Water use efficiency of three green manure legume species as influenced by stand density by Sharon Lee Pfaff

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Agronomy
Montana State University
© Copyright by Sharon Lee Pfaff (1994)

Abstract:
The water use efficiencies of legume green manure species are needed to facilitate green manuring as a viable alternative to summerfallowing in semiarid environments. The objectives of this study were to determine the water use efficiency (WUE) of three legume species, Austrian winterpea [Pisum sativum ssp. arvense (L.) Poir. cv. Melrose], lentil (Lens culinaris Medik cv. Indianhead), and black medic (Medicago lupulina L. cv. George), in terms of dry matter production, canopy N accumulation and N2-fixation, and as influenced by stand density. The legumes and barley (Hordeum vulgare L. Bearpaw) were planted at three seeding rates in a split plot design at Logan, Montana, in 1993 and 1994. Cumulative evapotranspiration (ET), percent canopy closure, canopy biomass accumulation, canopy N accumulation, and stem length were measured over the two growing seasons. Legume dry matter production was unusually high in 1993, relative to 1994, due to an unusually cool wet growing season. Despite this, of the three legumes, Austrian winterpea consistently displayed the highest WUE in terms of canopy closure, canopy biomass accumulation, canopy N accumulation and N2-fixation, with comparisons made at each seeding rate. George black medic had similar performance to Austrian winterpea. Indianhead lentil consistently displayed lowest WUE of the three legume species at all seeding rates. No clear trends emerged in comparisons within species of the three seeding rates. During both years, the medium seeding rate (which is the standard recommended rate) often emerged as having highest WUE. It would appear this seeding rate has the optimum potential when these legume species are used as green manure. Plant height (stem length) and growth stage have been suggested as practical tools for farmers to use in estimating ET. In this study, plant height correlated well with cumulative ET for all three species both years. However, the slopes of the regression lines were quite different each of the two years. Growth stage was somewhat related to cumulative ET, but the relationship was not as distinct as plant height.
WATER USE EFFICIENCY OF THREE GREEN MANURE LEGUME SPECIES AS INFLUENCED BY STAND DENSITY

by

Sharon Lee Pfaff

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Agronomy

MONTANA STATE UNIVERSITY
Bozeman, Montana
December, 1994
APPROVAL

of a thesis submitted by

Sharon Lee Pfaff

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

November 29, 1994
Chairperson, Graduate Committee

Approved for the Major Department

12/2/94
Head, Major Department

Approved for the College of Graduate Studies

12/14/94
Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder.

Signature Sharon A. Pyatt
Date 11-28-94
ACKNOWLEDGEMENTS

The author wishes to thank the following: the Soil Conservation Service Plant Materials Center at Bridger, MT for funding this project; the Steve McDonell family for providing the study site; Jack Martin and Dick Lund for their patience and guidance with the statistical analysis of this research; Jon Wraith for providing equipment and always having time to answer my many questions; Deb Solum for her willing assistance in planting and maintaining the field plots; and, a special thanks to my major professor, Dr. Jim Sims, for his friendship and leadership on this project. It has been a real privilege to have worked with him.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>3. METHODS AND MATERIALS</td>
<td>11</td>
</tr>
<tr>
<td>Site Description</td>
<td>11</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>11</td>
</tr>
<tr>
<td>Meteorological Observations</td>
<td>12</td>
</tr>
<tr>
<td>Soil Moisture Content</td>
<td>12</td>
</tr>
<tr>
<td>Soil, Biomass, Plant Height and Canopy Cover Sampling</td>
<td>13</td>
</tr>
<tr>
<td>Analyses of Soil and Biomass Samples</td>
<td>14</td>
</tr>
<tr>
<td>Estimating Legume N$_2$-fixation</td>
<td>15</td>
</tr>
<tr>
<td>Statistical Methods</td>
<td>15</td>
</tr>
<tr>
<td>4. RESULTS AND DISCUSSION</td>
<td>17</td>
</tr>
<tr>
<td>Appraisal of Crop Performance</td>
<td>17</td>
</tr>
<tr>
<td>Cumulative Evapotranspiration (ET)</td>
<td>18</td>
</tr>
<tr>
<td>Percent Canopy Cover</td>
<td>25</td>
</tr>
<tr>
<td>Above Ground Biomass Production</td>
<td>33</td>
</tr>
<tr>
<td>Total Canopy Nitrogen (N) Accumulation</td>
<td>37</td>
</tr>
<tr>
<td>N$_2$-fixation</td>
<td>42</td>
</tr>
<tr>
<td>Water Use Efficiency</td>
<td>49</td>
</tr>
<tr>
<td>In terms of Cumulative ET vs. Percent Canopy Cover</td>
<td>49</td>
</tr>
<tr>
<td>In terms of Biomass vs. ET</td>
<td>57</td>
</tr>
<tr>
<td>In Terms of Total Canopy N vs. ET</td>
<td>60</td>
</tr>
<tr>
<td>In Terms of N$_2$-fixation vs. ET</td>
<td>65</td>
</tr>
<tr>
<td>5. APPRAISAL OF METHODS FOR MANAGEMENT OF GREEN MANURE</td>
<td>71</td>
</tr>
<tr>
<td>Plant Height</td>
<td>71</td>
</tr>
<tr>
<td>Growth Stage</td>
<td>79</td>
</tr>
<tr>
<td>6. SUMMARY AND CONCLUSIONS</td>
<td>91</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>94</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stand density in plants/m² for AWP, IHL GBM and BAR at three seeding rates</td>
<td>18</td>
</tr>
<tr>
<td>2. 1993 soil NO₃-N, P, K, organic matter, and pH at time of planting</td>
<td>44</td>
</tr>
<tr>
<td>3. 1994 soil NO₃-N, P, K, and organic matter at time of emergence</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cumulative ET after emergence in 1993. Comparisons between AWP, IHL, and GBM at each seeding rate</td>
<td>19</td>
</tr>
<tr>
<td>2. Cumulative ET after emergence in 1994. Comparisons between AWP, IHL and GBM at each seeding rate</td>
<td>20</td>
</tr>
<tr>
<td>3. Soil water content after emergence in 1994. Comparisons between AWP, IHL and GBM at high seeding rate</td>
<td>22</td>
</tr>
<tr>
<td>4. Soil water content after emergence in 1994. Comparisons between AWP, IHL and GBM at medium seeding rate</td>
<td>23</td>
</tr>
<tr>
<td>5. Soil water content after emergence in 1994. Comparisons between AWP, IHL and GBM at low seeding rate</td>
<td>24</td>
</tr>
<tr>
<td>6. Canopy cover after emergence in 1993. Comparisons between AWP, IHL and GBM at each seeding rate</td>
<td>26</td>
</tr>
<tr>
<td>7. Canopy cover after emergence in 1994. Comparisons between AWP, IHL and GBM at each seeding rate</td>
<td>27</td>
</tr>
<tr>
<td>8. Canopy cover after emergence in 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>28</td>
</tr>
<tr>
<td>10. Canopy biomass after emergence in 1993. Comparisons between AWP, IHL and GBM at each seeding rate</td>
<td>31</td>
</tr>
<tr>
<td>11. Canopy biomass after emergence in 1994. Comparisons between AWP, IHL and GBM at each seeding rate</td>
<td>32</td>
</tr>
<tr>
<td>12. Canopy biomass after emergence in 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES—Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Canopy nitrogen accumulation after emergence in 1993. Comparisons between three species at each seeding rate</td>
<td>38</td>
</tr>
<tr>
<td>15. Canopy nitrogen accumulation after emergence in 1994. Comparisons between three species at each seeding rate</td>
<td>39</td>
</tr>
<tr>
<td>16. Canopy nitrogen accumulation after emergence in 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>40</td>
</tr>
<tr>
<td>17. Canopy nitrogen accumulation after emergence in 1994. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>41</td>
</tr>
<tr>
<td>19. Cumulative ET, biomass and canopy N accumulation after emergence for barley in 1993 and 1994</td>
<td>46</td>
</tr>
<tr>
<td>20. N₂-fixation after emergence in 1993. Comparisons between AWP, IHL and GBM at each seeding rate</td>
<td>47</td>
</tr>
<tr>
<td>22. Cumulative ET vs. canopy cover regressions for 1993. Comparisons of AWP, IHL and GBM at each seeding rate</td>
<td>50</td>
</tr>
<tr>
<td>23. Cumulative ET vs. canopy cover regressions for 1994. Comparisons of AWP, IHL and GBM at each seeding rate</td>
<td>51</td>
</tr>
<tr>
<td>24. Cumulative ET vs. canopy cover regressions for 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>52</td>
</tr>
<tr>
<td>25. Cumulative ET vs. canopy cover regressions for 1994. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF FIGURES-Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.</td>
<td>Canopy biomass accumulation vs. ET regressions for 1993. Comparisons of AWP, IHL and GBM at each seeding rate</td>
<td>55</td>
</tr>
<tr>
<td>27.</td>
<td>Canopy biomass accumulation vs. ET regressions for 1994. Comparisons of AWP, IHL and GBM at each seeding rate</td>
<td>56</td>
</tr>
<tr>
<td>28.</td>
<td>Canopy biomass accumulation vs. ET regressions for 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>58</td>
</tr>
<tr>
<td>29.</td>
<td>Canopy biomass accumulation vs. ET regressions for 1994. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>59</td>
</tr>
<tr>
<td>30.</td>
<td>Canopy nitrogen accumulation vs. ET regressions for 1993. Comparisons of AWP, IHL and GBM at each seeding rate</td>
<td>61</td>
</tr>
<tr>
<td>31.</td>
<td>Canopy nitrogen accumulation vs. ET regressions for 1994. Comparisons of AWP, IHL and GBM at each seeding rate</td>
<td>62</td>
</tr>
<tr>
<td>32.</td>
<td>Canopy nitrogen accumulation vs. ET regressions for 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>63</td>
</tr>
<tr>
<td>33.</td>
<td>Canopy nitrogen accumulation vs. ET regressions for 1994. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>64</td>
</tr>
<tr>
<td>34.</td>
<td>N$_2$-fixation vs. cumulative ET in 1993. Comparisons between AWP, IHL, and GBM at each seeding rate</td>
<td>66</td>
</tr>
<tr>
<td>35.</td>
<td>N$_2$-fixation vs. cumulative ET in 1994. Comparisons between AWP and GBM at each seeding rate</td>
<td>67</td>
</tr>
<tr>
<td>36.</td>
<td>N$_2$-fixation vs. cumulative ET in 1993. Comparisons between seeding rates for AWP, IHL and GBM</td>
<td>68</td>
</tr>
<tr>
<td>37.</td>
<td>N$_2$-fixation vs. cumulative ET in 1994. Comparisons between seeding rates for AWP and GBM</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES—Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.</td>
<td>Cumulative ET vs. plant height regressions in 1993 for AWP, IHL and GBM at each seeding rate</td>
<td>72</td>
</tr>
<tr>
<td>39.</td>
<td>Cumulative ET vs. plant height regressions in 1994 for AWP, IHL and GBM at each seeding rate</td>
<td>73</td>
</tr>
<tr>
<td>40.</td>
<td>Cumulative ET vs. plant height regression for 1993/1994 for AWP, IHL, and GBM at each seeding rate</td>
<td>74</td>
</tr>
<tr>
<td>41.</td>
<td>Biomass vs. plant height regression for 1993, for AWP, IHL, and GBM at each seeding rate</td>
<td>76</td>
</tr>
<tr>
<td>42.</td>
<td>Biomass vs. plant height regression for 1994, for AWP, IHL, and GBM at each seeding rate</td>
<td>77</td>
</tr>
<tr>
<td>43.</td>
<td>Biomass vs. plant height regressions for 1993/1994 for AWP, IHL, and GBM at each seeding rate</td>
<td>78</td>
</tr>
<tr>
<td>44.</td>
<td>Canopy N accumulation vs. plant height regressions for 1993, for AWP, IHL and GBM at each seeding rate</td>
<td>80</td>
</tr>
<tr>
<td>45.</td>
<td>Canopy N accumulation vs. plant height regressions for 1994, for AWP, IHL and GBM at each seeding rate</td>
<td>81</td>
</tr>
<tr>
<td>46.</td>
<td>Canopy N accumulation vs. plant height regressions for 1993/1994, for AWP, IHL, and GBM at each seeding rate</td>
<td>82</td>
</tr>
<tr>
<td>47.</td>
<td>Biomass, ET and N accumulation after emergence for AWP at each seeding rate in 1993, by growth stage</td>
<td>85</td>
</tr>
<tr>
<td>48.</td>
<td>Biomass, ET and N accumulation after emergence for AWP at each seeding rate in 1994, by growth stage</td>
<td>86</td>
</tr>
<tr>
<td>49.</td>
<td>Biomass, ET and N accumulation after emergence for IHL at each seeding rate in 1993, by growth stage</td>
<td>87</td>
</tr>
<tr>
<td>50.</td>
<td>Biomass, ET and N accumulation after emergence for IHL at each seeding rate in 1994, by growth stage</td>
<td>88</td>
</tr>
</tbody>
</table>
LIST OF FIGURES—Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51. Biomass, ET and N accumulation after emergence for GBM at each seeding rate in 1993, by growth stage</td>
<td>89</td>
</tr>
<tr>
<td>52. Biomass, ET and N accumulation after emergence for GBM at each seeding rate in 1994, by growth stage</td>
<td>90</td>
</tr>
</tbody>
</table>
ABSTRACT

The water use efficiencies of legume green manure species are needed to facilitate green manuring as a viable alternative to summerfallowing in semiarid environments. The objectives of this study were to determine the water use efficiency (WUE) of three legume species, Austrian winterpea \textit{(Pisum sativum ssp. arvense (L.) Poir. cv. Melrose)}, lentil \textit{(Lens culinaris Medik cv. Indianhead)}, and black medic \textit{(Medicago lupulina L. cv. George)}, in terms of dry matter production, canopy N accumulation and N$_2$-fixation, and as influenced by stand density. The legumes and barley \textit{(Hordeum vulgare L. Bearpaw)} were planted at three seeding rates in a split plot design at Logan, Montana, in 1993 and 1994. Cumulative evapotranspiration (ET), percent canopy closure, canopy biomass accumulation, canopy N accumulation, and stem length were measured over the two growing seasons. Legume dry matter production was unusually high in 1993, relative to 1994, due to an unusually cool wet growing season. Despite this, of the three legumes, Austrian winterpea consistently displayed the highest WUE in terms of canopy closure, canopy biomass accumulation, canopy N accumulation and N$_2$-fixation, with comparisons made at each seeding rate. George black medic had similar performance to Austrian winterpea. Indianhead lentil consistently displayed lowest WUE of the three legume species at all seeding rates. No clear trends emerged in comparisons within species of the three seeding rates. During both years, the medium seeding rate (which is the standard recommended rate) often emerged as having highest WUE. It would appear this seeding rate has the optimum potential when these legume species are used as green manure. Plant height (stem length) and growth stage have been suggested as practical tools for farmers to use in estimating ET. In this study, plant height correlated well with cumulative ET for all three species both years. However, the slopes of the regression lines were quite different each of the two years. Growth stage was somewhat related to cumulative ET, but the relationship was not as distinct as plant height.
Chapter 1

INTRODUCTION

Green manure crops have long been recognized by farmers as a beneficial component of a cropping system. Green manuring is one of the oldest practices known to agriculture, with written records of this practice dating back 3000 years or more to China (Allison, 1973). In the United States and Canada, green manure crops are commonly grown in higher rainfall, more humid areas, as they have many beneficial aspects: They act as a cover crop to decrease wind and water erosion; maintain soil organic matter and soil structure; improve soil fertility by adding nitrogen (in the case of N$_2$-fixing legumes); use excess soil water and thereby reduce leaching of soil nutrients and surface runoff; and break disease, insect and weed cycles (Power and Biederbeck, 1991). In addition to the above, green manure crops can reduce the formation and growth of saline seeps in semi-arid environments.

In the semi-arid Northern Great Plains states, traditional use of green manure crops has often resulted in negative impacts on the following cash crop (Army & Hide, 1959; Power, 1991). The climate in this region is characterized by relatively low humidity and precipitation,
with almost one half of the annual precipitation falling as rain in April, May and June. Summer temperatures often reach a high of 100° F or greater with hot dry winds being common. For these reasons, potential evapotranspiration greatly exceeds growing season precipitation. Winters are characterized by extremely cold temperatures, with typically only a few inches of precipitation in the form of snow (Power and Biederbeck, 1991). Small grains are the most commonly grown dryland crop in this region, with an alternating fallow year being included. Not only does fallow allow for storage of soil moisture for the subsequent crop, but it also promotes mineralization and release of nutrients from soil organic matter and plant residues. Although these benefits have helped to stabilize crop yields, in many instances fallowing has proven not to be a sustainable system (Sims and Slinkard, 1991).

Continued oxidation and mineralization of organic matter has caused soil fertility to steadily decrease in soils under the crop-fallow system. It is estimated that soils in the Canadian Prairies and U.S. Great Plains have suffered soil organic matter losses of 40 to 60%, after being farmed under the crop-fallow system for the past 70 to 80 years (Campbell and Souster, 1982). Additions of chemical fertilizers under a continuous small grain rotation have been shown to maintain soil organic matter in the long term (Campbell et al., 1991), however, continuous cropping is not
always feasible in the semi-arid Great Plains. Also, application of chemical fertilizers is becoming more costly, as the fossil fuels used to manufacture them become more scarce and expensive.

Fallowing is an extremely inefficient method of soil water capture and storage. Results from early studies in Montana indicated storage efficiency of fallow averaged 21% (Ford and Krall, 1979). Results from more recent studies conducted in Sidney, Montana, indicated an average storage efficiency of fallow under a stubble-mulch system averaged 31.6% (Tanaka and Aase, 1987). Rapid mineralization of organic matter also leaves nitrates vulnerable to leaching. Excess water leaches nitrates and other nutrients below crop rooting depths, causing potential groundwater contamination. If excess water is impeded from deep percolation by an impermeable layer in the soil profile, a saline seep often results (Sims and Slinkard, 1991). Legume green manure crops grown during the fallow period have great potential for correcting problems associated with fallow, especially in terms of using excess soil water and maintaining soil fertility. However, the challenge lies in managing the legume in such a way as to provide the optimum amount of nitrogen and other benefits, without unduly reducing the amount of water available to the subsequent crop. The objectives of this study were to determine the water use efficiency of three legume species in terms of dry matter
production and N_2-fixation and as a function of stand density. Since Austrian Winterpea [$Pisum sativum$ ssp. arvense (L.) Poir] has consistently displayed higher water use efficiencies than other species (Wright, 1993), it is postulated that it has the ability to close its canopy more quickly than some other legume species, thus limiting soil evaporation. Therefore, it is hypothesized that changing the stand density of the legume green manure crop from low to medium to high will more quickly achieve canopy closure, hence improve water use efficiency.
Chapter 2

LITERATURE REVIEW

Results from early studies in the Northern Great Plains showed no benefit from using legumes in crop rotations. This may have been primarily due to two factors. First, at the time of these early studies, soil organic matter levels had not yet been greatly depleted, therefore, N contributions by legumes would not have been as significant as in a depleted soil (Campbell et al., 1991). Secondly, green manure crops were not managed in such a way as to limit water use, which often depleted stored soil moisture reserves necessary for the subsequent crop (Army and Hide, 1959). The results of these studies, and the availability of inexpensive N fertilizer, appeared to discourage further research of green manure crops for a period of time. However, the energy crisis of the 1970’s helped to renew an interest in the contributions of legumes to sustainable cropping systems (Mahler and Auld, 1989, Sims et al. 1985, Koala, 1982).

In recent years, researchers have made great strides toward incorporating legumes into cropping systems in semi-arid environments. These research efforts have been focused in three major areas: species adaptability (which includes
water use efficiency), contributions to subsequent crops, and associated cultural practices.

Water use efficiency is defined as the amount of biomass produced per a given area for a unit of water evaporated or transpired (ET) for that area (Tanner and Sinclair, 1983). The soil evaporation component of ET is a purely physical process occurring primarily at the soil surface. During the growing season, evaporation from the soil surface is substantially reduced one to two days after wetting, and soil moisture below 20 to 30 cm is relatively safe from soil surface evaporation (Hanks, 1985). Plant transpiration is much more complex, being composed of both biological and physical processes. In water-limiting environments, transpiration is often more critical to total water use than soil evaporation. Transpiration efficiency for a given crop is relatively stable if climatic conditions are normalized for a given location and time of year (Ritchie, 1983). In 1958, de Wit (as reported by Hanks, 1983) demonstrated a strong correlation between biomass production and transpiration. Mathematically, he expressed this relationship as

\[Y = \frac{mT}{ET_{\text{max}}} \]

where \(Y \) = total dry matter mass per area, \(m \) = a crop coefficient (a constant related to crop performance of different crop species and varieties within species), \(T \) = transpiration, and \(ET_{\text{max}} \) = total potential evaporation from
an open body of water. In reality, however, it is very difficult to separate transpiration from soil evaporation in a field situation. Water use efficiency based on ET is not as closely correlated to dry matter production as when based solely on T. Cultural practices can substantially alter ET by changing soil evaporation, weed transpiration, etc. (Tanner and Sinclair, 1983). However, ET is relatively easy to measure in the field and, for the purposes of this research, will be used as the basis for calculating water use efficiency.

Producers incorporating legumes into their cropping system need accurate information to select appropriate species. Response to temperature, biomass production, N₂-fixation, and water use efficiency are among the factors which need to be considered in species selection, along with seed availability and cost of establishment. Legumes used as green manure have been divided into three main groups, the small-seeded forage legumes, and medium-seeded and large-seeded grain legumes. In adaptation trials in Bozeman, Montana, small-seeded annual forage legumes performed quite well in biomass production and N₂-fixation, especially several varieties of clover and medic (Sims and Slinkard, 1991; Wright, 1993). However, small-seeded legumes have the disadvantage of needing shallow seedbed placement. If the upper surface layer is dry, they will not establish, and if planted deeper into moist soil, they often
do not emerge, as can the large-seeded grain legumes. This is perhaps one reason why peas, lentils, and snail medic have emerged as the most adaptable legume species for green manuring in this region. In several field trials across a variety of dryland environments, researchers found that peas (*Pisum sativum* L.) consistently had the highest biomass production and N production of all legume species tested (Sims and Slinkard, 1991; Power, 1991; Zachariassen and Power, 1991; Bremer et al., 1988; Auld et al., 1982). Townley-Smith and associates (1993) also found this to be true, but determined lentils (*Lens culinaris* Medik) to be the most desirable green manure species. Even though lentils had only intermediate biomass and N production, the small seed size and low seeding rate made it a much more economical choice. Since green manure is not a cash crop, producers need to minimize inputs into this practice.

Maximum biomass production in a green manure crop is not always desirable, since legume species that exhibit the most rapid growth also tend to have the greatest water use (Zachariassen and Power, 1991). Researchers in several locations have found increases in small grain yields following incorporation of legume residues (Mahler and Hemamda, 1993; Welty et al., 1988, Koala, 1982) or even after production of a legume grain crop (Wright, 1990). However, maximum yields were obtained in winter wheat at Bozeman, Montana, when Indianhead lentils were terminated
after using an intermediate amount of stored soil water (Sims and Slinkard, 1991). This research also shows that if legumes are terminated too early, little benefit from N\textsubscript{2}-fixation may occur. Kucey (1989) and Wright (1993) found that it took peas approximately six weeks to begin fixing substantial amounts of N.

Results from several studies revealed that only 11 to 28% of mature legume residues were mineralized and taken up by the subsequent cereal crop (Mahler and Hemamda, 1993; Janzen et al., 1990). Bremer and van Kessel (1992) found approximately 40% of lentil green manure was mineralized, but only 19% was taken up by the subsequent wheat crop. They surmised that later seeding and incorporation would increase the amount of N made available to the following crop.

Other cultural practices which may govern the successful use of green manure crops include planting date and plant density. For maximum seed and biomass production, Sims and associates (1989) recommend that cool season legumes should be planted as early as equipment can be taken into a field. Warm season legumes should be planted to avoid the last killing frost. But, delaying planting too long substantially decreases legume yields.

Plant density of green manure crops as it relates to canopy closure and ET has received very little attention from scientists. Early researchers studying soil evaporation hypothesized that earlier canopy closure
(narrower rows and greater plant densities) resulted in greater interception of solar radiation, and a reduction of soil evaporation (Alessi and Power, 1982). More recent research on a variety of crops indicates that this may be true in regions where the soil surface is kept wet by precipitation or irrigation. However, in regions where the soil surface is typically dry, and plants are dependant on stored soil moisture reserves, increased leaf surface area (greater plant densities) has resulted in increased transpiration and water use (Ritchie and Johnson, 1990). Increased dry matter production is usually the result of increased planting density; whether this results in higher water use efficiencies in terms of biomass production is not clear.
Chapter 3

METHODS AND MATERIALS

Site Description

A site near Logan, Montana (SE 1/4 of the SW 1/4 of Sec. 35, T2N, R2E) was selected because of its dryland characteristics, having coarse soils and low average annual precipitation (10-14 inches). Field plots were established May 11, 1993 and April 21, 1994 on Kalsted sandy loam (coarse loamy, mixed, borolic calcpiorthids). This site was broken out of native rangeland in the fall of 1992. The area for the 1994 experimental plots was planted to barley in 1993.

Experimental Design

Three legume species and a non N₂-fixing species, barley (Hordeum vulgare L. Bearpaw) were planted at a high, medium and low seeding rate in a split-plot design with four replications. Changing the stand density by varying row spacings had been considered, however, because of a lack of available equipment, this was not possible. Therefore, stand density was altered by changing plant density within the row. Unit plot size was 6.1 m x 3.1 m.
Before planting, the three legume species, Austrian winterpea \textit{(Pisum sativum ssp. arvense (L.) Poir. cv. Melrose)}, lentil \textit{(Lens culinaris Medik cv. Indianhead)}, and black medic \textit{(Medicago lupulina L. cv. George)} were inoculated with the proper \textit{Rhizobium} strain (Liphatech, Inc., Milwaukee, WI). Legumes and barley were seeded into a firm seedbed at the following rates: Austrian winterpea, 251, 168, and 83 kg/ha; Indianhead lentil, 119, 79, and 40 kg/ha; George black medic, 34, 22, and 11 kg/ha; barley, 169, 112, and 57 kg/ha. Row spacing in all plots was 25.4 cm.

Meteorological Observations

Precipitation and pan evaporation were collected weekly, using the system proposed by Sims and Jackson (1971). Collection site for weather data was located approximately 400 m from the study site. Pan evaporation data reported in this document was adjusted with a pan factor of 0.55 (Jenson, 1974).

Soil Moisture Content

After planting, PVC access tubes were installed with a hydraulically-driven soil probe near the center of each plot. Soil moisture content was determined using a neutron moisture probe (model no. 503DR Hydroprobe, Campbell Pacific Nuclear, Pacheco, CA). The probe was calibrated at the site
each year, by obtaining soil samples at 0.2 m increments to a depth of 1.8 m. Soil moisture content of these samples was determined gravimetrically and a regression equation developed to convert neutron probe readings to volumetric soil water content. Soil moisture content readings were taken in 0.2 m increments every 7 to 10 days during the growing season.

Soil, Biomass, Plant Height and Canopy Cover Sampling

Soil samples were obtained to determine initial pH, organic matter content, NO₃-N, phosphorus, and potassium. Monocalciumphosphate (0-44-0) fertilizer was applied at a rate of 145 pounds per acre.

Biomass samples were taken every 7 to 10 days. Within each plot, a 1 m row-strip was randomly selected and hand clipped to the soil surface to gather all above ground biomass. At the end of the growing season in 1994, when conditions turned very hot and dry, all species underwent leaf senescence. A portion of decaying plant materials could not be recovered, therefore recorded biomass levels dropped. To adjust for this, biomass and canopy N accumulation levels are reported as remaining at the point of peak performance.

Plant height and percent canopy cover were obtained every 7 to 10 days. Plant height was determined by averaging heights (stem lengths) of three randomly selected
plants within each plot. Canopy cover was determined by ocular estimations of canopy within 1 m of the access tube in each plot.

Stand density was also determined once all plants had fully emerged. Density was estimated by counting plants within three randomly selected 1 m row-strips and averaging the results within each plot.

Analyses of Soil and Biomass Samples

Initial soil samples were weighed and dried at 50° celsius in a forced-air oven. Analysis for pH, NO$_3$-N, phosphorus, soil organic matter, and potassium, was conducted by the Montana State University Soil Testing Laboratory. An automated cadmium reduction method (American Public Health Association, 1981) was used to determine NO$_3$-N concentration. The Olsen method (Olsen and Sommers, 1982) was used to determine phosphorus concentration using sodium bicarbonate as an extractant. The colorimetric method of Sims and Haby (1971) was used to determine soil organic matter content, and an extractable cation method (Knudsen et al. 1982) was used to determine potassium concentration.

Biomass samples were dried at 50° celsius in a forced-air oven. Dry matter samples were weighed, ground and a sub-sample analyzed for the total Kjeldahl nitrogen content
Estimating Legume N₂-fixation

An adjusted measure of fixation was obtained by the difference method (Henson and Heichel, 1984; LaRue and Patterson 1981). Canopy nitrogen of the non-fixing barley crop was subtracted from the canopy nitrogen content of the legumes. The nitrogen in the nonlegume was assumed to come strictly from the soil N pool. Secondly, it was assumed that differences between the growth patterns and root morphology of the nonlegume and legumes were not great enough to negate using this technique.

Statistical Methods

Data was examined statistically with the MSUSTAT statistical package. The analysis of variance, comparison of sample means using Student’s t, and a general linear model were used to examine research results. Comparisons between regression lines were generated using the general linear model. Polynomial constants reported in regression equations were generated using mregress in MSUSTAT.

A relatively simple logistic equation, \(y = \frac{a}{1 + be^{-cx}} \), with \(a, b, \) and \(c \) being constants, generally provides a suitable portrayal of vegetative growth (Milthorpe and Moorby, 1974). This equation was used to fit curves to crop
performance data (means of four replications in all cases). Sigmaplot software (Jandel Scientific, San Rafael, CA) was used for logistic and polynomial curve fitting operations.
Chapter 4

RESULTS AND DISCUSSION

Appraisal of Crop Performance

The 1993 growing season was uncharacteristically cool and wet, with 27 cm of precipitation falling at the research site during the data collection period, May 20 to August 18. In contrast, the 1994 growing season advanced normally, with ample precipitation falling early, and conditions turning hot and dry during June and July. During the 1994 data collection period, May 1 to July 31, 12 cm of precipitation fell. (Graphs of 1993 and 1994 pan evaporation and precipitation can be found in the appendix.)

Stand densities for 1993 and 1994 are reported below (Table 1) for Austrian winterpea (AWP), Indianhead lentil (IHL), George black medic (GBM) and barley (BAR) at high (H) medium (M) and low (L) seeding rates. All species showed a marked drop in stand density at most seeding rates in 1994. This was especially evident in GBM. Heavy barley residues (due to excessive moisture in 1993) impeded proper seed placement of GBM, a small-seeded species, resulting in initially poor stand establishment across all seeding rates. This illustrates the advantage of using large-seeded species.
when it is difficult to maintain proper seeding depth. It should be noted, however, that the high GBM stand density in 1994 is quite near the low stand density of 1993. As will be seen in the following data, GBM was still able to expand its above ground canopy and remain competitive with the other two species, despite this disadvantage. In fact, GBM performed very similarly relative to the other two legume species both years, suggesting that GBM can maintain crop performance with lower stand densities.

Table 1. Stand density in plants/m² for 1993 and 1994 for AWP, IHL, GBM and BAR at three seeding rates.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>133</td>
<td>124</td>
<td>307</td>
<td>212</td>
<td>385</td>
<td>133</td>
<td>177</td>
<td>107</td>
</tr>
<tr>
<td>Med.</td>
<td>101</td>
<td>81</td>
<td>207</td>
<td>136</td>
<td>226</td>
<td>67</td>
<td>130</td>
<td>78</td>
</tr>
<tr>
<td>Low</td>
<td>51</td>
<td>46</td>
<td>87</td>
<td>88</td>
<td>110</td>
<td>46</td>
<td>74</td>
<td>51</td>
</tr>
</tbody>
</table>

Cumulative Evapotranspiration (ET)

Comparisons of cumulative ET between AWP, IHL and GBM at high, medium and low seeding rates, reveal only minor differences (Figs. 1 and 2). Maximum cumulative ET achieved was 26 cm in 1993, and 17 cm in 1994. George black medic consistently had slightly lower ET over time, during both years. Cumulative ET was similar for AWP and IHL, with IHL slightly exceeding AWP in 1993, and AWP being slightly higher in 1994.
Fig. 1. Cumulative ET after emergence in 1993. Comparisons between AWP, IHL and GBM at each seeding rate.
Fig. 2. Cumulative ET after emergence in 1994. Comparisons between AWP, IHL and GBM at each seeding rate.
Within species comparisons of AWP, IHL, and GBM cumulative ET generally did not vary significantly between high, medium, and low seeding rates in 1993 or 1994. This similarity between seeding rates has been explained as follows: Under the lower seeding rates, there is less leaf surface area, therefore, less transpiration, and greater exposure of the soil surface to evaporation. The opposite being true for the higher seeding rates (Loomis, 1983).

There were two minor exceptions to this trend. In 1993, IHL under the low seeding rate used slightly less water than higher seeding rates. In 1994, a similar but still minor separation of curves occurred in AWP.

The 1993 soil profile volume water content data did not reveal any clear depletion trends because of heavy rainfall throughout the growing season.

Analysis of 1994 soil profile volume water content data (Figs. 3, 4 and 5) provide insight into cumulative ET differences between species. During days 5 to 42 after emergence, AWP and IHL clearly had higher depletion of soil water than GBM. Interestingly, during this time, GBM gathered more moisture from the 40 to 80 cm depths than from the surface 40 cm. Based on this and biomass data reported later, it would appear that GBM spent this time in downward development of its root system, while IHL aggressively developed above ground canopy, drawing on moisture closer to the surface to accomplish this. Indianhead lentil drew more
Fig. 3. Soil water content after emergence in 1994. Comparisons between AWP, IHL and GBM at high seeding rate.
Fig. 4. Soil water content after emergence in 1994. Comparisons between AWP, IHL and GBM at medium seeding rate.
Fig. 5. Soil water content after emergence in 1994. Comparisons between AWP, IHL and GBM at low seeding rate.
water out of the surface 50 or 60 cm than did AWP and GBM. Austrian winterpea growth apparently involved both downward root development and canopy growth, thereby drawing water more uniformly from the surface down to 80 cm. After day 42, water depletion proceeded rapidly under GBM, until it was at the same level as the other two species.

In general, more water was drawn from deeper depths under the higher seeding rates, as compared to the low. It would also be expected that a higher percentage of depletion under the low seeding rates in the 0-30 cm depth was partitioned into surface evaporation rather than transpiration (Hanks, 1985).

Percent Canopy Cover

Crop canopy was measured in this study because of its close relationship to ET. When the soil surface is wet, as in 1993, evaporation is a critical component of ET, and the ability of the crop canopy to shade the soil surface can influence the amount of water that is partitioned between evaporation and transpiration. A heavier canopy will shade the soil surface, reduce soil surface temperatures, thus reducing evaporation, and leaving more moisture available for transpiration. When the soil surface is dry, as in 1994, evaporation is not as critical, although a heavier canopy may still reduce transpiration by reducing the amount of radiant heat coming from the soil surface, increasing
Fig. 6. Canopy cover after emergence in 1993. Comparisons between AWP, IHL and GBM at each seeding rate.
Fig. 7. Canopy cover after emergence in 1994. Comparisons between AWP, IHL and GBM at each seeding rate.
Fig. 8. Canopy cover after emergence in 1993. Comparisons between seeding rates for AWP, IHL and GBM.
Fig. 9. Canopy cover after emergence in 1994. Comparisons between seeding rates for AWP, IHL and GBM.
leaf surface temperatures and thus transpiration (Loomis 1983; Ritchie, 1983).

Comparisons of percent canopy cover between species reveal, during both years and over all seeding rates, canopy development for AWP and IHL was similar in area but not pattern, for approximately the first 40 days (Figs. 6 and 7). After this, AWP clearly was the most aggressive species in canopy development.

George black medic had much slower canopy closure early in the growing season, probably using early season metabolites to develop a deep root system instead. By day 40, however, GBM underwent rapid canopy closure, quickly equaling and often exceeding IHL performance.

With adequate moisture in 1993, all species were able to reach almost 100% canopy closure. In 1994, percent canopy ranged from a low of 30% in the low seeding rate of IHL and GBM, to a high of 60% in AWP at the high seeding rate. The geometry of the bare, exposed soil varied between species. The erect growth of IHL resulted in large, uniform blocks of exposed soil between rows; whereas the prostrate and viney growth of AWP and GBM resulted in a mosaic pattern of shaded and exposed soil.

Comparing seeding rates within species reveal that, generally, 1993 and 1994 growth curves are graduated down from high to medium to low seeding rates in all species
Fig. 10. Canopy biomass after emergence in 1993. Comparisons between AWP, IHL and GBM at each seeding rate.
Canopy Biomass (kg/ha)

Days After Emergence

Fig. 11. Canopy biomass after emergence in 1994. Comparisons between AWP, IHL and GBM at each seeding rate.
(Figs. 8 and 9). The exception to this trend occurred in 1993 in AWP and IHL, where high and medium canopy closure was nearly the same.

Above Ground Biomass Production

Comparisons of biomass production between species (Figs. 10 and 11) reveal AWP clearly held an advantage over IHL and GBM. Although AWP and IHL maintained similar production during the early part of the growing season, AWP rapidly began to out-produce IHL at all seeding rates, as the season progressed. This trend became evident about day 60 in 1993, the cool, wet year, but expressed itself about day 40 in 1994, the hot dry year.

As seen here and intimated from water use data presented earlier, GBM had low early season biomass production compared to AWP and IHL. Not until later in the season, when temperatures increased, did it begin to rapidly commence canopy development. By days 60 to 70, GBM was at similar production levels to IHL, but was never able to reach AWP levels.

In 1993, biomass production levels peaked at approximately 14,000 kg/ha for AWP, and 8,750 kg/ha for IHL and GBM, at the medium seeding rate. In 1994, peak production occurred at approximately 4,100 kg/ha (29.3% of 1993 production) for AWP at the high seeding rate, and 3,000 kg/ha (34.3% of 1993 production) for IHL and GBM at medium and high seeding rates respectively.
Fig. 12. Canopy biomass after emergence in 1993. Comparisons between seeding rates for AWP, IHL and GBM.
Fig. 13. Canopy biomass after emergence in 1994. Comparisons between seeding rates for AWP, IHL and GBM.
Seeding rate comparisons within species in 1993 (Figs. 12 and 13) revealed under medium seeding rate, biomass production was similar to or even exceeded that of the high seeding rate, for all three species. The low seeding rate production level was only slightly below the other two. During this excessively cool, wet growing season, AWP had the greatest distribution between seeding rates, while GBM appeared to have the least. The narrowness of the range of performance between seeding rates in 1993 is somewhat surprising. With ample moisture, the high seeding rate should have been able to maintain superior production. Apparently, increased competition for light and nutrients kept production near that of the medium seeding rate. As seen in the canopy closure data above, the low seeding rate was not able to achieve complete canopy closure as rapidly as the other two rates. Because the soil surface was often wet in 1993, more water was likely partitioned to evaporation under the sparser canopy of the low seeding rate. This was one factor which could have held back production levels at the low seeding rates.

In general, for all species in 1994, there was very little difference in biomass production over all seeding rates. After day 60, the medium rate production nearly equaled that of the high rate in AWP, while both medium and low surpassed that of high in IHL and GBM. In 1994, a hot dry year where the soil surface remained relatively dry
throughout the growing season, soil evaporation was not as critical. Having stored soil moisture reserves later in the season eventually gave the medium and low rates an advantage over the high. In the case of GBM, with its presumed deeper rooting system, the low rate was even able to surpass the medium rate at the end of the season.

To generalize, optimum biomass production occurred at the medium seeding rate in all species, during an excessively wet and a relatively dry (normal) growing season.

Total Canopy Nitrogen (N) Accumulation

Species differences become more apparent with canopy N comparisons (Figs. 14 and 15). Both years, AWP had a distinct early season advantage over the other two species, which it maintained for the rest of the season. Canopy N continued to increase in all species at a steady rate in 1993. However, in 1994, IHL canopy N quickly leveled off after approximately day 50, while AWP continued to steadily increase for several more days. Initially, GBM canopy N accumulated slowly, but began to rapidly increase about day 40, exceeding IHL canopy N between day 50 and 60, and approaching that of AWP by the end of the season. The ability of peas to maintain higher canopy N levels than IHL has been reported in other green manure studies. In a recent study in Saskatchewan, which included another variety of field peas (*Pisum sativum* L. 'Trapper') and IHL, field
Fig. 14. Canopy nitrogen accumulation after emergence in 1993. Comparisons between three species at each seeding rate.
Fig. 15. Canopy nitrogen accumulation after emergence in 1994. Comparisons between three species at each seeding rate.
Fig. 16. Canopy nitrogen accumulation after emergence in 1993. Comparisons between seeding rates for AWP, IHL and GBM.
Fig. 17. Canopy nitrogen accumulation after emergence in 1994. Comparisons between seeding rates for AWP, IHL and GBM.
peas had greater dry matter production and canopy N accumulation than did IHL (Townley-Smith et al., 1993).

Peak N production in 1993 occurred at approximately 320 kg/ha for AWP, 240 kg/ha for GBM and 190 kg/ha for IHL at the medium seeding rate. In 1994, peak N production was only approximately 82 kg/ha for AWP and GBM, and 50 kg/ha for IHL at the medium seeding rate.

Since canopy N and biomass production are so closely correlated, within species comparisons of seeding rates show very similar results (Figs. 16 and 17) to biomass data (Figs. 12 and 13). During both years, medium seeding rate canopy N levels equaled and generally exceeded high seeding rates. Low seeding rates had lowest canopy N across all species, even in 1994. High plant populations apparently were able to maintain more canopy N, despite the increasing biomass production in the low seeding rate plots later in the season. In general, maximum canopy N production occurred with the medium seeding rate in all species.

N_2-fixation

Figure 18 illustrates canopy N accumulation by barley in comparison to the three legume species for 1993 and 1994. Using the difference method, N_2-fixation is assumed to be that part of the legume N accumulation at a given time which exceeds the N accumulated by barley. The reader is reminded that the difference method merely provides an estimate of N_2-fixation by legumes and is not totally accurate. High
Fig. 18. Total canopy N accumulated after emergence in 1993 and 1994. Comparisons between AWP, IHL, GBM, and BAR.
levels of NO$_3$-N in the soil are known to inhibit nodulation and/or N$_2$-fixation by legumes. Also, the level of NO$_3$-N which inhibits these processes varies from species to species.

Soils data for 1993 and 1994, are reported in Tables 2 and 3 below. Having been freshly broke out of sod, soil NO$_3$-N was very low at planting in 1993. Although an effort was made to maintain these low levels in the 1994 plot area by planting barley in 1993, NO$_3$-N levels had increased significantly by 1994. Mineralization of soil N was no doubt enhanced by the wet growing season of 1993. Healthy pink nodules were observed by day 15 on the three legume species in 1993, and by day 23 in 1994, indicating that N$_2$-fixation was taking place. Thus, an unknown portion of the N accumulated by the legumes prior to day 40 to 50 probably was derived from N$_2$-fixation. Wright (1993) found that, although both barley and legumes accumulated N from the soil N pool, at the end of the season legumes had taken less N out of the soil pool than had barley. This indicated substantial N$_2$-fixation had occurred.

Table 2. 1993 soil NO$_3$-N, P, K, organic matter, and pH at time of planting.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>NO$_3$-N (mg/kg)</th>
<th>P (mg/kg)</th>
<th>K (mg/kg)</th>
<th>O.M. (%)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 15</td>
<td>1.73</td>
<td>5.33</td>
<td>421</td>
<td>1.53</td>
<td>8.5</td>
</tr>
<tr>
<td>15 - 30</td>
<td>0.63</td>
<td>2.47</td>
<td>367</td>
<td>0.97</td>
<td>8.5</td>
</tr>
<tr>
<td>30 - 45</td>
<td>0.30</td>
<td>1.3</td>
<td>372</td>
<td>0.78</td>
<td>8.7</td>
</tr>
</tbody>
</table>
Table 3. 1994 soil NO$_3$-N, P, K and organic matter at time of emergence.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>NO$_3$-N (mg/kg)</th>
<th>P (mg/kg)</th>
<th>K (mg/kg)</th>
<th>O.M. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 15</td>
<td>15.5</td>
<td>11.7</td>
<td>356</td>
<td>1.5</td>
</tr>
<tr>
<td>15 - 30</td>
<td>9.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30 - 45</td>
<td>4.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Differences between 1993 and 1994 barley canopy N (Fig. 19) are a little less dramatic than were the differences for the legume canopy N accumulation curves. This is likely due to earlier seed set and maturity in barley, as compared with the legumes. However, had the 1994 soil NO$_3$-N remained at the same low level as in 1993, 1994 barley canopy N levels may have been even lower.

In general, in 1993, legume canopy N exceeded that of barley around day 50 to 60 (Fig. 20), with the earliest instance around day 50, noted with the AWP medium seeding rate. Negative values were considered to be zero. Differences between legume performance are the same as those discussed in the previous section on legume canopy N accumulation. Peak performance occurred at the medium seeding rate for all species, where AWP led with approximately 225 kg/ha, GBM at almost 150 kg/ha and IHL at 100 kg/ha.
Fig. 19. Cumulative ET, biomass and canopy N accumulation after emergence for barley in 1993 and 1994.
Fig. 20. N_2-fixation after emergence in 1993. Comparisons between AWP, IHL, and GBM at each seeding rate.
Fig. 21. N_2-fixation after emergence in 1994. Comparison between AWP and GBM at each seeding rate.
In 1994, (Fig. 21) legume canopy N exceeded barley N between day 40 and 50. Performance was very similar for all seeding rates in AWP and GBM, and reached a plateau of only 25 kg/ha. Indianhead lentil had very similar performance to barley, but was never able to exceed barley levels in 1994.

Although there are inherent problems with using the difference method to calculate N$_2$-fixation, it does give a graphic illustration of the advantages of using a legume crop for green manure, rather than one that is not able to fix nitrogen.

Water Use Efficiency

In Terms of Cumulative ET vs. Percent Canopy Cover

Data shown here and in following water use efficiency (WUE) comparisons were fit to polynomial equations which were statistically compared for coincidence. Regressions displayed in the following figures which have the same letter are considered coincident at the p=0.05 level. In general, in 1993 (Fig. 22) AWP and GBM had similar WUE. Indianhead lentil usually had lowest WUE. One explanation for this may be that IHL has a more open upright canopy, as compared to the more dense, prostrate growth habit of AWP and GBM. Thus, the IHL canopy allows for greater evaporation at all seeding rates. Biederbeck and associates (1993) came to a similar conclusion in a green manure study which included black lentil (*Lens culinaris* Medikus) and a
Fig. 22. Cumulative ET vs. canopy cover regressions for 1993. Comparisons of AWP, IHL and GBM at each seeding rate.
Fig. 23. Cumulative ET vs. canopy cover regressions for 1994. Comparisons of AWP, IHL and GBM at each seeding rate.
Fig. 24. Cumulative ET vs. canopy cover regressions for 1993. Comparisons between seeding rates for AWP, IHL and GBM.
Fig. 25. Cumulative ET vs. canopy cover regressions for 1994. Comparisons between seeding rates for AWP, IHL and GBM.
feedpea (*Pisum sativum* L.). They measured stem length and canopy height, and calculated the degree of decumbency. Their conclusion was that the lentil has an erect growth habit, while the feedpea has a more prostrate growth habit. This allowed the feedpea to provide more ground cover, and thus more soil protection.

During the first 20 days after emergence, GBM appeared to have lower WUE due to greater evaporation, however, this quickly changed after GBM commenced canopy growth.

The same trends were true in 1994, (Fig. 23). However, distinctions were not quite as obvious, possibly because evaporation was not as critical. Statistically, there was no advantage between AWP and GBM at high and low seeding rates, but AWP had higher WUE at low densities.

It was postulated that higher stand densities should have higher WUE. In terms of canopy cover, this often appears to be true for all species between the high and low seeding rates and often the medium and low rates (Figs. 24 and 25). The low seeding rate appeared to have left more soil exposed and had higher evaporation.

Medium and high seeding rates were often coincident at the 5% level. If there was similar evaporation for both seeding rates, one explanation for this may be that increased seedling mortality in the high rate caused population levels to decrease to near those of the medium rate, hence, transpiration was similar.
Fig. 26. Canopy biomass accumulation vs. ET regressions for 1993. Comparisons of AWP, IHL and GBM at each seeding rate.
Fig. 27. Canopy biomass accumulation vs. ET regressions for 1994. Comparisons of AWP, IHL and GBM at each seeding rate.
In Terms of Biomass vs. ET

Austrian winterpea had highest WUE during both years (Figs. 26 and 27). The only exception to this occurring in the low seeding rate in 1993, where there was very little distinction between the three species and GBM eventually led in efficiency.

In 1993, differences between species did not become apparent until after approximately 15 cm of water use. In 1994, the growth cycle was almost complete by this point and there appeared to be very little distinction between the three species. However, AWP curves were generally not coincident at the 5% level with GBM and IHL curves.

Biederbeck and Bouman (1994) found similar results using a feed pea (*Pisum sativum* L.) and black lentil (*Lens culinaris* Medikus). The feed pea used water more efficiently in terms of dry matter production than did the black lentil. On the other hand, Wright (1993) found there was no significant difference in WUE in terms of biomass production between AWP, IHL and GBM in a wet year. However, in a dry year AWP and IHL had similar WUE, but significantly greater than GBM.

Within species comparisons between seeding rates (Figs. 28 and 29) reveal no distinctive trends between 1993 and 1994. In 1993, the medium rate had highest WUE for AWP and GBM, with IHL showing no difference between rates.
Fig. 28. Canopy biomass accumulation vs. ET regressions for 1993. Comparisons between seeding rates for AWP, IHL and GBM.
Fig. 29. Canopy biomass accumulation vs. ET regressions for 1994. Comparisons between seeding rates for AWP, IHL and GBM.
After producing the largest gradients between seeding rates in 1993, no coincidence between rates was detected for AWP in 1994. For IHL, slight differences were detected with greatest WUE occurring in the high seeding rate and, surprisingly, lowest occurring in the medium seeding rate. Only GBM showed any consistency between years, with the medium seeding rate being detected as having the highest WUE and the high seeding rate the lowest.

In Terms of Total Canopy N vs. ET

During both 1993 and 1994, AWP clearly had the highest WUE of the three species (Figs. 30 and 31). In 1993, GBM curves were shown to be coincident with AWP curves at the 5% level. Indianhead lentil had significantly lower WUE than the other two species.

In 1994, this trend changed. Austrian winterpea still had significantly higher WUE at all three seeding rates, whereas the GBM WUE at the high seeding rate was less than that of AWP, but higher than that of IHL. At the medium and low seeding rates, the WUE curves for GBM and IHL were coincident at the 5% level. The detected differences in WUE noted above were slight in 1994 when compared to those found in 1993.

In a wet year, Wright (1993) reported the same trend with AWP and GBM having similar WUE in terms of canopy N, and significantly higher than IHL. However, in a hot dry
Fig. 30. Canopy nitrogen accumulation vs. ET regressions for 1993. Comparisons of AWP, IHL and GBM at each seeding rate.
Fig. 31. Canopy nitrogen accumulation vs. ET regressions for 1994. Comparisons of AWP, IHL and GBM at each seeding rate.
Curve Fit
H: \(y = -6.5 + 3.5x + 0.3x^2 \), \(R^2 = 0.97 \)
M: \(y = -2.7 + 3.0x + 0.3x^2 \), \(R^2 = 0.99 \)
L: \(y = -0.5 + 0.7x + 0.34x^2 \), \(R^2 = 0.99 \)

Paired Comparisons (p=0.05)
H: AB
M: A
L: B

Curve Fit
H: \(y = 7.4 + 0.4x + 0.2x^2 \), \(R^2 = 0.99 \)
M: \(y = 6.0 + 0.25x + 0.26x^2 \), \(R^2 = 0.99 \)
L: \(y = -1.6 + 1.7x + 0.2x^2 \), \(R^2 = 0.97 \)

Paired Comparisons (p=0.05)
H: A
M: A
L: A

Curve Fit
H: \(y = -17.8 + 3.0x + 0.3x^2 \), \(R^2 = 0.97 \)
M: \(y = -11.6 + 1.0x + 0.4x^2 \), \(R^2 = 0.97 \)
L: \(y = -26.1 + 5.3x + 0.2x^2 \), \(R^2 = 0.94 \)

Paired Comparisons (p=0.05)
H: A
M: A
L: A

Fig. 32. Canopy nitrogen accumulation vs. ET regressions for 1993. Comparisons between seeding rates for AWP, IHL and GBM.
Fig. 33. Canopy nitrogen accumulation vs. ET regressions for 1994. Comparisons between seeding rates for AWP, IHL and GBM.
year, IHL and AWP had highest WUE with GBM being significantly lower.

Comparisons between seeding rates within species (Figs. 32 and 33) does not conclusively confirm the theory that higher stand densities will have higher WUE. In 1993, only AWP showed any differences between seeding rates. The medium seeding rate led in WUE over the low rate. With ample moisture in 1993, competition for light and nutrients in the high rate may have resulted in smaller individual plants. This is consistent with the WUE in terms of biomass accumulation shown in Fig. 28. Though this trend was not detected statistically in the other two species, it would appear that their curves were beginning to separate in this same fashion by the end of the season.

In 1994, there was even less variation between species. For AWP, the low rate was detected as having the highest WUE. In a dry year, this would be expected since evaporation is not as critical as are stored moisture reserves. This trend does not appear to carry through to the other two species. In the case of IHL, the high rate was not coincident with the other two rates, while there was no difference detected between rates in GBM.

In Terms of N₂-fixation vs. Cumulative ET

Comparisons between species (Figs. 34 and 35) reveal that in 1993, AWP and GBM had almost identical WUE at all
Fig. 34. N_2-fixation vs. cumulative ET in 1993. Comparisons between AWP, IHL, and GBM at each seeding rate.
Fig. 35. N_2-fixation vs. cumulative ET in 1994. Comparisons between AWP and GBM at each seeding rate.
Fig. 36. N_2-fixation vs. cumulative ET in 1993. Comparisons between seeding rates for AWP, IHL, and GBM.
Curve Fit

H: \(y = -6.43 + 1.14x + 0.07x^2 \), \(R^2 = 0.93 \)
M: \(y = 7.15 - 2.79x + 0.22x^2 \), \(R^2 = 0.94 \)
L: \(y = -7.03 + 2.37x - 0.01x^2 \), \(R^2 = 0.94 \)

Paired Comparisons (p=0.05)
H: A
M: B
L: A

Curve Fit

H: \(y = 0.42 - 0.80x + 0.13x^2 \), \(R^2 = 0.93 \)
M: \(y = 1.36 - 1.08x + 0.14x^2 \), \(R^2 = 0.96 \)
L: \(y = 4.20 - 1.65x + 0.13x^2 \), \(R^2 = 0.82 \)

Paired Comparisons (p=0.05)
H: A
M: A
L: B

Fig. 37. \(N_2 \)-fixation vs. cumulative ET in 1994. Comparisons between seeding rates for AWP and GBM.
seeding rates. Water use efficiency in IHL was substantially below AWP and GBM levels.

In 1994, there were slight but detectable differences at the 5% level between AWP and GBM at high and low seeding rates only. Wright (1993) found, in a year of low transpirational demand, AWP to have higher WUE in terms of \(\text{N}_2 \)-fixation than GBM, followed by IHL. However, in a year of higher transpirational demand, he found that GBM instead of IHL was not able to exceed accumulated canopy N levels in spring wheat.

Comparisons of seeding rates within species (Figs. 36 and 37) in 1993 reveal in all three species WUE was significantly different at all three seeding rates. Highest WUE occurring in the medium seeding rate, and lowest in the low seeding rate.

This trend did not carry through to 1994. In AWP, the medium seeding rate had lowest WUE, while there was no detectable difference between the high and low seeding rates. In GBM, high and medium seeding rates had similar WUE, detectably above the low seeding rate at the 5% level.
Chapter 5

APPRAISAL OF METHODS FOR MANAGEMENT OF GREEN MANURE

Plant Height

An important aspect of this study was to explore green manure management methods which would be of practical use to producers and agriculture consultants (Sims, 1989). One method considered was using plant height to predict cumulative ET, biomass and canopy N accumulation. Data from 1993, 1994 and a composite of 93/94 data was fit to the equation $y=a+bx$, to model these relationships.

Regressions for plant height as a predictor of cumulative ET showed good fit both years (Figs. 38 and 39) for all species at all seeding rates. Indianhead lentil showed greatest fit, with most R^2 values equaling 0.99. Austrian winterpea R^2 values ranged from 0.96 to 0.98. Lowest fit was found in GBM, with values ranging from 0.88 to 0.97.

Differences in rainfall between 1993 and 1994 caused plant height to vary widely between years. Austrian winterpea grew to 150 cm in height in 1993, using 24 cm of water, but only reached 60 cm in 1994, using 16 cm of water. The other two species also varied in height but not as
Fig. 38. Cumulative ET vs. plant height regressions in 1993 for AWP, IHL, and GBM at each seeding rate.
Fig. 39. Cumulative ET vs. plant height regressions in 1994 for AWP, IHL, and GBM at each seeding rate.
Fig. 40. Cumulative ET vs. plant height regressions for 1993/1994 for AWP, IHL, and GBM at each seeding rate.
dramatically. Because the cool wet year of 1993 was extremely unusual, whereas 1994 had average precipitation and temperatures, it may not be advisable to use the composite regression of 93/94 (Fig. 40). Partitioning of water between evaporation and transpiration during the two unlike years appeared to vary too widely. The R^2 values of 0.98 for IHL were still quite high. However, AWP values dropped to a range of 0.84 to 0.93, and GBM had the lowest values, ranging from 0.81 to 0.85.

It is interesting to note Wright’s (1993) pooled regression constants for ET as a function of plant height. For AWP $y=1.16+0.19x$, $R^2=0.85$. For IHL $y=-1.04+0.46x$, $R^2=0.96$. For GBM $y=1.46+0.52x$, $R^2=0.92$. Slopes are quite similar in all cases to those found in this study, and R^2 values show similar trends. This suggests that plant height may be a good predictor of cumulative ET across a variety of soil groups and climates.

Regression lines modeling plant height as a predictor of biomass production (Figs. 41 and 42) were fit with good results. Once again, IHL showed highest fit with R^2 values ranging from 0.96 to 0.99. Values for AWP ranged from 0.91 to 0.96, and GBM values ranged from 0.82 to 0.99.

Composite 93/94 R^2 values for AWP and GBM, in some cases, exceeded those for individual years (Fig. 43). This suggests that plant height is a good predictor of biomass in these two species despite climatic differences. The slope
Fig. 41. Biomass vs. plant height regressions for 1993, for AWP, IHL, and GBM at each seeding rate.
Fig. 42. Biomass vs. plant height regressions for 1994, for AWP, IHL, and GBM at each seeding rate.
Fig. 43. Biomass vs. plant height regressions for 1993/1994, for AWP, IHL, and GBM at each seeding rate.
for AWP at the medium seeding rate is almost identical for individual years. The AWP composite R^2 values reflect this relationship, ranging from 0.92 to 0.95. Highest composite values were in GBM, ranging from 0.89 to 0.97. The IHL values dropped slightly to a range of 0.94 to 0.95.

Using plant height as a predictor of canopy N accumulation (Figs. 44 and 45) once again produced relatively good results. Data for AWP fit well both years, with R^2 values generally ranging from 0.97 to 0.99. The IHL data fit better in 1993 with values of 0.97 as compared to the range found in the 1994 data of 0.90 to 0.93. The GBM data had lowest fit, with a range of 0.86 to 0.87.

Since canopy N is so closely correlated with biomass, it is not surprising that R^2 values in the composite 93/94 graphs (Fig. 46) are quite good. This is especially true in AWP where values range from 0.94 to 0.96. The GBM values of 0.95 and 0.94 for the medium and high seeding rates respectively, were also quite good. Indianhead lentil showed a marked reduction in quality of fit, with values dropping to a range of 0.81 to 0.89. The compact growth habit of IHL may reduce the precision of using plant height as a predictor of canopy N accumulation.

Growth Stage

Another method of green manure management is to use growth stage as a predictor of cumulative ET, biomass and
Fig. 44. Canopy N accumulation vs. plant height regressions for 1993, for AWP, IHL, and GBM at each seeding rate.
Fig. 45. Canopy N accumulation vs. plant height regressions for 1994, for AWP, IHL, and GBM at each seeding rate.
Fig. 46. Canopy N accumulation vs. plant height regressions for 1993/1994, for AWP, IHL, and GBM at each seeding rate.
canopy N accumulation. Results for AWP, IHL and GBM are reported for both 1993 and 1994 (Figs. 47 through 52). It should be noted that scales on the y axes of these graphs vary, so that distinctions can be made between seeding rates in the 1994 data. Curve fit information for data displayed here is the same as that reported in previous sections.

In general, various stages of growth occurred earlier after emergence in 1994 than in 1993, for all species. Despite this, there may be a good correlation between certain growth stages and cumulative ET. For example, at the time of the first flower in 1993, AWP at medium seeding rate had used approx. 11 cm of water. In 1994, approx. 10 cm had been used at the time of first flower. Comparisons between later growth stages do not show as close a correlation of cumulative water use between years.

By the time of the first flower in 1993, IHL had used approx. 16.5 cm of water at the medium seeding rate. In 1994, only approx. 11 cm had been used. Growth stage may not be as good a predictor of cumulative ET for IHL.

In 1993, GBM had a cumulative ET of approx. 6 cm at the time of first flower and 10 cm by the time of seed set. In 1994, almost 6 cm of water had been consumed by the time of first flower and approx. 10 cm by the time of seed set. It would appear that growth stage may also be a good predictor of cumulative ET in GBM, despite differences in climatic conditions. Actual water use is also a function of soil
texture, therefore, it is uncertain whether values from this study would apply across all soil groups. More research would need to be conducted before absolute values could be determined for various growth stages.

Using growth stage to predict biomass and canopy N does not show as close a relationship between years as in the case of cumulative ET. This is true for all species, not surprising in view of the fact that climate has a large effect on partitioning of water between evaporation and transpiration, hence biomass production.
Fig. 47. Biomass, ET and N accumulation after emergence for AWP at each seeding rate in 1993, by growth stage.
Fig. 48. Biomass, ET and N accumulation after emergence for AWP at each seeding rate in 1994, by growth stage.
Fig. 49. Biomass, ET and N accumulation after emergence for IHL at each seeding rate in 1993, by growth stage.
Fig. 50. Biomass, ET and N accumulation after emergence for IHL at each seeding rate in 1994, by growth stage.
Fig. 51. Biomass, ET and N accumulation after emergence for GBM at each seeding rate in 1993, by growth stage.
Fig. 52. Biomass, ET and N accumulation after emergence for GBM at each seeding rate in 1994, by growth stage.
Chapter 6

SUMMARY AND CONCLUSIONS

The objective of this study was to determine the WUE of three legume species, Austrian winterpea, Indianhead lentil, and George black medic in terms of dry matter production, canopy N accumulation and N$_2$-fixation, as a function of stand density. It was hypothesized that increasing stand density from low to medium to high would more quickly achieve canopy closure, and therefore increase WUE. Measurements were taken on field plots at Logan, Montana over the 1993 and 1994 growing seasons. From these data, WUE regressions were constructed, comparing all species at each seeding rate. In addition, plant height data was used to construct regressions, which would predict cumulative ET, dry matter production and canopy N accumulation. Thirdly, growth stage data was used to generate curves which would predict these three elements.

Across both years, AWP consistently maintained highest WUE in terms of percent canopy closure, biomass production, canopy N accumulation and N$_2$-fixation. As reported previously, AWP and field peas in general, have consistently been ranked as the green manure legume with the highest water use efficiency. George black medic often had similar
WUE to AWP, in this study, and IHL consistently exhibited lowest WUE of the three species. Differences between species were quite apparent during the cool wet year of 1993, but smaller during the more average year of 1994.

This study was a culmination of several years of research devoted to examining the effects of integrating green manure into crop-fallow systems in semi-arid areas. Originally, many hundreds of legume species were screened for use as green manure crops. Promising species were then grown in rotation with small grains. Green manure was shown to substantially increase subsequent barley grain yield and protein content. In other studies, green manure crops were terminated after using a previously determined amount of water, and subsequent small grain yields were recorded. Results from these studies using IHL, showed that intermediate water use (4 to 6 inches) produced highest grain yields, significantly above yields produced under a classic fallow system (Sims and Slinkard, 1991). The results of the current study, reported in this thesis, serve to further refine the above mentioned research studies. Results enable producers to determine which legume species provides the greatest amount of biomass and canopy N with the least investment of water. Although AWP did display higher WUE than other species, other criteria will influence species selection by producers. As suggested by other researchers, factors such as seed cost and a desire for only
intermediate N production may make certain species such as IHL more desirable for use in a green manure rotation, despite having lower WUE than some of the other legume species (Townley-Smith et al. 1993).

No consistent trends emerged in within species comparisons of WUE at high, medium and low seeding rates. During both years, the medium seeding rate often emerged as having highest WUE, with some exceptions. It would appear that the medium seeding rate generally has optimum potential when these three species are used as green manure.

Plant height regressions exhibit good correlation with cumulative ET, biomass and canopy N accumulation in all three species. It is exciting to see the similarity between regression equations generated in this study and those from Wright’s research (1993). Regression slopes were almost identical, despite broad differences in climate and soils. A simple management tool such as these plant height regressions will be very valuable to producers and consultants for management of green manure crops.

There was good correlation between certain growth stages for AWP and GBM in predicting cumulative ET, but not for IHL. More research needs to be conducted to determine if these correlations will hold over a variety of climates and soil groups. Growth stage was not a good predictor of biomass or canopy N accumulation in any of the three species.
LITERATURE CITED

APPENDIX

Fig. 53. Cum. pan evaporation and precipitation for 1993/1994.