, 27.8, 27.5, 27.3, 27.2, 26.0, 25.4, 25.0, 15.8; 31P NMR (202 MHz, C$_6$D$_6$) δ 6.5 (s); high resolution mass spectrum calcd. for C$_{29}$H$_{54}$P$_2$(M$^+$) 464.3704, found 464.3700.

Substrate Synthesis-Ene-dienes and Dien-ynes

Ethyl-4-methyl-2(E),4-pentadienoate (103). An oven-dried, round-bottomed flask was fitted with a pressure equalizing addition funnel, rubber septum and magnetic stirring bar. The vessel was charged with NaH (60% oil dispersion, 2.00 g, 50.0 mmol) and the oil was removed by trituration with pentane (3 x 10 mL). The flask was then
purged with nitrogen, charged with THF (100 mL) and cooled to -5 °C. A solution of triethylphosphonoacetate (10.7 g, 47.6 mmol) in THF (20 mL) was added dropwise over 30 min. and the mixture was allowed to warm slowly to 25 °C. After stirring at 25 °C for 1 h, the solution was recooled to -5 °C. Methacrolein (4.00 g, 57.2 mmol) was added dropwise over a period of 5 min. and the mixture was stirred at 25 °C for an additional 30 min. Subsequently, ice water (50 mL) was added, the organic layer was separated and the aqueous layer was extracted with hexane (4 x 20 mL). The combined organic layers were washed with brine (2 x 10 mL), dried (MgSO₄) and solvent was evaporated under reduced pressure.

The resulting oily residue was distilled (89 °C, 10 torr) to yield 6.04 g (91%) of the title compound as a colorless oil:

1H NMR (300 MHz, CDCl₃) δ 7.35 (d, J = 15.7 Hz, 1H, -CH=CH-), 5.83 (d, J = 15.7 Hz, 1H, -CH=CH-), 5.31 (d, J = 4.8 Hz, 2H, CH₂=CCH₃), 4.20 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 1.87 (s, 3H, CH₂=CCH₃), 1.28 (t, J = 7.2 Hz, 3H, OCH₂CH₃);

13C NMR (75 MHz, CDCl₃, 1H decoupled) δ 167.1 (C), 146.9 (CH), 140.5 (C), 124.1 (CH₂), 118.8 (CH), 60.3 (CH₂), 18.0 (CH₃), 14.3 (CH₃); IR (film) 2980, 1716, 1632, 1608, 1454, 1366, 1308, 1270, 1240, 1174, 1096, 1038, 982, 910, 866 cm⁻¹.

4-Methyl-2(E),4-pentadien-1-ol (104). An oven-dried, round-bottomed flask was fitted with a pressure equalizing addition funnel, rubber septum and magnetic stirring bar.
The vessel was charged with LiAlH₄ (1.72 g, 45.3 mmol), Et₂O (65 mL) and purged with nitrogen. The grey suspension was cooled to -5 °C and then a solution of 103 (6.04 g, 43.1 mmol) in Et₂O (35 mL) was added dropwise over a period of 1 h, during which time evolution of H₂ occurred. The reaction mixture was warmed to 25 °C and stirred for an additional 30 min. After the reaction was quenched at 0 °C with water (10 mL), the resulting white slurry was filtered through a pad of celite. After rinsing the solids with a 50% THF / EtOAc solution (4 x 10 mL), the filtrate was collected, washed with brine (10 mL) and dried (MgSO₄). The solvent was evaporated under reduced pressure to yield 3.89 g (92%) of the crude alcohol as an oil. This material was purified by bulb-to-bulb distillation to yield 3.77 g (89%) of the title compound as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.32 (d, J = 15.7 Hz, 1H, CH₂CH=CH), 5.77 (dt, J = 5.7, 15.7 Hz, 1H, CH₂CH=CH), 4.96 (s, 2H, CH₂=C), 4.18 (d, J = 5.7 Hz, 2H, CH₂), 1.87 (s, 1H, OH), 1.83 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 141.3 (C), 134.1 (CH), 128.4 (CH), 116.7 (CH₂), 63.5 (CH₂), 18.4 (CH₃); IR (film) 3370, 2972, 2918, 2866, 1610, 1452, 1376, 1098, 1032, 1002, 968, 886 cm⁻¹.

8-Methyl-4-oxo-1,6(E),8-nonatriene (7a). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with NaH (60% oil dispersion, 897 mg, 22.4 mmol) and the oil was
removed by trituration with pentane (3 x 5 mL). The flask was then purged with nitrogen, charged with THF (50 mL) and cooled to 0 °C. To the resulting suspension 104 (2.00 g, 20.4 mmol) was slowly added via syringe, during which time evolution of H₂ occurred. The reaction mixture was warmed to 25 °C and stirred for an additional 30 min. Upon cooling to 0 °C, allyl bromide (2.59 g, 21.4 mmol) was added dropwise via syringe and the mixture was allowed to warm slowly to 25 °C. After stirring at 25 °C for 12 h, ice water (10 mL) was added, the organic layer was separated and the aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄) and solvent was evaporated under reduced pressure. The resulting yellow oil was purified by bulb-to-bulb distillation to yield 2.76 g (98%) of the title compound as colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.32 (d, J = 15 Hz, 1H, CH₂CH=CH), 5.90 (ddt, J = 5.6, 10.6, 17.1 Hz, 1H, CH₂CH=CH₂), 5.72 (dt, J = 6.2, 15.7 Hz, 1H, CH₃CH=CH), 5.27 (d, J = 17.1 Hz, 1H, HCH=CH), 5.17 (d, J = 10.6 Hz, 1H, HCH=CH), 4.96 (s, 2H, CH₂=CH₂), 4.04 (d, J = 6.2 Hz, 2H, CH₂), 3.97 (d, J = 5.6 Hz, 2H, CH₂), 1.83 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 141.4 (C), 135.4 (CH), 134.7 (CH), 125.9 (CH), 117.0 (CH₂), 116.7 (CH₂), 71.1 (CH₂), 70.6 (CH₂), 18.4 (CH₃); IR (film) 2970, 2914, 2854, 1728, 1662, 1448, 1378, 1360, 1250, 1110, 1074,
988, 960, 924, 868 cm\(^{-1}\); high resolution mass spectrum calcd. for C\(_9\)H\(_{14}\)O (M\(^+\)) 138.1045, found 138.1045.

8-Methyl-4-oxo-6(E),8-nonadien-1-yne (105). The reaction of 1.05 equivalents of propargyl bromide (2.55 g, 21.4 mmol) with sodium 4-methyl-2(E),4-pentadien-1-oxide (2.45 g, 20.4 mmol), in THF (50 mL), was carried out as described above for 7a. Bulb-to-bulb distillation of the resulting yellow oil yielded 2.51 g (90%) of the title compound as a colorless oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 6.35 (d, \(J = 15.7\) Hz, 1H, CH\(_2\)CHC=CH), 5.71 (dt, \(J = 6.3, 15.7\) Hz, 1H, CH\(_2\)CHC=CH), 5.00 (s, 2H, H\(_2\)C=C-), 4.14 (t, \(J^\prime = 2.4\) Hz, 2H, CH\(_2\)), 4.13 (d, \(J = 6.3\) Hz, 2H, CH\(_3\)), 2.43 (t, \(J^\prime = 2.4\) Hz, 1H, C=CH), 1.84 (s, 3H, CH\(_3\)). \(^1\)C NMR (75 MHz, CDCl\(_3\), \(^1\)H decoupled) \(\delta\) 141.2 (C), 136.2 (CH), 124.9 (CH), 117.1 (CH\(_2\)), 79.7 (CH), 74.3 (C), 70.1 (CH\(_2\)), 56.9 (CH\(_3\)), 18.4 (CH\(_3\)). IR (film) 2974, 2946, 2854, 2116, 1610, 1440, 1354, 1120, 1084, 1044, 1018, 970, 892, 668 cm\(^{-1}\).

8-Methyl-4-oxo-1-(trimethylsilyl)-6(E),8-nonadien-1-yne (10). An oven-dried, round-bottomed flask was fitted with a pressure equalizing addition funnel, rubber septum and magnetic stirring bar. The vessel was charged with 105 (2.00 g, 14.7 mmol), THF (50 mL), purged with nitrogen and cooled to \(-78\) °C. To this solution was added \(n\)-BuLi (3.2 mL of a 4.65 M solution in heptane, 14.8 mmol) over a period of 15 min. The resulting light yellow solution was warmed to
-15 °C and stirred, for an additional 15 min. The reaction was then recooled to -78 °C, and chlorotrimethylsilane (1.92 g, 17.6 mmol) was added slowly via syringe. A light brown precipitate formed immediately and the mixture was warmed slowly to 25 °C. After stirring at 25 °C for 2 h, saturated aqueous NH₄Cl (5 mL) was added, the organic layer was separated and the aqueous layer was extracted with hexane (4 x 10 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄) and solvent was evaporated under reduced pressure. The resulting yellow oil was purified by flash chromatography on silica gel (25% EtOAc / hexane for elution) to give 2.18 g (70%) of the title compound as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.34 (d, J = 15.7 Hz, 1H, CH₂HC=CH), 5.70 (dt, J = 6.5, 15.7 Hz, 1H, CH₂HC=CH), 4.97 (s, 2H, H₂C=C), 4.14 (s, 2H), 4.11 (d, J = 6.5 Hz, 2H, CH₂), 1.85 (s, 3H, CH₃), 0.17 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 141.3 (C), 136.2 (CH), 125.1 (CH), 117.0 (CH₂), 101.5 (C), 91.4 (C), 70.2 (CH₂), 57.9 (CH₂), 18.4 (CH₃), -0.21 (CH₃); IR (film) 2960, 2850, 2174, 1612, 1454, 1352, 1250, 1120, 1086, 1018, 996, 968, 890, 844, 760, 700 cm⁻¹; high resolution mass spectrum calcd. for C₁₂H₂₀SiO (M⁺) 208.1284, found 208.1284.

4-Oxo-1,6(E),8(E)-decatriene (7c). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with NaH (60%
oil dispersion, 897 mg, 22.4 mmol) and the oil was removed by trituration with pentane (3 x 5 mL). The flask was then purged with nitrogen, charged with THF (50 mL) and cooled to 0 °C. Trans,trans-2,4-hexadien-1-ol (2.00 g, 20.4 mmol) was slowly added via syringe, during which time evolution of H₂ occurred. The reaction mixture was warmed to 25 °C and stirred for an additional 30 min. Upon cooling to 0 °C, allyl bromide (2.59 g, 21.4 mmol) was added dropwise via syringe and the mixture was allowed to warm slowly to 25 °C. After stirring at 25 °C for 12 h, ice water (10 mL) was added, the organic layer was separated and the aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄) and the solvent was evaporated under reduced pressure. The resulting yellow oil was purified by bulb-to-bulb distillation to yield 2.79 g (99%) of the title compound as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.19 (dd, J = 10.5, 15.1 Hz, 1H, CH₂CH=CH), 6.05 (dd, J = 10.5, 14.7 Hz, 1H, CH₃CH=CH), 5.88 (ddt, J = 6.0, 10.5, 17.1 Hz, 1H, HCH=CHCH₂), 5.68 (dq, J = 6.8, 14.7 Hz, 1H, CH₃CH=CH), 5.62 (dt, J = 6.5, 15.1 Hz, 1H, CH₂CH=CH), 5.15 (d, J = 10.5 Hz, 1H, HCH=CHCH₂), 3.98 (d, J = 6.5 Hz, 2H, CH₂), 3.95 (d, J = 6.0 Hz, 2H, CH₂), 1.73 (d, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 134.9 (CH), 133.2 (CH), 130.8 (CH), 129.9 (CH), 126.7 (CH), 116.8 (CH₂), 70.9 (CH₂),
4-Oxo-6(E),8(E)-decadien-1-yne (I). The reaction of 1.05 equivalents of propargyl bromide (2.55 g, 21.4 mmol) with sodium trans,trans-2,4-hexadien-1-oxide (2.45 g, 20.4 mmol), in THF (50 mL), was carried out as described above for 7c. Bulb-to-bulb distillation of the resulting yellow oil yielded 2.59 g (97%) of the title compound as a colorless oil: \[^1H \text{NMR (300 MHz, CDCl}_3) \delta 6.20 (dd, J = 10.4, 15.2 Hz, 1H, \text{CH}_2\text{CH}=\text{CH}), 6.04 (dd, J = 10.4, 13.6 Hz, 1H, \text{CH}_2\text{CH}=\text{CH}), 5.69 (dq, J = 6.7, 13.6 Hz, 1H, \text{CH}_3\text{CH}=\text{CH}), 5.57 (dt, J = 6.5, 15.2 Hz, 1H, \text{CH}_2\text{CH}=\text{CH}), 4.10 (d, J^t = 2.3 Hz, 2H, \text{CH}_2\text{C}=\text{CH}), 4.05 (d, J = 6.5 Hz, 2H, \text{CH}_2), 2.40 (t, J = 2.3 Hz, 1H, \text{C}=\text{C}-\text{H}), 1.74 (d, J = 6.7 Hz, 3H, \text{CH}_3) \]
\[^{13}C \text{NMR (75 MHz, CDCl}_3, ^1H \text{decoupled) } \delta 135.2 (\text{CH}), 130.7 (\text{CH}), 130.4 (\text{CH}), 125.6 (\text{CH}), 79.8 (\text{C}), 74.2 (\text{C}), 69.9 (\text{CH}_2), 56.7 (\text{CH}_2), 18.0 (\text{CH}_3) \]
IR (film) 3298, 3022, 2914, 2854, 2116, 1662, 1442, 1356, 1266, 1114, 1082, 1060, 990, 926, 668 cm\(^{-1}\).

4-Oxo-1-(trimethylsilyl)-6(E),8(E)-decadien-1-yne (106). The reaction of 1 (2.00 g, 14.7 mmol) with chlorotrimethylsilane (1.92 g, 17.6 mmol) was carried out as described previously for 10. Bulb-to-bulb distillation of
the resulting yellow oil yielded 2.78 g (89%) of the title compound as a colorless oil: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 6.20 (dd, \(J = 12.1, 15.1\) Hz, 1H, CH\(_2\)-CH=CH), 6.04 (dd, \(J = 8.0, 12.1\) Hz, 1H, CH\(_3\)CH=CH), 5.71 (dq, \(J = 6.8, 8.0\) Hz, 1H, CH\(_3\)CH=CH), 5.59 (dt, \(J = 6.4, 15.1\) Hz, 1H, CH\(_3\)CH=CH), 4.11 (s, 2H, CH\(_2\)), 4.05 (d, \(J = 6.4\) Hz, 2H, CH\(_2\)), 1.75 (d, \(J = 6.8\) Hz, 3H, CH\(_3\)), 0.17 (s, 9H, Si(CH\(_3\))\(_3\)) ; \(^13\)C NMR (75 MHz, CDCl\(_3\), \(^1\)H decoupled) \(\delta\) 134.0 (CH), 130.6 (CH), 130.2 (CH), 125.7 (CH), 101.5 (C), 91.3 (C), 69.9 (CH\(_2\)), 57.5 (CH\(_2\)), 17.9 (CH\(_3\)), -0.3 (CH\(_3\)); IR (film) 3020, 2960, 2914, 2852, 2174, 1662, 1440, 1350, 1250, 1114, 1100, 1082, 1026, 990, 926, 844, 760, 700, 654, 622 cm\(^{-1}\).

1-Chloro-4-methyl-2(E),4-pentadiene (107). The following procedure is a modification of one described by Meyers and Collington.\(^{124}\) A stirred mixture of 104 (4.91 g, 50.0 mmol) and 2,6-lutidine (5.89 g, 55.0 mmol), under nitrogen, was treated with LiCl (2.12 g, 50.0 mmol) dissolved in dry DMF (30 mL). On cooling to 0 °C, a suspension was formed which was treated dropwise with methanesulfonylchloride (6.30 g, 55.0 mmol). Stirring was continued at 0 °C for 4 h. The pale yellow reaction mixture was then poured into a separatory funnel containing ice water (15 mL) and pentane (20 mL). The organic layer was separated, and the aqueous layer was extracted with cold pentane (3 x 10 mL). The combined organic layers were washed with saturated aqueous CuNO\(_3\) (3 x 10 mL), water
(2 x 10 mL), dried (Na₂SO₄) and the solvents were evaporated under reduced pressure. The resulting yellow residue was filtered through neutral activity II alumina (hexane for eluent) to yield 3.61 g (62%) of the title compound as a clear oil. 1H NMR (300 MHz, CDCl₃) δ 6.36 (d, $J = 15.5$ Hz, 1H, CH=CHCH₂), 5.75 (dt, $J = 7.2$, 15.5 Hz, 1H, CH=CHCH₂), 5.02 (s, 2H, H₂C=C), 4.13 (d, $J = 7.2$ Hz, 2H, CH₂-Cl), 1.84 (s, 3H, CH₃); 13C NMR (75 MHz, CDCl₃, 1H decoupled) δ 142.3 (C), 137.0 (CH), 124.9 (CH), 118.3 (CH₂), 45.3 (CH₂), 18.4 (CH₃); IR (film) 2926, 1672, 1442, 1248, 1176, 966, 894 cm⁻¹.

4,4-Bis(carboethoxy)-8-methyl-1,6(E),8-nonatriene (108). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with NaH (60% oil dispersion, 808 mg, 20.2 mmol) and the oil was removed by trituration with pentane (3 x 5 mL). The flask was then purged with nitrogen, charged with THF (100 mL) and cooled to 0 °C. Diethyl-allyl malonate (3.64 g, 18.2 mmol) was slowly added via syringe and stirring was continued at 0 °C for 1 h. To the resulting suspension 107 (2.33 g, 20.0 mmol) was added dropwise via syringe over a period of 1 h. The reaction mixture was warmed slowly to 25 °C. After stirring at 25 °C for 4 h, 5% aqueous HCl (10 mL) was added, the organic layer was separated and the aqueous layer was extracted with hexane (4 x 10 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄) and the solvent was evaporated.
under reduced pressure. The resulting pale yellow oil was purified by flash chromatography on silica gel (15% EtOAc/hexane for elution) to give 4.68 g (92%) of the title compound as a colorless oil: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 6.07\) (d, \(J = 15.6\) Hz, 1H, CH\(_2\)CH=CH), \(5.68\) (ddt, \(J = 6.3, 7.0\) Hz, 1H, CH\(_2\)CH=CHH), \(5.38\) (dt, \(J = 7.8, 15.6\) Hz, 1H, CH\(_2\)CH=CH), \(5.03\) (d, \(J = 7.0\) Hz, 1H, CH\(_2\)CH=CHH), \(4.79\) (d, \(J = 5.5\) Hz, 2H, CH\(_2\)), \(4.79\) (q, \(J = 7.0\) Hz, 2H, OCH\(_2\)CH\(_3\)), \(4.13\) (q, \(J = 7.0\) Hz, 2H, OCH\(_2\)CH\(_3\)), \(2.59\) (d, \(J = 7.8\) Hz, 2H, CH\(_2\)CH=CH), \(1.72\) (s, 3H, CH\(_3\)), \(1.18\) (t, \(J = 7.0\) Hz, 3H, OCH\(_2\)CH\(_3\)), \(1.16\) (t, \(J = 7.2\) Hz, 3H, OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), \(^1\)H decoupled) \(\delta 170.5\) (C), \(168.6\) (C), \(141.4\) (C), \(136.8\) (CH), \(132.3\) (CH), \(123.5\) (CH), \(118.8\) (CH\(_2\)), \(115.4\) (CH\(_2\)), \(61.1\) (CH\(_2\)), \(60.9\) (CH\(_3\)), \(57.5\) (C), \(36.9\) (CH\(_2\)), \(35.7\) (CH\(_2\)), \(18.3\) (CH\(_3\)), \(13.9\) (CH\(_3\)); IR (film) 2982, 2938, 1734, 1642, 1610, 1368, 1276, 1240, 1208, 1188, 1152, 1096, 1036 cm\(^{-1}\).

4,4-Bis(hydroxymethyl)-8-methyl-1,6(E),8-nonatriene (109). An oven-dried, round-bottomed flask was fitted with a pressure equalizing addition funnel, rubber septum and magnetic stirring bar. The vessel was charged with LiAlH\(_4\) (1.22 g, 32.2 mmol), Et\(_2\)O (50 mL), purged with nitrogen and cooled to -5 °C. A solution of 108 (4.5 g, 16.1 mmol) in Et\(_2\)O (150 mL) was added dropwise over a period of 1 h, during which time evolution of H\(_2\) occurred. The reaction
mixture was warmed to 25 °C and stirred for an additional 2 h. Upon quenching the reaction at 0 °C with water (10 mL), the resulting white slurry was filtered through a pad of celite. After rinsing the solids with Et₂O (3 x 10 mL), the filtrate was collected, washed with brine (10 mL) and dried (MgSO₄). The solvent was evaporated under reduced pressure and the resulting oil was purified by bulb-to-bulb distillation to yield 3.06 g (97%) of the alcohol as a clear oil: ¹H NMR (300 MHz, CDCl₃) δ 6.18 (d, J = 15.6 Hz, 1H, CH=CH), 5.82 (ddt, J = 7.0, 9.4, 15.3 Hz, 1H, CH=CHH), 5.63 (dt, J = 7.0, 15.6 Hz, 1H, CH=CH), 5.09 (dd, J = 2.6, 26.4 Hz, 1H, CH=CHH), 5.08 (dd, J = 1.5, 9.4 Hz, 1H, CH=CHH), 4.87 (s, 2H, CH₂=C), 3.56 (s, 4H, CH₂O), 2.48 (br, 2H, OH), 2.13 (d, J = 7.0 Hz, 2H, CH₂CH=C), 2.06 (d, J = 7.0 Hz, 2H, CH₂CH=C), 1.82 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 141.7 (C), 136.0 (CH), 133.8 (CH), 125.2 (CH), 117.9 (CH₂), 114.9 (CH₂), 67.8 (CH₂), 65.2 (CH₂), 42.4 (C), 36.1 (CH₂), 34.7 (CH₂), 18.5 (CH₃); IR (film) 3362, 2924, 1440, 1120, 1030, 970, 916, 886, 738 cm⁻¹.

4,4-Bis(methoxymethyl)-8-methyl-1,6(E),8-nonatriene (7b). An oven-dried, round-bottomed flask was fitted with a rubber septum and magnetic stirring bar. The vessel was charged with NaH (60% oil dispersion, 1.37 g, 34.3 mmol) and the oil was removed by trituration with pentane (3 x 5 mL). The flask was then purged with nitrogen, charged with DMF (50 mL) and cooled to 0 °C. A solution of 109 (3.05 g,
15.6 mmol) in DMF (25 mL) was added slowly via cannula, during which time evolution of H₂ occurred. The reaction mixture was stirred at 0 °C for an additional 2 h, then warmed to 25 °C for 30 min. The resulting grey-green suspension was recooled to 0 °C and methyl iodide (4.90 g, 34.5 mmol) was added dropwise via syringe. The mixture was allowed to warm slowly to 25 °C. After stirring at 25 °C for 12 h, ice water (15 mL) was added, the organic layer was separated and the aqueous layer was extracted with hexane (4 x 15 mL). The combined organic layers were washed with brine (15 mL), dried (MgSO₄) and the solvent was evaporated under reduced pressure. The resulting pale yellow oil was purified by flash chromatography on silica gel (5% EtOAc / hexane for elution) to give 3.01 g (86%) of the title compound as a colorless oil: ³¹H NMR (300 MHz, CDCl₃) δ 6.13 (d, J = 15.6 Hz, 1H, CH₂CH=CH), 5.78 (ddt, J = 4.5, 7.6, 11.7 Hz, 1H, CH₂CH=CHH), 5.62 (dt, J = 7.7, 15.6 Hz, 1H, CH₂CH=CH), 5.05 (s, 1H, CH₂CH=CHH), 5.01 (d, J = 4.5 Hz, 1H, CH₂CH=CH), 4.85 (s, 2H, C=CH₂), 3.31 (s, 6H, CH₃), 3.16 (s, 4H, CH₂), 2.09 (d, J = 7.7 Hz, 2H, CH₂CH=CH), 2.05 (d, J = 7.6 Hz, 2H, CH₂CH=CHH), 1.83 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ³¹H decoupled) δ 142.1 (C), 135.7 (CH), 134.4 (CH), 126.0 (CH), 117.4 (CH₂), 114.4 (CH₂), 75.2 (2 CH₂), 59.1 (2 CH₃), 42.3 (C), 36.8 (CH₂), 35.5 (CH₂), 18.7 (CH₃); IR (film) 3078, 2978, 2922, 2876, 2810, 1640, 1608, 1478,
1450, 1378, 1198, 1110, 970, 914, 882 cm⁻¹. Anal. Calcd. for C₁₄H₂₄O₂: C, 74.95; H, 10.78. Found: C, 74.84; H, 10.59.

Rh(I) Mediated Alkene Cycloisomerizations

General Information: All new Rh(I) complexes were generated *in situ* by the reaction of [(C₈H₁₄)₂RhCl]₂ with 4 equivalents of mono-phosphine or phosphite ligands or 2 equivalents of the bisphosphine ligands. Tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite and [(C₈H₁₄)₂RhCl]₂ were prepared by Derek J. Sheehan according to the procedures of Denney¹²⁶ and Van Der Ent¹²⁵ respectively. Discounted RhCl₃·H₂O was provided by the Johnson Matthey Corporation on the "Precious metals on loan" program. (R,R)-trans-4,5-Bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane (DIOP) was purchased from the Strem Chemical Company. (Ph₃P)₃RhCl was purchased from the Aldrich Chemical Company. 1,3,5α,7αβ-Tetrahydro-5-methyl-4-(trimethylsilyl)-isobenzofuran (110).¹²³ A flame-dried test tube (25 x 150mm) equipped with a stirring flea and rubber septum was charged with [(C₈H₁₄)₂RhCl]₂ (35.88 mg, 0.0500 mmol) and flushed with argon. The Rh dimer was then dissolved by the addition of THF (2.0 mL). Tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite (106.4 mg, 0.200 mmol) was added via syringe. To the resulting bright yellow solution was added 2,2,2-trifluoroethanol (TFE) (6.0 mL), followed by 106 (417 mg, 2.00 mmol). The reaction mixture was then heated
at 55 °C for 3.0 h. Upon completion of cyclization, the solution was transferred to a 25 mL round-bottomed flask and solvent was evaporated under reduced pressure. The residue was then dissolved in CH₂Cl₂ (15 mL) and the solution was concentrated again. This process was repeated 3 more times. Bulb-to-bulb distillation of the resulting residue gave 372 mg (89%) of the title compound as a colorless oil:

¹H NMR (300 MHz, CDCl₃) δ 5.60 (s, 2H, HC=CH), 4.36 (d, J = 12.3 Hz, 1H, OCHH), 4.17 (d, J = 12.3 Hz, 1H, OCHH), 4.09 (dd, J = 7.3, 7.4 Hz, 1H, OCH₃H), 3.22 (dd, J = 7.3, 11.4 Hz, 1H, OCH₃H), 3.02 (q, J = 7.1 Hz, 1H, CH₂CH₃), 2.89 (m, 1H, CH), 1.13 (d, J = 7.1 Hz, 3H, CH₃), 0.11 (s, 9H, Si(CH₃)₃);

¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 146.6 (C), 134.2 (CH), 130.3 (C), 119.8 (CH), 71.5 (CH₂), 69.7 (CH₂), 40.1 (CH), 34.5 (CH), 23.1 (CH₃), 0.26 (CH₃); IR (film) 2960, 2854, 1628, 1250, 1044, 1016, 894, 838, 788, 766 cm⁻¹.

1,3,3aβ,6,7,7aβ-hexahydro-5-methylisobenzofuran (8a).

A flame-dried test tube (25 x 150mm) equipped with a stirring flea and rubber septum was charged with [(C₈H₅)₂RhCl]₂ (35.88 mg, 0.0500 mmol) and flushed with argon. The Rh dimer was then dissolved by the addition of THF (8.0 mL). To this solution was added tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite (106.4 mg, 0.200 mmol). To the resulting bright yellow solution was added 7a (276.5 mg, 2.00 mmol). The reaction mixture was then heated at 55 °C for 1.5 h. Upon completion of cyclization, the solution was
transferred to a 25 mL round-bottomed flask and solvent was evaporated under reduced pressure. Bulb-to-bulb distillation of the resulting gold-orange residue yielded 246 mg (89%) of the title compound as a colorless oil: 1H NMR (300 MHz, CDCl$_3$) δ 5.33 (s, fine structure, 1H, CH=C), 3.94 (dd, $J = 1.8, 7.2$ Hz, 1H, OCHH), 3.90 (dd, $J = 1.8, 7.7$ Hz, 1H, OCHH), 3.58 (dd, $J = 4.7, 7.6$ Hz, 1H, OCHH-CH-), 3.43 (dd, $J = 7.3, 7.6$ Hz, 1H, OCHH-CH-), 2.65 (m, 1H, CH), 2.30 (m, 1H, CH), 1.92 (t, $J = 5.8$ Hz, 2H, CH$_2$), 1.68 (s, 3H, CH$_3$), 1.65 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 135.5 (C), 120.3 (CH), 73.0 (CH$_2$), 72.5 (CH$_2$), 53.2 (CH$_2$), 39.3 (CH), 36.1 (CH), 27.6 (CH$_2$), 23.7 (CH$_3$); IR (film) 2972, 2944, 2920, 2856, 1442, 1356, 1108, 1084, 1046, 1030, 970, 894; 734, 670, 638 cm$^{-1}$; high resolution mass spectrum calcd. for C$_9$H$_{14}$O(M$^+$) 138.1045; found 138.1045.

4+2] cycloisomerization of 7a with homochiral bisphosphine ligands: A flame-dried test tube (25 x 150mm) equipped with a stirring flea was charged with [(C$_8$H$_{14}$)$_2$RhCl]$_2$ (35.88 mg, 0.0500 mmol) and flushed with argon. The Rh dimer was then dissolved by the addition of CH$_2$Cl$_2$ (0.5 mL). A smaller flame-dried test tube (12 x 75mm) was charged with the desired bisphosphine ligand (0.120 mmol) (see Table I), and flushed with argon. The ligand was then dissolved by the addition of CH$_2$Cl$_2$ (1.5 mL) and the resulting solution was transferred to the [(C$_8$H$_{14}$)$_2$RhCl]$_2$ solution via syringe. To the resulting red-orange solution was added 2,2,2-
trifluoroethanol (TFE) (6.0 mL), followed by 7a (276.5 mg, 2.00 mmol). The reaction mixture was then heated at 55 °C for the time indicated in Table I. Upon completion of cyclization, the solution was transferred to a 25 mL round-bottomed flask and solvent was evaporated under reduced pressure. The residue was then dissolved in CH₂Cl₂ (15.0 mL) and the solution was concentrated again. This process was repeated 3 more times. Bulb-to-bulb distillation of the resulting residue gave 8a as a colorless oil (isolated yields given in Table 6).

Table 6. Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerizations of 7a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>M.W.</th>
<th>Time</th>
<th>Yield (isolated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a</td>
<td>498.57</td>
<td>2.5 hr</td>
<td>86% (237 mg)</td>
</tr>
<tr>
<td>2</td>
<td>3f</td>
<td>770.57</td>
<td>2.5 hr</td>
<td>79% (219 mg)</td>
</tr>
<tr>
<td>3</td>
<td>3g</td>
<td>832.64</td>
<td>20.0 hr</td>
<td>92% (254 mg)</td>
</tr>
<tr>
<td>4</td>
<td>3b</td>
<td>560.64</td>
<td>3.0 hr</td>
<td>79% (218 mg)</td>
</tr>
<tr>
<td>5</td>
<td>3e</td>
<td>554.69</td>
<td>60.0 hr</td>
<td>72% (199 mg)</td>
</tr>
<tr>
<td>6</td>
<td>3c</td>
<td>526.63</td>
<td>4.0 hr</td>
<td>73% (202 mg)</td>
</tr>
<tr>
<td>7</td>
<td>3d</td>
<td>1042.57</td>
<td>12.0 hr</td>
<td>85% (234 mg)</td>
</tr>
<tr>
<td>8</td>
<td>3d</td>
<td>454.56</td>
<td>4.0 hr</td>
<td>90% (249 mg)</td>
</tr>
</tbody>
</table>

3aβ,6,7,7αβ-Tetrahydro-2,2-bis(methoxymethyl)-5-methylindan (8b). The cycloaddition of 7b (448 mg, 2.00 mmol) with tris-(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite (106.4 mg, 0.200 mmol) and [(C₅H₆)₂RhCl]₂ (35.88 mg, 0.0500 mmol), in THF (2.0 mL) and TFE (6.0 mL), was carried out according to the procedure given for 110. The reaction was heated at 55 °C for 5 h and worked up in
the manner given for 110. Bulb-to-bulb distillation of the resulting residue yielded 320 mg (71%) of the title compound as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 5.27 (s, 1H, CH=C), 3.32 (s, 6H, CH$_3$O), 3.29 (s, 2H, CH$_2$O), 3.18 (s, 2H, CH$_2$O), 2.41 (m, 1H, CH), 2.06 (m, 1H, CH), 1.84 (dt, J = 2.1, 5.9 Hz, 2H, CH$_2$), 1.71 (dd, J = 7.6, 13.1 Hz, 1H, CH$_6$H$_4$), 1.62 (s, 3H, CH$_3$), 1.59 (dd, J = 7.8, 13.7 Hz, 1H, CH$_6$H$_4$), 1.46 (m, 2H, CH$_2$), 1.25 (dd, J = 1.2, 13.7 Hz, 1H, CH$_6$H$_4$), 1.21 (dd, J = 8.3, 13.1 Hz, 1H); 13C NMR (75 MHz, CDCl$_3$, 1H decoupled) δ 132.9 (C), 124.6 (CH), 78.6 (CH$_2$), 76.9 (CH$_3$), 59.1 (CH$_3$), 46.9 (C), 38.9 (CH), 38.7 (CH$_2$), 36.7 (CH$_2$), 36.0 (CH), 28.1 (CH$_2$), 25.9 (CH$_3$), 23.7 (CH$_2$); IR (film) 2890, 2855, 2850, 2840, 2810, 1450, 1185, 1110, 970 cm$^{-1}$.

[4+2] cycloisomerization of 7b with homochiral bisphosphine ligands: Cycloisomerization was carried out as described above for 7a using 7b (448 mg, 2.00 mmol). Refer to Table 7 for ligands, reaction times and yields.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>M.W.</th>
<th>Time</th>
<th>Yield (isolated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3f</td>
<td>770.57</td>
<td>8 hr</td>
<td>83% (374 mg)</td>
</tr>
<tr>
<td>2</td>
<td>3e</td>
<td>554.69</td>
<td>60 hr</td>
<td>69% (309 mg)</td>
</tr>
<tr>
<td>3</td>
<td>3a</td>
<td>498.55</td>
<td>24 hr</td>
<td>83% (375 mg)</td>
</tr>
</tbody>
</table>
1,3,5,7aβ-Tetrahydro-6-methyl-4-(trimethylsilyl)isobenzofuran (11). A flame-dried test tube (25 x 0.150 mm) equipped with a stirring flea was charged with Wilkinson's catalyst\(^{127}\) (92.5 mg, 0.100 mmol) and flushed with argon. The catalyst was then dissolved by the addition of CH\(_2\)Cl\(_2\) (2.0 mL). To the resulting deep red solution was added 2,2,2-trifluoroethanol (TFE) (6.0 mL), followed by 10 (417 mg, 2.00 mmol). The reaction mixture was then heated at 55 °C for 5.5 h. Upon completion of cyclization, the solution was transferred to a 25 mL round-bottomed flask and solvent was evaporated under reduced pressure. The residue was then dissolved in CH\(_2\)Cl\(_2\) (15 mL) and the solution was concentrated again. This process was repeated 3 more times. Bulb-to-bulb distillation of the resulting residue yielded 367 mg (88%) of the title compound as a clear oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 5.42 (s, 1H, CH=C), 4.43 (br d, \(J = 12.9\) Hz, 1H, OCHH), 4.28 (br d, \(J = 12.9\) Hz, 1H, OCHH), 4.15 (dd, \(J = 7.5, 7.6\) Hz, 1H, OCH\(_2\)H\(_a\)), 3.22 (dd, \(J = 7.5, 11.4\) Hz, 1H, OCH\(_2\)H\(_a\)), 3.10 (m, 1H, CH), 2.61 (m, 2H, CH\(_2\)), 1.73 (s, 3H, CH\(_3\)), 0.09 (s, 9H, Si(CH\(_3\))\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), \(^1\)H decoupled) \(\delta\) 147.9 (C), 135.0 (C), 124.2 (C), 117.5 (CH), 71.8 (CH\(_2\)), 69.4 (CH\(_2\)), 41.9 (CH), 35.0 (CH\(_2\)), 22.6 (CH\(_3\)), -1.47 (CH\(_3\)); IR (film) 2956, 2850, 1642, 1450, 1248, 1182, 1064, 1030, 918, 892, 860, 836, 800, 752, 692, 628 cm\(^{-1}\). Anal. Calcd. for C\(_{12}\)H\(_{20}\)OSi: C, 69.17; H, 9.67. Found: C, 69.18; H, 9.47.
[4+2] cycloisomerization reaction of 10 with homochiral bisphosphine ligands: Cycloisomerization was carried out as described above for 7a using 10 (417 mg, 2.00 mmol). Refer to Table 8 for ligands, reaction times and yields.

Table 8. Asymmetric Rh(I) Catalyzed [4+2] Cycloisomerization of 10

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>M.W.</th>
<th>Time</th>
<th>Yield (isolated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a</td>
<td>498.57</td>
<td>2.0 hr</td>
<td>89% (371 mg)</td>
</tr>
<tr>
<td>2</td>
<td>3f</td>
<td>770.57</td>
<td>2.0 hr</td>
<td>99% (412 mg)</td>
</tr>
<tr>
<td>3</td>
<td>3g</td>
<td>832.64</td>
<td>1.5 hr</td>
<td>91% (379 mg)</td>
</tr>
<tr>
<td>4</td>
<td>3b</td>
<td>560.64</td>
<td>1.5 hr</td>
<td>76% (318 mg)</td>
</tr>
<tr>
<td>5</td>
<td>3e</td>
<td>554.69</td>
<td>2.0 hr</td>
<td>81% (329 mg)</td>
</tr>
<tr>
<td>6</td>
<td>15a</td>
<td>726.56</td>
<td>1.5 hr</td>
<td>76% (317 mg)</td>
</tr>
</tbody>
</table>

1,3,3aβ,4,5α,7αβ-hexahydro-5-methylisobenzofuran (8c).
The cycloaddition of 7c (276.5 mg, 2.00 mmol) with tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite (106.4 mg, 0.200 mmol) and [(C₅H₁₄)₂RhCl]₂ (35.88 mg, 0.0500 mmol), in THF (8.0 mL), was carried out according to the procedure given for 8a. The reaction was heated at 55 °C for 2.0 h, and worked up in the manner given for 8a. Bulb-to-bulb distillation of the gold-orange residue yielded 232 mg (84%) of the title compound as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 5.55 (s, 2H, HC=CH), 3.91 (dd, J = 7.2, 7.9 Hz, 2H, OCH₂), 3.53 (dd, J = 1.9, 8.5 Hz, 1H, OCHH-CH⁻), 3.30 (dd, J = 7.9, 9.6 Hz, 1H, OCHH-CH⁻), 2.58 (m, 1H, CH), 2.25 (m, 1H, CH), 2.10 (m, 1H, CHCH₃), 1.61 (dt, J = 4.5, 12.9 Hz, 1H, CH₃H₆), 1.03 (dt, J = 11.3, 12.9 Hz, 1H, CH₃H₆), 0.96 (d,
J = 7.1 Hz, 3H, \text{CH}_3); 13C NMR (75 MHz, CDCl\textsubscript{3}, 1H decoupled) \delta 135.4 (CH), 124.7 (CH), 74.7 (CH\textsubscript{2}), 72.7 (CH\textsubscript{2}), 39.0 (CH), 37.4 (CH), 34.5 (CH\textsubscript{2}), 30.1 (CH), 21.5 (CH\textsubscript{3}); IR (film)
3016, 2956, 2926, 2854, 1456, 1372, 1098, 1066, 1018, 990, 912, 738, 708 cm-1; high resolution mass spectrum calcd. for \text{C}_9\text{H}_{14}\text{O(M')} 138.1041, found 138.1045.

[4+2] cycloisomerization of 7c with homochiral bisphosphine ligands: Cycloisomerization was carried out as described above for 7a using 7c (276.5 mg, 2.00 mmol). Refer to Table 9 for ligands, reaction times and yields.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>M.W.</th>
<th>Time</th>
<th>Yield (isolated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a</td>
<td>498.57</td>
<td>5 hr</td>
<td>84% (232 mg)</td>
</tr>
<tr>
<td>2</td>
<td>3b</td>
<td>560.64</td>
<td>2 hr</td>
<td>73% (202 mg)</td>
</tr>
<tr>
<td>3</td>
<td>3c</td>
<td>526.63</td>
<td>2 hr</td>
<td>72% (205 mg)</td>
</tr>
<tr>
<td>4</td>
<td>3d</td>
<td>1042.57</td>
<td>24 hr</td>
<td>76% (211 mg)</td>
</tr>
</tbody>
</table>

1,3,3aB,4a,5B,6,7,7aB-Octahydro-4-hydroxy-5-methylisobenzofuran (9a). A flame-dried test tube (12 x 125mm) equipped with a stirring flea and rubber septum was charged with 8a (138 mg, 1.00 mmol) and THF (1.0 mL). The vessel was then flushed with nitrogen and cooled to -5 °C. BH\textsubscript{3}•S(CH\textsubscript{3})\textsubscript{2} (121 \muL of a 10.1 M solution containing free S(CH\textsubscript{3})\textsubscript{2}, 1.21 mmol) was added dropwise over 5 min. The reaction was then warmed to 25 °C and stirred for 4 h. After cooling to -5 °C, abs. ethanol (0.5 mL) was added,
followed by NaOH (0.41 mL of a 3N solution, 1.22 mmol) and H₂O₂ (0.45 mL of a 30% aqueous solution, 3.99 mmol). The mixture was stirred vigorously for 4 h. Ice water (5.0 mL) was added, the organic layer was separated, and the aqueous layer was extracted with Et₂O (3 x 5.0 mL). The combined organic phases were dried (MgSO₄) and solvent was removed by vacuum evaporation. The resulting residue was purified by flash chromatography on silica gel (90% EtOAc / hexane for elution) to give 123 mg (79%) of the alcohol as a viscous beige oil: ¹H NMR (300 MHz, CDCl₃) δ 4.04 (app d, J = 8.5 Hz, 1H, CH-OH), 3.81 (dd, J = 8.4, 8.8 Hz, 1H, OCHH), 3.74 (dd, J = 4.5, 8.4 Hz, 1H, OCHH), 3.49 (dd, J = 7.9, 10.9 Hz, 1H, OCHH), 2.56 (m, 1H, CH), 1.90 (m, 1H, CH), 1.85 (br s, 1H, OH), 1.60 (m, 2H, CH₂), 1.36 (m, 1H, CH), 1.15 (m, 2H, CH₂), 1.00 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 74.5 (CH), 71.9 (CH₂), 69.1 (CH₂), 47.3 (CH), 38.7 (CH), 38.2 (CH), 28.4 (CH₂), 22.6 (CH₂), 18.2 (CH₃); IR (film) 3406, 2926, 2870, 1716, 1456, 1062, 1042, 984, 884 cm⁻¹. Anal. Calcd. for C₉H₁₆O₂: C, 69.19; H, 10.32. Found: C, 69.12; H, 10.22.

3aβ,4a,5β,6,7,7aβ-Hexahydro-4-hydroxy-2,2-bis(methoxymethyl)-5-methylindan (9b).

Hydroboration/oxidation of 8b (224 mg, 1.00 mmol) was carried out as described above for 9a. The resulting residue was purified by flash chromatography on silica gel
(25% EtOAc / hexane for elution) to give 209 mg (86%) of the alcohol as a white crystalline solid. mp 60.4-66.2 °C;
\(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 3.32 (s, 3H, OCH₃), 3.31 (s, 3H, OCH₃), 3.27 (d, J = 4.1 Hz, 1H, CH₂O), 3.18 (app dd, J = 9.8, 8.5 Hz, 2H, CH₂O), 2.96 (dd, J = 9.8, 9.5 Hz, 1H, CH₂O), 2.26 (m, 1H, CH-0), 1.75 (d, J = 14.2 Hz, 1H, CH₂), 1.65 (m, 1H, CH₂), 1.60-1.40 (m, 4H, CH and CH₂), 1.38 (d, J = 10.3 Hz, 2H, CH and CH₂), 1.22 (m, 3H, CH and CH₂), 0.90 (d, J = 5.8 Hz, 3H, CH₃); \(^13\)C NMR (75 MHz, CDCl₃, \(^1\)H decoupled) \(\delta\) 78.8 (CH₂), 77.8 (CH₂), 77.5 (CH), 59.2 (CH₃), 48.1 (CH), 46.6 (C), 39.5 (CH), 39.4 (CH), 35.5 (CH₂), 35.3 (CH₂), 28.9 (CH₂) 25.7 (CH₂), 18.5 (CH₃); IR (KBr) 3040, 2950, 2900, 2875, 2850, 1450, 1260, 1090 cm⁻¹; high resolution mass spectrum calcd. for C₁₄H₂₆O₃ (M⁺) 242.1883, found 242.1882.

1,3,3aB,4a,5B,6-Hexahydro-4-hydroxy-5-methyl-7-(trimethylsilyl)isobenzofuran (12). The hydroboration/oxidation of 11 (208 mg, 1.00 mmol) was carried out as described above for 9a. The resulting residue was purified by flash chromatography on silica gel (90% EtOAc / hexane for elution) to give 156 mg (69%) of the alcohol as a viscous beige oil: \(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 4.08 (d, J = 8.5 Hz, 1H, OCH₃H₃), 3.85 (d, J = 8.5 Hz, 1H, OCH₃H₃), 3.67 (dd, J = 4.3, 8.4 Hz, 1H, OCH₃H₃), 3.33 (dd, J = 7.9, 11.6 Hz, 1H, OCH₃H₃), 3.07 (dd, J = 10.3, 10.4 Hz, 1H, CH-OH), 2.53 (m, 1H, CHCH₃), 2.24 (app p, J = 5.0 Hz, 1H, CH), 1.94 (br s, 1H, OH), 1.64 (dd, J = 4.4, 14.5 Hz,
131

1H, CH$_3$H), 1.34 (dd; J = 12.4, 14.5 Hz, 1H, CH$_3$H$_3$), 1.01 (d, J = 6.4 Hz, 3H, CH$_3$), 0.02 (s, 9H, Si(CH$_3$)$_3$); 13C NMR (75 MHz, CDCl$_3$, 2H decoupled) δ 74.7 (CH$_3$), 71.1 (CH$_2$), 67.7 (CH$_2$), 49.8 (C), 44.8 (CH), 37.0 (CH), 31.4 (C), 18.0 (CH$_2$), -2.3 (CH$_3$), -4.1 (CH$_3$); IR (KBr) 3214, 2958, 2910, 2892, 1250, 1036, 866, 842 cm$^{-1}$; high resolution mass spectrum calcd. for C$_{12}$H$_{24}$SO$_2$ (M$^+$ + H$_2$) 228.1546, found 228.1546.

1,3,3aB,4a,5a,68,7,VaB-Octahydro-4,5-bis(hydroxy)-6-methylisobenzofuran (9c). An oven-dried flask fitted with a stirring bar and rubber septum was charged with N-methylmorpholine-N-oxide (177 mg, 1.51 mmol), H$_2$O (0.60 mL) and acetone (0.30 mL). The OsO$_4$ catalyst (2.5% mol) was then added and the vessel was flushed with nitrogen. To the mixture was added 8c (196 mg, 1.42 mmol) via syringe and a two-phase solution was observed. The reaction mixture was stirred at 25 °C for 20 h. Saturated aqueous NaHSO$_3$ (25 mL) was subsequently added and the mixture was poured into a separatory funnel containing Et$_2$O (50 mL). The organic layer was separated and the aqueous layer was extracted with Et$_2$O (3 x 10 mL). The combined organics were washed with brine, dried (MgSO$_4$) and the solvent was evaporated under reduced pressure. The resulting residue was filtered through silica gel (EtOAc for elution) to give 186 mg (76%) of the alcohol as a tan solid. Recrystallization from CCl$_4$ yielded a white crystalline material: mp 41-42 °C; 1H NMR (300 MHz, CDCl$_3$) δ 3.90 (app
q, J = 5.4, 9.0 Hz, 2H, OCH₃H₆ + CH-OH₆), 3.75 (dd, J = 4.7, 8.3 Hz, 1H, OCH₃H₆), 3.61 (app d, J = 8.2 Hz, 1H, OCH₃H₆), 3.54 (dd, J = 8.3, 10.7 Hz, 1H, OCH₃H₆), 3.34 (br d, J = 9.1 Hz, 1H, CH), 2.65 (br d, J = 9.1 Hz, 1H, CH), 2.38 (m, 2H, CHCH₃ + OH₆), 1.95 (br s, 1H, OH₆), 1.85 (m, 1H, CH), 1.63 (app p, J = 5.1, 8.6, 11.4 Hz, 1H, CH₃H₆), 1.15 (app sx, J = 1.3 Hz, 1H, CH₃H₆), 1.00 (d, J = 6.5 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 74.4 (CH₂), 74.3 (CH), 68.6 (CH), 67.6 (CH₂), 45.6 (CH), 35.5 (CH), 34.1 (CH₂, 31.3 (CH), 18.3 (CH₃); IR (KBr) 3404, 2950, 2926, 2868, 1108, 1092, 1052, 1032 cm⁻¹; high resolution mass spectrum (Cl) calcd. for C₉H₂₀O₃N (M + NH₄⁺) 190.1438, found (M + NH₄⁺) 190.1443.

Preparation of Esters of (R)-α-Methoxy-α-trifluoromethylphenylacetic Acid. The following procedure was used to prepare all MTPA derivatives for NMR studies. (S)-(+-)MTPA-Cl was prepared from (R)-(+-)MTPA and distilled. A flame-dried test tube (12 x 125mm) equipped with a stirring flea and rubber septum was charged with 4-dimethylaminopyridine (DMAP) (51 mg, 0.42 mmol) and CH₂Cl₂ (0.50 mL). The solution was cooled to 0 °C and flushed with nitrogen. (S)(+-)MTPA-Cl (99 mg, 0.39 mmol) was added, followed by a solution of 9a (40 mg, 0.26 mmol) in CH₂Cl₂ (0.50 mL). The reaction mixture was then shaken and allowed to stand at 25 °C for an additional 15 h. The mixture was diluted with Et₂O (3 mL) and added to cold 5% aqueous HCl
(2.0 mL). The organic layer was separated and washed with cold saturated aqueous Na₂CO₃ (3.0 mL), followed by cold 5% aqueous CuSO₄ (3.0 mL). The organic layer was then washed with cold water until excess CuSO₄ was removed. The organic phase was dried (MgSO₄) and concentrated in vacuo. The resulting residue was dissolved in CH₂Cl₂ (2.0 mL) and the solution was concentrated again. This process was repeated 3 more times to give 94 mg (97%) of the two diastereomeric MTPA-esters (corresponding to 13a) as a beige solid. Purification of the final product can be accomplished by preparative GLC, however, care must be taken that both isomers are completely collected. All compounds gave ¹H NMR spectra consistent with their assigned structures, with full consideration of the nonequivalence of diastereotopic substituents.

Ferrocene Ligand Synthesis

General Information: Bis(tri-n-butylstannyI)ferrocene was prepared as described by Wright" and purified by column chromatography on activity II neutral alumina (100% hexane for eluent). Bis(dimethylamino)chlorophosphine (ClP(NMe₂)) was prepared according to the procedure of Noth." Organolithium and Grignard reagents were prepared from the corresponding bromides in Et₂O or THF.
Bis(dimethylamino)-4-methoxyphenyl phosphine (39a). 4-Bromoanisole (18.7 g, 0.100 mol) was added to a solution of n-BuLi (36.9 mL of a 2.98 M solution in heptane 0.110 mol) in Et₂O (100 mL) at 0 °C. The reaction mixture was stirred for an additional 15 min at 0 °C. The resulting solution of 4-lithioanisole was then added dropwise to (Me₂N)₂P-Cl (14.7 g, 0.085 mol) in Et₂O (50 mL) at -78 °C. The mixture was then warmed slowly to 25 °C. After dilution with anhydrous Et₂O (50 mL), the solution was filtered under argon through celite. Concentration of the solution followed by purification of the yellow liquid by fractional distillation (100-110 °C, 1.1 torr) gave 20.7 g (92%) of 39a as a viscous clear oil: \(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 7.29 dd, \(J = 5.3, 8.6\) Hz, 2H, Ar-H), 6.89 (dd, \(J = 1.9, 8.6\) Hz, 2H, Ar-H), 3.80 (s, 3H, CH₃), 2.72 (d, \(J = 9.2\) Hz, 12H, NCH₃); \(^{13}\)C NMR (75 MHz, CDCl₃, \(^1\)H decoupled) \(\delta\) 141.2, 140.6, 132.6, 132.4, 113.9 (2C), 55.2, 41.6 (2C), 41.4 (2C).

Bis(dimethylamino)-2-trifluoromethylphenyl phosphine (39b). Dichloro-2-trifluoromethylphenyl phosphine \(^{11}\) (24.7 g, 0.100 mol) in Et₂O (50 mL) was slowly added to a solution of dimethylamine (22.5 g, 0.500 mol) in Et₂O (100 mL) at -78 °C. The reaction mixture was then warmed slowly to 25 °C. The solution was filtered under argon through celite. Concentration of the solution followed by fractional distillation (80-95 °C, 0.150 torr) gave 18.9 g (72%) of 39b as a viscous clear oil.
Bis(dimethylamino)-phenyl phosphine (39c).114

Chloro-(dimethylamino)-4-methoxyphenyl phosphine (40a).

PCl\textsubscript{3} (12.6 g, 0.092 mol) was slowly added to 39a (20.7 g, 0.092 mol) at 0 °C. The reaction mixture was stirred for 2 h at 0 °C, then warmed to 25 °C for 1 h. Purification of the resulting product by fractional distillation (135-145 °C, 0.60 torr) gave 18.7 g (99%) of 40a as a viscous clear oil: 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.60 (dd, J = 6.1, 8.7 Hz, 2H, Ar-H), 6.96 (dd, J = 1.6, 8.7 Hz, 2H, Ar-H), 3.83 (s, 3H, OCH\textsubscript{3}), 2.65 (d, J = 13.0 Hz, 6H, NCH\textsubscript{3}); 13C NMR (75 MHz, CDCl\textsubscript{3}, 1H decoupled) δ 141.3, 140.6, 132.5, 132.2, 113.9 (2C), 55.3, 40.0, 39.9.

Chloro-(dimethylamino)-2-trifluoromethylphenyl phosphine (40b). Fractional distillation (55-65 °C (0.050 torr) gave 17.7 g (96%) of 40b: 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 8.34 (dd, J = 3.1, 8.0 Hz, 1H, ArH), 7.72 (m, 1H, ArH), 7.64 (t, J = 7.1 Hz, 1H, ArH), 7.52 (t, J = 7.5 Hz, 1H, ArH), 2.60 (d, J = 12.9 Hz, 6H, NCH\textsubscript{3}); 13C NMR (75 MHz, CDCl\textsubscript{3}, 1H decoupled) δ 133.3, 133.2, 131.5, 130.1, 126.7, 126.1, 122.5, 40.0, 39.8.

Chloro-(dimethylamino)-phenyl phosphine (40c).

Fractional distillation (90-100 °C, 0.200 torr) gave 16.8 g (81%) of 40c.114
(2R,4S,5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a). To a solution of (-)-ephedrine (0.086 mol, 14.1 g) in 1,2-DME (125 mL) containing 1,10-phenanthroline (~5 mg) at -50 °C was added exactly 1 eq. of n-BuLi (21.5 mL of a 4.00 M solution in heptane, 0.086 mol). To this solution was added 40a (18.7 g), 0.0907 mol) in 1,2-DME (25 mL) at -50 °C. The resulting reaction mixture was then stirred vigorously and warmed slowly to 25 °C (~2 h), during which time a precipitate formed. A catalytic amount of chlorotrimethylsilane (500 μL, 5 mol %) was then added and the reaction mixture was refluxed for 10 h. After cooling to 0 °C, BH₃·S(CH₃)₂ (8.5 mL of a 10.1 M solution, 0.086 mol) was added. The reaction mixture was then stirred for an additional 2 h at 25 °C. The resulting mixture was concentrated in vacuo to yield a beige viscous residue which was diluted with anhydrous benzene (100 mL) and filtered through florisil. Concentration of the solution followed by trituration with anhydrous methanol gave the title compound as a white solid. Recrystallization from anhydrous methanol afforded 22.2 g (82%) of the pure complex: mp 82 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (dd, J = 9.2, 9.4 Hz, 2H, Ar-H), 7.40-7.20 (m, 5H, Ph-H), 6.95 (dd, J = 1.7, 8.8 Hz, 2H, Ar-H), 5.55 (dd, J = 2.5, 5.9 Hz, 1H, OCH), 3.82 (s, 3, OCH₃), 3.65 (m, 1H, NCH), 2.61 (d, J = 10.9 Hz, 3H, CHCH₃), 0.85 (d, J = 6.6 Hz, 3H, CH₃), 1.45-0.40 (br envelope, BH₃)
\(^{13}\text{C}\) NMR (75 MHz, CDCl\(_3\), \(^1\text{H}\) decoupled) \(\delta\) 136.6, 136.0, 133.4, 133.2, 128.3, 128.2 (2C), 126.7, 126.6 (2C), 114.2, 114.1, 83.7, 59.4, 55.4, 29.4, 13.4; \(^{31}\text{P}\) NMR (202 MHz, CDCl\(_3\)) \(\delta\) 131.9 (d, \(J = 93.1\) Hz); IR (film) 2974, 2934, 2902, 2839, 2380, 2340, 1596, 1501, 1259, 1114, 966 cm\(^{-1}\); high resolution mass spectrum calcd. for C\(_{17}\)H\(_{23}\)BNO\(_2\)P(M\(^+\)) 315.1559, found 315.1530.

\((2R,4S,5R)-2-(2\text{-Trifluoromethylphenyl})-3,4\text{-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)}\).

Recrystallization from methylcyclohexane or methanol afforded 24.3 g (77%) of 38b: mp 106.6-108.0 °C; \(^1\text{H}\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.83 (dd, \(J = 7.5, 11.1\) Hz, 1H, ArH), 7.74 (nr, 1H, ArH), 7.60 (m, 2H, ArH), 7.33 (m, 5H, PhH), 5.21 (dd, \(J = 3.4, 6.0\) Hz, 1H, OCH), 3.66 (m, 1H, NCH), 2.97 (d, \(J = 9.8\) Hz, 3H, NCH\(_3\)), 1.75-0.40 (br envelope, 3H, BH\(_3\)); \(^{13}\text{C}\) NMR (75 MHz, CDCl\(_3\), \(^1\text{H}\) decoupled) \(\delta\) 136.0, 132.2, 132.1, 131.5, 131.2, 128.3 (2C), 128.2, 127.2, 126.2, 125.4, 121.8, 83.3, 58.3, 30.8, 13.1; \(^{31}\text{P}\) NMR (202 MHz, CDCl\(_3\)) \(\delta\) 131.3 (d, \(J = 89.5\) Hz); IR (film) 2995, 2937, 2869, 2425, 2383, 1456, 1318, 1135, 973 cm\(^{-1}\); high resolution mass spectrum calcd. for C\(_{13}\)H\(_{20}\)BF\(_3\)NOP(M\(^+\)) 353.1328, found 353.1315.

\((2R,4S,5R)-3,4\text{-Dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane (38c)}\). Recrystallization from methanol afforded 27.5 g (80%) of 38c: mp 103.3-104.6 °C;
\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\text{)} \delta 7.84 (m, 2H, PhH), 7.54 (m, 3H, PhH), 7.40 (m, 5H, PhH), 5.59 (dd, J = 6.0, 3.0 Hz, 1H, OCH), 3.67 (ddq, J = 8.7, 6.5, 6.0 Hz, 1H, NCH), 2.67 (d, J = 11.0 Hz, 3H, NCH\text{)}, 0.81 (d, J = 6.5 Hz, 3H, CH\text{)}, 1.70-0.20 (br envelope, 3H, BH\text{); ^13\text{C NMR (75 MHz, CDCl}_3\text{, ^1\text{H decoupled) \delta 133.0, 131.7, 131.5, 129.3, 129.2 (2C), 129.0, 127.3 (2C), 84.8, 59.8, 30.1, 14.2; ^31\text{P NMR (202 MHz, CDCl}_3\text{)} \delta 132.8 (d, J = 96.0 Hz); IR (film) 3060, 2976, 2386, 1436, 1207, 1177, 1113, 965, 748, 699 \text{ cm}^{-1}.\]

1-((\text{Tri-n-butylstannyl})-1'-(\text{(Rp)}-\text{N-methyl, N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxyphenyl)phosphino})ferrocene (42a). An oven-dried, round-bottomed flask was fitted with a magnetic stirring bar and rubber septum. The vessel was charged with 1,1'-bis(tri-n-butylstannyl)ferrocene (2.18 g, 2.86 mmol) and THF (20 mL), purged with argon and cooled to -78 °C. n-BuLi (0.90 mL of a 3.33 M solution in heptane, 3.00 mmol) was added dropwise to the reaction mixture over a period of 10 min. The reaction mixture was then stirred at -78 °C for an additional 1 h. A solution of 38a (0.992 g, 3.15 mmol) in THF (10 mL) was added slowly via syringe at -78 °C. The mixture was stirred at -78 °C for 1 h, then at -25 °C for 1 h and finally at 0 °C for 15 min. Upon cooling to -20 °C, 10 equiv. of methyl iodide (4.06 g, 28.6 mmol) was added via syringe. The mixture was warmed slowly to 25 °C and H\text{\textsubscript{2}O} (10 mL) was added. The organic layer was separated and the
aqueous layer was extracted with Et₂O (4x15 mL). The organic layers were combined, washed with brine (2x10 mL), dried (MgSO₄) and the solvents were evaporated under reduced pressure. The resulting orange oil was purified by flash chromatography on silica gel (5% EtOAc / hexane for elution) to give 2.04 g (89%) of the title compound as a viscous orange oil: ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.28 (m, 7H, Ph-H and Ar-H), 6.82 (dd, J = 8.7, 1.8 Hz, 2H, Ar-H), 4.49 (s, 1H, Cp-H), 4.46 (s, 1H, Cp-H), 4.40 (s, 1H, Cp-H), 4.36 (s, 1H, Cp-H), 4.32 (s, 1H, Cp-H), 4.27 (d, J = 5.3 Hz, 1H, CHPH), 4.15 (s, 1H, Cp-H), 4.10 (s, 1H, Cp-H), 4.02 (m, 1H, CHCH₃), 3.98 (s, 1H, Cp-H), 3.81 (s, 3H, Ar-OCH₃), 3.19 (s, 3H, OCH₃), 2.36 (d, J = 8.4 Hz, 3H, NCH₃), 1.56-1.48 (m, 6H, SnCH₂), 1.32 (app sx, J = 7.6 Hz, 6H, SnCH₂CH₂), 0.99 (app dd, J = 10.6, 8.0 Hz, 6H, Sn(CH₂)₂CH₂), 0.89 (t, J = 7.2 Hz, 9H, Sn(CH₃)₂CH₃); ¹³C NMR (75 MHz, CDCl₃, ¹H decoupled) δ 140.1, 133.3, 133.2, 128.2, 127.3, 113.8, 113.6, 88.6, 75.8, 73.5, 71.9, 71.1, 57.3, 57.0, 55.2, 30.3, 29.1, 27.8, 13.7, 12.9, 10.3; ³¹P NMR (202 MHz, CDCl₃) δ 67.6 (s).

1-(Tri-n-butylstannyl)-1'-([(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-trifluoromethylphenyl)phosphino]ferrocene (42b). Purification by flash chromatography on silica gel (2% EtOAc / hexane for elution) afforded 0.967 g (70%) of 42b: ¹H NMR (300 MHz, CDCl₃) δ 8.18 (dd, J = 11.8, 9.0 Hz, 1H, ArH), 7.82 (m, 1H,
(ArH), 7.55 (app. p, J = 9.0 Hz, 2H, ArH), 7.40-7.10 (m, 5H, PhH), 4.78 (s, 1H, CpH), 4.56 (s, 1H, CpH), 4.43 (s, 3H, CpH), 4.31 (s, 1H, CpH), 4.08 (s, 1H, CpH), 4.00 (s, 1H, CpH), 3.95 (m, 1H, CHCH₃), 3.30 (s; 3H, OCH₃), 2.49 (d, J = 9.0 Hz, 3H, NCH₃), 1.64-1.40 (m, 6H, SnCH₂), 1.32 (app sx, J = 7.4 Hz, 6H, Sn(CH₂CH₂), 0.98 (m, 9H, Sn(CH₂)₂CH₂ and CH₃), 0.89 (t, J = 7.2 Hz, 9H, Sn(CH₂)₃CH₃); ³¹P NMR (202 MHz, CDCl₃) δ 32.9 (s).

1-(Tri-n-butylstannyI)-l,-[(Rp)-N-Methyl,N-((1R,2S)-1-methoxy-1-phenyl-2-propyl)amino-boronatophenylphosphino]ferrocene (42c). Purification by flash chromatography on silica gel (5% EtOAc / hexane for elution) afforded 0.715 g (71% of 42c: ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.20 (m, 10H, PhH), 4.48 (app d, J = 6.5 Hz, 2H, CpH), 4.42 (s, 1, CpH), 4.37 (s, 1H, CpH), 4.30 (m, 2H, CpH and CH), 4.15 (s, 1H, CpH), 4.10 (s, 1H, CpH), 4.00 m, 1H, CHCH₃), 3.98 (s, 1H, CpH), 3.20 (s, 3H, OCH₃), 2.38 (d, J = 8.3 Hz, 3H, NCH₃), 1.63-1.44 (m, 6H, SnCH₂), 1.32 (app sx, J = 7.3 Hz, 6H, SnCH₂CH₂), 1.15 (d, J = 6.7 Hz, 3H, CH₃), 0.98 (app dd, J = 9.4, 6.9 Hz, 6H, Sn(CH₂)₂CH₂), 0.89 (t, J = 7.3 Hz, 9H, Sn(CH₂)₃); ³¹P NMR (202 MHz, CDCl₃) δ 67.8 (br s).

1,1'-Bis[(Rp)-N-Methyl,N-((1R,2S)-1-methoxy-1-phenyl-2-propyl)amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (37a). An oven-dried, round-bottomed flask was fitted with a magnetic stirring bar and rubber septum. The vessel
was charged with 42a (2.04 g, 2.54 mmol) and THF (10 mL), purged with argon and cooled to -78 °C. n-BuLi (1.00 mL of a 2.79 M solution in heptane, 2.79 mmol) was added dropwise to the reaction mixture over a period of 10 min. The reaction was then stirred at -78 °C for an additional 1 h. A solution of 38a (0.84 g, 2.67 mmol) in THF (10 mL) was added slowly via syringe at -78 °C. The mixture was warmed slowly to 0 °C and then stirred at 0 °C for an additional 2 h. Upon cooling to -20 °C, 10 equiv. of methyl iodide (3.61 g, 25.4 mmol) was added via syringe. The mixture was warmed slowly to 25 °C and H2O (10 mL) was added. The organic layer was separated and the aqueous layer was extracted with Et2O (4x10 mL). The organic layers were combined, washed with brine (2x10 mL), dried (MgSO4) and the solvents were evaporated under reduced pressure. The resulting orange residue was purified by flash chromatography on silica gel (20% EtOAc / hexane for elution) to give 1.26 g (60%) of the title compound as an orange foamy material: 1H NMR (300 MHz, CDCl3) δ 7.36-7.18 (m, 14H, PhH and ArH), 6.80 (dd, J = 8.5, 1.7 Hz, 4H, ArH), 4.68 (s, 2H, CpH), 4.62 (s, 2H, CpH), 4.56 (s, 2H, CpH), 4.28 (d, J = 5.4 Hz, 2H, CH), 4.20 (s, 2H, CpH), 4.05 (m, 2H, CHCH3), 3.79 (s, 6H, OCH3), 3.20 (s, 6H, OCH3), 2.37 (d, J = 8.5 Hz, 6H, NCH3), 1.18 (d, J = 6.8 Hz, 6H, CH3), 1.48-0.05 (br envelope, 6H, BH3); 13C NMR (75 MHz, CDCl3, 1H decoupled) δ 161.4, 139.9, 133.2, 133.0, 128.9, 128.2,
1,1'-Bis[(Rp)-N-methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-trifluoromethylphenyl)phosphino]ferrocene (37b). Purification by flash chromatography on silica gel (20% EtOAc /hexane for elution) afforded 0.451 g (43%) of 37b as a light orange solid: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 8.00 (dd, \(J = \) 9.4, 8.2 Hz, 2H, ArH), 7.83 (m, 2H, ArH), 7.55 (dt, \(J = \) 9.4, 8.2 Hz, 4H, ArH), 7.38-7.15 (m, 10H, PhH), 4.76 (s, 2H, CpH), 4.72 (d, \(J = \) 8.2 Hz, 4H, CpH and CH), 4.61 (s, 2H, CpH), 4.39 (s, 2H, CpH), 3.97 (m, 2H, CHCH\(_3\)), 3.28 (s, 6H, OCH\(_3\)), 2.46 (d, \(J = \) 8.8 Hz, 6H, NCH\(_3\)), 1.02 (d, \(J = \) 7.0 Hz, 6H, CH\(_3\)), 1.68-0.30 (br envelope, 6H, BH\(_3\)) ; \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta \) 76.2 (s).

1,1'-Bis[(Rp)-N-methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronatophenylphosphino]ferrocene (37c). Purification by flash chromatography on silica gel (20% EtOAc /hexane for elution) afforded 0.449 g (62%) of 37c as an orange solid: \(^{31}\)P NMR (202 MHz, CDCl\(_3\)) \(\delta \) 68.2 (s).

1,1'-Bis[boronato-fluoro-(4-methoxyphenyl)phosphino]ferrocene (36a). An oven-dried teflon test-tube (12 x 125 mm) was fitted with a magnetic stirring bar and rubber septum. The vessel was charged with CHCl\(_3\) (1.3 mL, distilled from and stored over P\(_2\)O\(_5\)). CH\(_3\)CN (0.13 mL) was
then added, the vessel was purged with argon and the mixture
was cooled to 0 °C. The stopper was removed and while a
constant flow of argon was passed through the flask,
HF·(Py)_x (66 mg, 1.5 equiv. w/w, ~3.3 mmol) was added to the
vessel via a teflon pipet. The stopper was replaced and
upon cooling to -78 °C, a solution of 37a (44 mg,
0.052 mmol) in CHCl_3 (1.3 mL) was slowly added. The mixture
was warmed to -20 °C and stirred for an additional 48 h.
The reaction mixture was quenched with 25% aqueous NH_4F
(2.5 mL) and diluted with Et_2O (4.0 mL). The organic layer
was separated, washed with 5% aqueous H_2SO_4 (2.0 mL),
saturated aqueous NaHCO_3 (2.0 mL), brine (1.0 mL) and dried
(MgSO_4). The solvents were evaporated under reduced
pressure to afford 26 mg (95%) of the title compound as a
dark orange oil: ¹H NMR (300 MHz, CDCl_3) δ 7.72 (dt,
J = 8.8, 3.0 Hz, 4H, ArH), 6.99 (m, 4H, ArH), 4.81 (d,
J = 1.3 Hz, 2H, CpH), 4.75 (s, 1H, CpH), 4.71 (s, 1H, CpH),
4.65 (s, 2H, CpH), 4.59 (s, 1H, CpH), 4.43 (s, 1H, CpH),
3.85 (s, 6H, OCH_3), 1.70-0.40 (br envelope, 6H, BH_3); ³¹P NMR
(202 MHz, CDCl_3) δ 145.5 (d, J = 899 Hz).

1,1'-Bis[boronato-fluoro-(2-trifluoromethylphenyl)phos-
phino]ferrocene (36b). Upon work-up, 150 mg (98%) of the
title compound was obtained from 37b (235 mg, 0.255 mmol)
and HF·(Py)_x (353 mg, ~0.420 mmol): ¹H NMR (300 MHz, CDCl_3)
δ 7.79 (m, 2H, ArH), 7.75-7.55 (m, 6H, ArH), 4.91 (s, 6H,
CpH), 4.58 (s, 1H, CpH), 4.55 (s, 1H, CpH), 1.70-0.45 (br
envelope, 6H, BH₃); \(^{31}\)P NMR (202 MHz, CDCl₃) \(\delta\) 152.9 (d,
J = 961 Hz).

1,1′-Bis[boronato-methyl-(4-methoxyphenyl)phosphino]ferrocene (35a). An oven-dried round-bottomed flask was fitted with a magnetic stirring bar and rubber septum. The vessel was charged with 36a (66 mg, 0.126 mmol) and Et₂O (2.5 mL), purged with argon and cooled to -78 °C. Methyl magnesium chloride (1.26 mL of a 0.999 M solution in Et₂O, 1.26 mmol) was added dropwise to the reaction mixture. The solution was warmed slowly to 25 °C and stirred an additional 3 h. After quenching with saturated aqueous NH₄Cl (2.5 mL) the organic layer was separated and the aqueous layer was extracted with Et₂O (2x2.0 mL). The combined organic layers were washed with brine (2.0 mL), dried (MgSO₄) and the solvents were removed in vacuo. The resulting residue was filtered through a plug of silica gel (1% EtOAc / toluene) to give 61 mg (93%) of 35a as an orange solid: \(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 7.55 (app dq, J = 9.3, 1.5 Hz, 4H, ArH), 6.87 (app dt, J = 8.3, 1.6 Hz, 4H, ArH), 4.64-4.45 (m, 7H, CpH), 4.26 (s, 1H, CpH), 3.82 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 1.72 (d, J = 10.1 Hz, 3H, CH₃), 1.64 (d, J = 10.1 Hz, 3H, CH₃), 1.9-0.4 (br envelope, 6H, BH₃).
1,1'-Bis[boronato-methyl-(2-trifluoromethylphenyl)phosphino]ferrocene (35b). Purification by flash chromatography on silica gel (1% EtOAc/toluene for elution) afforded 109 mg (87%) of 35b as an orange solid: 1H NMR (300 MHz, CDCl$_3$) δ 7.95-7.71 (m, 2H, ArH), 7.72 (m, 2H, ArH), 7.53 (m, 4H, ArH), 4.77 (s, 1H, CpH), 4.72 (s, 3H, CpH), 4.59 (s, 1H, CpH), 4.53 (s, 3H, CpH), 2.04 (d, J = 10.1 Hz, 6H, CH$_3$), 1.60-0.40 (br envelope, 6H, BH$_3$); 31P NMR (202 MHz, CDCl$_3$) δ 14.2 (s).
Figure 20. 1H NMR Spectrum of Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)
Figure 21. 13C NMR Spectrum of Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)
Figure 22. 31P NMR Spectrum of Bis(2-trifluoromethylphenyl)phosphine Oxide (4a)
Figure 23. 1H NMR Spectrum of Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)
Figure 24. 13C NMR Spectrum of Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)
Figure 25. 31P NMR Spectrum of Bis[3,5-bis(trifluoromethyl)phenyl]phosphine Oxide (4c)
Figure 26. 1H NMR Spectrum of Bis(4-methoxy-2-methylphenyl)phosphine Oxide (4d)
Figure 27. 31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)phosphine Oxide (4d)
Figure 28. 31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)phosphine (5d)
Figure 29. 1H NMR Spectrum of Boronatodicyclohexyl phosphine (27a)
Figure 30. 13C NMR Spectrum of Boronatodicyclohexyl phosphine (27a)
Figure 31. 31P NMR Spectrum of Boronatodicyclohexyl phosphine (27a)
Figure 32. 1H NMR Spectrum of Boronatediphenyl phosphine (27b)
Figure 33. 13C NMR Spectrum of Boronated diphenyl phosphine (27b)
Figure 34. 31P NMR Spectrum of Boronatediphenyl phosphine (27b)
Figure 35. 1H NMR Spectrum of 4-Lithio-o-methylanisole
Figure 36. 13C NMR Spectrum of 4-Lithio-3-methylanisole
Figure 37. 1H NMR Spectrum of Bis(4-methoxy-2-methylphenyl)-N,N-dimethylaminophosphine (31)
Figure 38. 31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)N,N-dimethylaminophosphine (31)
Figure 39. 1H NMR Spectrum of Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)
Figure 40. 13C NMR Spectrum of Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)
Figure 41. 31P NMR Spectrum of Bis(4-methoxy-2-methylphenyl)boronato phosphine (27c)
Figure 42. 1H NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2,2-dimethyl-1,3-dioxolane (100a)
Figure 43. 13C NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2,2-dimethyl-1,3-dioxolane (100a)
Figure 44. 1H NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (101a)
Figure 45. 13C NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane (101a)
Figure 46. 1H NMR Spectrum of (4S,5S)-4,5-Bis[(p-tosyloxy)methyl]-2,2-dimethyl-1,3-dioxolane (6a)
Figure 47. \(^{13}\text{C}\) NMR Spectrum of \((4\text{S},5\text{S})-4,5\text{-Bis[(p-tosyloxy)methyl]}-2,2\text{-dimethyl-1,3-dioxolane}\ (6a)\)
Figure 48. 1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-trifluoromethyl)phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3f)
Figure 49. 13C NMR Spectrum of (4R,5R)-4',5-Bis[[bis(2-trifluoromethylphenyl)phosphino)methyl]-2,2-dimethyl-1,3-dioxolane (3f)
Figure 50. 31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-trifluoromethylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3f)
Figure 51. 1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3e)
Figure 52. 13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3e)
Figure 53. 31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-methylphenyl)phosphino)methyl]-2,2-dimethyl-1,3-dioxolane (3e)
Figure 54. 1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoromethyl)phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3d)
Figure 55. 13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoro-methyl)phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3d)
Figure 56. 31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis[3,5-bis(trifluoro-methyl)phenyl]phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3d)
Figure 57. 1H NMR Spectrum of (4R,5R)-4,5-Bis[[bis(4-methoxy-2-methyl-phenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3h)
Figure 58. ^{13}C NMR Spectrum of (4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3h)
Figure 59. 31P NMR Spectrum of (4R,5R)-4,5-Bis[[bis(4-methoxy-2-methylphenyl)phosphino]methyl]-2,2-dimethyl-1,3-dioxolane (3h)
Figure 60. 1H NMR Spectrum of (4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (33)
Figure 61. 13C NMR Spectrum of (4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (33)
Figure 62. ^{31}P NMR Spectrum of (4R,5R)-4,5-Bis[(boronatodicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (33)
Figure 63. 1H NMR Spectrum of (4R,5R)-4,5-Bis[(dicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (32)
Figure 64. 31P NMR Spectrum of (4R,5R)-4,5-Bis[(dicyclohexylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (32)
Figure 65. 1H NMR Spectrum of \((4R,5R)-4,5\text{-Bis(carbomethoxy)}\)-2-methyl-2-phenyl-1,3-dioxolane \((100b)\)
Figure 66. 13C NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2-methyl-2-phenyl-1,3-dioxolane (100b)
Figure 67. 1H NMR Spectrum of (4S,5S)-4',5'-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)
Figure 68. 13C NMR Spectrum of $^{4,4',5}$,5'-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)
Figure 69. 13C NMR Spectrum of (4S,5S)-4,5-Bis(hydroxymethyl)-2-methyl-2-phenyl-1,3-dioxolane (101b)
Figure 70. 1H NMR Spectrum of (4S, 5S)-4'5'-Bis[(p-tosyloxy)methyl]-2-methyl-2-phenyl-1,3-dioxolane (6b)
Figure 71. 13C NMR Spectrum of (4S,5S)-4',5'-Bis[(p-tosyloxy)methyl]-2-methyl-2-phenyl-1,3-dioxolane (6b)
Figure 72. 1H NMR Spectrum of (4R,5R)-4',5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b)
Figure 73. \(^{13}\text{C}\) NMR Spectrum of (4R,5R)-4\(^{13}\text{C}\),5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b)
Figure 74. 31P NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3b)
Figure 75. 1H NMR Spectrum of (4R,5R)-4',5'-Bis[[bis(2-trifluoromethyl-phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)
Figure 76. 13C NMR Spectrum of (4R,5R)-4,5-Bis[[bis(2-trifluoromethyl-phenyl)phosphino)methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)
Figure 77. 31P NMR Spectrum of (4R,5R)$^{4\text{Hm}}$-5-Bis[[bis(2-trifluoromethyl-phenyl)phosphino]methyl]-2-methyl-2-phenyl-1,3-dioxolane (3g)
Figure 78. 1H NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2-t-butyl-1,3-dioxolane (100c)
Figure 79. 13C NMR Spectrum of (4R,5R)-4,5-Bis(carbomethoxy)-2-t-butyl-1,3-dioxolane (100c)
Figure 80. 1H NMR Spectrum of (4S,5S)-4\textit{S}-Bis(hydroxymethyl)-2-t-butyl-1,3-dioxolane (101c)
Figure 81. 13C NMR Spectrum of (4S,5S)-4',5-Bis(hydroxymethyl)-2-t-butyl-1,3-dioxolane (101c)
Figure 82. 1H NMR Spectrum of (4S,5S-4,5-Bis[(p-tosyloxy)methyl]-2-t-butyl-1,3-dioxolane (6c)
Figure 83. 13C NMR Spectrum of (4S,5S-4,5-Bis[(p-tosyloxy)methyl]-2-t-butyl-1,3-dioxolane (6c)
Figure 84. 1H NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-t-Butyl-1,3-dioxolane (3c)
Figure 85. 13C NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2- t-Butyl-1,3-dioxolane (3c)
Figure 86. 31P NMR Spectrum of (4R,5R)-4,5-Bis[(diphenylphosphino)methyl]-2-t-Butyl-1,3-dioxolane (3c)
Figure 87. 1H NMR Spectrum of (2S,5S)-2,5-Hexandiol (102)
Figure 88. 13C NMR Spectrum of (2S,5S)-2,5-Hexandiol (102)
Figure 89. 1H NMR Spectrum of (2S,5S)-2,5-Bis-(p-tosyloxy)hexane (30)
Figure 90. 13C NMR Spectrum of (2S,5S)-2',5-Bis-(p-tosyloxy)hexane (30)
Figure 91. 1H NMR Spectrum of (2R,5R)-2',5'-Bis(diphenylphosphino)hexane (21b)
Figure 92. 13C NMR Spectrum of (2R,5R)-2,5-Bis(diphenylphosphino)hexane (21b)
Figure 93. 31P NMR Spectrum of $(2R,5R)\,\Phi,5$-Bis(diphenylphosphino)hexane (21b)
Figure 94. 1H NMR Spectrum of (2R,5R)-2,5-Bis[bis(2-trifluoromethylphenyl) phosphino]hexane (15a)
Figure 95. 13C NMR Spectrum of (2R,5R)-2,5-Bis[bis(2-trifluoromethylphenyl)phosphino]hexane (15a)
Figure 96. 31P NMR Spectrum of (2R,5R)-2,5-Bis[bis(2-trifluoromethylphenyl)phosphino]hexane (15a)
Figure 97. 1H NMR Spectrum of (2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)
Figure 98. 13C NMR Spectrum of (2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)
Figure 99. 31P NMR Spectrum of (2R,5R)-2,5-Bis(boronato-diphenylphosphino)hexane (26b)
Figure 100. 1H NMR Spectrum of $(2R,5R)-2',5'$-Bis(boronato dicyclohexylphosphino)hexane (26a)
Figure 101. 13C NMR Spectrum of (2R,5R)-2,5-Bis(boronato dicyclohexylphosphino)hexane (26a)
Figure 102. 31P NMR Spectrum of (2R,5R)-2,5-Bis(boronato dicyclohexylphosphino)hexane (26a)
Figure 103. 1H NMR Spectrum of (2R,2R)-2,5-Bis[boronato-Bis(4-methoxy-2-methylphenyl)phosphino]hexane (26c)
Figure 104. 31P NMR Spectrum of (2R,2R)-12,5-Bis[boronato-Bis(4-methoxy-2-methylphenyl)phosphino]hexane (26c)
Figure 105. 1H NMR Spectrum of (2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)
Figure 106. 13C NMR Spectrum of (2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)
Figure 107. 31P NMR Spectrum of (2R,5R)-2,5-Bis(dicyclohexylphosphino)hexane (21a)
Figure 108. 1H NMR Spectrum of (2R,5R)-2',5'-Bis[bis(4-methoxy-2-methylphenyl)phosphino]hexane (21c)
Figure 109. 13C NMR Spectrum of (2R,5R)-2,5-Bis[bis(4-methoxy-2-methylphenyl)phosphino] hexane (21c)
Figure 110. 31P NMR Spectrum of (2R,5R)-2,5-Bis[bis(4-methoxy-2-methyl-phenyl)phosphino] hexane (21c)
Figure 111. 1H NMR Spectrum of (1S,2S)-1,2-Bis[(boronato-dicyclohexylphosphino)methyl]cyclohexane (25a)
Figure 112. 13C NMR Spectrum of (1S,2S)-1,2-Bis[(boronato-dicyclohexyl-phosphino)methyl] cyclohexane (25a)
Figure 113. 31P NMR Spectrum of (1S,2S)-1,2-Bis[(boronato-dicyclohexylphosphino)methyl] cyclohexane (25a)
Figure 114. 31P NMR Spectrum of (2R,4R)424,4-Bis([bis(2-trifluoromethylphenyl)phosphino] pentane (16a)
Figure 115. 1H NMR Spectrum of (2R,4R)-2,4-Bis(boronato-dicyclohexylphosphino)pentane (24)
Figure 116. 13C NMR Spectrum of (2R,4R)-2,4-Bis(boronato-dicyclohexylphosphino)pentane (24)
Figure 117. 31P NMR Spectrum of (2R,4R)-2,4-Bis(boronato-dicyclohexylphosphino)pentane (24)
Figure 118. 1H NMR Spectrum of (2R,4R)-2,4-Bis(dicyclohexylphosphino)pentane (19)
Figure 119. 31P NMR Spectrum of (2R,4R)-2,4-Bis(dicyclohexylphosphino)pentane (19)
Figure 120. 1H NMR Spectrum of Ethyl-4-methyl-2(E),4-pentadienoate (103)
Figure 121.

13C NMR Spectrum of Ethyl-4-methyl-2(E),4-pentadienoate (103)
Figure 122. 1H NMR Spectrum of 4-Methyl-2(E),4-pentadien-1-ol (104)
Figure 123. 13C NMR Spectrum of 4-Methyl-2(E),4-pentadien-1-ol (104)
Figure 124. 1H NMR Spectrum of 8-Methyl-4-oxo-1,6(E),8-nonatriene (7a)
Figure 125. 13C NMR Spectrum of 8-Methyl-4-oxo-1,6(E),8-nonatriene (7a)
Figure 126. 1H NMR Spectrum of 8-Methyl-4-oxo-6(E),8-nonadien-1-yn (105)
Figure 127. 13C NMR Spectrum of 8-Methyl-4-oxo-6(E),8-nonadien-1-yne (105)
Figure 128. 1H NMR Spectrum of 8-Methyl-4-oxo-1-(trimethylsilyl)-6(E),8-nonadien-1-yne (10)
Figure 129. ^{13}C NMR Spectrum of 8-Methyl-4-oxo-1-(trimethylsilyl)-6(E),8-nonadien-1-yn (10)
Figure 130. 1H NMR Spectrum of 4-Oxo-1,6(E),8(E)-decatriene (7c)
Figure 131. 13C NMR Spectrum of 4-Oxo-1,6(E),8(E)-decatriene (7c)
Figure 132. 1H NMR Spectrum of 4-Oxo-6(E),8(E)-decadien-1-yne (1)
Figure 133. 13C NMR Spectrum of 4-Oxo-6(E),8(E)-decadien-1-yne (1)
Figure 134. 1H NMR Spectrum of 4-Oxo-1-(trimethylsilyl)-6(E),8(E)-decadien-1-yn (106)
Figure 135. 13C NMR Spectrum of 4-Oxo-1-(trimethylsilyl)-6(E),8(E)-decadien-1-yne (106)
Figure 136. 1H NMR Spectrum of 1-Chloro-4-methyl-2(E),4-pentadiene (107)
Figure 137. 13C NMR Spectrum of 1-Chloro-4-methyl-2(E),4-pentadiene (107)
Figure 138. 1H NMR Spectrum of 4,4-Bis(carboethoxy)-8-methyl-1,6(E),8-nonatriene (108)
Figure 139. 13C NMR Spectrum of 4,4-Bis(carboethoxy)-8-methyl-1,6(E),8-nonatriene (108)
Figure 140. 1H NMR Spectrum of 4,4-Bis(hydroxymethyl)-8-methyl-1,6(E),8-nonatriene (109)
Figure 141. 13C NMR Spectrum of 4,4-Bis(hydroxymethyl)-8-methyl-1,6(E),8-noratriene (109)
Figure 142. 1H NMR Spectrum of 4,4-Bis(methoxymethyl)-8-methyl-1,6(E),8-nonatriene (7b)
Figure 143. 13C NMR Spectrum of 4,4-Bis(methoxymethyl -8-methy -1,6(E),8-nonatriene (7b)
Figure 144. 1H NMR Spectrum of 1,3,5α,7αβ-Tetrahydro-5-methyl-4-(trimethylsilyl)-isobenzofuran (110)
Figure 145. 13C NMR Spectrum of 1,3,5α,7αβ-Tetrahydro-5-methy -4-(trimethylsilyl)-isobenzofuran (110)
Figure 146. 1H NMR Spectrum of 1,3,3αβ,6,7,7αβ-hexahydro-5-methylisobenzofuran (8a)
Figure 147. 13C NMR Spectrum of 1,3,3αβ,6,7,7αβ-hexahydro-5-methylisobenzofuran (8a)
Figure 148. \(^1\)H NMR Spectrum of 3\(\alpha\),6,7,7\(\alpha\)-Tetrahydro-2,2-bis(methoxy-methyl)-5-methylindan (8b)
Figure 149. 13C NMR Spectrum of 3αβ,6,7,7αβ-Tetrahydro-2,2-bis(methoxy-methyl)-5-methylindan (8b)
Figure 150. 1H NMR Spectrum of 1,3,5,7α-Tetrahydro-6-methyl-4-(tri-methylsilyl) isobenzofuran (11)
Figure 151. 13C NMR Spectrum of 1,3,5,7aβ-Tetrahydro-6-methyl-4-(tri-methylsilyl) isobenzofuran (11)
Figure 152. 1H NMR Spectrum of 1,3,3αβ,4,5α,7αβ-hexahydro-5-methyliso-benzofuran (8c)
Figure 153. 13C NMR Spectrum of 1,3,3αβ,4,5α,7αβ-hexahydro-5-methyliso-benzofuran (8c)
Figure 154. 1H NMR Spectrum of 7αβ-Octahydro-4-hydroxy-5-methylisobenzofuran (9a)
Figure 155. 13C NMR Spectrum of 7α-Octahydro-4-hydroxy-5-methylisobenzofuran (9a)
Figure 156. 1H NMR Spectrum of 3αβ,4α,5β,6,7,7αβ-Hexahydro-4-hydroxy-2,2-bis(methoxy-methyl)-5-methylindan (9b)
Figure 157. 13C NMR Spectrum of 3aβ,4α,5β,6,7,7aβ-Hexahydro-4-hydroxy-2,2-bis(methoxymethyl)-5-methylindan (9b)
Figure 158. \(^1\)H NMR Spectrum of 1,3,3aβ,4α,5β,6-Hexahydro-4-hydroxy-5-methyl-7-(trimethylsilyl)isobenzofuran (12)
Figure 159. 13C NMR Spectrum of 1,3,3aB,4a,5B,6-Hexahydro-4-hydroxy-5-methyl-7-(trimethylsilyl)isobenzofuran (12)
Figure 160. 1H NMR Spectrum of $1,3,3\alpha\beta,4\alpha,5\alpha,6\beta,7,7\alpha\beta$-Octahydro-$4,5$-bis(hydroxy)-$6$-methylisobenzofuran (9c)
Figure 161. 13C NMR Spectrum of 1,3,3aB,4a,5a,6B,7,7aB-Octahydro-4,5-bis(hydroxy)-6-methylisobenzofuran (9c)
Figure 162. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Racemate)
Figure 163. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3a)
Figure 164. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3b)
Figure 165. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3c)
Figure 166. \(^1\)H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3d)
Figure 167. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3e)
Figure 168. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3f)
Figure 169. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 3g)
Figure 170. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13a (Ligand 21b)
Figure 171. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13b (Racemate)
Figure 172. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13b (Ligand 3a)
Figure 173. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13b (Ligand 3e)
Figure 174. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13b (Ligand 3f)
Figure 175. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13c (Racemate)
Figure 176. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13c (Ligand 3a)
Figure 177. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13c (Ligand 3b)
Figure 178. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13c (Ligand 3c)
Figure 179. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 13c (Ligand 3d)
Figure 180. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 14 (Racemate)
Figure 181. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 14 (Ligand 3a)
Figure 182. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 14 (Ligand 3b)
Figure 183. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 14 (Ligand 3e)
Figure 184. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 14 (Ligand 3f)
Figure 185. 1H NMR Spectrum of MTPA Derivatives (R) and (S) of 14 (Ligand 3g)
Figure 186. 1H NMR Spectrum of Bis(dimethylamino-4-methoxyphenyl phosphine (39a)
Figure 187. 31C NMR Spectrum of Bis(dimethylamino)-4-methoxyphenyl phosphine (39a)
Figure 188. 1H NMR Spectrum of Bis(dimethylamino)phenyl phosphine (39c)
Figure 189. 1H NMR Spectrum of Chloro-(dimethylamino)-4-methoxyphenyl phosphine (40a)
Figure 190. 13C NMR Spectrum of Chloro-(dimethylamino-4-methoxyphenyl phosphine (40a)
Figure 191. 1H NMR Spectrum of (2R,4S,5R)2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)
Figure 192. 13C NMR Spectrum of (2R,4S,5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)
Figure 193. 31P NMR Spectrum of \((2R,4S,5R)^{\text{OM}}\)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38a)
Figure 194. 1H NMR Spectrum of (2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)
Figure 195. 13C NMR Spectrum of (2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)
Figure 196. 31P NMR Spectrum of (2R,4S,5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine-2-borane (38b)
Figure 197. 1H NMR Spectrum of 1-(Tri-n-butylstanny1)-1'[(Rp)-N-methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (42a)
Figure 198. 31P NMR Spectrum of 1-(Tri-η^{3}butylstannyI)-1'-$[(Rp)$-N-$methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (42a)
Figure 199. 1H NMR Spectrum of 1-(Tri-n-butylstannyl)-1'-(Rp(-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-trifluoromethylphenyl)phosphino)ferrocene (42b)
Figure 200. 31P NMR Spectrum of 1-(Tri-n-butylstannyl)-1'-(Rp(-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl)))amino-boronato-(2-trifluoromethylphenyl)phosphino)ferrocene (42b)
Figure 201. 1H NMR Spectrum of 1-(Tri-n-butylstannyl)-1'$-[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronatophenylphosphino]ferrocene (42c)
Figure 202. 3P NMR Spectrum of n-butyllstanny1)-12-[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronatophenylphosphino]ferrocene (42c)
Figure 203. \(^{1}H\) NMR Spectrum of \(\text{^1-Bis[(Rp)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))]amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (37a)}\)
Figure 204. 13C NMR Spectrum of 1-Bis((R)-2N-Methyl,N2((1E,2S)-1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (37a)
Figure 205. 31P NMR Spectrum of 1-Bis[(R,R)-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(4-methoxyphenyl)phosphino]ferrocene (37a)
Figure 206. 1H NMR Spectrum of 1,1'-Bis[Rp]-N-Methyl,N-((1R,2S)-(1-methoxy-1-phenyl-2-propyl))amino-boronato-(2-tri-fluoromethylphenyl)phosphino]ferrocene (37b)
Figure 207. 15P NMR Spectrum of $^{1,1'}$-Bi[(Rp)-N-Methyl,N'-(1R,2S)-$(1$-methoxy-1-phenyl-2-propyl)]amino-boronato-$(2$-tri-$fluoromethylphenyl$)phosphino$]ferrocene (37b)
Figure 208. 31P NMR Spectrum of 1,1'-Bis{(Rp)-N-methyl,N-((1R,2S)-(1-methoxyl-1-phenyl-2-propyl))amino-boratophenylphosphine}ferrocene (37c)
Figure 209. 1H NMR Spectrum of 1,1'-Bis[Boronatofluoro-(methoxyphenyl)phosphino]ferrocene (36a)
Figure 210. 3P NMR Spectrum of 1,2-Bis[boranatofluoro-(6-methoxyphenyl)phosphino]ferrocene (36a)
Figure 211. 1H NMR "Spectrum" of $1',1'Bis[Horonatofluoro-(2-trifluoromethylphenyl)phosphino]ferrocene (36b)
Figure 212. 31P NMR Spectrum of 1,1'-Bis[boronatofluoro-(2-trifluoromethylphenyl)phosphino]ferrocene (36b)
Figure 213. 1H NMR Spectrum of 1,1'-Bi3hronatomethyl-(2-trifluoromethylphenyl)phosphino]ferrocene (35b)
Figure 214. 31P NMR Spectrum of $1,1'$-Bi[boronatomethyl-(2-trifluoromethylphenyl)phosphino]ferrocene (35b)
REFERENCES

 b) Finn, M.G.; Sharpless, K.B. *Asymmetric Synthesis* 1985, 5, Ch. 8.

25. Jugé confirmed that acyclic alkyl phosphinates can be stereoselectively converted to phosphine oxides upon treatment with alkyl and aryl Grignard reagents.

58. The elimination of meso products was accomplished by fine-tuning the reaction conditions. See ref. 37.

95. Ligand sphere effects--reviews

98. Sheehan, D.J. personal communication.

107. 'H and 31P NMR resonances were measured at 500 MHz and 202 MHz respectively, with a Bruker AM-500 spectrometer.

110. Prepared by litiation of 4-bromo-3-methylanisole.

115. A Perkin-Elmer 237B grating IR spectrometer was generously provided (on loan) by the Department of Chemistry at Fort Lewis College, Durango, Colorado.

116. CHIRALPAK is a registered trademark of DAICEL CHEMICAL INDUSTRIES LTD.

118. The procedure for preparation of phosphine oxides is a modification of an unpublished procedure provided by C.F. Hobbs of the Monsanto Corporation, through personal communication.

121. Prepared and characterized by D.J. Sheehan.

122. Prepared from commercially available (2S,4S)-2,4-dihydroxypentane.

123. Prepared and characterized by Wender et al. The physical data for these compounds was compared to that found in the supplementary material.

127. The Wilkinson’s catalyst was utilized as an alternative to that described for **110** which resulted, in this case, in very low isolated yields.

128. a) The amine exchange rxn that results in cyclization is catalyzed by proton sources (in the form of ammonium salts). In cases where cyclization is sluggish (as evidenced by the absence of copious Me₃NH evolution), a few μL of Me₃SiCl may be added to provide the required catalysis. b) Nielsen, J.; Dahl, O. *J. Chem. Soc. Perkin Trans. II* **1984**, 553.
