Synthesis of novel homochiral phosphine ligands
by Meiqun Jiang

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry
Montana State University
© Copyright by Meiqun Jiang (1994)

Abstract:
Chiral phosphine ligands are of key importance in development of transition-metal catalysts for enantioselective reactions. Yet, despite the critical importance of P-chiral phosphines, the methodology for their enantioselective synthesis in high enantiomeric excess and without resolution or separation of diastereomers remains relatively undeveloped. We describe herein an effective enantioselective synthesis of chiral tertiary phosphines. This methodology shows promise for the synthesis of a wide range of monophosphines and diphosphines of high enantiomeric purity and could be useful for the asymmetric reactions,
SYNTHESIS OF NOVEL HOMOCHIRAL PHOSPHINE LIGANDS

by

Meiqun Jiang

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry

MONTANA STATE UNIVERSITY
Bozeman, Montana
April 1994
APPROVAL

of a thesis submitted by
Meiqun Jiang

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

July 21, 1994
Date

Chairperson, Graduate Committee

Approved for the Major Department

8/3/94
Date

Head, Major Department

Approved for the College of Graduate Studies

8/5/94
Date

Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder.

Signature Meiyun Jiang
Date July 18, 1994
ACKNOWLEDGMENTS

I wish to express my sincere gratitude to the following:

Dr. Tom Livinghouse, for his suggestions, guidance, and friendship while serving as my research advisor.

Dr. Arnold C. Craig and Dr. Martin Teintze, for their suggestions and assistance while serving on my graduate committee.

My close friends and fellow graduate students in Livinghouse's Group, whose friendship and encouragement helped me to finish my work.

My family, for their support and encouragement throughout my graduate work in Montana State University.

Department of Chemistry and Biochemistry, for providing me with a graduate teaching assistantship.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STATEMENT OF PERMISSION TO USE</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xvii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Enantioselective Catalysis</td>
<td>1</td>
</tr>
<tr>
<td>Chiral Phosphine Ligands</td>
<td>5</td>
</tr>
<tr>
<td>A. Monophosphines</td>
<td>8</td>
</tr>
<tr>
<td>A1. Monophosphines with a Chiral Side Chain</td>
<td>8</td>
</tr>
<tr>
<td>A2. Monophosphines with an Asymmetric Phosphorus Center</td>
<td>9</td>
</tr>
<tr>
<td>B. Bidentate Phosphines</td>
<td>9</td>
</tr>
<tr>
<td>Preparation of Chiral Phosphines</td>
<td>11</td>
</tr>
<tr>
<td>A. Monophosphines</td>
<td>11</td>
</tr>
<tr>
<td>A1. Monophosphines with a Chiral Side Chain</td>
<td>11</td>
</tr>
<tr>
<td>A2. Monophosphines with an Asymmetric Phosphorus Center</td>
<td>11</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS -- Continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electrolytic Hydrogenolysis of Chiral Phosphonium Salts</td>
<td>12</td>
</tr>
<tr>
<td>2. Reduction of Phosphine Oxides</td>
<td>12</td>
</tr>
<tr>
<td>3. Displacement of Diheterocycle Phosphines (Oxazaphospholidine, Oxaphosphorinane)</td>
<td>17</td>
</tr>
<tr>
<td>B. Diphosphines with a Chiral Group Connecting Two Achiral Phosphorus Atoms</td>
<td>21</td>
</tr>
<tr>
<td>C. Diphosphines with Chirality on Phosphorus</td>
<td>22</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSIONS</td>
<td>24</td>
</tr>
<tr>
<td>Preparation of Homochiral Oxazaphospholidine Boranes</td>
<td>24</td>
</tr>
<tr>
<td>Utilization of Oxazaphospholidine Borane Complexes in the Synthesis of Aminophosphine Boranes</td>
<td>28</td>
</tr>
<tr>
<td>Utilization of Aminophosphine Borane Complexes in the Synthesis of Asymmetric Phosphine Derivatives</td>
<td>33</td>
</tr>
<tr>
<td>A. Preparation of Phosphinite Borane Complexes</td>
<td>33</td>
</tr>
<tr>
<td>B. Preparation of Fluorophosphine Borane Complexes</td>
<td>35</td>
</tr>
<tr>
<td>C. Preparation of Thiophosphines and Thiophosphine boranes</td>
<td>40</td>
</tr>
<tr>
<td>Preparation of Homochiral Monophosphine Boranes</td>
<td>43</td>
</tr>
<tr>
<td>Preparation of Homochiral Diphosphine Borane Complexes</td>
<td>46</td>
</tr>
<tr>
<td>EXPERIMENTIAL</td>
<td>50</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>78</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>79</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>85</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conventional methods of making the chiral molecules</td>
<td>4</td>
</tr>
<tr>
<td>2. Chiral Schiff base-Cu(II) complex</td>
<td>6</td>
</tr>
<tr>
<td>3. Synthesis of (-)-menthol using the BINAP</td>
<td>7</td>
</tr>
<tr>
<td>4. Asymmetric hydrogenation of olefins by Rh-BINAP</td>
<td>8</td>
</tr>
<tr>
<td>5. Main types of chiral monophosphines</td>
<td>8</td>
</tr>
<tr>
<td>6. Route to monophosphines with a chiral side chain</td>
<td>11</td>
</tr>
<tr>
<td>7. Electrochemical preparation of chiral phosphines</td>
<td>12</td>
</tr>
<tr>
<td>8. Synthesis of chiral phosphines by Mislow and coworkers</td>
<td>13</td>
</tr>
<tr>
<td>9. Synthesis of phosphine oxides by Pietrusiewics and Imamoto</td>
<td>14</td>
</tr>
<tr>
<td>10. Synthesis of phosphinates by Koizumi and Coll</td>
<td>15</td>
</tr>
<tr>
<td>11. Synthesis of phosphate borane complexes</td>
<td>17</td>
</tr>
<tr>
<td>12. Synthesis of chiral phosphine oxides by Inch and Coll</td>
<td>17</td>
</tr>
<tr>
<td>13. Synthesis of chiral phosphates from oxazaphospholidines</td>
<td>18</td>
</tr>
<tr>
<td>14. Synthesis of chiral phosphine oxides by Juge and Brown</td>
<td>19</td>
</tr>
<tr>
<td>15. Synthesis of chiral phosphine ligands by Corey</td>
<td>20</td>
</tr>
<tr>
<td>16. Preparation of diphosphines with chiral carbon backbone</td>
<td>21</td>
</tr>
<tr>
<td>17. Preparation of diphosphine ligands by oxidative coupling</td>
<td>22</td>
</tr>
<tr>
<td>18. Industrial use of Rh-DIPAMP to make the (S)-DOPA</td>
<td>23</td>
</tr>
<tr>
<td>19. Preparation of oxazaphospholidine boranes by Juge</td>
<td>25</td>
</tr>
<tr>
<td>20. Formation of the polar by-products</td>
<td>25</td>
</tr>
<tr>
<td>21. Preparation of oxazaphospholidine boranes</td>
<td>26</td>
</tr>
<tr>
<td>Scheme</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>22.</td>
<td>Preparation of aminophosphine borane complexes</td>
</tr>
<tr>
<td>23.</td>
<td>Mechanism for P-C bond formation</td>
</tr>
<tr>
<td>24.</td>
<td>Acid alcoholysis of aminophosphine boranes</td>
</tr>
<tr>
<td>25.</td>
<td>Mechanism for the alcoholysis of aminophosphine boranes</td>
</tr>
<tr>
<td>26.</td>
<td>Preparation of fluorophosphine borane complexes</td>
</tr>
<tr>
<td>27.</td>
<td>Reaction of BF₃·OEt₂ with F⁻</td>
</tr>
<tr>
<td>28.</td>
<td>Proposed mechanism for hydrofluorination</td>
</tr>
<tr>
<td>29.</td>
<td>Preparation of thiophosphines and thiophosphine boranes</td>
</tr>
<tr>
<td>30.</td>
<td>Formation of the thiophosphines</td>
</tr>
<tr>
<td>31.</td>
<td>Formation of thiophosphines in Lewis acid (BF₃·OEt₂)</td>
</tr>
<tr>
<td>32.</td>
<td>Preparation of monophosphine boranes from phosphinite boranes</td>
</tr>
<tr>
<td>33.</td>
<td>Competitive reactions for the reaction of RLi with phosphinite boranes</td>
</tr>
<tr>
<td>34.</td>
<td>Reactions of fluorophosphine boranes with organometallic reagents</td>
</tr>
<tr>
<td>35.</td>
<td>Coupling reactions of the monophosphine boranes</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Isolated yields and melting points of oxazaphospholidine derivatives</td>
<td>27</td>
</tr>
<tr>
<td>2.</td>
<td>Results and conditions for preparation of aminophosphine boranes</td>
<td>29</td>
</tr>
<tr>
<td>3.</td>
<td>Results and conditions of the acid alcoholysis</td>
<td>34</td>
</tr>
<tr>
<td>4.</td>
<td>Results and conditions for hydrofluorination</td>
<td>37</td>
</tr>
<tr>
<td>5.</td>
<td>Results and conditions for reaction of aminophosphine boranes with ethanethiol</td>
<td>42</td>
</tr>
<tr>
<td>6.</td>
<td>Results and conditions for reaction of phosphinite boranes with organometallic reagents</td>
<td>44</td>
</tr>
<tr>
<td>7.</td>
<td>Results and conditions for reaction of fluorophosphine boranes with organometallic reagents</td>
<td>46</td>
</tr>
<tr>
<td>8.</td>
<td>Results of coupling reactions of the monophosphine boranes</td>
<td>49</td>
</tr>
<tr>
<td>9.</td>
<td>Solvent and Reagent Purification</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1H NMR of aminophosphine borane complex (49)</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>HPLC analysis of aminophosphine borane complex (49)</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>X-ray structure of aminophosphine borane</td>
<td>31</td>
</tr>
<tr>
<td>4.</td>
<td>HPLC analysis of the phosphinite borane (49)</td>
<td>34</td>
</tr>
<tr>
<td>5.</td>
<td>HPLC analysis of the hydrofluorination reaction</td>
<td>38</td>
</tr>
<tr>
<td>6.</td>
<td>1H NMR of the meso and optically pure diphosphine boranes</td>
<td>48</td>
</tr>
<tr>
<td>7.</td>
<td>1H NMR Spectrum of (2R, 4S, 5R)-2-(2-trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)</td>
<td>86</td>
</tr>
<tr>
<td>8.</td>
<td>13C NMR Spectrum of (2R, 4S, 5R)-2-(2-trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)</td>
<td>87</td>
</tr>
<tr>
<td>9.</td>
<td>31P NMR Spectrum of (2R, 4S, 5R)-2-(2-trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)</td>
<td>88</td>
</tr>
<tr>
<td>10.</td>
<td>1H NMR Spectrum of (2R, 4S, 5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)</td>
<td>89</td>
</tr>
<tr>
<td>11.</td>
<td>13C NMR Spectrum of (2R, 4S, 5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)</td>
<td>90</td>
</tr>
<tr>
<td>12.</td>
<td>31P NMR Spectrum of (2R, 4S, 5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)</td>
<td>91</td>
</tr>
<tr>
<td>13.</td>
<td>1H NMR Spectrum of (2R, 4S, 5R)-2-[2-(5-methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (46)</td>
<td>92</td>
</tr>
<tr>
<td>14.</td>
<td>13C NMR Spectrum of (2R, 4S, 5R)-2-[2-(5-methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (46)</td>
<td>93</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>15.</td>
<td>31P NMR Spectrum of $(2R, 4S, 5R)$-2-[2-(5-methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (46)</td>
<td>94</td>
</tr>
<tr>
<td>16.</td>
<td>1H NMR Spectrum of $(2R, 4S, 5R)$-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)</td>
<td>95</td>
</tr>
<tr>
<td>17.</td>
<td>13C NMR Spectrum of $(2R, 4S, 5R)$-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)</td>
<td>96</td>
</tr>
<tr>
<td>18.</td>
<td>31P NMR Spectrum of $(2R, 4S, 5R)$-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)</td>
<td>97</td>
</tr>
<tr>
<td>19.</td>
<td>1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino- methyl-(2-trifluoromethylphenyl)-phosphine borane (49)</td>
<td>98</td>
</tr>
<tr>
<td>20.</td>
<td>13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino- methyl-(2-trifluoromethylphenyl)-phosphine borane (49)</td>
<td>99</td>
</tr>
<tr>
<td>21.</td>
<td>31P NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino- methyl-(2-trifluoromethylphenyl)-phosphine borane (49)</td>
<td>100</td>
</tr>
<tr>
<td>22.</td>
<td>1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino-phenyl-(2-trifluoromethylphenyl)-phosphine borane (50)</td>
<td>101</td>
</tr>
<tr>
<td>23.</td>
<td>13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino-phenyl-(2-trifluoromethylphenyl)-phosphine borane (50)</td>
<td>102</td>
</tr>
<tr>
<td>24.</td>
<td>31P NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino-phenyl-(2-trifluoromethylphenyl)-phosphine borane (50)</td>
<td>103</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>25.</td>
<td>1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(4-methoxyphenyl)-methyl-phosphine borane (52).</td>
<td>104</td>
</tr>
<tr>
<td>26.</td>
<td>13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(4-methoxyphenyl)-methyl-phosphine borane (52).</td>
<td>105</td>
</tr>
<tr>
<td>27.</td>
<td>31P NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(4-methoxyphenyl)-methyl-phosphine borane (52).</td>
<td>106</td>
</tr>
<tr>
<td>28.</td>
<td>1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-methyl-phenyl-phosphine borane (53).</td>
<td>107</td>
</tr>
<tr>
<td>29.</td>
<td>13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-methyl-phenyl-phosphine borane (53).</td>
<td>108</td>
</tr>
<tr>
<td>30.</td>
<td>31P NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-methyl-phenyl-phosphine borane (53).</td>
<td>109</td>
</tr>
<tr>
<td>31.</td>
<td>1H NMR Spectrum of (Sp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(2-methoxyphenyl)-phenyl-phosphine borane (54).</td>
<td>110</td>
</tr>
<tr>
<td>32.</td>
<td>13C NMR Spectrum of (Sp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(2-methoxyphenyl)-phenyl-phosphine borane (54).</td>
<td>111</td>
</tr>
<tr>
<td>33.</td>
<td>31P NMR Spectrum of (Sp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(2-methoxyphenyl)-phenyl-phosphine borane (54).</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF FIGURES--Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.</td>
<td>1H NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)methylphosphinite borane (58)</td>
<td>113</td>
</tr>
<tr>
<td>35.</td>
<td>13C NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)methylphosphinite borane (58)</td>
<td>114</td>
</tr>
<tr>
<td>36.</td>
<td>31P NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)methylphosphinite borane (58)</td>
<td>115</td>
</tr>
<tr>
<td>37.</td>
<td>1H NMR Spectrum of Methyl-(2-trifluoromethylphenyl)trifluoroethylphosphinite borane (59)</td>
<td>116</td>
</tr>
<tr>
<td>38.</td>
<td>31P NMR Spectrum of Methyl-(2-trifluoromethylphenyl)trifluoroethylphosphinite borane (59)</td>
<td>117</td>
</tr>
<tr>
<td>39.</td>
<td>1H NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)2-methoxyethylphosphinite borane (60)</td>
<td>118</td>
</tr>
<tr>
<td>40.</td>
<td>13C NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)2-methoxyethylphosphinite borane (60)</td>
<td>119</td>
</tr>
<tr>
<td>41.</td>
<td>31P NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)2-methoxyethylphosphinite borane (60)</td>
<td>120</td>
</tr>
<tr>
<td>42.</td>
<td>1H NMR Spectrum of (R)-(2-methoxyphenyl)-phenylmethylphosphinite borane (61)</td>
<td>121</td>
</tr>
<tr>
<td>43.</td>
<td>13C NMR Spectrum of (R)-(2-methoxyphenyl)-phenylmethylphosphinite borane (61)</td>
<td>122</td>
</tr>
<tr>
<td>44.</td>
<td>31P NMR Spectrum of (R)-(2-methoxyphenyl)-phenylmethylphosphinite borane (61)</td>
<td>123</td>
</tr>
<tr>
<td>45.</td>
<td>1H NMR Spectrum of Fluoro methyl-(2-trifluoromethylphenyl)phosphine borane (62)</td>
<td>124</td>
</tr>
<tr>
<td>46.</td>
<td>13C NMR Spectrum of Fluoro methyl-(2-trifluoromethylphenyl)phosphine borane (62)</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF FIGURES--Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.</td>
<td>31P NMR Spectrum of Fluoro methyl-(2-trifluoromethylphenyl)-phosphine borane (62)</td>
<td>126</td>
</tr>
<tr>
<td>48.</td>
<td>1H NMR Spectrum of Fluoro methyl-(4-methoxyphenyl)-phosphine borane (64)</td>
<td>127</td>
</tr>
<tr>
<td>49.</td>
<td>13C NMR Spectrum of Fluoro methyl-(4-methoxyphenyl)-phosphine borane (64)</td>
<td>128</td>
</tr>
<tr>
<td>50.</td>
<td>31P NMR Spectrum of Fluoro methyl-(4-methoxyphenyl)-phosphine borane (64)</td>
<td>129</td>
</tr>
<tr>
<td>51.</td>
<td>1H NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)</td>
<td>130</td>
</tr>
<tr>
<td>52.</td>
<td>13C NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)</td>
<td>131</td>
</tr>
<tr>
<td>53.</td>
<td>31P NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)</td>
<td>132</td>
</tr>
<tr>
<td>54.</td>
<td>1H NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite (68b)</td>
<td>133</td>
</tr>
<tr>
<td>55.</td>
<td>13C NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite (68b)</td>
<td>134</td>
</tr>
<tr>
<td>56.</td>
<td>31P NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite (68b)</td>
<td>135</td>
</tr>
<tr>
<td>57.</td>
<td>1H NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)</td>
<td>136</td>
</tr>
<tr>
<td>58.</td>
<td>13C NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)</td>
<td>137</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>59.</td>
<td>31P NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)</td>
<td>138</td>
</tr>
<tr>
<td>60.</td>
<td>1H NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)</td>
<td>139</td>
</tr>
<tr>
<td>61.</td>
<td>13C NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)</td>
<td>140</td>
</tr>
<tr>
<td>62.</td>
<td>31P NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)</td>
<td>141</td>
</tr>
<tr>
<td>63.</td>
<td>1H NMR Spectrum of (S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)</td>
<td>142</td>
</tr>
<tr>
<td>64.</td>
<td>13C NMR Spectrum of (S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)</td>
<td>143</td>
</tr>
<tr>
<td>65.</td>
<td>31P NMR Spectrum of (S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)</td>
<td>144</td>
</tr>
<tr>
<td>66.</td>
<td>1H NMR Spectrum of (S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)</td>
<td>145</td>
</tr>
<tr>
<td>67.</td>
<td>13C NMR Spectrum of (S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)</td>
<td>146</td>
</tr>
<tr>
<td>68.</td>
<td>31P NMR Spectrum of (S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)</td>
<td>147</td>
</tr>
<tr>
<td>69.</td>
<td>1H NMR Spectrum of (S)-(2-methoxyphenyl)-methyl-phenyl-phosphine borane (73)</td>
<td>148</td>
</tr>
<tr>
<td>70.</td>
<td>13C NMR Spectrum of (S)-(2-methoxyphenyl)-methyl-phenyl-phosphine borane (73)</td>
<td>149</td>
</tr>
<tr>
<td>71.</td>
<td>31P NMR Spectrum of (S)-(2-methoxyphenyl)-methyl-phenyl-phosphine borane (73)</td>
<td>150</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>72.</td>
<td>1H NMR Spectrum of (R)-(2-methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)</td>
<td>151</td>
</tr>
<tr>
<td>73.</td>
<td>13C NMR Spectrum of (R)-(2-methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)</td>
<td>152</td>
</tr>
<tr>
<td>74.</td>
<td>31P NMR Spectrum of (R)-(2-methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)</td>
<td>153</td>
</tr>
<tr>
<td>75.</td>
<td>1H NMR Spectrum of (S, S)-Bis[(phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)</td>
<td>154</td>
</tr>
<tr>
<td>76.</td>
<td>13C NMR Spectrum of (S, S)-Bis[(phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)</td>
<td>155</td>
</tr>
<tr>
<td>77.</td>
<td>31P NMR Spectrum of (S, S)-Bis[(phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)</td>
<td>156</td>
</tr>
<tr>
<td>78.</td>
<td>1H NMR Spectrum of (S, S)-Bis[[(4-methoxyphenyl)-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (76)</td>
<td>157</td>
</tr>
<tr>
<td>79.</td>
<td>13C NMR Spectrum of (S, S)-Bis[[(4-methoxyphenyl)-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (76)</td>
<td>158</td>
</tr>
<tr>
<td>80.</td>
<td>31P NMR Spectrum of (S, S)-Bis[[(4-methoxyphenyl)-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (76)</td>
<td>159</td>
</tr>
</tbody>
</table>
ABSTRACT

Chiral phosphine ligands are of key importance in development of transition-metal catalysts for enantioselective reactions. Yet, despite the critical importance of P-chiral phosphines, the methodology for their enantioselective synthesis in high enantiomeric excess and without resolution or separation of diastereomers remains relatively undeveloped. We describe herein an effective enantioselective synthesis of chiral tertiary phosphines. This methodology shows promise for the synthesis of a wide range of monophosphines and diphosphines of high enantiomeric purity and could be useful for the asymmetric reactions.
INTRODUCTION

Introduction to Enantioselective Catalysis

Chirality plays a central role in science and technology. A wide range of significant physical, chemical, and biological functions are generated through precise molecular recognition which requires strict matching of chirality. For a long time, access to enantiomerically pure compounds, at least in a practical sense, was thought to be nature's monopoly. Living organisms are masters of enantioselective catalysis. In general, when a living cell manufactures a chiral organic molecule, it selectively produces only one of the two non-superimposable mirror-image forms (enantiomers). To do otherwise is at best inefficient. Biocatalyst (enzymes and ribozymes) promote the chemistry of life with exquisite efficiency and selectivity.

Synthetic chemists have been slow to learn from nature's model. Creation of optically active organic molecules by chemical means is challenging and difficult. Only optical resolution and structural modification of naturally occurring chiral substances provide in this respect. Until recently, it was common practice for a pharmaceutical company to market a chiral drug as the racemate. As recently as 1985, more than 75% of chiral drugs were sold as the racemates. This approach in effect meant that each dose of a drug was contaminated with an equal weight of an isomer, which usually had no therapeutic value but had the potential to cause unsuspected deleterious side effects. For example, the sedative thalidomide (1) was marketed as a
racemate, the desired sedative activity resides in the R-isomer, but the contaminant S-isomer is a tetratogen, causing profound birth defects in babies born to mothers using the drug. The issue of enantiomeric purity is by no means limited to the field of pharmaceuticals. A case in point is ASANA (i-Pr=isopropyl), a synthetic pyrethroid insecticide which contains two asymmetric centers. The potent insecticide activity overwhelmingly resides in just one of the four possible stereoisomers. Moreover, the non-insecticidal stereoisomers exhibit significant cytotoxicity toward certain plant species. Thus ASANA, which is sold as a single stereoisomer, can be registered and used for crops whereas the mixed stereoisomers are not suitable. Due to the need for chiral liquid crystals, enantiomerically pure polymers, and membrane components with applications in such diverse areas as drug delivery, separation technology, and
optoelectronics, it is easy to understand the growing demand for efficient methods of producing enantiomerically pure compounds.

Assiduous efforts made by synthetic organic chemists in the last two decades are converting the chemist's dreams into reality. In order to maximize synthetic efficiency, it is obviously desirable to utilize a catalytic amount of chiral source for "multiplication of chirality", namely, stereoselective production of a large quantity of a chiral target compound. Enantioselective catalysis is bringing about a revolution in asymmetric synthesis. Seldom has there been an area of chemistry where the scientific goals are so challenging and the economic benefits so obvious.

In the past, the selling of a racemic product could be defended on the grounds that the cost of manufacturing a single isomer could be prohibitive. Today, improvements in the technology for asymmetric synthesis, including the development of enantioselective catalysts based on metal complexes, make the development of new racemic drugs unacceptable. Asymmetric synthesis has advanced to the point where it should be possible to manufacture any drug as a single enantiomer.

Conventional methods of asymmetric synthesis rely on the stoichiometric use of enantiomerically pure starting materials or reagents. In resolution by differential crystallization, a racemic-product mixture can be converted into a separable mixture of diastereomers by the use of a stoichiometric amount of an optically pure resolving agent (Scheme 1). This method, however, requires recovery of the resolving agent and wastefully consumes precious starting materials to make the wrong enantiomer, which must then be racemized or discarded.
Scheme 1. Conventional methods of making the chiral molecules

Perhaps the most important advantage of enantioselective catalysis, versus conventional stoichiometric procedures, is the feature of chiral multiplication. Under the right conditions, thousands of chiral product molecules can be produced by one molecule of catalyst.

Chiral multiplication is a characteristic of both biocatalysis and catalysis by chiral metal complexes. Recently, enantioselective catalysis using metal complexes has advanced to the point where it can often provide a viable alternative to biocatalysis. The strengths of metal catalysts tend to complement those of enzymes:

(i) metals can promote reactions not known to occur in nature;
(ii) the chirality of the catalyst is easily modified by appropriate changes in the ligands;
(iii) one can use substrates not accepted by enzymes;
(iv) separation and recovery of products are relatively easy (enzymes
most often work in aqueous or near aqueous environments);

v) organometallic reagents are generally less capricious than enzymes,
which are often susceptible to degradation caused by heat, oxidation,
and pH.

Enantioselective catalysis using metal complexes, provides one of the
most general, flexible methods for asymmetric reactions. Metallic elements
possess a variety of catalytic activities, and permutation of organic ligands, or
auxiliaries, that direct the steric course of the reaction is practically unlimited.
Besides the choice of central metal, molecular design of the chiral modifier is a
particularly significant task. Efficient ligands must be endowed with a suitable
functionality, an appropriate element of symmetry, substituents capable of
differentiating space either sterically or electronically, skeletal rigidity or
flexibility (depending on the nature of the reaction) etc. - all of which contribute
to accomplish highly enantioselective catalysts.

Chiral Phosphine Ligands

The first example of asymmetric synthesis from prochiral compounds
catalyzed by homogeneous chiral metal complexes appeared in the literature in
1966. A chiral Schiff base-Cu(II) complex was formed to catalyze
decomposition of ethyl diazoacetate in styrene to give cis- and trans-1-
carboethoxy-2-phenylcyclopropane in <10% e.e, proving the existence of
reactive Cu carbenoid placed in a chiral environment (Scheme 2).

Later, extensive systematic screening of chiral Schiff bases resulted in a
dramatic improvement of the optical yield of cyclopropanation, allowing for
asymmetric synthesis of chrysanthenemic acid derivatives in up to 94% e.e.
Perhaps the most common asymmetric catalyst used by industry at this time is utilized in the synthesis of (-)-menthol (Talasage International CO, Japan) (Scheme 3). The key step is the Rh-BINAP catalyzed enantioselective isomerization of diethylgeranylamine to citronellal diethylenamine proceeding in 96-98% optical yield. Here, use of an atropisomeric BINAP ligand has played a key role in the successful asymmetric transformation.

Another significant development in organotransition-metal chemistry is the discovery of soluble complexes which catalyze the asymmetric hydrogenation of prochiral olefins (Scheme 4). These asymmetric reactions are achieved by homogeneous catalysts bearing chiral phosphine ligands.

Chiral phosphines have been widely used as ligands for transition metals such as nickel, cobalt, rhodium, ruthenium, platinum, palladium and copper. These metal-chiral phosphine complexes have been used in the study of asymmetric reactions, such as reductions of ketones.
Scheme 3. Synthesis of (-)menthol using the BINAP hydrosilylations,10 hydroformylations,11 hydrocyanations,12 and [4+2] cycloadditions.13 The synthesis of well designed phosphine ligands is crucial to the development of efficient asymmetric catalysis by chiral transition-metal complexes.

Chiral phosphines can be divided into two broad classes: monophosphine and bidentate phosphine ligands.
Scheme 4. Asymmetric hydrogenation of olefins by Rh-BINAP

A. Monophosphines

There are basically two ways to design chiral monophosphines; the chirality can be located on either the side chain (3) or on phosphorus (4) (P-chiral) (Scheme 5).

A1. Monophosphines with a Chiral Side Chain

Phosphines of the general type (3) (Scheme 5) are the easiest to obtain because their syntheses typically begin from a chiral natural product. Some
examples are depicted below (5)14 (6)15 (7)16:

\begin{center}
\begin{tabular}{ccc}
 & 5 (nmdpp) & 6 & 7 \\
\end{tabular}
\end{center}

\textbf{A2. Monophosphines with an Asymmetric Phosphorus Center}

Optically active phosphines of type (4) (Scheme 5) were first used in asymmetric hydrogenation.17 Representative P-chiral phosphines are as follows (8)18 and (9)19:

\begin{center}
\begin{tabular}{cc}
8 & 9 \\
$R = \text{Ph (pamp)}$ & $R = \text{Et, n-Pr, CH}_2\text{Ph, CH}_2\text{CHCH}_2, \text{t-Bu}$
\end{tabular}
\end{center}

\textbf{B. Bidentate Phosphines}

The chelation of the ligand on a metallic center can occur through a chiral group connecting two achiral phosphorus atoms (10)20 and (11)21. Within this class, the majority of members possess a stereogenic center, plane, or axis as an intrinsic component of the P-P linking backbone. Normally the two remaining substituents at phosphorus are aryl residues (commonly PPh\textsubscript{2}),
although other combinations including alkylphosphines22, alkyl(aryl)phosphines23 and phospholanes24 have been utilized to good effect.

\begin{align*}
10 & \quad \text{Ar} = \text{Rh (R,R-diop)} \\
& \quad \text{Ar} = 2\text{-anisyl} \\
& \quad \text{Ar} = 3,5\text{-dimethylphenyl}
\end{align*}

\begin{align*}
11 & \quad R = \text{H (binap)} \\
& \quad R = \text{Me} \\
& \quad R = \text{t-Bu}
\end{align*}

Another type of bidentate chiral phosphine consists of two chiral phosphorus atoms connected by achiral backbone \((12)25\) and \((13)26\). Examples of this class are relatively rare, due to the synthetic difficulty of controlling stereogenicity at phosphorus.

\begin{align*}
12 & \quad (\text{dipamp}) \\
13 & \quad (\text{binap})
\end{align*}
One important objective in designing bidentate chiral phosphine ligands is to keep a suitable distance between the two chelating points in order to obtain a suitable chelate ring size. If the chelate ring is too large, the ligand will have a tendency to complex in a monodentate fashion or form a bridge between metals.

Preparation of Chiral Phosphines

A. Monophosphines

A1 Monophosphines with a Chiral Side Chain

Phosphines of the general type (3) (Scheme 5) are among the most easy to obtain because the synthesis can start from a chiral natural product (e.g. a terpene, sugar, etc.). The most frequent way to introduce phosphorus is to treat the tosylate (or halide) of the optically active compound (available from the chiral pool) with the diphenylphosphide anion, PPh_2 (Scheme 6):

$$\text{R}^* \text{X} + \text{PPh}_2 \rightarrow \text{R}^* \text{PPh}_2 + \text{X}^-$$

Scheme 6. Route to monophosphines with a chiral side chain

A2 Monophosphines with an Asymmetric Phosphorus Center

Optically active phosphines of type (4) (Scheme 5) were first used in asymmetric hydrogenation. There are three main transformation methods giving access to P-chiral phosphines:

- electrolytic hydrogenolysis of chiral phosphonium salts;
- reduction of chiral phosphine oxides;
- displacement of diheterocyclic phosphines
1. *Electrolytic Hydrogenolysis of Chiral Phosphonium Salts*

The first optically active phosphine in which the phosphorus atom is the asymmetric center in the molecule was described in 1911 by Meisenheimer and Lichtenstadt.\(^{27}\) It was not until 50 years later that optically active phosphines could be routinely prepared, due to the efforts of Horner and Mentrup.\(^{28}\) For example, methyl n-propylphenylphosphine \(14\) was obtained by electrolytic hydrogenolysis of its optically active benzylphosphonium salt (Scheme 7).

\[
\begin{align*}
R_1R_2R_3P & \rightarrow \text{(i) PhCH}_2X \rightarrow \left[R_1R_2R_3P\text{CH}_2\text{Ph} \right]^+ \rightarrow \text{separation} \rightarrow \left[\text{CH}_2\text{Ph} \right]^+ \\
& \text{(ii) } R^*\text{CO}_2^- \rightarrow \left[R_1R_2R_3P\text{Ph} \right]^+ \\
\end{align*}
\]

\(R_1 = \text{methyl}\), \(R_2 = \text{n-propyl}\), \(R_3 = \text{pheny}\)

Scheme 7. Electrochemical preparation of chiral phosphines

2. *Reduction of Phosphine Oxides*

In 1968, a new method to create asymmetric phosphorus atoms was introduced by Mislow.\(^{29}\) This approach was based on a simple observation that the diastereomeric O-menthylphosphinate \(15\) (\(Rp\)) and \(15\) (\(Sp\)) could be separated by fractional crystallization (Scheme 8).
Scheme 8. Synthesis of chiral phosphines by Mislow and coworkers

The two diastereomeric phosphinates derived from the esterification of
(-)-menthol with Ph(R)PCI were separated (the most tedious step of the method). Displacement of the menthol group by an arylmagnesium halide occurred with inversion of configuration, giving (16) and its diastereomer. Reduction of the phosphine oxide by Si₂Cl₆ produced the related optically active phosphine with complete inversion of configuration.²⁹b It had been observed that the combined reagent HSiCl₃-Et₃N was not stereoselective for phosphine oxide reduction whereas PhSiH₃ gave mainly retention of configuration.²⁹c Therefore, Si₂Cl₆ seemed to be the most useful reagent for the stereospecific transformation of a phosphine oxide into a phosphine. This work led directly to the synthesis of the ligand DIPAMP \{[(R,R)-1,2-bis-[O-methoxyphenyl(phenyl)phosphino] ethane} 12 by Monsanto.²⁵

Pietrusiewics³⁰ and Imamoto³¹ prepared the vinyl and tert-butyl phosphine oxide (18) by separation of (17) followed by decarboxylation (Scheme 9).

![Scheme 9. Synthesis of phosphine oxides by Pietrusiewics and Imamoto](image)

In 1979, Koizumi and Coll³² used this method to synthesize the phosphinate (20) by methanolysis of intermediate phosphinamide (19), derived from ethyl L-prolinate (Scheme 10).
Recently, Imamoto33 described a new approach to prepare chiral phosphines. The diastereomerically pure menthyl-\textit{O-}phenylphosphinoboranes (21) and (22) were prepared from their phosphine oxides on treatment with LiAlH\textsubscript{4}-NaBH\textsubscript{4}-CeCl\textsubscript{3} (Scheme 11).

The method for the preparation of optically pure phosphines via reduction of a phosphine oxide generally involves a diastereomeric separation, low overall yields, and is not adaptable to the modification of substituents on the phosphorus atom.
\[
\begin{align*}
\text{An} & \quad \text{Ph} & \quad \text{OMen} \\
\text{Ph} & \quad \text{OMen} & \quad \text{An} \\
\text{Ph} & \quad \text{OMen} & \quad \text{An}
\end{align*}
\]

\[\text{BH}_3\]

\[\text{BH}_3\]

100% de

93% de

CH\textsubscript{3}Li \quad 95%

CH\textsubscript{3}Li \quad 95%

100% ee

93% ee

a) Li\textsubscript{AlH}_4/NaBH\textsubscript{4}/CeCl\textsubscript{3}

\[
\begin{align*}
\text{Ph} & \quad \text{OMen} & \quad \text{Ph} \\
\text{Ph} & \quad \text{OMen} & \quad \text{Ph}
\end{align*}
\]

\[\text{BH}_3\]

\[\text{BH}_3\]

100% de

100% de

\[
\begin{align*}
\text{CH}_3\text{I}/\text{NaH} & \\
\text{CH}_3\text{I}/\text{NaH}
\end{align*}
\]

\[\text{BH}_3\]

\[\text{BH}_3\]

100% de

100% de
Scheme 11. Synthesis of phosphine borane complexes

3. Displacement of Diheterocycle Phosphines (Oxazaphospholidine, Oxaphosphorinane)

In 1974, Inch and Coll34 proposed a new way to synthesize chiral phosphine oxides (Scheme 12).

Scheme 12. Synthesis chiral phosphine oxides by Inch and Coll
The dioxaphosphorinane (23) was diastereoselectively formed by starting with a carbohydrate derivative. Sequential addition of phenylmagnesium bromide and ethylmagnesium bromide afforded phosphine oxide (24), which illustrated the utility of carbohydrates for stereospecific synthesis of optically active phosphates.

Using a related method, Koizumi and Coll35 synthesized chiral phosphinate (27) by acid methanolysis of the phosphinamide (26), prepared by regio and stereoselective opening of oxazaphospholidine derived of L-prolinol 25 (Scheme 13).

\begin{equation}
\text{Ph \(P(X)\text{Cl}_2\)} + \text{L- Prolinol} \rightarrow \text{(i) \(NE_3\)}}
\end{equation}

\begin{equation}
\text{(ii) separation of diastereomers}
\end{equation}

\begin{equation}
\text{R \(\text{MgX}\)} \rightarrow \text{MeOH/H}^+ \rightarrow \text{27}
\end{equation}

Scheme 13. Synthesis of chiral phosphates from oxazaphospholidines

In the 1980's, Juge36 and Brown37 developed a new method for making
optically active phosphines (Scheme 14). This approach was based on the high diastereoselectivity observed in the formation of oxazaphospholidine (30) from ephedrine. Thus (30) reacted with Mel, EtI, or PrI to give (31) in a 9:1 ratio of diastereomers. The product (31) could be converted into diarylalkylphosphine oxides by successive acid-catalyzed methanolysis and Gringard displacement to give (32) in 95% e.e.

\[
\text{PhP(NEt}_2\text{)\text{2} + HO} \quad \text{Ph} \quad \text{N} \quad \text{CH}_3
\]

\[
\text{(-) ephedrine 29}
\]

\[
\text{CH}_3\text{OH/ H}^+ \quad \text{R}_2\text{MgBr}
\]

\[
\text{R= Me}
\]

\[
e.e > 96\%
\]

\[
\text{diphosphines monophosphines}
\]

Scheme 14. Synthesis of chiral phosphine oxides by Juge and Brown

A crucial transformation that is commonly used in this method involves the thermal condensation of bis[diethyl(aminophenyl)phosphine with (-)-ephedrine to give the corresponding oxazaphospholidine. It was quickly
determined, however, that the direct thermal condensation reaction involving (28) and (29) was a highly capricious and non-general reaction, it also gave poor yields (15-30%) along with large amounts of polar by-products.

Very recently, Corey38 used a camphor derivative (33) formed a cyclic phospholidine intermediate (34) (Scheme 15).

\begin{center}
\textbf{Scheme 15. Synthesis of chiral phosphine ligands by Corey}
\end{center}
In this case, two heteroatoms attached to phosphorus can be displaced stereospecifically by nucleophilic aryl or alkyl groups.

B. Diphosphines with a Chiral Group Connecting Two Achiral Phosphorus Atoms

This family of chelating ligands expanded rapidly during the last decade because of the very high enantiomeric excess often observed in various catalytic reactions that used them. They are also relatively easy to synthesize (Scheme 16).

\[
\text{(R,R)- tartaric acid} \quad \rightarrow \quad \text{acetone or OTs} \quad \rightarrow \quad \text{LAH} \quad \rightarrow \quad \text{(-) DIOP} \quad \rightarrow \quad \text{- PAr}_2 \quad \rightarrow \quad \text{KF} \quad \rightarrow \quad \text{Scheme 16. Preparation of diphosphines with chiral carbon backbone}
\]
In many cases tedious resolutions could be avoided by starting with optically active natural products. Simple chemistry often allows easy introduction of the PR$_2$ groups (usually as PPh$_2$). The most common ligands are 1,4-diphosphines, 1,3-diphosphines, and 1,2-diphosphines.39

C. Diphosphines with Chirality on Phosphorus

This family of chelating ligands consists of the two chiral phosphorus atoms which are separated by a carbon chain (X) of variable length: R(R')PXP(R'')R''. The connecting chain (X) has to be of suitable length and geometry to allow chelation. Up to now 1,2-diphosphines were synthesized in which X = (CH$_2$)$_2$, 1,2-C$_6$H$_4$, or cis-CH=CH. In many cases the two phosphorus atoms are equivalent (R = R'', R' = R'''). The most general way to prepare chiral 1,2-diphosphines stereoselectively is the oxidative coupling of two chiral phosphine oxides40 (Scheme 17).

![Scheme 17. Preparation of diphosphine ligands by oxidative coupling](image)

The stereochemistry at phosphorus during metallation and coupling is retained. By this method, Knowles made (R, R)-DIPAMP (12),25 which is a very efficient rhodium catalyst for asymmetric hydrogenation and is used in industrial
asymmetric synthesis of (S)-DOPA, a drug for the treatment of Parkinson's disease (Scheme 18).

\[
\begin{array}{c}
\text{AcO} \\
\text{OCH}_3 \\
\text{AcO} \\
\text{OCH}_3 \\
\end{array}
\xrightarrow{\text{H}_2 \text{ ClRhL}^*_3}
\begin{array}{c}
\text{AcO} \\
\text{OCH}_3 \\
\text{AcO} \\
\text{OCH}_3 \\
\end{array}
\]

\(L^*=\text{DIPAMP}\)

\(\text{(S-DOPA)}\)

Scheme 18. Industrial use of Rh-DIPAMP to make (S)-DOPA

Hence, the immense potential that structurally varied homochiral mono- and biphosphine ligands hold for transition metal based asymmetric synthesis has recently stimulated renewed investigation into the synthesis of these compounds.
RESULTS AND DISCUSSIONS

Preparation of Homochiral Oxazaphospholidine Boranes

Progress in the development of transition-metal catalysts for enantioselective reactions, especially hydrogenation processes, heavily depends on the availability of suitable chiral phosphine or diphosphine ligands. Yet, despite the critical importance of P-chiral phosphines, the methodology for their enantioselective synthesis in high enantiomeric excess and without resolution or separation of diastereomers remains relatively undeveloped: Our goal is to develop an effective methodology for the synthesis of a wide range of chiral phosphines and diphosphines.

In 1990, Juge and coworkers reported a new approach for making chiral phosphine ligands. One of the crucial steps in this approach is the diastereoselective synthesis of oxazaphospholidine boranes (35).

The diastereomerically pure complex (35) was prepared in one step from bis(diethylamino)phosphine, (-)ephrine and BH₃·SMe₂ (Scheme 19). A direct thermal condensation was involved in this step. For most cases we studied, this reaction gave low yields (15-30%) along with large amounts of polar by-products.

We reasoned that the polar by-product was formed because the formation of the phosphorus-nitrogen bond was relatively slow, and the non-cyclized intermediate (36) can react with another (-)ephrine molecule to give dioxaphosphine products (Scheme 20).
Scheme 19. Preparation of oxazaphospholidine boranes by Juge

Scheme 20. Formation of the polar by-products

In our strategy, an efficient "ionic" coupling reaction was employed to give the initial phosphorus-oxygen bond, followed by thermolytic ring closure. Using this strategy, we have made a range of electronically and sterically differentiated oxazaphospholidine boranes (42-48) (Scheme 21).
Scheme 21. Preparation of oxazaphospholidine boranes
Chloro-bis(dimethylamino)phosphine (37) was treated with an organolithium (or Grignard) reagent to give the bis(dimethylamino)phosphines (38). Exposure of (38) to 1.0 equiv of PCl₃ gave the chloro(dimethylamino)phosphine (39). The addition of (39) to a solution of monolithiated (-)-ephedrine (in THF or 1,2-DME) afforded the non-cyclized phosphonamidates (40) which the P-O bond was formed by "ionic coupling". The reaction mixture was then heated at reflux for 12 h to furnish the cyclized products (41). Addition of 1.1 equiv of BMS in situ provided the desired complexes (42-48).

The amine exchange reaction that results in cyclization is acid catalyzed (in the form of ammonium salts). In cases where cyclization is sluggish, as shown by the absence of copious Me₂NH evolution, a few μl of Me₃SiCl may be added as a more powerful Lewis acid catalysis.

An indication of the preparative scope of the foregoing procedure is provided by the examples in Table 1.

<table>
<thead>
<tr>
<th>compound</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>yield (%)</td>
<td>77</td>
<td>72</td>
<td>78</td>
<td>70</td>
<td>82</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>mp(°C)</td>
<td>106</td>
<td>104</td>
<td>82</td>
<td>100</td>
<td>76</td>
<td>99</td>
<td>107</td>
</tr>
</tbody>
</table>

As can be seen from Table 1, the overall yields for this procedure are all in the range 70-82%, and seem to be relatively insensitive to both the electronic and steric effects of the substituent R. It is particularly worth mentioning that in this reaction sequence the borane group bonding with the phosphorous atom activates the adjacent group and at the same time it protects the phosphine
group which is generally sensitive to oxidation and electrophiles such as alkyl halides.

The new procedure used herein is characterized by its ease of execution and overall chemical efficiency. This new method permits the large scale preparation of a range of electronically and sterically differentiated homochiral monophosphine precursors.

Utilization of Oxazaphospholidine Borane Complexes in the Synthesis of Aminophosphine Boranes

Alkyl and aryllithium compounds reacted with oxazaphospholidine borane complexes at low temperatures (-78 °C) in THF, to give the corresponding aminophosphine boranes (49-54), by P-O bond cleavage, with a diastereomeric ratio better than 96:4 (Scheme 22).

![Scheme 22. Preparation of aminophosphine borane complexes](image)

\[
\begin{align*}
Ar &= 2-(CF_3)C_6H_4, R = Me; (49) & \quad Ar &= 4-(CH_3O)C_6H_4, R = Me; (52) \\
Ar &= 2-(CF_3)C_6H_4, R = Ph; (50) & \quad Ar &= Ph, \quad R = Me; (53) \\
Ar &= 2-(CF_3)C_6H_4, R = p-An; (51) & \quad Ar &= Ph, \quad R = 2-(CH_3O)C_6H_4; (54)
\end{align*}
\]

Scheme 22. Preparation of aminophosphine borane complexes
The complexes (49-54) are highly crystalline so that the separation of diastereomeric impurities at this stage by recrystallization is usually easy (e.g., methylcyclohexane). The reaction conditions and results are shown in Table 2.

Table 2. Results and conditions for preparation of aminophosphine boranes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>RM</th>
<th>Product</th>
<th>Temp (°C)</th>
<th>Diastere ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>MeLi</td>
<td>49</td>
<td>-78</td>
<td>98:2</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>MeLi</td>
<td>49</td>
<td>-40</td>
<td>85:15</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>PhLi</td>
<td>50</td>
<td>-78</td>
<td>100:0</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>p-AnLi</td>
<td>51</td>
<td>-78</td>
<td>96:4</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>MeLi</td>
<td>52</td>
<td>-78</td>
<td>100:0</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>MeLi</td>
<td>53</td>
<td>-78</td>
<td>98:2</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>o-AnLi</td>
<td>54</td>
<td>-78</td>
<td>100:0</td>
</tr>
</tbody>
</table>

These reactions gave reasonable yields (80%) with high stereoselectivity. However, a lowering of stereoselectivity was observed at higher temperatures. The diastereomeric ratio of complexes (49-54) were determined by 1H NMR spectroscopy (Figure 1) and HPLC (Figure 2).

Recently, the structure of (Rp)-N-methyl N-[(1R, 2S)-(1-hydroxyl-1-phenyl 2-propyl)] amino-methyl-phenyl-phosphine borane has been determined by X-ray crystallography42 in order to determine the absolute configuration around the phosphorus atom (Figure 3). The absolute configuration of the phosphorus atom is R. The bond distance for the P-B bond (1.90Å) is longer than the P-N bond (1.65Å). The bond angles for CH$_3$-P-BH$_3$ and CH$_3$-P-N are 110°. The N-P-BH$_3$ and Ph-P-CH$_3$ bond angles are 115° and 104° respectively.
Figure 1. 1H NMR of aminophosphine borane complex (49)

- Diastereomeric ratio = 100:0
- Diastereomeric ratio = 85:15

Figure 2. HPLC analysis of aminophosphine borane complex (49)
ORTEP projection at the 30% probability level. Selected distances (Å) and angles (°): P(1)-C(1) 1.81; P(1)-B(1) 1.90; P(1)-N(1) 1.65; P(1)-C(141) 1.81; B(1)-P(1)-C(1) 110.2; N(1)-P(1)-C(1) 109; N(1)-P(1)-B(1) 114.5; C(141)-P(1)-C(1) 104.4; C(141)-P(1)-B(1) 112.2; C(141)-P(1)-N(1) 105.8.

Figure 3. X-ray structure of aminophosphine borane

The absolute configuration of the phosphorus atom demonstrates that P-C bond formation proceeds in this case with retention of configuration. The X-ray structure of starting material (48)42 shows the methyl substituent of the nitrogen on the back side of the oxygen leaving group. Consequently, the stereochemistry of P-C bond formation is under kinetic control. Nucleophilic attack occurs at the less hindered face of the P-O bond which is opposite nitrogen (Scheme 23).

The mechanism proposed requires the formation of a pentacoordinate intermediate (55) which stereopermutes into another one (56 or 57), having
the substituents on the phosphorus atom in a staggered position with the N-methyl group. The presence of the oxygen group in the apical position of the intermediate (56 or 57) permits the cleavage of the P-O bond and the formation of the ring opened compound with retention of configuration.

Scheme 23. Mechanism for P-C bond formation
Utilization of Aminophosphine Borane Complexes in the Synthesis of Asymmetric Phosphine Derivatives

A. Preparation of Phosphinite Borane Complexes

Aminophosphine borane complexes reacted with alcohol at room temperature in the presence of acid to give the corresponding phosphinite boranes (58-61) with varying degrees of inversion of configuration (Scheme 24).

Scheme 24. Acid alcoholysis of aminophosphine boranes

Juge has found that the enantiomeric excesses of phosphinite boranes depends on the acid concentration during methanolation.36 The highest
selectivity is obtained with 0.125M H_2SO_4. Our reaction conditions and results are shown in Table 3.

Table 3. Results and conditions of the acid alcoholysis

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Acid Conc. (M)</th>
<th>e.e</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>58</td>
<td>0.125</td>
<td>>98%</td>
<td>95%</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>58</td>
<td>4.00</td>
<td>84%</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>59</td>
<td>0.125</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>60</td>
<td>0.125</td>
<td>30%</td>
<td>60%</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>61</td>
<td>0.125</td>
<td>>98%</td>
<td>90%</td>
</tr>
</tbody>
</table>

In general, the acid catalyzed methanolysis of aminophosphine boranes was very efficient, it gave quantitative yields and high stereoselectivities (Table 3, entry 1, 5). The reactions were less efficient in terms of yield and stereoselectivity when 2-trifluoroethanol or 2-methoxyethanol were used ($\text{CH}_3\text{SO}_3\text{H}$ as acid). These resulted in 40% and 60% yield respectively. Also the e.e dropped from 98:2 to 52:48 (Table 3, entry 4). All enantiomeric excesses were determined by chiral HPLC (Figure 4) (hexane/isopropanol 90:10)

![Figure 4. HPLC analysis of the phosphinite borane (49)](image-url)
The proposed S_N2 mechanism for alcoholysis of aminophosphine boranes is shown below (Scheme 25). The nitrogen of the aminophosphine borane is first protonated by the acid, then the nucleophile attacks the phosphorus to form a pentacovalent intermediate. At this stage the ammonium group quickly dissociates from the phosphorus, affording the product with inversion of configuration.

Scheme 25. Mechanism for the alcoholysis of aminophosphine boranes

B. Preparation of Fluorophosphine Borane Complexes

Aminophosphine boranes react with HF·py at -25 °C to give the fluorophosphine borane complexes (62-65) (Scheme 26).
None of the examples we studied gave enantiomerically pure products. The enantiomeric ratios were measured by chiral HPLC (99:1 of hexane:isopropanol). The reaction conditions and results are shown in Table 4.

The reactions of aminophosphine borane complexes with HF-py gave >80% yield, and the corresponding fluorophosphine boranes were stable at 0 °C. Comparing hydrofluorination with acid methanolysis, the former is much faster. The electronic characteristics and steric characteristics of the substituents on the asymmetric phosphorus seemed not to influence the stereoselectivity of hydrofluorination.

Umezawa has demonstrated that HF-amine reagents were in equilibrium with a small amount of free hydrogen fluoride. The concentration of free hydrogen fluoride would increase by lowering the basicity of the amine in an HF-amine reagent (i-Pr₂NH > n-Bu₃N > pyridine). Fluoride ions are known to be high phosphophilic, and it is this higher reactivity with phosphorus that may cause the racemization. In the two solvent systems: CHCl₃/CH₃CN
Table 4. Results and conditions for hydrofluorination

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>[HF] (M)</th>
<th>Product</th>
<th>e.e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>toluene</td>
<td>>4.0</td>
<td>62</td>
<td>46:54</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>toluene</td>
<td>0.1</td>
<td>62</td>
<td>45:55</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>CHCl₃/CH₃CN</td>
<td>>3.0</td>
<td>62</td>
<td>48:52</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>toluene/MTHP</td>
<td>>3.0</td>
<td>62</td>
<td>48:52</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>CH₂Cl₂/MTHP</td>
<td>>3.0</td>
<td>62</td>
<td>50:50</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>toluene</td>
<td>>4.0</td>
<td>63</td>
<td>48:52</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>toluene</td>
<td>>4.0</td>
<td>64</td>
<td>46:54</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>toluene</td>
<td>>4.0</td>
<td>65</td>
<td>48:52</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
<td>toluene(half done)</td>
<td>0.1</td>
<td>62</td>
<td>46:54</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>toluene(over done)</td>
<td>0.1</td>
<td>62</td>
<td>48:52</td>
</tr>
</tbody>
</table>

and CH₂Cl₂/2-methyltetrahydropyran (MTHP), the concentration of free hydrogen fluoride could possibly decrease due to "chelation" of the lone pair electrons of the nitrogen (CH₃CN) and oxygen (MTHP). It was interesting to find that the results obtained with these two solvent systems are almost the same as those with toluene solvent system. It is possible that the ability of CH₃CN and 2-methyltetrahydrogenpyran to chelate the hydrogen fluoride is not strong enough, so the concentration of fluoride ion in the solution is still high. Currently under investigation in our group, is the utilization of BF₃·OEt₂ which may lower the concentration of fluoride ion more effectively (Scheme 27).

\[
\text{BF}_3 \cdot \text{OEt}_2 + \text{F}^- \rightarrow \text{BF}_4^- + \text{OEt}_2^-
\]

Scheme 27. Reaction of BF₃·OEt₂ with F⁻
A hydrofluorination reaction that consumed 50% of aminophosphine borane complexes was performed in order to see whether the racemization rate is faster than the reaction rate or not. Chiral HPLC showed that the product was a mixture of enantiomers of this half done reaction and the enantiomeric ratio was almost the same as the ratio in overtime reaction (Figure 5). Hence it appears that the rate of racemization is at least as fast as reaction rate.

Thus, it has been clearly demonstrated that the conversion of phosphinite boranes into fluorophosphine boranes under the action of HF results in the mixture of enantiomers. Assuming that the first step involves the protonation of the aminophosphine nitrogen atom, the most probable structure for the
transition state or short-lived intermediate (66) involves a trigonal bipyramid (Scheme 28).

Scheme 28. Proposed mechanism for hydrofluorination

The intermediate (66) collapse leads to a product with inversion of configuration. However, the pentacovalent intermediate can undergo pseudorotational isomerization, and then collapse to give the retention product. Since fluorine is the most electronegative element, the N-P bond of the
fluorophosphine borane is relatively stronger than the N-P bond of phosphinite borane. Hence the dissociation of ammonium ion from fluorophosphine borane may be slower than that in the phosphinite borane, so the intermediate (66) has more time to undergo the pseudorotation isomerization. As a result, this reaction affords the mixture of enantiomers. It is also possible that the highly phosphophilicity of the fluoride may form a difluoro pentacoordinated intermediate, then collapse to the mixture of enantiomers. The exact mechanism of this reaction will require more study.

C. Preparation of Thiophosphines and Thiophosphine boranes

Aminophosphine boranes reacted with ethanethiol under acidic conditions to give the corresponding thiophosphines and thiophosphine boranes (67-70) (Scheme 29).

\[
\begin{align*}
\text{Ar}_1 &= 2-(\text{CF}_3)\text{C}_6\text{H}_4, \text{Ar}_2 = \text{Me}; (67)^{47} \\
\text{Ar}_1 &= 2-(\text{CF}_3)\text{C}_6\text{H}_4, \text{Ar}_2 = \text{Ph}; (68) \\
\text{Ar}_1 &= \text{Ph}, \text{Ar}_2 = 2-(\text{CH}_3\text{O})\text{C}_6\text{H}_4; (69) \\
\text{Ar}_1 &= \text{Ph}, \text{Ar}_2 = \text{Me}; (70)^{47}
\end{align*}
\]

Scheme 29. Preparation of thiophosphines and thiophosphine boranes
Upon reaction with methanesulfonic acid or trifluoromethane sulfonic acid, in dichloromethane, an evolution of hydrogen gas occurred and the corresponding B-sulfonate (71) was formed. Hydrolysis of (71) on workup gave the thiophosphines without a borane protecting group (Scheme 30).

These reactions were also conducted in dimethoxyethane (1,2-DME), tetrahydrofuran (THF) and ethyl acetate. In these solvent systems, the oxygens can "chelate" with H⁺ in different scale, but the reaction also resulted in the free phosphines.

Scheme 30. Formation of the thiophosphines

Under the Lewis acid conditions (BF₃·OEt₂), the similar reaction happened between the Lewis acid and the phophine boranes, so the free thiophosphine also was obtained (Scheme 31).

The reaction conditions and results are shown in Table 5.
Table 5. Results and conditions for reaction of aminophosphine boranes with ethanethiol.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>[H+] (M)</th>
<th>Product (a:b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>CH₂Cl₂</td>
<td>0.4</td>
<td>69 (~50:40)</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>CHCl₃/MTHF</td>
<td>0.2</td>
<td>69 (~55:45)</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>ethyl acetate</td>
<td>0.4</td>
<td>69 (~55:45)</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>toluene</td>
<td>0.2</td>
<td>69 (~50:40)</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>CH₂Cl₂</td>
<td>0.4</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>CHCl₃/MTHF</td>
<td>0.4</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>THF</td>
<td>0.2</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>8</td>
<td>63</td>
<td>DME</td>
<td>0.083</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>ethyl acetate</td>
<td>0.2</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
<td>CH₂Cl₂ (CF₃SO₃H)</td>
<td>0.4</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>11</td>
<td>63</td>
<td>CH₂Cl₂ (BF₃·OEt₂)</td>
<td>0.25</td>
<td>68 (0:100)</td>
</tr>
<tr>
<td>12</td>
<td>53*</td>
<td>CH₂Cl₂</td>
<td>0.4</td>
<td>70 (100:0)</td>
</tr>
<tr>
<td>13</td>
<td>49*</td>
<td>CH₂Cl₂</td>
<td>0.4</td>
<td>67 (70:30)</td>
</tr>
</tbody>
</table>

Scheme 31. Formation of thiophosphines in Lewis acid (BF₃·OEt₂)
The above results demonstrated that these reactions were substrate dependent. It was shown that electronic withdrawing groups (e.g. 2-trifluoromethylphenyl) on the phosphorus give 100% of free thiophosphine (entry 5-11), while the more hindered substituents (e.g. 2-methoxyphenyl) result in the formation of about 50% of the free thiophosphine (entry 1-4).

The absolute stereochemistry of the thiophosphine and thiophosphine borane complex is still unknown. Studies of these reactions are still ongoing in our laboratories.

Preparation of Homochiral Monophosphine Boranes

The reaction of phosphinite boranes (58) and (61) with 2 equiv of alkyl or aryl lithium in THF led to the optically active phosphine boranes (71-74) with inversion of configuration (Scheme 32). The resultant compounds are stable to O₂.

![Scheme 32. Preparation of monophosphine boranes from phosphinite boranes](image)

\[
\text{Ar}_1 = 2-(\text{CF}_3)\text{C}_6\text{H}_4, \ R_1 = \text{Me}, \ R_2 = \text{Ph}; (71) \\
\text{Ar}_1 = 2-(\text{CF}_3)\text{C}_6\text{H}_4, \ R_1 = \text{Me}, \ R_2 = \text{p-AnLi}; (72) \\
\text{Ar}_1 = \text{Ph}, \ R_1 = 2-(\text{OCH}_3)\text{C}_6\text{H}_4, \ R_2 = \text{Me}; (73) \\
\text{Ar}_1 = \text{Ph}, \ R_1 = 2-(\text{OCH}_3)\text{C}_6\text{H}_4, \ R_2 = 4-(\text{OCH}_3)\text{C}_6\text{H}_4; (74)
\]
The reaction conditions and results are shown in Table 6. The enantiomeric ratios were determined by chiral HPLC (99:1 hexane/isopropanol).

Table 6. Results and conditions for reaction of phosphinite boranes with organometallic reagents

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>RM</th>
<th>T (°C)</th>
<th>Time (h)</th>
<th>Yield</th>
<th>e.e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>PhLi</td>
<td>20</td>
<td>30</td>
<td>65%</td>
<td>99:1</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>p-AnLi</td>
<td>20</td>
<td>48</td>
<td>50%</td>
<td>98:2</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>PhMgBr</td>
<td>25</td>
<td>72</td>
<td>20%</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>p-AnMgBr</td>
<td>25</td>
<td>72</td>
<td>10%</td>
<td>/</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>MeLi</td>
<td>-20</td>
<td>15</td>
<td>85%</td>
<td>/</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>PhLi (Ni(dppp)Cl₂)</td>
<td>-40</td>
<td>20</td>
<td>60%</td>
<td>100:0</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>p-AnLi(Ni(dppp)Cl₂)</td>
<td>0</td>
<td>24</td>
<td>46%</td>
<td>100:0</td>
</tr>
<tr>
<td>8</td>
<td>61</td>
<td>p-AnLi(Ni(dppp)Cl₂)</td>
<td>20</td>
<td>30</td>
<td>54%</td>
<td>100:0</td>
</tr>
</tbody>
</table>

For the methyl trifluoromethylphenyl phosphinite boranes, there are three competitive reactions occurring (Scheme 33). These are: (1) displacement of methoxy group by inversion of configuration to give A (via a), (2) cleavage of the C-O bond to give B (via b), or (3) formation of the coupling product C by condensation (via c). Due to the formation of carbanion PCH₂⁻, for P-CH₃ bearing substrates, 2.0 equiv of organolithium are necessary for this reaction. The overall yield is not high because purification of the products from these competing reactions is not efficient.

For the methyl trifluorophenyl phosphinite borane substrates, using the Ni(dppp)Cl₂ as a catalyst can increase the reaction rate and also increase the
stereoselectivity. The mechanism for the Ni(II) catalyzed reaction is still unknown.

Scheme 33. Competitive reactions for the reaction of RLi with phosphinite boranes

The fluorophosphine boranes can react with different kinds of organometallic reagent to give the corresponding monophosphine boranes (71-72) (Scheme 34).

Scheme 34. Reactions of fluorophosphine boranes with organometallic reagents

\[
\begin{align*}
\text{Ar}_1 &= 2-(\text{CF}_3)\text{C}_6\text{H}_4, \text{R}_1 = \text{CH}_3, \text{R} = \text{Ph}; (71) \\
\text{Ar}_1 &= 2-(\text{CF}_3)\text{C}_6\text{H}_4, \text{R}_1 = \text{CH}_3, \text{R} = \text{p-An}; (72) \\
\text{Ar}_1 &= 2-(\text{CF}_3)\text{C}_6\text{H}_4, \text{R}_1 = \text{Ph}, \text{R} = \text{Me}; (71)
\end{align*}
\]
The reaction conditions and results are shown in Table 7.

Table 7. Results and conditions for reaction of fluorophosphine boranes with organometallic reagents

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>RM</th>
<th>Product</th>
<th>T(°C)/time(h)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>PhLi/THF</td>
<td>71</td>
<td>-110/2</td>
<td>90%</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>PhLi/ (PMDETA)</td>
<td>71</td>
<td>-110/2</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>PhMgBr</td>
<td>71</td>
<td>-20/8</td>
<td>88%</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>p-AnLi</td>
<td>72</td>
<td>20/24</td>
<td>83%</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>p-AnMgBr</td>
<td>72</td>
<td>-20/24</td>
<td>85%</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>MeMgBr</td>
<td>71</td>
<td>-78/2</td>
<td>92%</td>
</tr>
</tbody>
</table>

Displacement of the fluoro group is a much faster reaction than that of the methoxy group. The fluorophosphine boranes also react with Grignard reagents and give higher isolated yields due to the ease of purification. If one can overcome the problem of racemization in the previous step (Scheme 27), this reaction might be very good for making monophosphine boranes.

Preparation of Homochiral Diphosphine Borane Complexes

Homochiral bisphosphine borane complexes have been prepared by lithiating the monophosphine boranes (71-73) with sec-BuLi (THF, -78 °C) followed by coupling with dichlorodimethylsilane (Scheme 35).
There are two main reasons for coupling the monophosphine borane complexes. These are: (1) homochiral biphosphine boranes are the precursors of many useful ligands (the borane group can be removed by "Ward" procedure)46 and (2) The coupling products can be used to determine the optical purity of the monophosphine boranes. If the monophosphine borane compounds are racemates, formation of meso coupling products will occur. These differences can be determined by 1H NMR because the meso coupling products look different than the optically pure compounds (figure 6).
Figure 6. 1H NMR of the meso and optically pure diphosphine boranes
The results of coupling reaction are shown in Table 8.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>[a]_{D}^{25}</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>75</td>
<td>+58.5</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>76</td>
<td>+30.0</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>77</td>
<td>-14.0</td>
<td>80</td>
</tr>
</tbody>
</table>

These three kinds of optically pure diphosphine boranes are electronically different. These ligands will form six membered rings when they chelate with a transition metal. All these homochiral diphosphine ligands will be evaluated as to their utility in various asymmetric reactions.
EXPERIMENTAL

Physical Data: 1H NMR and 13C NMR were measured at 300 and 75 MHz respectively, with a Bruker AL-300 spectrometer. 31P NMR were measured at 202 MHz, Brucker AM-500 spectrometer. 1H NMR chemical shifts are reported in ppm relative to the residual protons of CDCl$_3$ (δ 7.24) or C$_6$H$_6$ (δ 7.15). 13C NMR chemical shifts are reported in ppm relative to CDCl$_3$ (δ 77.0) or C$_6$D$_6$ (δ 128), 31P NMR chemical shifts are reported in ppm relative to H$_3$PO$_4$ (85%) (δ 0.0) or triphenylphosphine (δ -6.0). 1H NMR coupling constants are reported in Hz and refer to real or apparent multiplicities which are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), sx (sextet), br (broad), m (multiplet) and app (apparent). Combinations of these descriptors were also used when appropriate. For example, a signal which appears as a triplet (t) but is truly an unresolved doublet of doublets (dd) would be reported as an apparent triplet (app t).

Infrared spectra were recorded with either a Perkin Elmer 1800 FT-IR or a Bruker IFS 25IR. High resolution mass spectra were measured on a VG Analytical 7070E spectrometer by Dr. L. J. Sears. Melting points were determined with a Me1-Temp II melting point apparatus and are uncorrected. Optical rotations were measured with a Perkins-Elmer 241 MC Polarimeter.

Chromatography: Gas chromatography was performed on a Varian Model 3700 Gas Chromatograph equipped with a flame ionization detector, a Hewlett-Packard 3390A Reporting Integrator and a 15m x 0.54nm ID column.
with a SE-54 (or equivalent) bonded phase. The Gas Chromatography (GC)
results were reported in time (initial temperature - retention time - progress
temperature).

Thin layer chromatography was performed on plates supplied by Alltech
Associates (K42-G). Visualization of plates was effected by one or more of the
following: a) UV illumination; b) exposure to I\textsubscript{2} vapor; c) KMnO\textsubscript{4} oxidation; or d)
anisaldehyde derivitization. All column chromatography was conducted on E.
Merck silica gel 60. Solvent systems used for elution are reported in % volume/
volume.

High Performance Liquid Chromatography was performed on a IBM
LC/9533 Ternary Gradient Liquid Chromatograph equipped with a 250 x 4.6 nm
(L x I.D) chiralPak AD column, which amlyse tris (3, 5 - dimethylphenyl
carbamate) coat on 10 ul silica gel substrate. An IBM LC/9523 Variable UV
Detector and a Hewlett-Packard 3390A Reporting Integrator were used for
detecting and plotting.

Materials: A listing of the common solvents and reagents purified by
distillation is shown in Table 9. Atmospheric pressure distillations were
conducted in an inert atmosphere of argon or nitrogen.

Commercially available 10 M n-BuLi was diluted with heptane and then
titrated against a standard solution of 2-butanol in ether using 1,10-
phenanthroline as indicator. Grignard reagents were titrated in the same
manner as n-BuLi. These reagents were also checked periodically for total
base content. This was accomplished by adding an aliquat to ice and titration of
the resulting mixture with a standard solution of potassium biphthalate using
phenolphthalein as the indicator.
Unless indicated otherwise, reactions were performed in oven or flame dried vessels under an atmosphere of nitrogen or argon. Temperatures reported are bath temperatures unless noted otherwise. Concentrations were performed under reduced pressure with a Büchi rotary evaporator and "drying" of an organic solution was accomplished with anhydrous Na₂SO₄ or MgSO₄.

Table 9. Solvent and Reagent Purification

<table>
<thead>
<tr>
<th>Solvent/Reagent</th>
<th>Purification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et₂O*</td>
<td>Na–Ph₂CO</td>
</tr>
<tr>
<td>THF</td>
<td>K</td>
</tr>
<tr>
<td>CH₃CN</td>
<td>CaH₂</td>
</tr>
<tr>
<td>Toluene</td>
<td>CaH₂</td>
</tr>
<tr>
<td>DME</td>
<td>K</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>CaH₂</td>
</tr>
<tr>
<td>Benzene</td>
<td>K</td>
</tr>
<tr>
<td>Heptane</td>
<td>K</td>
</tr>
<tr>
<td>DMSO*</td>
<td>CaH₂</td>
</tr>
<tr>
<td>DMF*</td>
<td>CaH₂</td>
</tr>
<tr>
<td>HMPA*</td>
<td>CaH₂</td>
</tr>
<tr>
<td>CH₃OH</td>
<td>Mg(OCH₃)₂</td>
</tr>
<tr>
<td>2-butanol</td>
<td>CaH₂</td>
</tr>
<tr>
<td>TMS-Cl</td>
<td>CaH₂</td>
</tr>
<tr>
<td>Xylene*</td>
<td>CaH₂</td>
</tr>
<tr>
<td>Pentane</td>
<td>Na–K</td>
</tr>
<tr>
<td>Hexane</td>
<td>K</td>
</tr>
<tr>
<td>Amines*</td>
<td>CaH₂</td>
</tr>
</tbody>
</table>

a. Et₂O used in the preparation of CH₃Li was distilled from Na–K*. b. reduced pressure.
c. vacuum pressure. d. 1:3 Na:K. e. Et₂NH, i-Pr₂NEt, i-Pr₂NH and PhN(CH₃)₂.
Bis(dimethylamino)-4-methoxyphenyl phosphine (38)

\[
\begin{align*}
\text{H}_3\text{CO-} & \quad \text{Br} \\
1) \text{n-BuLi} & \quad \text{Et}_2\text{O} \\
2) (\text{NM}_{2})_{2}\text{P-Cl} & \quad \text{Et}_2\text{O}
\end{align*}
\]

4-Bromoanisole (18.7 g, 0.100 mol) was added to a solution of n-BuLi (36.9 mL of a 2.98 M solution in heptane, 0.110 mol) in Et₂O (100 mL) at 0 °C. The reaction mixture was then stirred for an additional 15 min at 0 °C. The resulting solution of 4-lithioanisole was then added dropwise to (Me₂N)₂P-Cl (14.7 g, 0.085 mol) in Et₂O (50 mL) at -78 °C. The mixture was then warmed slowly to 25 °C. After dilution with anhydrous Et₂O (50 mL), the solution was filtered under argon through celite. Concentration of the solution followed by purification of the yellow liquid by fractional distillation (100-110 °C, 1.1 mm) gave 20.7 g (92%) of (38) as a viscous clear oil.

\[\text{H}_3\text{CO-} \quad \text{P}^\text{NM}_{2} \quad \text{NM}_{2}\]

\[\text{1H NMR (CDCl}_3) \delta 7.29 (dd, J = 5.3 \text{ and } 8.6 \text{ Hz}, 2\text{H, ArH}), 6.89 (dd, J = 1.9 \text{ and } 8.6 \text{ Hz}, 2\text{H, ArH}), 3.80 (s, 3\text{H, OCH}_3), 2.72 (d, J = 9.2 \text{ Hz}, 12\text{H, NCH}_3); \]

\[\text{13C NMR (CDCl}_3, ^{1}\text{H decoupled) } \delta 140.6, 132.6, 132.4, 113.9 (\text{Cs of the Ar}), 55.2 (s, \text{OCH}_3), 41.6 (d, J = 7.1 \text{ Hz}, 4\text{C, NCH}_3).\]

Chloro-(dimethylamino)-4-methoxyphenyl phosphine (39a)

\[
\begin{align*}
\text{H}_3\text{CO-} & \quad \text{P}^\text{NM}_{2} \quad \text{NM}_{2} \\
\text{PCl}_3 & \quad \text{Et}_2\text{O} \\
\text{Et}_2\text{O} & \quad \text{PCl}_3 \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

PCl₃ (12.6 g, 0.092 mol) was slowly added to (38) (20.7 g, 0.092 mol) at 0 °C. The reaction mixture was stirred for 2h at 0 °C, then warmed to 25 °C for
1h. Purification of the resulting product by fractional distillation (135-145 °C, 0.60 mm) gave 18.7 g (99%) of (39a) as a viscous oil.

\[^1H \text{NMR (CDCl}_3 \delta 7.60 \text{ (dd, } J = 6.1 \text{ and } 8.7 \text{ Hz, } 2H, \text{ ArH}), 6.96 \text{ (dd, } J = 1.6 \text{ and } 8.7 \text{ Hz, } 2H, \text{ ArH}), 3.83 \text{ (s, } 3H, \text{ OCH}_3), 2.65 \text{ (d, } J = 13.0 \text{ Hz, } 6H, \text{ NCH}_3); ^13C \text{NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 141.3, 140.6, 132.5, 132.2, 113.9 \text{ (Cs of the Ar), 55.3 (s, OCH}_3), 40.0 \text{ (d, } J = 7.0 \text{ Hz, } 2C, \text{ NCH}_3).} \]

Chloro-(dimethylamino)-2-trifluoromethylphenyl phosphine (39b)

\[
\text{CF}_3\begin{array}{c} \text{P} \\
\text{NMe}_2 \\
\text{NMe}_2
\end{array} \xrightarrow{\text{PCl}_3, \text{Et}_2\text{O}} \text{CF}_3\begin{array}{c} \text{P} \\
\text{NMe}_2 \\
\text{NMe}_2
\end{array}\text{Cl}
\]

Fractional distillation (75 °C, 0.050 mm) gave 24.5 g (96%) of (39b): \(^1H \text{NMR (CDCl}_3 \delta 8.34 \text{ (dd, } J = 3.1 \text{ and } 8.0 \text{ Hz, } 1H, \text{ ArH}), 7.72 \text{ (m, } 1H, \text{ ArH), 7.64} \text{ (t, } J = 7.1 \text{Hz, } 1H, \text{ ArH), 7.52} \text{ (t, } J = 7.5 \text{ Hz, } 1H, \text{ ArH), 2.60} \text{ (d, } J = 12.9 \text{ Hz, } 6H, \text{ NCH}_3); ^13C \text{NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 133.3, 133.2, 131.5, 130.1 \text{ (Cs of Ar), 126.7 (m, CF}_3), 126.1 \text{ (d, } J = 2.3Hz), 122.5 \text{ (d, } J = 2.2Hz, \text{ C s of the Ar), 40.0} \text{ (d, } J = 7.0, 2C, \text{ NCH}_3).} \]

Chloro-(dimethylamino)-[2-(5-methylthienyl)] phosphine (39c)

\[
\begin{array}{c} \text{H}_3\text{C} \\
\text{NMe}_2 \\
\text{NMe}_2
\end{array} \text{S} \xrightarrow{\text{PCl}_3, \text{Et}_2\text{O}} \begin{array}{c} \text{H}_3\text{C} \\
\text{NMe}_2 \\
\text{NMe}_2
\end{array}\text{S}\text{Cl}
\]

Fractional distillation (63 °C, 1.00 mm) gave 20.6 g (99%) of (39c): \(^1H \text{NMR (CDCl}_3 \delta 7.62 \text{ (dd, } J = 2.1 \text{ and } 8.7 \text{ Hz, } 2H, \text{ ArH), 7.32 \text{ (m, } 1H, \text{ ArH), 7.24} \text{ (t, } J = 7.5 \text{Hz, } 1H, \text{ ArH), 6.86} \text{ (t, } J = 5.5 \text{ Hz, } 1H, \text{ ArH), 2.65} \text{ (d, } J = 12.9 \text{ Hz, } 6H, \text{ NCH}_3); ^13C \text{NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 133.3, 133.2, 131.5, 130.1 \text{ (Cs of Ar), 126.7 (m, CF}_3), 126.1 \text{ (d, } J = 2.3Hz), 122.5 \text{ (d, } J = 2.2Hz, C s of the Ar), 40.0 \text{ (d, } J = 7.0, 2C, \text{ NCH}_3).} \]

\[^1\text{H} \text{NMR (CDCl}_3 \delta 7.61 \text{ (dd, } J = 2.0 \text{ and } 11.6 \text{ Hz, } 2H, \text{ ArH), 6.79} \text{ (dd, } J = 1.5 \text{ and } 7.9 \text{ Hz, } 2H, \text{ ArH), 3.78} \text{ (s, } 3H, \text{ OCH}_3), 2.63 \text{ (d, } J = 13.1 \text{ Hz, } 6H, \text{ NCH}_3); ^13C \text{NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 141.3, 140.6, 132.6, 132.2, 113.9 \text{ (Cs of the Ar), 55.3 (s, OCH}_3), 40.0 \text{ (d, } J = 7.0 \text{ Hz, } 2C, \text{ NCH}_3).} \]

Chloro-(dimethylamino)-2-trifluoromethylphenyl phosphine (39b)

Fractional distillation (75 °C, 0.050 mm) gave 24.5 g (96%) of (39b): \(^1H \text{NMR (CDCl}_3 \delta 8.34 \text{ (dd, } J = 3.1 \text{ and } 8.0 \text{ Hz, } 1H, \text{ ArH), 7.72 \text{ (m, } 1H, \text{ ArH), 7.64} \text{ (t, } J = 7.1 \text{Hz, } 1H, \text{ ArH), 7.52} \text{ (t, } J = 7.5 \text{ Hz, } 1H, \text{ ArH), 2.60} \text{ (d, } J = 12.9 \text{ Hz, } 6H, \text{ NCH}_3); ^13C \text{NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 133.3, 133.2, 131.5, 130.1 \text{ (Cs of Ar), 126.7 (m, CF}_3), 126.1 \text{ (d, } J = 2.3Hz), 122.5 \text{ (d, } J = 2.2Hz, C s of the Ar), 40.0 \text{ (d, } J = 7.0, 2C, \text{ NCH}_3).} \]

Chloro-(dimethylamino)-[2-(5-methylthienyl)] phosphine (39c)

Fractional distillation (63 °C, 1.00 mm) gave 20.6 g (99%) of (39c): \(^1H \text{NMR (CDCl}_3 \delta 7.61 \text{ (dd, } J = 2.0 \text{ and } 11.6 \text{ Hz, } 2H, \text{ ArH), 6.79} \text{ (dd, } J = 1.5 \text{ and } 7.9 \text{ Hz, } 2H, \text{ ArH), 3.78} \text{ (s, } 3H, \text{ OCH}_3), 2.63 \text{ (d, } J = 13.1 \text{ Hz, } 6H, \text{ NCH}_3); ^13C \text{NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 141.3, 140.6, 132.6, 132.2, 113.9 \text{ (Cs of the Ar), 55.3 (s, OCH}_3), 40.0 \text{ (d, } J = 7.0 \text{ Hz, } 2C, \text{ NCH}_3).} \]
NMR (C$_6$H$_6$) δ 7.5-6.5 (m, 2H, H of the thienyl), 2.32 (d, $J = 13.6$Hz, 6H, NCH$_3$), 2.05 (s, 3H, CH$_3$); 31P NMR (CDCl$_3$) δ 132.8.

(2R, 4S, 5R)-2-(4-Methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)

To a solution of (-)-ephedrine (14.1 g, 0.086 mol) in 1,2-DME (125 mL) at -50 $^\circ$C was added exactly 1 eq. of n-BuLi (21.5 mL of a 4.00 M solution in heptane, 0.086 mol). To this solution was added (39a) (18.7 g, 0.0907 mol) in 1,2-DME (25 mL) at -50 $^\circ$C. The resulting reaction mixture was then stirred vigorously and slowly warmed to 25 $^\circ$C (~2 h), during which time a precipitate formed. A catalytic amount of chlorotrimethylsilane (500 μL, 5 mol%) was then added and the reaction mixture was refluxed for 10 h. After cooling to 0 $^\circ$C, BH$_3$·S(CH$_3$)$_2$ (8.5 mL of a 10.1 M solution, 0.086 mol) was added. The reaction mixture was then stirred for an additional 2 h at 25 $^\circ$C. The resulting mixture was concentrated *in vacuo* to yield a beige viscous residue which was diluted with anhydrous benzene (100 mL) and filtered through florisil. Concentration of the solution followed by trituration with anhydrous methanol gave the title compound as a white solid. Recrystallization with anhydrous methanol or methylcyclohexane afforded 22.2 g (82%) of the pure complex.
mp 82 °C; [α]$_{25}^D$ -6.5° (c 2.0 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 7.78 (dd, J = 9.2 and 9.4 Hz, 2H, ArH), 7.4-7.2 (m, 5H, PhH), 6.95 (dd, J = 1.7 and 8.8 Hz, 2H, ArH), 5.55 (dd, J = 2.5 and 5.9 Hz, 1H, OCH). 3.82 (s, 3H, OCH$_3$), 3.65 (m, 1H, NCH), 2.61 (d, J = 10.9 Hz, 3H, NCH$_3$), 0.85 (d, J = 6.6 Hz, 3H, CH$_3$), 1.45-0.40 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 136.6, 136.0, 133.4, 133.2, 128.3 (2C), 128.2, 126.7, 126.6 (2C), 114.2, 114.1 (C s of the phenyl and Ar), 83.7 (app s, NCH$_3$), 59.4 (app s, NCH), 55.4 (s, OCH$_3$), 29.4 (app s, OCH), 13.4 (s, CH$_3$); 31P NMR (CDCl$_3$) δ 131.9 (d, J = 93.1 Hz); IR (film) 2974, 2934, 2902, 2839, 2380 (B-H), 2340, 1596, 1501, 1259, 1114, 966 cm$^{-1}$; high resolution mass spectrum calcd. for C$_{17}$H$_{23}$BNO$_2$P (M$^+$) 315.1559. Found 315.1530; Rf = 0.22 (20% EtOAc/hexane); GC: t = 10.50 (70-2-15).

(2R, 4S, 5R)-2-(2-Trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)

Recrystallization with methylcyclohexane or methanol afforded 24.3 g (77%) of (42) as needle shaped white crystals: mp 106.6-108.0 °C; [α]$_{25}^D$ -10° (c 2.0 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 7.83 (dd, J = 7.5 and 11.1 Hz, 1H, ArH), 7.74 (m, 1H, ArH), 7.60 (m, 2H, ArH), 7.33 (m, 5H, PhH), 5.21 (d.d, J = 3.4 and 6.0 Hz, 1H, OCH), 3.66 (m, 1H, NCH), 2.97 (d, J = 9.8Hz, 3H, NCH$_3$), 0.81 (d, J = 6.6 Hz, 3H, CH$_3$), 1.75-0.40 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 136.0 (d, J = 5.5 Hz), 132.2, 132.1, 131.5 (d, J = 7.7 Hz), 131.2,
128.2 (2C), 128.1, 127.2 (m, CF₃), 126.2, 125.4, 121.8 (C of the phenyl and Ar),
83.3 (d, J = 8.0 Hz, NCH₃), 58.3 (app s, NCH), 30.8 (d, J = 8.9 Hz, OCH), 13.1(s, CH₃); ³¹P NMR (CDCl₃) δ 131.3 (d, J = 89.5 Hz); IR (film) 2995, 2937, 2869,
2425, 2383 (B-H), 1456, 1318, 1135, 973 cm⁻¹; high resolution mass spectrum calcd. for C₁₇H₂₀BF₃NOP (M⁺) 353.1328. Found 353.1315; Rf = 0.25 (20%
EtOAc/Hexane); GC: t = 10.50 (70-2-15).

(2R, 4S, 5R)-2-[2-(5-Methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-
oxazaphospholidine 2-borane (46)

Recrystallization with anhydrous ethanol or methanol afforded 24.9 g
(82%) of (46) as needle shaped white crystals: mp 76.3 °C; [α]²⁵ө +8.0° (c 2.0 in
CHCl₃); ¹H NMR (CDCl₃) δ 7.58 (dd, J = 6.2 and 3.0 Hz, 1H, H of thienyl), 7.36
(m, 6H, PhH and H of thienyl), 5.58 (dd, J = 2.9 and 6.0 Hz, 1H, OCH), 3.64 (m,
1H, NCH₂), 2.61 (d, J = 11.4 Hz, 3H, NCH₃), 2.53 (s, 3H, CH₃ on the thienyl),
0.78 (d, J = 6.6 Hz, 3H, CH₃), 1.7-0.2 (broad envelope, 3H, BH₃); ¹³C NMR
(CDCl₃, ¹H decoupled) δ 139.5, 139.4, 136.7, 129.0, 128.9 (2C), 128.1, 127.9,
127.3 (2C) (C of the phenyl and thienyl), 84.3 (d, J = 6.5 Hz, NCH₃), 59.9 (app s, NCH), 30.1 (d, J = 8.1Hz, OCH)), 16.1(s, CH₃CS), 14.3 (s, CH₃); ³¹P NMR
(CDCl₃) δ 120.9 (d, J = 88.8 Hz); IR (film) 3066, 3031, 2975, 2959, 2844, 2399
(B-H), 2373, 2340, 1436, 1213, 1179, 960, 845, 628 cm⁻¹; high resolution mass
spectrum calcd. for C₁₅H₂₁BNOPS (M⁺) 305.1175. Found 305.1154; Rf = 0.34
(20% EtOAc/Hexane); GC: t = 11.17 (70-2-15).
(2R, 4S, 5R)-3,4-Dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)

Recrystallization with methanol afforded 19.60 g (80%) of (48) as needle shaped white crystals: mp 103.3-104.6 °C, [α]$_{25}^{D}$ +4.0° (c 1.0 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 7.84 (m, 2H, PhH), 7.54 (m, 3H, PhH), 7.40 (m, 5H, PhH), 5.59 (dd, J = 6.0 and 3.0 Hz, 1H, OCH), 3.67 (d.d.q., J = 6.0, 8.7 and 6.5 Hz, 1H, NCH), 2.67 (d, J = 11.0 Hz, 3H, NCH$_3$), 0.81 (d, J = 6.5 Hz, 3H, CH$_3$), 1.7-0.2 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 133.0, 131.7, 131.5, 129.3, 129.21 (2C,), 129.0 (Cs of phenyls), 127.3 (2C,C of the phenyl), 84.8 (d,J = 9.0 Hz, NCH$_3$), 59.8 (app s, NCH), 30.1 (d, J = 8.6 Hz, OCH), 14.2 (s, CH$_3$); 31P NMR (CDCl$_3$) δ 132.8 (d, J = 96.0 Hz); IR (film) 3060, 2976, 2386 (B-H), 1436, 1207, 1177, 1113, 965, 748, 699 cm$^{-1}$; Rf = 0.31 (20% EtOAc/hexane); GC: t = 11.00 (70-2-15).

(Rp)-N-Methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-methyl-(2-trifluoromethylphenyl)-phosphine borane (49)

A 50 mL flask charged with MeLi (6.92 mL of a 1.46 M solution in Et$_2$O,
0.0101 mol) and THF (11 mL) was cooled to -120 °C (THF/ Et2O/ N2(liquid)). A 1 M solution of oxazaphospholidine borane complex (42) (3.54 g, 0.01 mol) in THF (10 mL) was then added slowly via a cold addition funnel so that the temperature did not exceed -70 °C. Upon completion of the addition, the light yellow solution was then stirred vigorously and gradually warmed to -78 °C for 4 h, and then warmed to 0 °C for 2 h. After cooling to -78 °C, MeI (1.86 mL, newly filtered through florisil, 0.03 mol) was added. The reaction mixture was then stirred for additional 12 h at 25 °C. The resulting mixture was diluted with anhydrous benzene (20 mL). The organic phase was extracted with saturated aqueous NH4Cl (3 x 10 mL) and brine (3 x 10 mL). The organic phase was dried over Na2SO4 and filtered through florisil. Concentration of the organic phase in vacuo for 12 h afforded a crude product as a white solid. Recrystallization with anhydrous methanol or methylcyclohexane provided 3.0 g (80%) of the pure complex as needle shaped white crystals.

mp 89.2 °C, [α]25D +17.0° (c 2.0 in CHCl3); 1H NMR (CDCl3) δ 7.78 (m, 2H, ArH), 7.62 (m, 2H, ArH), 7.36 (m, 5H, PhH), 4.36 (d, J = 4.5 Hz, 1H, OCH), 4.01 (m, 1H, NCH), 3.25 (s, 3H, OCH3), 2.52 (d, J = 7.9 Hz, 3H, NCH3), 1.61 (d, J = 8.8 Hz, 3H, PCH3), 1.17 (d, J = 6.9Hz, 3H, CH3), 1.70-0.30 (broad envelope, 3H, BH3); 13C NMR (CDCl3, 1H decoupled) δ 140.5, 134.4 (d, J = 10.2 Hz), 132.3 (d, J = 9.0 Hz), 131.3, 128.9 (2C), 128.5, 128.4, 128.3 (Cs of the Ar and phenyl), 128.2 (m, CF3), 127.8 (2C, C of the phenyl), 89.58 (app s, NCH3), 59.23 (d, J = 10.0 Hz, NCH)), 57.8 (s, OCH3), 30.8 (s, OCH), 15.4 (d, J = 4.0 Hz, PCH3), 12.3 (s, CH3); 31P NMR (CDCl3) δ 73.4; IR (film) 2985, 2939, 2370 (B-H), 1312, 1179, 1117, 1038, 967 cm⁻¹; high resolution mass spectrum calcd. for C19H26BF3NOP (M⁺) 383.1767. Found 383.1782; Rf = 0.305 (20% EtOAc/Hexane); GC: t = 10.12 (70-2-15).
(Rp)-N-Methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] aminophenyl-(2-trifluoromethylphenyl)-phosphine borane (50)

Recrystallization from anhydrous methanol afforded 3.65 g (78%) of pure (50). mp 140.0-141.2 °C; [α]²⁵ +10.0 ° (c 1.8 in CHCl₃); ¹H NMR (CDCl₃) δ 7.74 (dd, J= 4.4 and 7.8 Hz, 1H, ArH), 7.59-7.28 (m, 12H, PhH and ArH), 7.16 (dd, J = 7.9 and 12.0 Hz, 1H, PhH), 4.93 (m, 2H, OCH and NCH), 3.25 (s, 3H, OCH₃), 2.41 (d, J = 7.6 Hz, 3H, NCH₃), 1.08 (d, J = 6.39 Hz, 3H, CH₃), 1.70-0.70 (broad, envelope, 3H, BH₃); ¹³C NMR (CDCl₃, ¹H decoupled) δ 140.4 (C of the Ar), 134.8 (d, J = 6.2 Hz, C of the Ar), 132.6 (C of the Ar), 132.4 (C of the Ar), 132.1 (C of the Ar), 132.0 (C of the Ar), 131.7 (C of the phenyl), 131.4 (C of the phenyl), 129.5 (m, CF₃), 129.5 (2C, C of the phenyl), 129.1 (C of the phenyl), 128.9 (C of the phenyl), 128.5 (C of the phenyl), 128.3 (2C, C of the phenyl), 89.0 (d, J = 6.0 Hz, NCH₃), 58.6 (d, J = 10.5 Hz, NCH), 57.5 (s, OCH₃), 32.0 (s, OCH), 13.6 (s, CH₃); ³¹P NMR (CDCl₃) δ 74.7 (d, J = 21.5 Hz); IR (film) 2937, 2824, 2388 (B-H), 1437, 1311, 1178, 1117, 1008, 960 cm⁻¹; high resolution mass spectrum calcd. for C₂₄H₂₈BF₃NOP (M⁺) 445.1991. Found 445.1973; Rf = 0.26 (20% EtOAc/hexane); GC: t = 12.95 (70-2-15).
(Rp)-N-Methyl, N-[(1R, 2S)-(1-methoxy-1-pheny-2-propyl)] amino-(4-methoxyphenyl)-methyl phosphine borane (52)

The analytically pure product was isolated by column chromatography on silica gel (20% EtOAc/hexane for elution) in 70% yield as white solid. $[\alpha]_{D}^{25} +36.3^\circ$ (c 14.1 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 7.34 (m, 5H, PhH), 7.04 (dd, $J = 8.8$ and 9.8 Hz, 2H, ArH), 6.79 (dd, $J = 1.9$ and 8.7 Hz, 2H, ArH), 4.12 (d, $J = 7.2$ Hz, 1H, OCH), 3.91 (m, 1H, NCH), 3.78 (s, 3H, ArOCH$_3$), 3.15 (s, 3H, OCH$_3$), 2.48 (d, $J = 8.7$ Hz, 3H, NCH$_3$), 1.44 (d, $J = 9.0$ Hz, 3H, PCH$_3$), 1.14 (d, $J = 6.7$ Hz, 3H, CH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 140.7, 132.8, 132.6, 129.4, 129.0 (2C), 128.4, 128.2 (2C), 127.4, 114.7 (d, $J = 11.8$ Hz) (C's of the phenyl), 88.1 (d, $J = 5.6$ Hz, NCH$_3$), 58.4 (d, $J = 7.5$ Hz, NCH), 57.6 (s, PhOCH$_3$), 55.9 (s, OCH$_3$), 29.5 (s, OCH), 14.6 (s, CH$_3$), 12.4 (d, $J = 11.7$ Hz, PCH$_3$); 31P NMR (CDCl$_3$) δ 63.7 (d, $J = 96.6$ Hz); IR (film) 2935, 2836, 2370 (B-H), 1597, 1504, 1295, 1255, 1114, 1094, 1028 cm$^{-1}$; Rp = 0.204 (20% EtOAc/hexane); GC: t = 13.41 (70-2-15).

(Rp)-N-Methyl, N-[(1R, 2S)-(1-methoxy-1-pheny-2-propyl)] amino-methyl-phenyl-phosphine borane (53)

Recrystallization with ethanol afforded 2.20 g (78%) of (53); mp 58.9 $^\circ$C;
[α]$_{D}^{25}$ -45.0° (c 1.0 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 7.36-7.25 (m, 8H, PhH), 7.11-7.05 (m, 2H, PhH), 4.16 (d, $J = 6.9$ Hz, 1H, OCH$_3$), 3.91 (m, 1H, NCH$_3$), 3.17 (s, 3H, OCH$_3$), 2.49 (d, $J = 8.7$ Hz, 3H, NCH$_3$), 1.48 (d, $J = 9.0$ Hz, 3H, PCH$_3$), 1.16 (d, $J = 6.8$ Hz, 3H, CH$_3$), 1.70-0.50 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 140.7 (C of the phenyl), 131.1 (C of the phenyl), 131.0 (C of the phenyl), 130.9 (C of the phenyl), 129.2 (C of the phenyl), 129.1 (2C, C of phenyl), 128.5 (C of the phenyl), 128.3 (2C, C of the phenyl), 88.3 (d, $J = 5.9$ Hz, NCH$_3$), 58.5 (d, $J = 7.8$ Hz, NCH), 57.6 (s, OCH$_3$), 29.8 (s, OCH), 14.6 (s, CH$_3$), 12.4 (d, $J = 11.4$ Hz, CH$_3$); 31P NMR (CDCl$_3$) δ 65.23 (d, $J = 81.4$ Hz); IR (film) 2982, 2934, 2821, 2370 (B-H), 1436, 1095, 1067, 1013, 968, 700 cm$^{-1}$; high resolution mass spectrum calcd. for C$_{18}$H$_{27}$BNOP (M$^+$) 315.1931. Found 315.1928; Rf = 0.317 (20% EtOAc/hexane); GC: t = 10.73 and 12.41 (70-2-15).

(Sp)-N-Methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino-(2-methoxyphenyl)-phenyl phosphine borane (54)

This compound was prepared by the reaction of complex (48) with o-anisyl lithium. The o-anisyllithium was prepared from o-bromoanisole. An analytically pure sample was isolated by recrystallization with anhydrous methanol: mp 108.5-109.3 °C; [α]$_{D}^{25}$ +11.25 ° (c 1.6 in CHCl$_3$); 1H NMR (CDCl$_3$)
δ 7.60-7.53 (m, 2H, ArH), 7.40-7.23 (m, 10H, ArH and PhH), 7.04 (m, 1H, ArH), 6.90 (m, 1H, PhH), 4.35 (d, J = 5.0 Hz, 1H, OCH), 4.25 (m, 1H, NCH), 3.55 (s, 3H, ArOCH₃), 3.18 (s, 3H, OCH₃), 2.57 (d, J = 8.0 Hz, 3H, NCH₃), 1.15 (d, J = 6.8 Hz, 3H, CH₃), 1.68-0.50 (broad envelope, 3H, BH₃); ¹³C NMR (CDCl₃, ¹H decoupled) δ 140.7, 135.7, 135.5, 133.8 (Cs of the phenyl), 131.8, 131.6, 130.6, 128.9 (2C, C of the phenyl and Ar), 128.7, 128.5 (Cs of the phenyl), 128.1, 127.9 (2C, C of the phenyl), 121.6, 121.5 (C of the phenyl), 112.4, 112.3 (C of the phenyl), 89.6 (d, J = 4.4 Hz, NCH₃), 58.6 (d, J = 10.8 Hz, NCH), 57.6 (s, ArOCH₃), 55.8 (s, OCH₃), 31.7 (s, OCH), 13.0 (s, CH₃); ³¹P NMR (CDCl₃) δ 67.6 (m); IR (film) 2980, 2937, 2823, 2381 (B-H), 1589 (P-Ar), 1477, 1430 (P-N), 1276, 1251 (C-O), 1078, 1020, 965 cm⁻¹; high resolution mass spectrum calcd. for C₂₄H₃₁BNO₂P (M⁺-H) 406.2089. Found 406.2098; Rf = 0.27 (20% EtOAc/hexane); GC: t = 15.23 (50-2-15).

(S)-Methyl-(2-trifluoromethylphenyl)-methylphosphinite borane (58)

To a 0.125 M solution of pure (49) (3.84 g, 0.01 mol) in methanol (80 mL) was added a solution concentrated sulfuric acid (1.03 g, 0.01 mol) in methanol (5 mL) at 25 °C. The mixture was stirred for 12 h at 25 °C. The methanol was removed under reduced pressure and the resulting crude residue was diluted with anhydrous benzene (20 mL). The organic phase was extracted with 5%
H$_2$SO$_4$ (3 x 5 mL) and 20% NaHCO$_3$ (3 x 5 mL). The organic phase was dried
over Na$_2$SO$_4$ and concentrated in vacuo to afford (58) (1.997 g, 85%) as
viscous oil.

$[\alpha]^{25}_D$ +82.5° (c 2.0 in CHCl$_3$), 1H NMR (CDCl$_3$) δ 8.23-8.16 (m, 1H, ArH),
7.85-7.80 (m, 1H, ArH), 7.67-7.63 (m, 2H, ArH), 3.63 (d, J = 12.7 Hz, 3H, OCH$_3$),
1.82 (d, J = 9.2 Hz, 3H, PCH$_3$), 1.35-0.30 (broad envelope, 3H, BH$_3$); 13C NMR
(CDCl$_3$, 1H decoupled) δ 136.96 (C of the Ar), 136.68 (C of the Ar), 132.89 (2C,
C of the Ar), 132.63 (C of the Ar), 132.46 (C of the Ar), 128.40 (m, CF$_3$), 54.94
(app s, OCH$_3$), 18.04 (d, J = 47.4 Hz, PCH$_3$); 31P NMR (CDCl$_3$) δ 117.73; IR
(film) 2950, 2848, 2392, 1438, 1312, 1179, 1136, 1121, 1038, 900, 801 cm$^{-1}$;
Rf = 0.43 (20% EtOAc/hexane); GC: t = 2.53 and 4.79 (70-2-15).

(R)-(2-Methoxyphenyl)-phenyl-methylphosphinite borane (61)

![Structure](image)

This compound was prepared by acid methanolysis of aminophosphine
borane (54). $[\alpha]^{25}_D$ -31.1° (c 1.8 in CHCl$_3$); e.e. = 100%; 1H NMR (CDCl$_3$) δ
7.82-7.68 (m, 3H, ArH); 7.51-7.37 (m, 4H, ArH and PhH), 7.08-7.03 (m, 1H,
PhH), 6.87 (m, 1H, PhH), 3.74 (d, J = 12.0Hz, 3H, PCH$_3$), 3.60 (s, 3H, OCH$_3$),
1.58-0.42 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled)
δ 134.70, 134.53, 131.93 (2C), 131.78 (2C), 128.86, 128.72, 121.63, 121.48,
112.40 (d, J = 5.5Hz) (C of the phenyl and Ar), 56.21 (s ArOCH$_3$), 54.90 (app s,
POCH₃); ³¹P NMR (CDCl₃) δ 106.09 (d, J = 85.8 Hz); IR (film) 2942, 2839, 2380 (B-H), 1590, 1478, 1431, 1277, 1251, 1024, 753 cm⁻¹; Rf = 0.28 (20% EtOAc/hexane); GC: t = 9.47 (70-2-15).

Methyl-(2-trifluoromethylphenyl)-trifluoroethylphosphinite borane (59)

This compound was prepared by two methods. (1) To a 0.125 M solution of pure (49) (0.66 g, 1.72 mmol) in trifluoroethanol (30.25 mL) was added dropwise a solution of methanesulfonylic acid (0.24 mL, 3.78 mmol) in trifluoroethanol (5 mL) at 25°C. Then the resultant solution was stirred for 12 h at 25°C and then diluted with anhydrous benzene (10 mL). The organic phase was extracted with 5% H₂SO₄ (3 × 5 mL) and 20% NaHCO₃ (3 × 5 mL). The organic phase was dried over Na₂SO₄ and concentrated in vacuo to furnish a clear liquid. Chromatography on silica gel (15% EtOAc/hexane for elution) afford (59) (0.300g, 40%). (2) To the trifluoroethanol (49 µl, 0.67 mmol) at -78 °C was added exactly 1 eq. of n-BuLi (134.6 µl of a 5.00 M solution in heptane, 0.67 mmol), then a solution of (49) (0.158 g, 0.71 mmol) in THF (0.2 mL) was added to this mixture at -78 °C. The resulting reaction mixture was then stirred vigorously and slowly warmed to 0 °C for 4 h. The resulting mixture was concentrated in vacuo to yield liquid residue which was then diluted with anhydrous benzene (3 mL) and filtered through florisil. Concentration of the
solution followed by chromatography on silica gel (15% EtOAc/hexane for elution) afforded (59) (0.122 g, 60%).

\[\alpha^2_{D} +20.0^\circ (c 2.0 \text{ in CHCl}_3), (\text{from method 1}); \]
\[^1H \text{ NMR (CDCl}_3) \delta 8.23-8.15 \text{ (m, 1H, ArH)}, 7.86-7.83 \text{ (m, 1H, ArH)}, 7.70-7.65 \text{ (m, 2H, ArH)}, 4.49-4.34 \text{ (m, 1H, OCH}_2), 4.17-4.03 \text{ (m, 1H, OCH}_2), 1.93 \text{ (d, } J = 9.0 \text{ Hz, 3H, PCH}_3), 1.50-0.40 \text{ (broad envelope, 3H, BH}_3); \]
\[^{13}C \text{ NMR (CDCl}_3, ^1H \text{ decoupled) } \delta 136.37, 136.10, 133.44 \text{ (2C), 132.72, 132.55 (C s of the Ar), 128.64 \text{ (m, ArCF}_3), 64.3 \text{ (m, CF}_3), 25.0 \text{ (app s, CH}_2), 19.7 \text{ (d, } J = 44.0 \text{ Hz, PCH}_3); \]
\[^{31}P \text{ NMR (CDCl}_3) \delta 124.43 \text{ (app. d, } J = 66.2Hz); \]
\[\text{IR (film) 2927, 2855, 2396 (B-H), 1313, 1174, 1141, 1122, 1094, 909, 738 \text{ cm}^{-1}; Rf = 0.32 \text{ (20% EtOAc/hexane), GC: } t = 2.74 \text{ and 4.74 (70-2-15).} \]

Methyl-(2-trifluoromethylphenyl)-2-methoxyethylphosphinite borane (60)

To a solution of 0.125 M of (49) (0.618 g, 1.61 mmol) in 2-methoxyethanol (32 mL) was added a solution of CH$_3$SO$_3$H (261.1 uL, 4.03 mmol) in 2 methoxyethanol (4 mL) at 25 °C. The resultant mixture was stirred at 25 °C for 12 h and then concentrated *in vacuo* to yield liquid residue which was diluted with anhydrous benzene (10 mL). The organic phase was extracted with 5% H$_2$SO$_4$ (3 x 5 mL) and 20% NaHCO$_3$ (3 x 5 mL). Concentration of the
organic phase followed by chromatography on silica gel (20% EtOAc/hexane for elution) afforded (60) (0.251 g, 60%).

\([\alpha]_{D}^{25} +17.0^\circ\) (c 2.0 in CHCl₃); ¹H NMR (CDCl₃) \(\delta 8.26-8.18\) (m, 1H, ArH), 7.84-7.80 (m, 1H, ArH), 7.66-7.62 (m, 2H, ArH), 4.21-4.11 (m, 1H, POCH₂), 3.94-3.85 (m, 1H, POCH₂), 3.56 (t, \(J = 9.5\) Hz, 2H, CH₃OCH₂), 3.31 (s, 3H, OCH₃), 1.86 (d, \(J = 9.2\) Hz, 3H, CH₃), 1.48-0.32 (broad envelope, 3H, BH₃); ¹³C NMR (CDCl₃, ¹H decoupled) \(\delta 136.54\) (C of the Ar), 136.29 (C of the Ar), 132.78 (2C, C of the Ar), 132.56 (C of the Ar), 132.40 (C of the Ar). 128.47 (m, CF₃), 72.35 (d, \(J = 6.8\) Hz, POCH₂), 67.33 (app s, OCH₃CH₂), 59.51 (s, OCH₃), 18.7 (d, \(J = 44.2\) Hz, PCH₃), ³¹P NMR (CDCl₃) \(\delta 116.35\) (app. d, \(J = 76.7\) Hz); IR (film) 2929, 2888, 2387 (B-H), 1312, 1173, 1120, 1037, 956, 908, 772 cm⁻¹; Rf = 0.315 (20% EtOAc/hexane); GC: \(t = 6.04\) (70-2-15).

Fluoromethyl-(2-trifluoromethylphenyl)-phosphine borane (62)

A solution of (49) (1.0 g, 2.6 mmol) in toluene (5 mL) was added over 10 min to a HF-py (1.0 g, 2 eq weight) in toluene (5 mL) at -78 °C (HF-py was transferred by plastic pippet under the Ar gas). After 15 min at -78 °C, the mixture was warmed to -25 °C and stirred vigorously for 5 h. After the reaction was quenched with 25% KF (10 mL), the mixture was diluted with ether. The organic phase was separated and combined with two 5 mL ether extractions of
the aqueous phase. The organic phases were dried over MgSO₄ and concentrated in vacuo to afforded (62) (0.460 g, 86.2%) as a clear liquid. An analytically pure sample was prepared by bulb-to-bulb distillation (50 °C, 1.0 mm): \([\alpha]^{25}_D +2.0^\circ\) (c 2.0 in CHCl₃); \(^1\)H NMR (CDCl₃) δ 8.26-8.10 (m, 1H, ArH), 7.86-7.85 (m, 1H, ArH), 7.75-7.72 (m, 2H, ArH), 2.07-2.00 (dd, \(J = 8.7\) and 12.37 Hz, 3H, PCH₃), 1.52-0.40 (broad envelope, 3H, BH₃); \(^{13}\)C NMR (CDCl₃, \(^1\)H decoupled) δ 134.50 (C of the Ar), 134.41 (C of the Ar), 134.24 (C of the Ar), 134.15 (C of the Ar), 133.13 (C of the Ar), 132.2 (d, \(J = 12.8\) Hz, C of the Ar), 127.91 (m, CF₃), 18.44 (dd, \(J = 11.9\) and 33.7 Hz, CH₃); \(^{31}\)P NMR (CDCl₃) δ 162.85 (app. d, \(J = 59.0\) Hz), 158.28 (app. d, \(J = 64.4\) Hz); IR (film) 3227, 2392 (B-H), 1313, 1181, 1125, 899, 771 cm⁻¹; Rf = 0.31 (20% EtOAc/hexane); GC: \(t = 2.94, 4.58\) (70-2-15).

Fluoromethyl-(4-methoxyphenyl)-phosphine borane (64)

![Diagram of Fluoromethyl-(4-methoxyphenyl)-phosphine borane (64)]

This fluorophosphine compound was prepared by the reaction of (52) with HF•py. Bulb-to-bulb distillation (58 °C, 1.0 mm) gave 0.425 g (88%) of (64) as clear liquid. \([\alpha]^{25}_D +2.3^\circ\) (c 2.1 in CHCl₃); \(^1\)H NMR (CDCl₃) δ 7.80-7.76 (app. q, 2H, ArH), 7.03-7.00 (app. q, 2H, ArH), 3.86 (s, 3H, OCH₃), 1.94 (dd, \(J = 8.7\) and 12.2 Hz, 3H, CH₃), 1.50-0.40 (broad envelope, 3H, BH₃); \(^{13}\)C NMR (CDCl₃, \(^1\)H decoupled) δ 133.67 (C of the Ar), 133.48 (C of the Ar), 115.38 (C of the Ar), 115.23 (C of the Ar), 56.18 (s, OCH₃), 17.20 (dd, \(J = 16.0\) and 38.2Hz, PCH₃);
31P NMR (CDCl$_3$) δ 156.74 (app d, $J = 71.4$ Hz), 152.24 (app d, $J = 62.1$ Hz), IR (film) 2937, 2385 (B-H), 1597, 1506, 1296, 1262, 1124, 894, 814 cm$^{-1}$; Rf = 0.23 (20% EtOAc/hexane); GC: t = 6.44 (70-2-15).

Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite (68b)

To a solution of pure (49) (0.445 g, 1 mmol) in CH$_2$Cl$_2$ (2.5 mL) was added CH$_3$CH$_2$SH (1.48 mL, 20 mmol) followed by CH$_3$SO$_3$H (0.13 mL, 2 mmol) at -5 °C. The resultant mixture was stirred for 12 h at -5 °C and then diluted with Et$_2$O. The organic phases were extracted with saturated NaHCO$_3$ (3 x 8 mL) and brine (3 x 5 mL). The organic phases were dried over Na$_2$SO$_4$ and filtered through florisil. Concentration of the solution followed by chromatography on silica gel (15% EtOAc/hexane for elution) afforded (68b) (0.377 g, 85%) as a clear liquid.

$[\alpha]_{D}^{25}$ -8.4° (c 1.9 in CHCl$_3$), 1H NMR (CDCl$_3$) δ 7.83-7.80 (m, 1H, ArH), 7.73-7.69 (m, 1H, ArH), 7.53-7.42 (m, 4H, ArH and PhH), 7.34-7.28 (m, 3H, PhH), 2.83 (m, 2H, SCH$_2$), 1.36 (t, $J = 14.8$ Hz, 3H, CH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 136.65 (C of the Ar), 132.57 (2C, C of the Ar), 132.31 (C of the phenyl), 129.98 (m, C of the Ar and phenyl), 129.31 (C of the phenyl), 129.10 (C of the phenyl), 129.02 (2C, C of the phenyl), 126.55 (m, CF$_3$), 29.18 (d, $J = 27.2$ Hz, SCH$_2$), 17.68 (d, $J = 7.2$ Hz, CH$_3$); 31P NMR (CDCl$_3$) δ 22.14 (q,
$J = 177.1 \text{Hz}$; IR (film) 3058, 2974, 2926, 1434, 1310, 1260, 1172, 1115, 968, 768 cm$^{-1}$; Rf = 0.51 (20% EtOAc/hexane); GC: $t = 9.40$ (70-2-15).

Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)

![Diagram of the reaction](image)

To a solution of (68b) (0.053 g, 0.17 mmol) in 1,2-DME (1.5 mL) was added BH$_3$·SMe$_2$ (18.5 µL of a 10.0 M solution, 0.185 mmol) at 0°C. The reaction mixture was then stirred for additional 6 h at 25°C. The resulting mixture was concentrated *in vacuo* to yield (68a) (0.049 g, 90%) as a clear liquid. An analytically pure sample was prepared by column chromatography on silica gel (15% EtOAc/hexane for elution).

$[\alpha]^{25}_D +3.3^\circ$ (c 2.4 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 8.52-8.45 (m, 1H, ArH), 7.78-7.56 (m, 5H, ArH and PhH), 7.45-7.35 (m, 3H, PhH), 3.10-2.95 (m, 2H, SCH$_2$), 1.33 (t, $J = 14.9$ Hz, 3H, CH$_3$), 1.80-0.70 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 137.26 (C of the Ar), 137.04 (C of the Ar), 132.73 (C of the Ar), 132.51 (m, C of the Ar and phenyl), 132.35 (C of the phenyl), 131.88 (C of the phenyl), 131.75 (2C, C of the phenyl)), 129.50 (m, CF$_3$), 129.18 (m, C of the phenyl), 129.04 (C of the phenyl), 26.73 (app s, SCH$_2$), 17.07 (s, CH$_3$); 31P NMR (CDCl$_3$) δ 55.07 (app. s); IR (film) 2928, 2399 (B-H), 1437, 1311, 1172, 1117, 1035, 770 cm$^{-1}$; Rf = 0.33 (20% EtOAc/hexane); GC: $t = 9.40$ (70-2-15).
Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)

This compound was prepared by the reaction of (54) with \(\text{CH}_3\text{CH}_2\text{SH} / \text{CH}_3\text{SO}_3\text{H} \). The analytically pure product was isolated by column chromatography on silica gel (15% EtOAc/hexane) in 46% yield (1st fraction):
\[[\alpha]^{25}_{D} +2.0^\circ \text{ (c 5.1 in CHCl}_3) \]; \(^1\text{H NMR (CDCl}_3) \delta \text{ 7.62-7.57 (m, 1H, ArH), 7.48-7.43 (m, 2H, ArH), 7.34-7.26 (m, 4H, ArH and PhH), 7.01-6.98 (t, J = 16.0 Hz, PhH), 6.87-6.82 (app. q, J = 12.7 Hz, 1H, PhH), 3.73 (s, 3H, OCH}_3) \], \(^1\text{H NMR (CDCl}_3, ^1\text{H decoupled) \delta 134.03 (C of the Ar), 133.94 (C of the Ar), 133.04 (C of the Ar), 132.76 (m, C of the Ar and phenyl), 131.55 (C of the Ar), 129.21 (C of the phenyl), 128.89 (C of the phenyl), 128.80 (C of the phenyl), 121.78 (C of the phenyl), 111.43 (C of the phenyl), 56.40 (s, OCH}_3) \], \(^{31}\text{P NMR (CDCl}_3) \delta 17.07; \text{IR (film) 3100, 3020, 1470, 1431, 1240, 1023, 754 cm}^{-1}; \text{RF = 0.446 (20% EtOAc/hexane); GC: } t = 12.04 \text{ (50-2-15).} \)

Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)

The analytically pure product was isolated by column chromatography on silica gel (15% EtOAc/hexane) in 30 % yield (2nd fraction):
\[[\alpha]^{25}_{D} +8.3^\circ \text{ (C 0.6 in CHCl}_3) \]; \(^1\text{H NMR (CDCl}_3) \delta 8.01 (m, 1H ArH), 7.74-7.67 (m, 2H, ArH), 7.52-7.33 (m, 4H, ArH and PhH), 7.10-7.04 (m, 1H, PhH), 6.87 (app. q, J = 12.1 Hz, 1H, PhH), 3.61 (s, 3H, OCH}_3), 3.01-2.90(m, 2H, SCH}_2), 1.32 (t, J = 14.8 Hz, 3H, CH}_3); ^{13}\text{C NMR (CDCl}_3, ^1\text{H decoupled) \delta 135.32 (C of the Ar), 135.14 (C of the}} \)
Ar), 134.60, 131.97, 131.83, 131.16, 128.91, 128.76, 121.75, 121.59, 112.51 (C of the Ar and phenyl), 112.46 (C of the phenyl), 56.18 (s, OCH$_3$), 26.03 (app s, SCH$_2$), 17.28 (d, $J = 4.9$ Hz, CH$_3$); 31P NMR (CDCl$_3$) δ 45.42; IR (film) 2970, 2890, 2391 (B-H), 1588, 1477, 1435, 1277, 1251, 1053, 1020, 756 cm$^{-1}$; Rf = 0.35 (20% EtOAc/hexane); GC: $t = 12.04$ (50-2-15).

(S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)

A solution of pure (62) (0.708 g, 3.0 mmol) in THF (3.0 mL) at -78 °C was treated with Ph-Li (1.14 M in Et$_2$O, 5.79 mL, 6.6 mmol). After 15 minutes, the mixture was warmed to 0 °C and stirred for 27 h at 0 °C. After the reaction was quenched with saturated NH$_4$Cl (10 mL), the mixture was diluted with anhydrous benzene. The organic phase was decanted and extracted with brine (3 x 5 mL). The organic phase was dried over Na$_2$SO$_4$ and concentrated in vacuo to afford a crude product as a clear liquid. An analytically pure product was isolated by column chromatography on silica gel (15% EtOAc/hexane for elution) in 78% (0.658 g) yield.

[α]$^{25}_D +2.8\degree$ (c 11.1 in CHCl$_3$); 1H NMR (CDCl$_3$) δ 8.29-8.23 (m, 1H, ArH), 7.79-7.76 (m, 1H, ArH), 7.67-7.64 (m, 2H, ArH), 7.50-7.35 (m, 5H, PhH), 2.02 (d, $J = 10.0$ Hz, 3H, PCH$_3$), 1.60-0.45 (broad envelope, 3H, BH$_3$); 13C NMR (CDCl$_3$, 1H decoupled) δ 138.10 (C of the Ar), 137.89, 132.65, 132.50, 132.38, 131.69, 131.56 (2C), 131.50, 129.35 (all Cs of the Ar and phenyl), 129.21 (C of
the phenyl), 128.70 (m, CF₃), 13.17 (d, J = 42.7 Hz, PCH₃), ³¹P NMR (CDCl₃) δ 17.83 (d, J = 61.1 Hz); IR (film) 3060, 2372 (B-H), 2342, 1438, 1313, 1264, 1179, 1119, 1065, 1037, 897, 771 cm⁻¹; Rf = 0.36 (20% EtOAc/hexane); GC: t = 7.70 (70-2-15).

(S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)

Chromatography on silica gel (20% EtOAc/hexane for elution) afforded (72) (0.562 g, 60%) as a viscous oil: [α]²⁵₀° +10.4° (c 2.5 in CHCl₃); ¹H NMR (CDCl₃) δ 8.25-8.15 (m, 1H, ArH), 7.76-7.70 (m, 1H, ArH), 7.64-7.60 (m, 2H, ArH), 7.46-7.40 (m, 2H, ArH), 6.93-6.89 (m, 2H, ArH), 3.80 (s, 3H, OCH₃), 1.98 (d, J = 10.0 Hz, 3H, PCH₃); 1.62-0.48 (broad envelope, 3H, BH₃); ¹³C NMR (CDCl₃, ¹H decoupled) δ 137.02 (C of the Ar), 136.82 (C of the Ar), 133.04 (2C of the Ar), 132.89 (2C, C of the Ar), 131.97 (C of the Ar), 131.82 (C of the Ar), 131.5 (C of the Ar), 127.96 (m, CF₃), 114.45 (C of the Ar), 114.30 (C of the Ar), 55.33 (s, OCH₃), 13.59 (d, J = 12.0 Hz, PCH₃); ³¹P NMR (CDCl₃) δ 16.55 (d, J = 30.0 Hz); IR (film) 2964, 2840, 2376, 1596, 1503, 1311, 1256, 1179, 1114, 1036, 769 cm⁻¹; Rf = 0.30 (20% EtOAc/hexane); GC: t = 9.18 (70-2-15).
(S)-(2-Methoxyphenyl)-methyl-phenyl-phosphine borane (73)

Concentration of the solution gave the title compound as a white solid. Recrystallization with anhydrous hexane afforded (73) 0.640 g (87%) of the pure complex: mp 68.0-68.9 °C; [α]25D +8.3° (c 0.6 in CHCl3); 1H NMR (CDCl3) δ 7.91-7.84 (m, 1H, ArH), 7.65-7.58 (m, 2H, ArH), 7.50-7.45 (m, 1H, ArH), 7.40-7.34 (m, 2H, PhH), 7.06-7.03 (m, 1H, PhH), 6.89-6.85 (m, 1H, PhH), 3.66 (s, 3H, OCH3), 1.95 (d, J = 10.5 Hz, 3H, PCH3); 13C NMR (CDCl3, 1H decoupled) δ 136.19, 135.99, 134.29, 131.78 (2C), 131.65, 130.91, 128.93, 128.79, 121.70, 121.54, 111.90 (Cs of the phenyl and Ar), 55.95 (s, OCH3), 11.48 (d, J = 39.0 Hz, PCH3); 31P NMR (CDCl3) δ 8.17 (d, J = 73.4 Hz); IR (film) 3059, 2940, 2374 (B-H), 1590, 1575, 1479, 1435, 1278, 1250, 1063, 1021, 895, 758 cm⁻¹; Rf = 0.25 (20% EtOAc/hexane); GC: t = 9.00 (70-2-15).

(R)-(2-Methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)

Recrystallization with anhydrous hexane afforded (74) 0.902 g (89%): mp 123.7-124.7 °C; [α]25D -23.6° (c 1.1 in CHCl3); 1H NMR (CDCl3) δ 7.59-
7.4 (m, 11H, ArH and PhH), 7.01-6.88 (m, 2H, PhH), 3.81 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 1.65-0.50 (broad envelope, 3H, BH₃), ³¹C NMR (CDCl₃, ¹H decoupled) δ 136.73 (C of the Ar), 136.58 (C of the Ar), 135.66 (2C, C of the Ar), 135.51 (2C, C of the Ar), 134.32 (C of the Ar), 133.34 (2C, C of the Ar), 133.21 (2C, C of the Ar), 131.08 (C of the Ar), 129.00 (m, C of the Ar), 128.86 (C of the Ar), 121.93 (C of the Ar), 121.78 (C of the Ar), 114.85 (C of the Ar), 114.70 (C of the Ar), 112.53 (d, J = 4.3 Hz) (C of the Ar), 56.03 (s, OCH₃), 55.9 (s, OCH₃); ³¹P NMR (CDCl₃) δ 16.41; IR (film) 3067, 2939, 2838, 2379 (B-H) 1596, 1502, 1478, 1436, 1254, 1182, 1108, 1060, 1023, 802, 757 cm⁻¹; Rf = 0.19 (20% EtOAc/hexane); GC: t = 13.33 and 14.99 (70-2-15).

(S,S)-Bis[(phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)

A solution of (71) (0.325 g, 1.15 mmol) in THF (1.5 mL) was treated with sec-BuLi (1.37 M in cyclohexane, 0.92 mL, 1.26 mmol) at -78 °C. After 45 min, dichlorodimethylsilane (76.88 μL, 0.630 mmol) was added to the mixture. The resultant solution was stirred at -78 °C for 30 min and then warmed up to 25 °C for 40 min. After the reaction was quenched with saturated NH₄Cl, the mixture was diluted with Et₂O (5 mL). The organic phase was separated and filtered through florisil. Concentration of the solution gave the crude product as viscous
oil. Chromatography on silica gel (22% EtOAc/hexane for elution) afforded \((75) \) (0.468 g, 69%) as a white solid: mp 86.0-87.8 °C; \([\alpha]^{25}_D +58.5^o \) (c 1.0 in CHCl₃); \(^1\)H NMR (CDCl₃) \(\delta \) 8.52-8.44 (dd, \(J = 10.4 \) and 17.7 Hz, 2H, ArH); 7.76-7.64 (m, 6H, ArH); 7.40-7.34 (m, 10H, ArH), 2.04-1.90 (m, 4H, SiCH₂), 1.70-0.50 (broad envelope, 3H, BH₃), -0.220 (s, 6H, SiCH₃); \(^{13}\)C NMR (CDCl₃, \(^1\)H decoupled) \(\delta \) 138.93 (2C), 138.87 (2C), 133.64 (2C), 132.58 (2C), 131.27 (2C), 131.13 (2C), 131.13 (4C) (Cs of the phenyl and Ar), 128.97 (m, 2C, CF₃), 12.61 (d, \(J = 12.6 \) Hz, 2C, SiCH₂), 0.641 (s, 2C, SiCH₃); \(^{31}\)P NMR (CDCl₃) \(\delta \) 21.41; IR (film) 3201, 3057, 2963, 2388 (B-H) 1438, 1311, 1265, 1181, 1116, 1036, 737 cm⁻¹; Rf = 0.20 (20% EtOAc/hexane); GC: \(t = 14.13 \) (100-2-15).

\[(S,S)-\text{Bis[}((4\text{-methoxyphenyl})-(2\text{-trifluoromethylphenyl})\text{-phosphino-borane})-\text{methylene}\]} \text{ dimethylsilane (76)}

Concentration of the solution gave the crude product as white solid. Recrystallization with anhydrous hexane afforded \((76) \) (0.603 g, 81%): mp 162.0-167.4 °C; \([\alpha]^{25}_D +30.0^o \) (c 0.6 in CHCl₃); \(^1\)H NMR (CDCl₃) \(\delta \) 8.42-8.31 (dd, \(J = 11.5 \) and 23.0 Hz, 2H, ArH); 7.38-7.30 (m, 4H, ArH), 695-6.82 (m, 4H, ArH), 3.79 (s, 6H, OCH₃), 1.98-1.72 (m, 4H, SiCH₂), 1.53-0.50 (broad envelope, 3H, BH₃), -0.230 (s, 6H, SiCH₃); \(^{13}\)C NMR (CDCl₃,
1H decoupled) δ 138.32 (2C), 138.10 (2C), 139.92 (2C), 132.14 (2C), 132.13 (2C), 131.94 (4C), 130.73 (2C), 130.69 (4C), 130.49 (4C), 128.47 (m, 2C, CF$_3$), 50.87 (2C) (Cs of Ar), 12.13 (dd, $J = 11.5$ and 24.1 Hz, 2C, SiCH$_2$), 0.125 (s, 2C, SiCH$_3$); 31P NMR (CDCl$_3$) δ 19.85; IR (film) 2894, 2843, 2377 (B-H), 1596, 1503, 1313, 1257, 1172, 1137, 1106, 1034, 825, 790 cm$^{-1}$; Rf = 0.09 (20% EtOAc/hexane); GC: $t = 16.38$ (100-2-15).
CONCLUSION

(1) An efficient and operationally simple procedure for the synthesis of 2-substituted oxazaphospholidine derivative has been developed. This new method permits the large scale preparation of a range of electronically and sterically differentiated homochiral monophosphine precursors.

(2) Various homochiral phosphine borane derivatives have been synthesized and studied. This included the aminophosphine boranes, phosphinite boranes, fluorophosphine boranes and thiophosphine boranes.

(3) New homochiral monophosphine ligands have been synthesized with high enantiomeric purity.

(4) New homochiral biphosphine ligands have been synthesized. These biphosphine ligands should find numerous applications as enantioselective modifiers for many transformations catalyzed by transition metal complexes.
LITERATURE CITED
LITERATURE CITED

(23) Nagel, U.; Rieger, B. Organometallics. 1989, 8, 1534 and refs. therein.

(b) Koizumi, T.; Amitani, H.; Yoshii, E. *Synthesis* 1979, 110.

(47) McKinstry, L. unpublished observations.
Figure 7. 1H NMR Spectrum of (2R, 4S, 5R)-2-(2-trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)
Figure 8. 13C NMR Spectrum of (2R, 4S, 5R)-2-(2-trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)
Figure 9. 31P NMR Spectrum of (2R, 4S, 5R)-2-(2-trifluoromethylphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (42)
Figure 10. 1H NMR Spectrum of (2R, 4S, 5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)
Figure 11. 13C NMR Spectrum of (2R, 4S, 5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)
Figure 12. 31P NMR Spectrum of (2R, 4S, 5R)-2-(4-methoxyphenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (44)
Figure 13. 1H NMR Spectrum of $(2R, 4S, 5R)$-2-[2-(5-methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (46)
Figure 14. 13C NMR Spectrum of (2R, 4S, 5R)-2-[2-(5-methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (46)
Figure 15. 31P NMR Spectrum of (2R, 4S, 5R)-2-[2-(5-methylthienyl)]-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-borane (46)
Figure 16. 1H NMR Spectrum of (2R, 4S, 5R)-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)
Figure 17. 13C NMR Spectrum of (2R, 4S, 5R)-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)
Figure 18. 31P NMR Spectrum of $(2R, 4S, 5R)$-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine 2-borane (48)
Figure 19. 1H NMR Spectrum of (Rp)-N-methyl, N-$[(1R, 2S)-(1$-methoxy-1-phenyl-2-propyl)]$ amino-
-methyl-$[(2$-trifluoromethylphenyl)]$-phosphine borane (49)
Figure 20. 13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] aminomethyl-(2-trifluoromethylphenyl)-phosphine borane (49)
Figure 21. 31P NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)] amino-methyl-(2-trifluoromethylphenyl)-phosphine borane (49)
Figure 22. 1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-phenyl-(2-trifluoromethylphenyl)-phosphine borane(50)
Figure 23. 13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-phenyl-(2-trifluoromethylphenyl)-phosphine borane (50)
Figure 24. 31P NMR Spectrum of (R)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-phenyl-(2-trifluoromethylphenyl)-phosphine borane (50)
Figure 25. 1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-pheny-2-propyl)]-amino-(4-methoxyphenyl)-methyl-phosphine borane (52)
Figure 26. 13C NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-1-methoxy-1-pheny-2-propyl]-amino-(4-methoxyphenyl)-methyl-phosphine borane (52)
Figure 27. 31P NMR Spectrum of (Rp)-N-methyl, N-[[$(1R, 2S)$-(1-methoxy-1-pheny-2-propyl)]]-amino-(4-methoxyphenyl)-methyl-phosphine borane (52)
Figure 28. 1H NMR Spectrum of (Rp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-
methyl-phenyl-phosphine borane (53)
Figure 29. 13C NMR Spectrum of (Rp)-N-methyl, N-$[(1R, 2S)$-(1-methoxy-1-phenyl-2-propyl)]-amino-methyl-phenyl-phosphine borane (53)
Figure 30. 31P NMR Spectrum of (R)-N-methyl, N-[($1R$, $2S$)-(1-methoxy-1-phenyl-2-propyl)]-amino-methyl-phenyl-phosphine borane (53)
Figure 31. 1H NMR Spectrum of (Sp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(2-methoxyphenyl)-phenyl-phosphine borane (54)
Figure 32. 13C NMR Spectrum of (Sp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(2-methoxyphenyl)-phenyl-phosphine borane (54)
Figure 33. 31P NMR Spectrum of (Sp)-N-methyl, N-[(1R, 2S)-(1-methoxy-1-phenyl-2-propyl)]-amino-(2-methoxyphenyl)-phenyl-phosphine borane (54)
Figure 34. 1H NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)-methylphosphinite borane (58)
Figure 35. 13C NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)-methylphosphinite borane (58)
Figure 36. 31P NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)-methylphosphinite borane (58)
Figure 37. 1H NMR Spectrum of Methyl-(2-trifluoromethylphenyl)-trifluoroethylphosphinite borane (59)
Figure 38. 31P NMR Spectrum of Methyl-(2-trifluoromethylphenyl)-trifluoroethylphosphinite borane (59)
Figure 39. 1H NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)-2-methoxyethylphosphinite borane (60)
Figure 40. 13C NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)-2-methoxyethylphosphinite borane (60)
Figure 41. 31P NMR Spectrum of (S)-methyl-(2-trifluoromethylphenyl)-2-methoxyethylphosphinite borane (60)
Figure 42. 1H NMR Spectrum of (R)-(2-methoxyphenyl)-phenyl-methylphosphinite borane (61)
Figure 43. 13C NMR Spectrum of (R)-(2-methoxyphenyl)-phenyl-methylphosphinite borane (61)
Figure 44. 31P NMR Spectrum of (R)-(2-methoxyphenyl)-phenyl-methylphosphinite borane (61)
Figure 45. 1H NMR Spectrum of Fluoro methyl-(2-trifluoromethylphenyl)-phosphine borane (62)
Figure 46. 13C NMR Spectrum of Fluoro methyl-(2-trifluoromethylphenyl)-phosphine borane (62)
Figure 47. 31P NMR Spectrum of Fluoro methyl-(2-trifluoromethylphenyl)-phosphine borane (62)
Figure 48. 1H NMR Spectrum of Fluoro methyl-(4-methoxyphenyl)-phosphine borane (64)
Figure 49. 13C NMR Spectrum of Fluoro methyl-(4-methoxyphenyl)-phosphine borane (64)
Figure 50. 31P NMR Spectrum of Fluoro methyl-(4-methoxyphenyl)-phosphine borane (64)
Figure 51. 1H NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)
Figure 52. 13C NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)
Figure 53. ^{31}P NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite borane (68a)
Figure 54. 1H NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethyldithiophosphinite (68b)
Figure 55. 13C NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite (68b)
Figure 56. 31P NMR Spectrum of Phenyl-(2-trifluoromethylphenyl)-ethylthiophosphinite (68b)
Figure 57. 1H NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)
Figure 58. 13C NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)
Figure 59. 31P NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite borane (69a)
Figure 60. 1H NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)
Figure 61. 13C NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)
Figure 62. 31P NMR Spectrum of Phenyl-(2-methoxyphenyl)-ethylthiophosphinite (69b)
Figure 63. 1H NMR Spectrum of (S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)
Figure 64. 13C NMR Spectrum of (S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)
Figure 65. 31P NMR Spectrum of (S)-Methyl-phenyl-(2-trifluoromethylphenyl)-phosphine borane (71)
Figure 66. 1H NMR Spectrum of (S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)
Figure 67. 13C NMR Spectrum of (S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)
Figure 68. 31P NMR Spectrum of (S)-(4-Methoxyphenyl)-methyl-(2-trifluoromethylphenyl)-phosphine borane (72)
Figure 69. 1H NMR Spectrum of (S)-(2-methoxyphenyl)-methyl-phenyl-phosphine borane (73)
Figure 70. 13C NMR Spectrum of (S)-(2-methoxyphenyl)-methyl-phenyl-phosphine borane (73)
Figure 71. 31P NMR Spectrum of (S)-(2-methoxyphenyl)-methyl-phenyl-phosphine borane (73)
Figure 72. 1H NMR Spectrum of (R)-(2-methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)
Figure 73. 13C NMR Spectrum of (R)-(2-methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)
Figure 74. 31P NMR Spectrum of (R)-(2-methoxyphenyl)-(4-methoxyphenyl)-phenyl-phosphine borane (74)
Figure 75. 1H NMR Spectrum of (S, S)-Bis[phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)
Figure 76. 13C NMR Spectrum of (S, S)-Bis[(phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)
Figure 77. 31P NMR Spectrum of (S, S)-Bis[(phenyl-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (75)
Figure 78. 1H NMR Spectrum of (S, S)-Bis[((4-methoxyphenyl)-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (76)
Figure 79. 13C NMR Spectrum of (S, S)-Bis[((4-methoxyphenyl)-(2-trifluoromethylphenyl)phosphino-borane)-methylene] dimethylsilane (76)
Figure 80. 31P NMR Spectrum of (S, S)-Bis[((4-methoxyphenyl)-(2-trifluoromethylphenyl)-phosphino-borane)-methylene] dimethylsilane (76)