Studies on the basal kernel blight disease of barley: pathogenesis and phylogeny of the causal agent Pseudomonas Syringae pv. syringae and its biological control by antagonistic Pantoea agglomerans by Andrea Braun

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Pathology
Montana State University
© Copyright by Andrea Braun (1998)

Abstract:
The pathogenesis and phylogeny of Pseudomonas syringae pv. syringae (Pss), the cause of basal kernel blight of barley, and its biological control by antagonistic Pantoea agglomerans Pa, (syn. Erwinia herbicola, Eh) was investigated. Scanning electron micrographs located bacteria close to stomata and bases of kernel trichomes. Light micrographs revealed Pss in intercellular spaces of aleurone and amyloplast cells. Electron micrographs demonstrated Pss in xylem vessels and cell wall degradation in association with capsule protected bacteria.

Fifty-five Pss strains, isolated from infected kernels of 12 barley cultivars were tested for tobacco hypersensitivity, pathogenicity, toxin production and carbon source utilization. Toxin production correlated low (r=0.31; p=0.046) with pathogenicity, but 96% of toxin-plus strains were pathogenic, supporting the importance of toxins for virulence. Nutritional analyses revealed a phenotypic variability of Pss strains with similarity coefficients between 76-100%. The intrapathovar variation of Pss populations was analyzed by RFLPs of digested DNA using XbaI, SpeI and pulsed field gel electrophoresis. Macrogen fingerprinting supported a heterogeneity of Pss populations (43-77% similarity).

Field experiments (1994, 1995) revealed 45-70% disease control, when Pa was applied to barley heads prior to the Pss infection window. Pa provided 80-100% disease reduction in greenhouse studies. Efficacy of Pa was affected by time and rate of application, with a single application providing control. Survival of formulated Pa was better when stored at 4 C than 22 C. Biocontrol activity was not affected by storage.

Multiple mechanisms including antibiosis, preemptive exclusion, and induced systemic resistance were involved in the Pa-Pss interaction. Antibiotics were polar, thermostable, protease insensitive, but base labile (pH≥6.0). Antibiotic production correlated weakly (r = 0.43) with disease suppression. Nutritional niche overlapping indices revealed a high possibility of preemptive exclusion of Pss. Pss populations on barley kernels were reduced 100-fold in the presence of Pa. FeCl3 amendment to the phyllosphere reduced the biocontrol efficacy of Pa, and 2 out of 3 siderophore-minus mutants were less efficient in disease reduction than the parental strain. Eh 460 and 239 reduced kernel blight through induced systemic resistance, similar to the plant activator benzothiadiazole. This is the first report on the induction of systemic resistance in barley by Pantoea agglomerans.
STUDIES ON THE BASAL KERNEL BLIGHT DISEASE OF BARLEY: PATHOGENESIS AND PHYLOGENY OF THE CAUSAL AGENT *PSEUDOMONAS SYRINGAE PV. SYRINGAE* AND ITS BIOLOGICAL CONTROL BY ANTAGONISTIC *PANTOEA AGGLOMERANS*

by

Andrea Braun

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Pathology

MONTANA STATE UNIVERSITY - BOZEMAN
Bozeman, Montana

March 1998
APPROVAL

of a thesis submitted by

Andrea Braun

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

Dr. David C. Sands
Committee Chairperson

(Signature) March 24, 1998 (Date)

Approved for the Department of Plant Pathology

Dr. Donald E. Mathre
Dept. Head

(Signature) 3-24-98 (Date)

Approved for the College of Graduate Studies

Dr. Joseph J. Fedock
Graduate Dean

(Signature) 3/24/98 (Date)
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.”

Signature ______________________
Date 5/24/98
... DAS EINZIGE, WAS WIR BRAUCHEN,

UM GUTE PHILOSPHEN ZU WERDEN, IST DIE FÄHIGKEIT,

UNS ZU WUNDERN ...

(Jostein Gaarder aus: Sofies Welt -
Ein Roman über die Geschichte der Philosophie)
ACKNOWLEDGMENTS

I would like to express my appreciation to Dr. David C. Sands for providing me with the opportunity to pursue this doctorate degree at the Montana State University-Bozeman/USA and for his encouragement regarding creativity, independence and holistic thinking. Furthermore, I want to thank him for awakening my interest in plant bacteriology.

To Drs. J. E. Sherwood, D. E. Mathre, J. M. Martin, and M. Teintze, I am greatly indebted for serving on my committee and for their advice during my class work as well as for fruitful discussions and suggestions concerning my thesis projects.

I wish to articulate my sincere gratitude to Dr. Barry J. Jacobsen for all his support and guidance in conducting this thesis, for his professional input in me becoming a better plant pathologist and manuscript writer, and last but not least for all his friendship in the past years.

Special thanks also to my fellow graduate students and the members of the entire Department of Plant Pathology at MSU for their help and advice regarding my course work and thesis research.

I am thankful for the financial support provided by Anheuser Busch, the Department of Plant Pathology and the College of Agriculture.

Finally, I would like to extend my appreciation to Sebastian Kiewnick for his advice, support and love, and to friends and family in Germany for their encouragement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xvi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER I: LITERATURE REVIEW</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis Preface</td>
<td>1</td>
</tr>
<tr>
<td>Bacterial Diseases of Small Grains</td>
<td>2</td>
</tr>
<tr>
<td>The Kernel Blight Disease of Barley</td>
<td>3</td>
</tr>
<tr>
<td>The Pathogen Pseudomonas syringae pv. syringae</td>
<td>4</td>
</tr>
<tr>
<td>Pathogenesis and Population Dynamics of P. s. pv. syringae (Pss)</td>
<td>6</td>
</tr>
<tr>
<td>Phenotypic and Genetic Diversity of P. s. pv. syringae</td>
<td>13</td>
</tr>
<tr>
<td>The Control of Basal Kernel Blight</td>
<td>16</td>
</tr>
<tr>
<td>The Antagonist Pantoea agglomerans</td>
<td>17</td>
</tr>
<tr>
<td>The Use of P. agglomerans as Biological Control Agent (BCA)</td>
<td>18</td>
</tr>
<tr>
<td>The Use of P. agglomerans in Systems other than Plant Pathology</td>
<td>20</td>
</tr>
<tr>
<td>Biological Control Mechanisms Associated with P. agglomerans</td>
<td>23</td>
</tr>
<tr>
<td>Nitrogen Depletion and Acidification</td>
<td>23</td>
</tr>
<tr>
<td>Antibiosis</td>
<td>23</td>
</tr>
<tr>
<td>Competition for Space and Nutrients</td>
<td>25</td>
</tr>
<tr>
<td>Induction of Systemic Resistance in Monocots</td>
<td>27</td>
</tr>
<tr>
<td>Concluding Remarks and Objectives</td>
<td>28</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>31</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS —Continued

<table>
<thead>
<tr>
<th>CHAPTER 2:</th>
<th>LIGHT- AND ELECTRON MICROSCOPIC LOCALIZATION OF PSEUDOMONAS SYRINGAE PV. SYRINGAE IN BARLEY KERNEL TISSUE</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Materials and Methods</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Literature Cited</td>
<td>77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3:</th>
<th>DIVERSITY OF PSEUDOMONAS SYRINGAE PV. SYRINGAE STRAINS ASSOCIATED WITH BARLEY KERNEL BLIGHT: CORRELATION OF PATHOGENICITY, TOXIN PRODUCTION, NUTRITIONAL PROFILE AND RESTRICTION-FRAGMENT LENGTH POLYMORPHISM</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Materials and Methods</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Literature Cited</td>
<td>109</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS —Continued

<table>
<thead>
<tr>
<th>CHAPTER 4:</th>
<th>BIOLOGICAL CONTROL OF PSEUDOMONAS SYRINGAE PV. SYRINGAE THE CAUSAL AGENT OF BASAL KERNEL BLIGHT OF BARLEY BY PANTOEA AGGLOMERANS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Literature Cited</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5:</th>
<th>MULTIPLE BIOLOGICAL CONTROL MECHANISMS ARE INVOLVED IN THE PANTOEA AGGLOMERANS - PSEUDOMONAS SYRINGAE PV. SYRINGAE INTERACTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Literature Cited</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

| CHAPTER 6: | SUMMARY | 214 |
LIST OF TABLES

Chapter 3

Tab.3.1	Name and source of 1994 *Pseudomonas syringae* pv. *syringae* isolates, symptom type at isolation, commercial identification based on Biolog, trigonelline (TRI) and L-lactate (LA) utilization, hypersensitivity reaction (HR) on tobacco, syringomycin-like toxin production measured in a *Geotrichum candidum* inhibition bioassay, and pathogenicity on barley cv. B 2601 expressed as percentage of basal blight infected kernels, when inoculated at soft dough stage.	92
Tab.3.2	Name and source of 1995 *Pseudomonas syringae* pv. *syringae* isolates, symptom type at isolation, commercial identification based on MIDI, trigonelline (TRI) and L-lactate (LA) utilization, hypersensitivity reaction (HR) on tobacco, syringomycin-like toxin production measured in a *Geotrichum candidum* inhibition bioassay, and pathogenicity on barley cv. B 2601 expressed as percentage of basal blight infected kernels, when inoculated at soft dough stage.	93
Tab.3.3	Name and source of *Pseudomonas syringae* reference strains, symptom type at isolation, commercial identification based on Biolog and/or MIDI, trigonelline (TRI) and L-lactate (LA) utilization, hypersensitivity reaction (HR) on tobacco, syringomycin-like toxin production measured in a *Geotrichum candidum* inhibition bioassay, and pathogenicity on barley cv. B 2601 expressed as percentage of basal blight infected kernels, when inoculated at soft dough stage.	94

Chapter 4

| Tab.4.1 | Percentage of the basal blight disease incidence over all cultivars and percentage of kernel blight reduction on barley cultivars (cv.) B 2601 and B 1202 at Fairfield, MT in 1994. The water/Tween 20 check, biocontrol *P. agglomerans* strains Eh 236, 239, 454, and 460, heat-killed bacteria (D), or Tilt®, respectively, were applied to plant heads at late milk stage prior to the *P. s. pv. syringae* infection window. | 128 |
Tab.4.2. Percentage of the basal kernel blight disease incidence over all cultivars and percentage blight reduction on barley cultivars B 2601, B 2912, B 1202, and B 5133 at Fairfield, MT in 1995. The water check, P. agglomerans strains Eh 236, 239, 454, and 460, heat-killed bacteria (D), biocontrol strain combinations, a 50 mM L-tartaric acid treatment and Tilt® were applied to barley heads at early milk stage prior to the P. s. pv. syringae infection window. .. 129

Tab.4.3. In vitro antibiosis of several Pantoea agglomerans strains against P. s. pv. syringae strain Pss 552. .. 133

Tab.4.4. In vitro antibiosis of Pantoea agglomerans strains Eh 236, 239, 454, and 460 against several bacterial and fungal test organisms. 134

Tab.4.5. Effect of increasing rates (10³, 10⁵, 10⁷ cfu/ml) of P. agglomerans strain Eh 460 application on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 on cultivar B 2601. Eh 460 was applied to barley spikes three days prior to pathogen inoculation at soft dough stage. .. 139

Tab.4.6. Establishment of Eh 239 rif² in the barley phyllosphere over a period of 5 weeks in the greenhouse, when applied at 6.8 x 10⁶ cfu/ml on cv. Karl at watery ripe stage (EC 71). .. 140

Tab.4.7. Establishment of rifampicin resistant (rif²) P. agglomerans strains Eh 236, 239, 454, and 460 on cultivar B 2601 at Fairfield, MT in 1995. Reisolations were done 1 day (early milk, EM), 7 days (soft dough, SD), 18 days (hard dough, HD), and 104 days (2 months after harvest, 2 mo) after foliar application. .. 141

Tab.4.8. Long-term survival of Pantoea agglomerans strains Eh 239, Eh L13, and Eh 460 after several weeks, months and years of storage in the oil/starch/sugar formulation (USDA), lyophilized in dry milk powder (FD), and oil/starch/dry milk formulation (DM) at 4 C or 22 C, respectively. .. 142
Tab.5.1. Inhibition of *P. s. pv. syringae* Pss 552 (in mm) by 48 h-old concentrated culture filtrates (cf) of *P. agglomerans* Eh 239, pH adjusted Eh 239 cf, heat-treated Eh 239 cf, D-glucuronic acid, pH adjusted D-glucuronic acid, D-gluconic acid, pH adjusted D-gluconic acid, formic acid, pH adjusted formic acid, citric and succinic acid, L-tartaric acid, and pH adjusted L-tartaric acid. .. 172

Tab.5.2. Inhibition of *P. s. pv. syringae* Pss 552 by *Pantoea agglomerans* strains Eh 236, 239, 454, and 460 on PDA with pH values ranging from 4.0 to 8.0. ... 173

Tab.5.3. Niche overlapping indices (NOIs) for epiphytic *P. agglomerans* strains paired with *P. s. pv. syringae* Pss 552, derived from *in vitro* carbon source utilization data (Biolog GN plates). 180

Tab.5.4. Nutrients reported to be present in barley according to Briggs (1978). 181

Tab.5.5. Effect of iron amendment (10µM FeCl₃) to minimal medium on the *in vitro* inhibition of *P. s. pv. syringae* strain Pss 552 by several *P. agglomerans* strains and *P. s. pv. syringae* strain Pss 793. 188
LIST OF FIGURES

Chapter 2

Fig. 2.1. A & B: Light micrographs showing transsection of an uninoculated barley kernel 7 days after inoculation (dpi). C & D: Light micrographs showing transsection of a *P. syringae* Ps 418 inoculated barley kernel 7 dpi	Page 60/61
Fig. 2.2. Scanning electron micrographs of surface structures found on a barley kernel and localization of *P. s. pv. syringae* Pss 552 seven days after head inoculation	62/63
Fig. 2.3. Transmission electron micrographs of *P. syringae* Ps 418 infected barley kernels seven days after inoculation	64/65
Fig. 2.4. Transmission electron micrograph of a *P. syringae* Ps 418 infected barley kernel seven days after inoculation. The infected kernel section was incubated with polyclonal antibodies and labeled with anti-rabbit immunogold-IgG conjugate	66
Fig. 2.5. Pss 552 inoculated barley kernels showing symptoms of basal kernel blight after harvest. Pss 552 was inoculated at soft dough stage of kernel development. Non-inoculated kernels are shown as controls	66

Chapter 3

Fig. 3.1. Linear regression of amount of syringomycin-like toxin production (X) versus percentage basal blight infection (Y) obtained on barley cv. B 2601, when heads were inoculated at soft dough stage	Page 96
Fig. 3.2. Phenotypic dendrogram based on 95 nutritional properties of 23 Pss strains isolated from kernels of different barley cultivars in 1994	98
Fig. 3.3. Genomic DNA-fingerprints of *P. syringae* isolates. DNA embedded in agarose was digested with *XbaI* and fragments separated by pulsed field gel electrophoresis for 22 h with ramping from 8-20 s at 200 V	100
Fig. 3.4. Dendrogram of genetic relationships between 56 *P. s. pv. syringae* strains isolated from kernels of twelve barley cultivars in 1994 and 1995, and two strains from Canada thistle (*Cirsium arvense*)	101
LIST OF FIGURES—Continued

Chapter 4

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Photo of Pantoea agglomerans strain Eh 239 formulated in the oil/starch/sugar encapsulation method (USDA) developed by Quimby et al., 1996. Bacterial formulations were sieved after air drying in granule sizes of 250-750 μm, 150-249 μm, and <150 μm and stored as wettable powders in plastic containers or gelatin capsules.</td>
<td>125</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of application of biocontrol strains P. agglomerans Eh 239, Eh 454, the heat-killed Eh 239D, and the water/Tween 20 check on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 on barley cultivars B 2601 and B 1202. Treatments were applied to barley spikes three days prior to pathogen inoculation at soft dough stage.</td>
<td>130</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of application of the biocontrol P. agglomerans strains Eh 460 and Eh 236 on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 on barley cultivars B 2601 and B 1202. Biocontrol strains and the water/Tween 20 check were applied to barley spikes three days prior to pathogen inoculation at soft dough stage.</td>
<td>131</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of application of P. agglomerans strains Eh 460, 237, and 234 on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 and Pss 793, respectively, on cultivar B 2601. Biocontrol agents were applied to barley spikes three days prior to pathogen inoculation at soft dough stage.</td>
<td>132</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of application of P. agglomerans strains Eh 239, 460, 926, 981 906, and 907, exhibiting different degrees of in vitro antibiosis (in mm) against Pss 552, on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 on cultivar B 2601. Biocontrol strains were applied to barley spikes three days prior to pathogen inoculation at soft dough stage.</td>
<td>136</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of time of P. agglomerans strain Eh 460 chl<sup>R</sup> application on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 rif<sup>R</sup> on cultivar B 2601. Eh 460 chl<sup>R</sup> was applied three days prior to (3d) or coinoculated (0d) with Pss 552 rif<sup>R</sup> at soft dough stage.</td>
<td>137</td>
</tr>
</tbody>
</table>
LIST OF FIGURES--Continued

Fig. 4.7. Effect of *P. agglomerans* strain Eh 239, applied three days prior (3d) to pathogen inoculation at soft dough stage or at booting stage (EC 49), on the percentage of basal kernel blight caused by *P. s. pv. syringae* Pss 552 on cultivar B 2601. ... 138

Fig. 4.8. Biocontrol activity of *P. agglomerans* Eh 239 (NF) after formulation in oil/starch/sugar (USDA) and stored at 22 C and 4 C, respectively, or lyophilized in dry milk (FD) and stored at 4 C against the *P. s. pv. syringae* Pss 552 induced basal kernel blight disease on barley (cv. B 2601). ... 144

Chapter 5

Fig. 5.1. Effect of application of *P. agglomerans* strains Eh 239, Eh 460, the culture filtrates of Eh 239 and Eh 460 (cf), and the 10 mM glucuronic acid (GluR) treatment on the percentage of basal kernel blight infection caused by *P. s. pv. syringae* Pss 552 on barley cultivar B 2601. Treatments were applied to barley spikes three days prior to pathogen inoculation at soft dough stage. .. 177

Fig. 5.2. Effect of different rates of pathogen Pss 552 inoculum (10³, 10⁴, 10⁵, 10⁷ cfu/ml), heat-killed Pss 552 (D) pathogens (10⁷ cfu/ml), and 5 day-old PDB culture filtrates of Pss 552 (Pss 552 cf) on the percentage of basal kernel blight infection obtained on barley cultivar B 2601. All treatments were applied at soft dough stage. .. 181

Fig. 5.3. Population dynamics of *P. s. pv. syringae* Pss 552 rif* over a period of seven days after inoculation of log 5 cfu/ml on barley heads (cv. B 2601) at soft dough stage. ... 182

Fig. 5.4. Population dynamics of *P. s. pv. syringae* Pss 552 rif* (solid lines) and Eh 460 chlR (dotted lines) alone, after the introduction of *P. agglomerans* Eh 460 chlR three days prior to Pss 552 rif* (3d) or coinoculated with Pss 552 rif* (0d) at soft dough stage of kernel development on cv. B 2601. ... 183
Fig. 5.5. Scanning electron micrograph of a *P. agglomerans* Eh 460 colony covering a stoma on the palea of a barley kernel (A, magnification x 4000) and single cells of *P. s. pv. syringae* Pss 552 in vicinity of a stoma on the kernel surface 7 days after inoculation (B, magnification x 10000).

Fig. 5.6. Effect of biocontrol strain *P. agglomerans* Eh 239 alone and in combination with iron chloride, iron chloride alone, the systemic resistance plant activator benzothiadiazole (SAR), and heat-killed Pss 552 D on the percentage of basal kernel blight on barley (cv. B 2601). Treatments were applied 3 days prior to pathogen *P. s. pv. syringae* Pss 552 inoculation at soft dough stage.

Fig. 5.7. Effect of siderophore-minus mutants Eh 239 Sid-1, Sid-2, Sid-3, the sid-hyperproducer Eh 239 Sid+4 and the parental strain Eh 239 WT on the percentage of basal blight infected kernels. Strains were applied to barley heads at soft dough stage 3 days prior to pathogen Pss 552 inoculation.

Fig. 5.8. Effect of *P. agglomerans* strains Eh 460, Eh 237, Eh 234, and the plant activator benzothiadiazole (SAR) on the percentage of basal kernel blight infection on barley cv. B 2601. Treatments were applied to barley heads at soft dough stage 3 days prior to *P. s. pv. syringae* Pss 552 and Pss 793, respectively, inoculation.

Fig. 5.9. Percentage of basal blight infected kernels after induction of systemic resistance, when benzothiadiazole (SAR) or the *P. agglomerans* strains Eh 239 and Eh 460, or a water control were applied to flag leaves three days prior to challenge-inoculation of barley spikes (cv. B 2601) with *P. s. pv. syringae* Pss 552 at soft dough stage.
ABSTRACT

The pathogenesis and phylogeny of Pseudomonas syringae pv. syringae (Pss), the cause of basal kernel blight of barley, and its biological control by antagonistic Pantoea agglomerans Pa, (syn. Erwinia herbicola, Eh) was investigated. Scanning electron micrographs located bacteria close to stomata and bases of kernel trichomes. Light micrographs revealed Pss in intercellular spaces of aleurone and amyloplast cells. Electron micrographs demonstrated Pss in xylem vessels and cell wall degradation in association with capsule protected bacteria.

Fifty-five Pss strains, isolated from infected kernels of 12 barley cultivars were tested for tobacco hypersensitivity, pathogenicity, toxin production and carbon source utilization. Toxin production correlated low (r=0.31; p=0.046) with pathogenicity, but 96% of toxin-plus strains were pathogenic, supporting the importance of toxins for virulence. Nutritional analyses revealed a phenotypic variability of Pss strains with similarity coefficients between 76-100%. The intrapathovar variation of Pss populations was analyzed by RFLPs of digested DNA using XbaI, SpeI and pulsed field gel electrophoresis. Macrorestriction fingerprinting supported a heterogeneity of Pss populations (43-77% similarity).

Field experiments (1994, 1995) revealed 45-70% disease control, when Pa was applied to barley heads prior to the Pss infection window. Pa provided 80-100% disease reduction in greenhouse studies. Efficacy of Pa was affected by time and rate of application, with a single application providing control. Survival of formulated Pa was better when stored at 4 C than 22 C. Biocontrol activity was not affected by storage.

Multiple mechanisms including antibiosis, preemptive exclusion, and induced systemic resistance were involved in the Pa-Pss interaction. Antibiotics were polar, thermostable, protease insensitive, but base labile (pH 6.0). Antibiotic production correlated weakly (r = 0.43) with disease suppression. Nutritional niche overlapping indices revealed a high possibility of preemptive exclusion of Pss. Pss populations on barley kernels were reduced 100-fold in the presence of Pa. FeCl₃ amendment to the phyllosphere reduced the biocontrol efficacy of Pa, and 2 out of 3 siderophore-minus mutants were less efficient in disease reduction than the parental strain. Eh 460 and 239 reduced kernel blight through induced systemic resistance, similar to the plant activator benzothiadiazole. This is the first report on the induction of systemic resistance in barley by Pantoea agglomerans.
Barley is the second largest small grain crop produced in the United States of America and in Montana behind wheat production. In 1997, 13.2 million tons of barley were produced in the US with an average yield of 50.7 dt/ha. North Dakota continued to rank as the number one barley producing state, followed by Montana, Idaho, Washington, and Minnesota; with these five states producing more than three-fourths of the US production in 1997. While yields in North Dakota dropped by 8.7 dt/ha to 39.2 dt/ha in 1997 compared to 1996 due to dry weather conditions in the west and the scab disease in the eastern portion of the state, yields in Montana increased by 8.7 dt/ha to 46.1 dt/ha as a result of timely rains (Anonymous, 1997 a). Montana farmers planted 526315 ha of barley in 1997, unchanged from the last four years. Malting and brewing varieties recommended by the American Malting Barley Association accounted for almost 44 percent of the total barley planted (Anonymous, 1997 b). Harrington remained the top malting variety compared to 1996 followed by B 1202, B 2601, and Morex. Baronesse remained in first place among feed-type varieties followed by Hector, Gallatin, and Bowman (Anonymous, 1997, b).
Bacterial Diseases of Small Grains

Bacterial diseases of small grains are generally considered of minor importance compared to other diseases, however, they can cause significant damage when environment favors disease development (Paul & Smith, 1989; Mathre, 1997). Examples of important bacterial diseases on wheat and barley consist of bacterial leaf and kernel blight caused by *Pseudomonas syringae* pv. *syringae* (Peters et al., 1983; Martinez-Miller, 1994; Martinez-Miller & Braun, 1997), bacterial blight of barley caused by *Xanthomonas translucens* pv. *translucens* (Forster, 1997) and basal glume rot caused by *Pseudomonas syringae* pv. *atrofaciens* (von Kietzell, 1995). Bacteria are almost always present on plant surfaces and may live as epiphytes without causing any host damage (Hirano & Upper, 1983, 1990; Lindow, 1985). However, in some years epiphytic populations can become pathogenic. The mechanisms and stimuli for this change are not fully understood, but recent research indicated that population size, including quorum-sensing autoinduction processes, and plant signal molecules can increase virulence gene expression (Pirhonen et al., 1993; Quigley & Gross, 1994; Beck von Bodman & Farrand, 1995; Fuqua et al., 1996; Farrand et al., 1996). Alternatively, new virulent races which may overcome deployed host plant’s resistance can occur as a result of genetic changes in pathogen populations through mutation and/or recombination, in addition to selection and migration (Vera Cruz et al., 1996; Vivian & Gibbon, 1997). Understanding these events is critical to the apprehension and needed for control or management of pathogens, such as *P. s. pv. syringae*.
The Kernel Blight Disease of Barley

Kernel blight diseases of barley have been reported to be associated with fungi, such as *Bipolaris sorokiniana*, *Fusarium graminearum*, and *Alternaria* spp. (Miles et al., 1987; Johnston, 1997) and with bacteria in the Northern Great Plains (Peters et al., 1983; Martinez-Miller, 1994). *Pseudomonas syringae* pv. *syringae* was first described as causing bacterial kernel spot of Klages barley in Idaho (Peters et al., 1983). The disease has also been reported in Montana and was characterized as a well defined discolored area with distinct margins on the lemma of the kernel (Martinez-Miller, 1994). Another disease caused by *P. s. pv. syringae* in Montana is basal kernel blight, which consists of a dark brown discoloration at the embryo end of the kernel (Martinez-Miller & Braun, 1997). Similar symptoms have been associated with *Bacillus* sp. in South Africa by Basson et al. (1990), who found counts of these bacteria on black-end barley kernels significantly higher than on healthy kernels. In the temperate climates of Europe, *P. s. pv. atrofaciens* was regularly isolated from basal glume rot symptoms on wheat, barley (Poschenrieder, 1986; Toben et al., 1989) and rye (Gvozdyak & Pasichnik, 1991). Toben et al. (1989,1991) confirmed its pathogenicity in wheat and barley seedling assays, which correlated with typical disease symptoms obtained when adult wheat plants were inoculated at the milk stage (EC 75). However, wheat spikes also developed basal glume rot symptoms when *P. s. pv. syringae* isolates from lilac, bean, or *Pennisetum* sp. or *P. s. pv. aptata* isolates from sugar beets were inoculated (von Kietzell, 1995).

These diseases are primarily of concern to malting and brewing industries, who discount or even reject barley lots when more than 4% of kernels are discolored in a lot.
Kernel blight reduces grain yield and quality (Anderson & Banttari, 1976) and Gebhardt et al. (1992) reported, that protein, malt extract, wort color, beer taste and aroma were affected by kernel discoloration. Furthermore, the suppression of germination seemed to be correlated with the formation of black-end kernels (Basson et al., 1990).

We have reported previously on the etiology and significance of basal kernel blight of barley (Martinez-Miller et al., 1998). Kernel discoloration caused by P. s. pv. syringae was found to vary in severity with cultivars, environmental conditions, and virulence of the pathogen. The critical period for infection increased from late milk to soft dough stages of kernel development (EC 85), with free moisture being necessary for infection and disease development (Martinez-Miller et al., 1998). A similar sensitivity to P. s. pv. atrofaciens infection was observed by von Kietzell & Rudolph (1991) on wheat plants. While the use of overhead irrigation at soft dough should be avoided by growers during this time, it was useful in screening experiments, in which the susceptibility of cultivars was tested under field conditions (Martinez-Miller et al., 1998).

The Pathogen *Pseudomonas syringae* pv. *syringae*

The bacterium *Pseudomonas syringae* pv. *syringae* [van Hall 1902](Pss) originally isolated from lilac (*Syringa vulgaris* L.), is a common plant pathogen found throughout the world on widely diverse hosts (Bradbury, 1986; Young, 1992; Georgakopoulos & Sands, 1992; Martinez-Miller & Braun, 1997). The disease symptoms associated with the pathogen are of two types. One symptom is known as bacterial canker or dieback on stone fruits.
(cherry, apricot, plum) and citrus trees and the other symptom distinguishes foliar or blossom blights (brown spots) on legumes (snap beans, peas, etc.), tomato, wheat, apple and pear (Klement et al., 1990; Goto, 1992; Sigee, 1993). The one-celled bacteria are Gram-negative, straight or curved rods, 0.5-0.7 x 1.5-3.0 μm in size. Cells are motile with one to seven polar flagella and the mol% G+C of the DNA ranges from 58-71. They are catalase-positive and strict aerobes (Palleroni, 1984). A characteristic feature of all P. syringae is the production of fluorescent pigments on media devoid of iron (Hildebrand et al., 1988). Species identification is mainly based on levan production on 5% sucrose medium, oxidase reaction, pectolytic activity on potato slices or pectate gel, arginine dihydrolase activity, and hypersensitivity reaction (HR) on tobacco leaves (LOPAT) (Klement et al., 1990). While most members of the species are variable in the levan reaction, they are oxidase-negative, arginine dihydrolase-negative, non-pectolytic and HR-positive. The species comprises many pathovars on the infrasubspecific level based on distinctive pathogenicity to one or more plant host species (Dye et al., 1980). Pathovar identification is difficult and relies on host specificity as well as nutritional, serological, plasmid, phage, protein, and fatty acid profiles (Klement et al., 1990) and toxin analysis (Gross, 1991; Quigley & Gross, 1994). Currently, the P. syringae species consists of 51 pathovars (Young et al., 1996). Hildebrand et al. (1988) identified strains belonging to the pathovar syringae based on biochemical characters, since members are positive in trigonelline, quinate and L-lactate utilization, while strains of other pathovars are variable (pisi) or negative in some of these traits (coronafaciens, striafaciens).
Furthermore, identification can be based on commercially available kits, such as the Biolog GN MicroPlate™ system (Biolog, Inc., Hayward, CA). The system provides a standardized method using biochemical tests to identify a broad range of enteric, non-fermenting, and fastidious Gram-negative bacteria. Biolog’s MicroLog™ computer software identifies the bacterium from its metabolic pattern in the GN MicroPlate, which is based on the utilization (oxidation) of 95 different carbon sources. Another commercially available source is the Microbial Identification System (MIDI, Microbial ID Inc., Newark, Delaware) which identifies microbes based on their cellular fatty acid compositions, using fatty acid methyl esters of whole cells and high resolution gas chromatography.

Pathogenesis and Population Dynamics of *P. s. pv. syringae* (Pss)

In bacterial pathogenesis the infection process can be divided into three phases: (1) migration or attachment to the host (=contact), (2) recognition, and (3) invasion and establishment. These phases often occur in continuity and are difficult to separate (Goto, 1992; Sigee, 1993). For *P. syringae* motility is accomplished by flagella and motile bacteria frequently have an invasive advantage over nonmotile strains, increasing leaf infection (Panopoulos & Schroth, 1974). However, loss in motility did not result in loss of virulence, as inside the leaf inherent differences between motile and nonmotile isolates in virulence were less apparent and bacterial cells in diseased plant tissue were generally nonmotile (Goto, 1992). Furthermore, Chet et al. (1973) observed that *P. syringae pv. lachrymans* was capable of following a non host-specific chemical gradient presented by solutions of sugars, amino acids, guttation fluids, etc. However, there was no conclusive evidence that
chemotaxis was required for plant pathogenic bacteria to enter into stomata or wounds. Instead, the process of invasion was substantially affected by the mode of dispersal and sources of inoculum (Goto, 1992), which are for *P. syringae* pathovars aerosols, wind, dew, fog, rain, as well as seeds, plant debris, dormant tissues, and nonhost plants (Hirano & Upper, 1983). Contact (attachment) between host and pathogen was believed to be established when components of bacterial cell walls, such as lipopolysaccharides (LPS - O-antigens) bind to receptor sites on host cell surfaces, such as lectins or other glycoproteins with carbohydrate-binding sites (Sequeira, 1978; Sigee, 1993). Romantschuk et al. (1993) and Suoniemi et al. (1995) studied the attachment of *P. syringae* pathovars to host and non-host plant surfaces as an epiphytic fitness factor. The attachment of phage-resistant non-piliated mutants to leaf surfaces was lowered by a factor between two and ten compared to the piliated parental strains, but pilus-mediated adhesion was not host-specific. Piliated strains adsorbed well to both host and non-host plants (Romantschuk et al., 1993). The ability of the piliation-mutants to cause symptoms when infiltrated into bean leaf tissue was unaffected, but in spray-inoculation experiments the presence of pili correlated positively with frequency of infection (Romantschuk & Bamford, 1986). However, when piliated and non-piliated bacteria were inoculated together as mixtures, the initial epiphytic cell density of each bacterium was similar to that of the separately inoculated plants and the wild-type strain did not have an advantage over the mutant during undisturbed epiphytic growth, indicating that epiphytic growth per se was not dependent on piliation (Suoniemi, et al., 1995). Furthermore, adherence of *Pseudomonas* species to plant cell surfaces inside and outside the plant or other surfaces was mediated by capsular extracellular polysaccharides
(EPS) and biofilms (Smith & Mansfield, 1982; Costerton, 1987; Sigee, 1993; Suoniemi et al., 1995). In addition, EPS caused water-soaking in susceptible cultivars resulting in bacterial multiplication in compatible interactions (El-Banoby & Rudolph, 1979). Many studies have linked free water and high relative humidity to increased epiphytic *P. syringae* populations on plant surfaces and to a subsequent successful plant invasion by improving migratory pathways through natural openings (stomata, hydathodes), through surface wounds or breaks in fragile trichomes (Hirano & Upper, 1983; Goto, 1992; Sigee, 1993). Recognition in the plant-pathogen interaction either resulted in compatibility (disease) or incompatibility (resistance = HR reaction), which will be discussed in more detail below.

With respect to *P. syringae* population dynamics, ecology and epidemiology the tremendous work by Hirano & Upper (1983, 1990) should be acknowledged. They recognized the significance of *P. syringae* as an epiphyte living on plant surfaces of host and nonhost plants as potential inoculum sources for several diseases. In addition, they reported on host and cultivar preference for some genotypes of *P. s. pv. syringae* (Hirano & Upper, 1990) and emphasized that its population size at any given time on any given leaf was a function of growth, death, immigration and emigration (Hirano & Upper, 1983, 1990; Kinkel, 1997). Furthermore, they agreed that the amount of disease in a field was directly related to pathogen population sizes on individual leaves within a canopy (Hirano & Upper, 1990) based on earlier studies in which disease incidence could be predicted by the frequency with which pathogen populations exceeded approx. 10^4 cfu per gram of symptomless leaflets (Lindemann et al., 1984). The authors also speculated that the phenotypic and genotypic variability within the species probably allows many populations
to persist under changing environmental conditions, growth and death cycles, immigration and emigration processes in an open system, finally leading to ecosystem stability and evolution based on fitness (Hirano & Upper, 1990).

Another important mechanism of plant pathogenesis in *P. s. pv. syringae* is the production of necrosis inducing-toxins, such as syringomycin, its amino acid derivatives, syringotoxin, syringostatin (Gross & Cody, 1985; Gross, 1991), syringopeptin (Ballio et al., 1991; Iacobellis et al., 1992), and pseudomycin (Ballio et al., 1994). Necrosis-toxin production appears limited in *P. syringae* pathovars and has only been described in pathovar *syringae* (Gross, 1991; Quigley & Gross, 1994) and recently in pathovar *atrofaciens* (Braun & Sands, 1995; Vassilev et al., 1996). Most pathogenic strains produced one or more of these low molecular weight lipopeptide antibiotics, which were not host specific but biocidal to a wide spectrum of microbes (Gross, 1991; Iacobellis et al., 1992). Although not exclusively necessary for pathogenicity, syringomycin contributed to virulence in several diseases caused by different ecotypes of *P. s. pv. syringae* (Xu & Gross, 1988; Mo & Gross, 1991 a; Gross, 1991). The primary mode of action of syringomycin was determined to be membrane disruption by forming ion channels, releasing monovalent and divalent cations, leading to uncontrolled ion transport across the plasmalemma and finally cell death (Gross & Cody, 1985; Hutchison et al., 1995). Furthermore, syringomycin was found to have biosurfactant activity, lowering the surface tension of water (Hutchison et al., 1995). It also stimulated ATPase activity and uncoupled the oxidative phosphorylation in maize mitochondria of resistant and susceptible lines (Gross & Cody, 1985). Toxin production was reported to be regulated by nutritional and environmental factors, similar to other secondary
metabolites (Gross & Cody, 1985; Gross, 1991). Low phosphate concentrations (<1 mM), moderate temperatures (< 28 °C), a pH near neutrality and high iron concentrations were conducive for toxin production (Gross, 1985). It was calculated that between 4-40 ng of iron were needed to produce 50 units of syringomycin, which was the threshold concentration at which symptoms became visible in maize (Gross, 1985). The magnitude of iron required for syringomycin synthesis (>2μM of Fe³⁺ for max. expression; Mo & Gross, 1991 a) and the unavailability of iron to microbes in their environments suggested that _P. s. pv. syringae_ acquired iron efficiently by the production of its fluorescent siderophore pyoverdinePss (Gross & Cody, 1984). Research also demonstrated that plant signal molecules, such as arbutin, salicin and other phenolic glucosides activated toxin gene expression, resulting in an activation of phytotoxin production (Mo & Gross, 1991 b; Quigley & Gross, 1994). Moreover, the analysis of _syrB_ and _syrC_ genes indicated that the gene products function as peptide synthetases in a thiotemplate multienzyme mechanism of syringomycin biosynthesis, which involves non-ribosomal post-translational peptide chain modifications (Zhang et al., 1995).

In relation to recognition, pathogenicity and host range, the discovery of hypersensitivity reaction and pathogenicity genes (_hrp_), their regulation, function, and interaction with other genes, for instance avirulence (_avr_) genes or gene products, may be one of the most important recent findings in phytopathogenic bacteria (Lindgren, 1997). While _avr_ genes limit the host range (race/cultivar specificity), they have been found to improve fitness and therefore confer a selective advantage on their host bacteria (Vivian & Gibbon, 1997). _Hrp_ genes control the ability of phytopathogenic bacteria to cause disease
on susceptible cultivars and to elicit HR-reactions on resistant cultivars or nonhost plants (Vivian & Gibbon, 1997). Recent studies have demonstrated that Hrp proteins are components of Type III secretion systems, regulatory proteins, proteinaceous elicitors of the HR, and enzymes needed for synthesis of periplasmic β-1,2-glucans (Alfano & Collmer, 1996; Lindgren, 1997). The Type III secretion system is involved in the secretion of pathogenicity proteins across the inner and outer membranes in Gram-negative bacteria and the delivery of such proteins directly into host cells (Alfano & Collmer, 1996; Vivian & Gibbon, 1997). Furthermore, the transcriptional activation of a number of bacterial avirulence (avr) genes is controlled by Hrp regulatory proteins, and data suggest that Avr proteins may be transported by Hrp secretion systems directly into plant cells. Thus, avirulence genes may after all be virulence factors, and plants may have evolved to recognize the virulence factors of the pathogen and to localize the damage inflicted by way of a programmed cell-death (HR) (Taylor, 1996; Vivian & Gibbon, 1997). Interesting was also the discovery of the conservation of Type III secretion systems in animal pathogens (Yersinia, Shigella, Salmonella) and plant pathogens (P. syringae, P. solanacearum, E. amylovora, X. c. vesicatoria), indicating that fundamental determinants of pathogenicity may be linked or have evolved from a common ancestor in completely different pathogens (Alfano & Collmer, 1996; Vivian & Gibbon, 1997; Finlay & Falkow, 1997).

In addition to hrp- and avr-genes, tox-genes (Gross, 1991) and the lemA/gacA regulon (= a two-component sensory signal transduction system) (Rich et al., 1992; Barta et al., 1992; Rich et al., 1994) also represent genes encoding proteins that transcriptionally regulate the expression of pathogenicity/virulence factors which contribute to disease and
symptom development in *P. syringae*. LemA serves as a membrane-bound sensor kinase that, in response to external environmental signals, activates the cytoplasmic GacA by phosphorylation. Activated GacA in turn stimulates the expression of several genes including toxin genes, thus leading to the production of syringomycin, in *P. s. pv. syringae* (Rich et al., 1994) or tabtoxin in *P. s. pv. coronafaciens* (Barta et al., 1992). Although *hrp*- and *avr*-gene regulation seemed to be linked, it is not clear whether virulence factors may be controlled simultaneously by several regulators and/or several regulatory systems can regulate a single virulence factor (Finlay & Falkow, 1997). However, multiple mechanisms have evidently evolved within phytopathogenic bacteria for the secretion of pathogenicity/virulence factors (Lindgren, 1997). The multiplicity of such factors may allow the bacterium to encounter host resistance as well as to tolerate mutations in one or more virulence genes without severe loss of pathogenicity. Thus, mutations in only one of these genes generally reduces rather than abolishes pathogenicity (Vivian & Gibbon, 1997).

In conclusion, despite their interkingdom distinctness (e.g. plant and animal pathogens, prokaryotes and eukaryotes), the systems seem to have common/conserved themes with regard to microbial pathogenicity (Finlay & Falkow, 1997). These include virulence factors and their regulation (Rahme et al., 1995), resistance mechanisms, such as programmed cell-death systems and signal transduction pathways (Baker et al., 1997), and protein secretion systems (Alfano & Collmer, 1996; Baker et al., 1997). These findings may provide new areas of research, since new classes of broad-spectrum compounds (e.g. inhibitors of conserved bacterial regulatory systems) may be developed or transferred from one system to the other with respect to disease control, once the interconnections between
regulatory systems have been elucidated. Accordingly, resistance to common virulence factors might be transferred from plant to animal pathogens, or vice versa.

Phenotypic and Genetic Diversity of *P. s*. *pv. syringae*

Over the last decade, nucleic acids research has become of increasing importance for the taxonomic identification and classification of bacteria, especially at the pathovar and strain level. In addition, DNA analyses provided information on the assessment of genetic diversity and phylogenetic relationships among bacterial populations and individuals within a population. The heterogeneity of *P. syringae* strains within and between pathovars has been described using both phenotypic (Sands et al., 1970; Endert & Ritchie, 1984; Hirano & Upper, 1985; Roos & Hattingh, 1987; Denny, 1988) or genetic characters (Denny et al., 1988; Cooksey & Graham, 1989; Louws et al., 1994) or a combination of both (Hendson et al., 1992; Liang et al., 1994). Most authors agreed that strains within the pathovar *syringae* represented very diverse populations while strains of pathovars *tomato* (Denny et al., 1988) or *morsprunorum* (Endert & Ritchie, 1984; Liang et al., 1994) were more host-specific and more similar in their genetic structure. The level of genetic diversity in *P. s*. *pv. syringae* supported the hypothesis that variation was higher among strains from diverse habitats (e.g. wide host range Pss) than among those from a uniform habitat (e.g. *P. s*. *pv. tomato* from *tomato*) (Denny et al., 1988; Cooksey & Graham, 1989). However, Hendson et al. (1992) found no distinctive profiles that clearly differentiated strains of different pathovars (*tomato, maculicola, antirrhini*), which were isolated from different hosts but exhibited similar nutritional properties and overlapping host ranges. Genetically they all belonged to a single
group with several subgroups, suggesting a common ancestry for these strains. They concluded that nutritional characterization was a more reliable indicator of genetic relationships among strains than the host of origin. Furthermore, the nutritional versatility of Pss was thought to be responsible for the fast adaptation and survival on a multiplicity of plants, including hosts and nonhosts (Hildebrand et al., 1988; Henderson et al., 1992). The recovery of bean strains of Pss from different locations with an identical haplotype, and different haplotypes from within one region, was reported to be attributed to the introduction of the pathogen on bean seed into the areas, since the pathogen is seed-borne and companies distribute seeds throughout the US (Legard et al., 1993). Due to rapid generation times of approximately 3.5 to 4.5 hours after rain events, Pss populations on snap beans had the potential to evolve quickly (Hirano & Upper, 1985). The authors hypothesized that if selection among genotypes (i.e., strains) occurs in each generation, the possibility of several generations per day provides opportunity for amplification of small changes per generation, resulting in large population differences in a relatively short period. The ecosystem in which Pss was an integral component was variable and dynamic and so was the number of Pss genotypes present (Hirano & Upper, 1985).

Although, most studies employed restriction fragment-length polymorphism (RFLP) and DNA-hybridization for the differentiation of *Pseudomonas syringae* between and within pathovars (Denny et al., 1988; Henderson et al., 1992; Legard et al., 1993; Quigley & Gross, 1994; Martinez-Miller, 1994), similar results were obtained with genomic fingerprinting. Rare-cutting restriction endonucleases generated distinctive patterns of large DNA fragments which could be separated by field inversion (Cooksey & Graham, 1989) or pulsed-
field gel electrophoresis (Grothues & Tümler, 1991). Such macrorestriction fingerprints of the entire bacterial genome were shown to be more sensitive to mutations, including deletions and insertions at a specific restriction site than RFLP analysis with only one DNA-hybridization probe, thus changing the genome profile and exposing polymorphism. The methods separated *Pseudomonas* species (Grotheus & Tümler, 1991) and classified *P. s. pv. tomato* to be distinct from other pathovars of *P. syringae* (Cooksey & Graham, 1989). Recently, PCR-RFLP analysis of rRNA operons and rep-PCR-based amplification of variable DNA regions between conserved bacterial repetitive elements have resulted in the rapid and reproducible identification of plant pathogenic bacteria at the species, pathovar and even strain level (Manceau & Horvais, 1997; Louws et al., 1994). Alternatively, Bragard et al. (1997) employed AFLP (Amplified Fragment Length Polymorphism) DNA fingerprinting to characterize 68 xanthomonad strains from small grains and found the results to be consistent with pathogenicity tests and RFLP analysis, recommending AFLP as a method of choice not only for taxonomy, but also for epidemiological studies. Although each of the above mentioned DNA-techniques alone provided some information on whether different isolates represented a single evolutionary line or were composed of several lines that had converged to a similar pathogenic phenotype, the combination of biochemical, genetic and pathological analyses was recommended for the assessment of phylogeny and evolution of strains in relation to the host plant (Denny, 1988; Henderson et al., 1992). In addition, strains of the same geographical origin and host cultivar should be investigated to study genetic diversity and evolutionary relationships within a field population. Accordingly, the variation of the bacterial rice blight pathogen *Xanthomonas oryzae pv. oryzae* was
investigated in only one field, on only one cultivar in the Philippines (Vera Cruz et al., 1996). This analysis, done at the micro geographic scale, provided valuable information on the effects of host resistance on the emergence of new virulent races in the population structure of this pathogen.

The Control of Basal Kernel Blight

Due to the apparent ubiquitous distribution and dissemination of P. s. pv. syringae on nonhost plants in barley growing areas, which resembled the distribution of Pss in bean growing areas in Wisconsin (Hirano & Upper, 1983), the elimination of the pathogen from seeds and foliage of the host may not be sufficient to control the basal kernel blight disease. In addition, the use of bactericides and antibiotics on cereal grains has not been considered practical. Hence, the only control for barley kernel blight suggested to date has been the avoidance of irrigation during the most susceptible kernel developmental stage at soft dough and the use of less susceptible cultivars (Martinez-Miller et al., 1998). Over the last three years we have evaluated a biological control system based on the application of indigenous antagonistic Pantoea agglomerans bacteria prior to the P. s. syringae infection window to reduce the kernel blight disease incidence (Braun et al., 1996; Braun et al., 1997). Furthermore, the use of biological control agents to control plant diseases, especially with respect to integrated pest management strategies, has become more practical and acceptable in the United States in the last decade, despite its lack of funding (Cook, 1993; Jacobsen, 1997). IPM strategies, including the commercial use of biological control agents, is of particular significance in minor crops or major crops in which no chemicals are available
to control certain pests or diseases; an example being the IR-4 program, a national project promoting pest control products for minor crops. Market studies indicated a growth rate of 10 % per annum for biocontrol-based crop protection. It is predicted that bio-control products will capture a $2-3 billion market share of the $20-30 billion pesticide market at the producer’s level worldwide by the turn of the century (Menn et al., 1993).

The Antagonist *Pantoea agglomerans*

Because the name *Pantoea agglomerans* has finally entered Bergey's Manual of Determinative Bacteriology (Holt et al., 1994) and has been approved by the International Society for Plant Pathology (Young et al., 1996), it will be used throughout this report.

The Use of *P. agglomerans* as Biological Control Agent (BCA)

Pantoea agglomerans has been used in several studies to control fungal as well as bacterial plant pathogens. For instance, Kempf (1988) employed *E. herbicola* bacteria to control *Fusarium culmorum* and *Puccinia recondita* f. sp. *tritici* on wheat. He found about 50-60% *F. culmorum* disease suppression on wheat seedlings in the greenhouse after seed coating with *E. herbicola* isolate B247 based on shoot and root dry weight determinations. Furthermore, 78% disease suppression of *P. recondita* f. sp. *tritici* was revealed when strain B247 was sprayed on wheat leaves two hours prior to uredospore application. Adetuyi (1992), also working on the antagonistic potential of *E. herbicola* against soilborne pathogens on wheat, discovered that antagonists coated onto seeds protected them from attack of *Fusarium nivale* and *Pythium ultimum*. Rate of emergence, stand counts, average root and shoot height were significantly higher in bacterial treated seedlings than in untreated controls, suggesting protection as well as plant growth promoting effects. A plant growth promoting effect of *P. agglomerans* strain D5/23 isolated from the phyllosphere of winter wheat was also noted by Ruppel et al. (1989). The authors detected nitrogenase- and phytohormone activity in these plant associative bacteria in addition to wheat and barley yield increases of up to 500 kg/ha in field experiments (Ruppel et al., 1989; Scholz-Seidel & Ruppel, 1992). Rosales et al. (1993) isolated 23 bacterial strains including one *E.*
herbicola isolate from rice fields in the tropics and tested their effect on germination, seedling development and inhibition of mycelial growth of *Rhizoctonia solani*. All strains inhibited *Rhizoctonia solani in vitro*, however *Bacillus subtilis* isolates performed the best. Seed bacterization provided a sheath blight protection of 4.5 to 73% in a glasshouse trial depending on the isolate screened. Yuen et al. (1994), who studied the inhibition of *Sclerotinia sclerotiorum* on dry edible beans by *E. herbicola*, noticed that strains applied to beans at fully expanded, mature blossom stage prior to inoculation with ascospores of the pathogen, inhibited ascospore germination and subsequent development of white mold lesions in a bioassay, while field applications were less effective due to unfavorable weather conditions for the antagonists. Furthermore, *E. herbicola* was reported to control *Alternaria solani* on tomato (Sujkowski et al., 1994), *Xanthomonas campestris* on onions (Paulraj et al., 1993) and *Verticillium dahliae* in an *in vitro* assay (Berg & Ballin, 1994).

Another often cited example of excellent biocontrol performance of *Erwinia herbicola* is the fire blight system in apples and pears. In research apple orchards, *E. herbicola* has been demonstrated to be an effective antagonist of *Erwinia amylovora* (Beer et al., 1984 a). The protection from fire blight achieved by spraying apple blossoms with *E. herbicola* one day prior to *E. amylovora* was often equivalent (42-51%) to the protection achieved by spraying streptomycin (61%), the most commonly used control agent in North America. Isenbeck & Schulz (1985) isolated several *E. herbicola* strains from blighted ornamentals in Germany that showed antagonistic activity against *E. amylovora in vitro*. Eh 112 y, an isolate obtained from Cornell University demonstrated effective disease reduction in an immature pear fruit assay and under controlled conditions using *Cotoneaster bullatus*...
as a test plant if the antagonist was injected 24 h ahead of the pathogen. The antagonist treatment in fact was as effective as the 200 ppm streptomycin control. The authors reported 20-40% fire blight disease reductions under field conditions following natural infection. Vanneste (1990) studied the control of fire blight by *E. herbicola* strain Eh252 in an experimental orchard in France and got 40% disease control compared to the untreated control. Furthermore, Wilson et al. (1990) demonstrated fire blight protection of hawthorn with *E. herbicola* under controlled conditions in the United Kingdom. In New Zealand an *E. herbicola* strain was sprayed on apple blossoms in the orchard and prevented fire blight disease in apple blossom in glasshouse trials (Kearns & Hale, 1993). Field trials conducted in 1991 and 1992 in Oregon and 1992 in Washington revealed a 87.5% fire blight disease reduction in pear blossoms in Oregon 1991 compared to water controls. In 1992 the disease was reduced by 50% and 56% in Washington. However, the streptomycin control resulted in the best disease prevention over all years and locations with 98.8%, 95.5%, and 72.2% disease reduction, respectively (Johnson et al., 1993).

Another example of the engagement of *E. herbicola* in biocontrol was presented by Lindow (1983), when he successfully employed an antagonistic *E. herbicola* isolate (INA-minus) to control frost injury, caused by ice nucleation active (INA-plus) *P. s. pv. syringae* bacteria on corn in the field.

The Use of *P. agglomerans* in Systems other than Plant Pathology

In addition to the use of *P. agglomerans* as biocontrol agents in plant pathology, the bacterium and the compounds it produces have been exploited commercially. For instance,
its tyrosine phenol-lyase activity catalyzed the production of L-tyrosine and dihydroxyphenyl-L-alanine (L-dopa), two essential amino acids that can be synthesized from ammonia, pyruvate, and phenol or catechol, respectively (Lloyd-George & Chang, 1995). Furthermore, *P. agglomerans*’ massive and fast gluconic acid production by glucose oxidation enhances mineral-phosphate solubility due to acid dissolution of hydroxyapatite (Liu et al., 1992). This is important, since the world’s phosphate resources are limited and phosphate is present but unavailable in most soils, due to its structural insolubility, similar to iron.

Herbicolsins were described as new acylpeptide antibiotics with antimycetic activity against dermatophytes in human medicine (Winkelmann & Adam, 1980). Furthermore, outer membrane lipopolysaccharides from *P. agglomerans* (LPSp) have been found to inhibit morphine (Okutomi et al., 1992) and cocaine dependent withdrawal signs (Suzuki et al., 1994), revealing their potential use in pharmacotherapy for the prevention of drug abuse. The administration of LPSp showed a marked inhibition of the jumping of mice on naloxone-precipitate withdrawal, however endogenous β-endorphin and tumor necrosis factor (TNF) levels were induced (Okutomi et al., 1992). In a second study, the treatment with LPSp abolished cocaine- induced locomotor enhancement in mice and the cocaine-induced place preference in rats, suggesting that while LPSp itself may possess neither reinforcing nor locomotor enhancing effects, it blocks both the reinforcing and the locomotor enhancing effects of cocaine (Suzuki et al., 1994). The authors claimed that immediately after LPSp administration, a cytokine cascade begins which produces TNF, followed by ACTH/β-LPH gene product, which generates β-endorphin as an endogenous
opioid over a period of 6 h after the injection. As a result, LPSp induced an antinociceptive effect. In 1994, Kamei and coworkers reported that subcutaneous injection of LPSp suppressed hyperalgesia in streptozotocin-induced diabetic mice and also exerted a therapeutic effect on hyperalgesia in these animals. The data indicated that LPSp may be effective in relieving the pain associated with diabetic neuropathy. Recently, a low molecular weight (5 kDa) LPSp from *P. agglomerans* has been recognized as potent antitumor agent in animal tumor models and its use in human cancer therapy is currently under investigation (Goto et al., 1996). Clinical application of LPSp administered intradermally in combination with chemotherapeutics such as cyclophosphamide appeared even more promising in terms of its antitumor effects, whereas pretreatment by anti-tumor necrosis factor antibody reduced the effect exerted by LPSp, indicating that induced TNF might play a crucial role in antitumor activity and the induction of cell mediated immunity (Iwamoto et al., 1996; Inagawa et al., 1997).

In contrast to these studies, a negative effect of endotoxins, associated with LPS from *P. agglomerans* and *Enterobacter spp.*, was found relevant to pathogenesis of alveolitis in organic dust-induced lung diseases (Milanowski et al., 1995). Wood dust from American basswood contained numerous Gram-negative bacteria, including *P. agglomerans*, that were shedding large amounts of the endotoxin-containing membrane vesicles, suggesting that these environmental “dust-borne” endotoxins represented an increased risk for people exposed to various organic dusts (Dutkiewicz et al., 1992).
Biological Control Mechanisms Associated with *P. agglomerans*

Nitrogen Depletion and Acidification

Nitrogen depletion and acidification of the environment have been reported in the interaction between *E. herbicola* and pathogenic bacteria such as *E. amylovora* or *Xanthomonas oryzae* in vitro (Riggle & Klos, 1972; Hsieh & Buddenhagen, 1974; Beer et al., 1984 b). However, organic acid production had never been demonstrated as a mechanism *in planta* (Gibbins, 1978; Wodzinski et al., 1994) and results of the N-depletion hypothesis were inconsistent (Wodzinski et al., 1987; Wodzinski et al., 1994).

Antibiosis

Since *P. agglomerans* are successful inhibitors of plant pathogens, much attention has been paid to the diversity and role of antimicrobial compounds produced by several strains. Herbicolins A and B were described as lipodepsinonapeptide antibiotics that inhibited sterol-requiring fungi (Winkelmann et al., 1980; Aydin et al., 1985). Antibiotic genes were cloned and transferred from *E. herbicola* to *E. coli*, resulting in expression of antifungal activity in *E. coli* (Tenning et al., 1993). Proteinaceous antibiotics that only kill strains of the same or closely related species to *E. herbicola* had been called bacteriocins (Beer & Rundle, 1980; Vidaver, 1983) or bacteriocin-like if they were non-proteinaceous in nature (Beer & Vidaver, 1978; Stein & Beer, 1980). All other compounds with a wider spectrum of activity, including more distantly related bacteria, were designated simply antibiotics. Their chemical structures, if known, mostly contained monocyclic and bicyclic
β-lactam molecules (Parker et al., 1982; Ishimaru et al., 1988; Bainton et al., 1992; Kearns & Hale, 1996), and as such interfered with the transpeptidation step in the cross-linking of amino acids that connect the glycan chains to form the peptidoglycan of bacterial cell walls. This inhibition of the final stage of murein synthesis somehow triggers the autolytic activities of murein hydrolases, resulting in cell lysis (Jacobs, 1997). Biosynthesis of β lactam antibiotics in *E. carotovora* was shown to be regulated by cell density-dependent gene regulation processes and autoinducer signal molecules (Bainton et al., 1992; Chhabra, et al., 1993). Furthermore, pyrrolnitrin production by *E. herbicola* strain IC1270, usually produced by *Pseudomonas* species, was reported by Chernin et al. (1996), which generated broad spectrum antagonistic activity towards fungal and bacterial phytopathogens, including *P. s. pv. syringae*. Another *E. herbicola* antibiotic from strain Eh 252 shared DNA sequence homologies with microcin C7 from *E. coli*, which is a modified heptapeptide and inhibits translation in protein synthesis of *Enterobacteriaceae* (Vanneste & Yu, 1996). Finally, strain Eh 318 was reported to produce two antibiotics termed pantocin A and B, of which pantocin A’s structure and function resembled microcin C7 and pantocin B remains to be sequenced and its mode of action determined (Wright, 1997; Wright & Beer, 1997). Studies on the role of *E. herbicola* antibiotics in biocontrol have demonstrated that non-antibiotic producing strains reduced fire blight as efficiently as antibiotic producing strains, indicating no in-vivo role for antibiotics (Beer et al., 1984; Wodzinski & Paulin, 1994). Similarly, Lindow (1988) found no correlation of in vitro antibiosis with antagonism of ice nucleation active bacteria on leaf surfaces by non-ice nucleation active bacteria. However, for strains Eh 252 (Vanneste et al., 1992) and Eh 318 (Wodzinski et al., 1994; Wright, 1997), effective
antagonists of *E. amylovora* in field tests, there was evidence that the antibiotics may be an important, though not exclusive, mechanism by which *E. herbicola* inhibits *E. amylovora*.

Competition for Space and Nutrients

Hattingh et al. (1986) observed that the most important site of interaction between *E. herbicola* and *E. amylovora* was on the stigmata of apple blossoms. The two species appeared to colonize the stigmatic surface in an identical manner, and were thought to be competing for the same sites. However, Lindow (1987) claimed that while two strains may occupy the same leaf surface, antagonism between those two strains may only occur if they utilize the same limited phylloplane resource. This hypothesis was confirmed by Wilson et al. (1992), who suggested that *E. herbicola* and *E. amylovora* did not compete for physical space, but for a limiting resource, presumably a nutrient, and *E. herbicola* was more efficient than *E. amylovora* in acquiring the limited resource. A microscopic study of the colonization sites indicated that space was not a limiting factor. The conclusion of competition for a limited resource was based on the observation that *E. amylovora* and *E. herbicola* inoculated alone would reach populations of 10^6 cfu/blossom, the apparent carrying capacity of the stigmatic surface of a hawthorn blossom. When coinoculated at the same concentration, *E. amylovora* never reached a population level greater than $10^3 - 10^4$ cfu/blossom, while *E. herbicola* still approached 10^6 cfu/blossom. Later studies, which were based on *in vitro* carbon source utilization patterns of biocontrol agents and pathogens, indicated that the more closely related the two competitors are, the greater is their similarity in nutritional requirements based on niche overlap indices (Wilson & Lindow, 1994 a,b). Their studies
resulted in the conclusion that the Ice-minus mutant of *P. syringae* TLP2dell would be a better biocontrol agent of Ice-plus *P. syringae* than *P. agglomerans*, which competed with *P. syringae* mainly for amino acids and organic acids; but few carbohydrates. However, recent studies revealed no significant correlation between biocontrol effectiveness and nutritional similarity (Ji et al., 1996; Dianese & Wilson, 1996). A lack of correlation was thought to reflect the difficulty to transfer *in vitro* data to *in vivo* events, since for example a differential abundance of carbon sources in the plant environment was not taken into account when establishing the niche overlap indices (NOIs). Hence, current studies are directed toward the development of "weighted NOIs" based on the relative abundance of phyllosphere carbon sources in the particular plant-microbe system (Ji et al., 1996).

Since iron availability is usually limited in most environmental systems (Leong, 1986; Loper & Lindow, 1994), competition for iron as a limited resource has been suggested to operate in many biological control agent-pathogen interactions (Kloepper et al., 1980; Weller & Cook, 1986; Yuen & Schroth, 1986; Leong, 1986; Loper & Buyer, 1991), if their iron uptake systems are unique and a pathogen can not use ferric siderophores from beneficial strains (Leong, 1986; Loper & Buyer, 1991) or the beneficial strains have stronger siderophore-chelators (greater iron(III) affinity, relative kinetics of the iron transport system) than the pathogen (Leong, 1986; Loper & Buyer, 1991; Bull et al., 1994). Studies in the past have concentrated on the cloning of genes involved in siderophore production and the structure identification of siderophores produced by biocontrol agents (Kloepper et al., 1980; Teintze et al., 1981; Moores et al., 1984; Leong, 1986; Costa & Loper, 1994; Feistner & Ishimaru, 1997) or pathogens (Loper et al., 1984; Expert & Toussaint, 1985; Cody & Gross,
as well as on the importance of siderophore-deficient mutants of pathogens (Cody & Gross, 1987; Loper & Lindow, 1987; Bull et al., 1996). Future research should focus on the importance and ecological fitness of siderophore-deficient biocontrol mutants and the interaction between different siderophores present in the same environment. Cross feeding studies as mentioned by Bull et al. (1994, 1996) could shed some light on whether ferric siderophores produced by the pathogen can be taken up and transported across the membranes by biocontrol agents, and vice versa. This would help elucidate the significance of iron(III)-competition in microbe-plant interactions.

Induction of Systemic Resistance in Monocots

While the induction of systemic resistance (ISR) or systemic acquired resistance (SAR) mechanisms, respectively, in dicots by plant associated bacteria have been demonstrated on several occasions (Kuc & Richmond, 1977; Wei et al., 1991, 1996; Oostendorp et al., 1996; Press et al., 1997), ISR/SAR in monocots is less well studied. The most intriguing difference between those two mechanisms is the occurrence of a localized necrosis (HR) on induced leaves in SAR, similar to the gene-for-gene system, which is however, more specific and does not result in cross-resistance to several pathogens, and the dependence on salicylic acid or another systemic signal (jasmonate, systemin, ethylene, etc.) that induces SAR gene expression (Sticher et al., 1997).

Localized acquired resistance (LAR) after induction with some races of *Erysiphe graminis* has been described in barley leaves (Ouchi et al., 1974), in rice by incompatible
strains of *Xanthomonas oryzae* (Horino, 1976), and in wheat against powdery mildew with the nonhost pathogen *Erysiphe graminis* f. sp. *hordei* (Schweizer et al., 1989; Schaffrath et al., 1997). ISR in barley was demonstrated against powdery mildew by the use of extracts from *Bacillus subtilis* (Steiner et al., 1988). SAR was reported in rice after preinoculation with *P. s. pv. syringae* (Smith & Metraux, 1991) and in barley after preinoculation with *Erysiphe graminis* f. sp. *hordei* conidia (Hwang & Heitefuss, 1992). According to Smedegaard-Peterson et al. (1991) both virulent and avirulent races of *Erysiphe graminis* f. sp. *hordei* and a race of *Erysiphe graminis* f. sp. *tritici* could induce resistance in barley towards powdery mildew. In wheat infected with barley and wheat strains of *E. graminis*, several resistance-specific cDNAs were induced by pathogen infection (Kessmann et al., 1994). In addition to biological inducers, synthetic chemicals can also trigger acquired resistance, for instance, probenazole, 2,2-dichloro-3,3-dimethylcyclopropane carboxylic acid, 2,6-dichloroisonicotinic acid (INA) and benzo-(1,2,3)-thiodiazole-7-carbothioic acid S-methyl ester (BTH) in rice, INA in barley, and salicylic acid, INA, BTH and CGA245704 (= Actigard®) in wheat (Kogel, et al., 1994; Oostendorp et al., 1996, Sticher et al., 1997; Schaffrath et al., 1997). However, the induction of systemic resistance in barley by *Pantoea agglomerans* has never been reported.

Concluding Remarks and Objectives

Because *P. s. pv. syringae* is one of the most important bacterial pathogens on a multitude of plants worldwide, the pathogen has been studied since the start of this century
(Hirano & Upper, 1983). However, studies on its pathogenesis on monocots are not as complete as those for dicot hosts. Its epiphytic lifestyle on barley cultivars has been reported (Georgakopoulos & Sands, 1992) and its pathogenicity was described (Peters et al., 1983; Martinez-Miller, 1994). Since its impact on barley increased in the early 1990s in the barley growing areas in the Northern Prairies of the US, its epidemiology and cultivar response to bacterial attack has been examined (Martinez-Miller, 1994; Martinez-Miller et al., 1998). However, insights into its pathogenesis, phytogeny, and disease control management are still missing.

The present study on the pathogenesis and phylogeny of *Pseudomonas syringae* pv. *syringae* causing basal kernel blight of barley and its biological control by antagonistic *Pantoea agglomerans* had the following objectives:

1. To study the localization and pathogenesis of *P. s.* pv. *syringae* in barley kernels, using light- as well as scanning electron-, and transmission electron microscopy.

2. To determine the phylogenetic and possible evolutionary relationships of *P. s.* pv. *syringae* populations existing in a barley field composed of several different cultivars in one geographical area; and correlations between syringomycin production, pathogenicity tests on tobacco and barley cultivar B 2601, respectively, nutritional profiles and DNA-fingerprinting.

3. To develop an effective and practical biological control strategy using indigenous *Pantoea agglomerans* in glasshouse and field experiments.

4. To investigate mechanisms in the interaction between biocontrol agents, the pathogen, and the host plant barley.
These studies should lead to a better understanding of *P. s. pv. syringae* as a causal agent of basal kernel blight of barley and the mechanisms involved in its suppression by *Pantoea agglomerans*. Knowing about the causal agent, their relationship to the host plant, in addition to elucidating the mechanisms by which the pathogen can be controlled by other naturally occurring phyllosphere microorganisms could be used in other plant-pathogen systems for the successful prevention of plant diseases.
Literature Cited

CHAPTER 2
LIGHT- AND ELECTRON MICROSCOPIC LOCALIZATION OF PSEUDOMONAS SYRINGAE IN BARLEY KERNEL TISSUE

Introduction

Pseudomonas syringae is an ubiquitous epiphytic plant pathogen found on a multiplicity of hosts, including many dicots, as well as most small grains (Bradbury, 1986; Young, 1992; Georgakopoulos & Sands, 1992; Martinez-Miller & Braun, 1997). *P. s. pv. syringae* is, with *Xanthomonas campestris* pv. *translucens* and *P. s. pv. atrofaciens*, the most important bacterial plant pathogen on cereals worldwide (Paul & Smith, 1989; Von Kietzell, 1995; Mathre, 1997). *P. s. pv. syringae* can cause severe damage to barley kernels, resulting in black discoloration on the kernel base, reduced germination and embryo damage (Martinez-Miller, 1994; Martinez-Miller & Braun, 1997). We have previously reported the etiology and significance of basal kernel blight of barley caused by *P. s. pv. syringae* (Martinez-Miller et al., 1998). The disease varies in severity with cultivars, environmental conditions, and virulence of the pathogen. The critical period of infection escalated from early milk to soft dough stages of kernel development, with free moisture being necessary for infection and disease development (Martinez-Miller et al., 1998).

Despite numerous studies devoted to specific host-parasite interactions of pathogenic or saprophytic pseudomonads with host or non-host plants, information concerning the localization and pathogenesis of *Pseudomonas syringae* in barley kernels is missing.
However, the interactions between oat (*Avena sativa* L.) and the foliar pathogen *Pseudomonas coronafaciens* and the non-pathogens *P. coronafaciens* var. *atropurpurea*, *P. fluorescens* and *P. tabaci* were examined by Smith & Mansfield (1982) using ultrastructural analyses. Regarding the hypersensitivity reaction (HR) on non-host plants and pathogenicity on host plants, the authors described several types of associations between bacteria and plant cells: (1) incompatible bacteria were encapsulated by fibrillar materials on plant cell walls (physical entrapment), (2) incompatible bacteria were attached to modified, often degraded plant cell walls, and (3) compatible but not incompatible bacteria were surrounded by extracellular polysaccharides (EPS), which prevented the attachment to oat cell walls. Recently, cytological studies of plant-microbe interactions have been facilitated by the use of genetically modified microorganisms harboring gene fusions with the promoter of a constitutively expressed gene. Vasse et al. (1995) compared the temporal and spatial patterns of infection and colonization of tomato roots by a pathogenic strain of *Pseudomonas solanacearum* with those of a spontaneous nonpathogenic strain. The use of an *E. coli lacZ* reporter gene fusion and histochemical blue staining of the bacterial β-galactosidase activity revealed that pathogenic bacteria intercellularly infect the inner cortex and invade protoxylem vessels degrading cell walls, while nonpathogenic strains were able to infect intercellular spaces of the inner cortex, but were never observed in the vascular cylinder. Furthermore, Boher et al. (1995) performed cytochemical investigations on the interactions between cassava and *Xanthomonas campestris* pv. *manihotis*, the cassava bacterial blight pathogen, to gain insight into molecular and cellular mechanisms involved in leaf cell wall degradation by this pathogen. The use of anti-pectin monoclonal antibodies demonstrated
that the plant middle lamellae were damaged during the infection process, in addition to alterations of primary and secondary cell walls as indicated by the application of β-1,4-exoglucanase-gold probes.

Furthermore, Luebeck et al. (1998) used fluorescently labeled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy for the spatio-temporal localization of a *Pseudomonas fluorescens* biological control strain. Their research focused on the distribution and activity of colonizing bacteria over time, from one day old germinating barley roots to one week old roots. Alternatively, Chin-A-Woeng et al. (1997) described the colonization of a gnotobiotic tomato rhizosphere by *Pseudomonas fluorescens* emphasizing spatio-temporal distribution patterns along the root system based on scanning electron microscopy. The authors proposed a model for root colonization after seed inoculation by several biocontrol strains, in which the colonization of more distant root zones progresses downward to the root tip, initially as single cells, and results in the establishment of micro-colonies. They further hypothesized that micro-colonies are the sites where the bacterial intracellular N-acyl-L-homoserine lactone concentration becomes sufficiently high as a consensus signal to influence regulatory proteins, which in turn transcriptionally regulate the expression of target genes, such as the phenazine genes for antibiotic synthesis. Following inoculation with the endophytic bacterium *Bacillus pumilus* prior to infection with the root-infecting fungus *Fusarium oxysporum* f. sp. *pisi*, Benhamou et al. (1996 a) found wall appositions containing large amounts of callose and phenolic compounds, suggesting the induction of defense-related ultrastructural modifications in the prebacterized pea root tissues. Furthermore, host reactions included a strengthening of
epidermal and cortical cell walls and a deposition of newly formed barriers beyond the infection sites. Similar modifications in pea root tissues were observed when *Pseudomonas fluorescens* was used to induce host responses prior to challenge with *Fusarium oxysporum* f. sp. *pisi* and *Pythium ultimum* (Benhamou et al., 1996b).

However, bereft of information regarding the infection process of barley kernels by *P. syringae*, the objective of this study was the detection and localization of pathogenic bacteria in and on barley kernels following inoculation using light-, scanning and transmission electron microscopy. In addition, I examined the cellular interactions between barley kernels and the pathogen following inoculation when the first water-soaked symptoms became visible at the kernel base. The localization of the pathogen and investigations with respect to disease development may provide a better understanding of barley-*P. syringae* interactions. The knowledge may also help derive control management strategies, including the use of biological control agents, such as *Pantoea agglomerans*, which has been used successfully to control basal kernel blight (Braun et al., 1996, 1997a, b).

Materials and Methods

Bacterial cultures and inoculum preparation.

Two *Pseudomonas syringae* isolates, one from barley kernels showing symptoms of basal blight (strain Pss 552) and one from kernels with spot blight symptoms (Ps 418) were stored in nutrient broth and 15% glycerol at -70°C. Strain Pss 552 was identified as belonging to the pathovar *syringae* based on the utilization of quinate, trigonelline and L-
lactate (Hildebrand et al., 1988), whereas strain Ps 418 could not be clearly identified on the pathovar level, since it utilized quinate, but not trigonelline or L-lactate and was negative in tabtoxin production, traits indicative of pathovar coronafaciens (Martinez-Miller, 1994). Furthermore, Pss 552 was positive in syringomycin production, while Ps 418 was negative (Martinez-Miller, 1994). To obtain cells for barley head inoculation, bacteria were retrieved from storage, streaked on King's B medium (King et al., 1954), and incubated at 28°C. Two days later, bacterial cells were suspended in 10 ml PBS buffer (0.85% NaCl, 0.03 M NaOH, 0.05 M KH₂PO₄; pH 7.0) and the density of the suspension adjusted to 1 x 10⁸ cfu/ml by measuring the absorbance at 580 nm on a Spectronic 20 (Bausch & Lomb, Rochester, NY) and comparing it with a standardized growth curve developed previously. The suspension was then diluted 1:10 in 90 ml sterile tapwater containing 0.025% Tween 20 (polyoxyethylenesorbitan monolaurate) as a surfactant to give a final concentration of 1 x 10⁷ cfu/ml.

Plant inoculation.

Three barley plants (cv. B 2601) each having one spike were grown per pot in the Montana State University Plant Growth Center (PGC) in Aqua Gro soil (PGC mix). Each P. syringae strain was inoculated individually at soft dough stage of barley development (EC 85; Zadoks et al., 1974), the stage conducive to basal blight development (Martinez-Miller et al., 1998). One pot (19 cm diameter) with three spikes at soft dough stage represented one replication, and treatments were replicated five times (n=5). Inoculum was applied to spikes with a hand air brush sprayer (Model Paaschi D500 1/10 H.P.) until runoff (approx. 5 ml per
spike). Control plants were sprayed with an aqueous solution of 0.025% Tween 20 alone. After inoculation, plants were left in a mist chamber (80-100 % r.h.) providing continuous plant wetness at 22/18 ± 1°C (day/night) and a 12 h photoperiod, for 72 h before being placed on the greenhouse bench. Kernels were sampled for microscopy seven days after inoculation when water-soaked symptoms and kernel necrosis at the base of the kernels in a spike became visible.

Tissue processing for scanning electron microscopy (SEM).

Scanning electron micrographs of the barley kernel surface were analyzed 1 and 7 days following inoculation with the pathogen Pss 552. Five kernels per head were randomly removed from the barley spikes with forceps, air-dried, and cut longitudinally. Palea and lemma sides were mounted on specimen holders. Particular care was taken while handling the kernels to avoid excess touching and possible damage to the kernel surface. Samples were directly sputter-coated with 25 nm Au/Pd and examined with a JEOL 6100 scanning electron microscope operating at 8-10 kV.

Tissue processing for light- and transmission electron microscopy (LM and TEM).

Samples (3 mm³) were carefully excised from control and pathogen-inoculated barley kernels at sites of occurrence of water-soaking and beginning basal necrosis. Tissues were fixed in a solution of 2% glutaraldehyde and 2% formaldehyde in 0.2 M sodium cacodylate buffer (pH 7.4) containing 1 mg/ml ruthenium red and 3 mM CaCl₂. Penetration of fixative solution into intercellular spaces was promoted by air evacuation under vacuum for 4 h at
20 C, after which the samples were left in fresh fixative overnight at 4 C. Cacodylate buffer amended with CaCl₂ was used for membrane preservation and ruthenium red, a hexavalent cation that precipitates a large variety of polyanions by ionic interaction, was used according to Smith & Mansfield (1982) to demonstrate a possible presence of acidic polysaccharides, such as alginate, around bacteria. Furthermore, ruthenium red reacts with osmium tetroxide (OsO₄) and amplifies the electron density resulting in stronger contrast for electron microscopy. After fixation, tissue samples were washed three times for 15 min in 0.2 M sodium cacodylate buffer (pH 7.4). Samples were postfixed in 2% OsO₄ at 4 C for 2 h. In specimen preparations for immunogold labeling procedures OsO₄ was not used because it reacts aggressively with proteins (Hamacher, 1992). Samples were subsequently dehydrated in a graded ethanol series (15%, 30%, 50%, 70%, 90% [2x], 100% [2x]; 30 min each stage) prior to embedding in either Spurr’s or LR-White (for immunogold labeling) resin, according to the method described by Hamacher (1992).

For infiltration in Spurr’s low-viscosity epoxy resin, samples were left in Spurr’s:propyleneoxide (1:3 v/v) for 16 h, in 1:1 for 4 h, in 3:1 for 4 h and in pure Spurr’s for 18 h. The solution was then changed to fresh Spurr’s and specimens embedded in latex flat bottom boats (agar aids) or plastic capsules. Polymerization of the resin was done at 70°C overnight. For infiltration in LR-White resin, samples were left in LR-White:ethanol (1:3 v/v) for 16 h, in 1:1 for 4 h, in 3:1 for 4 h, and in pure LR-White for 18 h. The solution was changed subsequently to fresh LR-White and cast in gelatin capsules, in which specimens were embedded and polymerized at 50°C for 72 h. Thick sections (1.0 -2.0 μm) were cut from trimmed tissue blocks with glass knives attached to an Ultracut E.
ultramicrotome (Reichert-Jung, Vienna, Austria) and mounted on a microscope slide. Sections were stained with 1% toluidine blue and observed under the light microscope to select appropriate blocks for electron microscopy. Thin sections (about 500 nm) were cut with a diamond knife, collected on Butvar-coated nickel grids and were either contrasted with 2% uranyl acetate (8 min) for direct examination with a Zeiss EM 109 transmission electron microscope operating at 60 KV or processed for immunogold labeling. For each treatment (inoculated and non-inoculated kernels), ten kernels from six heads were examined, using five sections per kernel.

In addition to cytochemical investigations, ten *P. syringae* strains including strains Ps 418 and Pss 552 were tested biochemically for enzyme activity in plate bioassays. Protease activity was determined by gelatin liquefaction according to Hankin & Anagnostakis (1975), cellulase activity on CMC medium described by Andro et al. (1984), and starch hydrolysis on starch agar plates flooded with Lugol’s iodine solution (Leary & Chun, 1988). β-Glucanase activity was determined by formation of clear zones around bacterial colonies grown on minimal medium containing 1% β-D-glucan from barley trim (Nurture Inc., Missoula, MT) as sole carbon source.

Preparation of primary antibodies (Ig) from antiserum.

Polyclonal antibodies (primary) were developed in rabbits injected with heat-treated whole cells of *P. syringae* strain Ps 554, a strain similar in characteristics to strain Ps 418, according to the method described by Schaad et al. (1990). The antisera solutions were maintained at -20°C. The γ-globulins were partially purified by precipitation with sodium
sulfate (Clark & Adams, 1977; Lister, 1978). Eight ml of sterile distilled water were added to 2.0 ml of antiserum in a sterile tube. Ten milliliter of a saturated sodium sulfate solution (36 % Na₂SO₄) was added dropwise with stirring at room temperature, left for 1.5 h for precipitation, then stirred gently, and centrifuged for ten minutes at 8000 x g to collect the precipitate. The pellet was washed once in 18% sodium sulfate solution, centrifuged again, the supernatant discarded, and the pellet resuspended in 2 ml half-strength PBS buffer (8 g NaCl, 0.2 g KH₂PO₄, 1.15 g Na₂HPO₄ anhydrous, 0.2 g KCl, 0.2 g NaN₃; pH 7.4). This solution was dialysed (Spectra/Por dialysis membrane MWCO: 6-8.000, Spectrum, Houston, Tx) three times against 1 liter half-strength PBS, first for 1 h at 20°C, then for 1 h at 4°C, and finally for 12 h at 4°C. After dialysis, the optical density was measured at A₂₈₀ (DU-50 Spectrophotometer, Beckmann Instruments, Inc., Fullerton, CA) and the immunoglobulin (Ig) protein concentration adjusted to approximately 1.4 OD (about 1 mg protein/ml). Igs were stored at -20°C for several months.

Immunogold labeling of antibodies raised against \textit{P. syringae}.

Nickel grids containing thin sections were laid specimen side down onto 20 µl droplets of 0.05 M Glycine-IGL-buffer (0.5 M glycine, 8 g NaCl, 1.44 g Na₂HPO₄, 0.2 g KCl, 0.15 g K₂HPO₄ per liter distilled water, pH 7.25) for 10 min. Grids were drained on filter paper, then incubated on IGL-T-BSA blocking buffer (2 x IGL buffer, 0.5% w/v bovine serum albumin, 0.025% v/v Tween 20, 0.02% sodium azide, pH 7.25) for 3 h. Subsequently, grids were washed with 5 drops of washing buffer (10 x IGL-buffer, pH 7.25) and drained on filter paper prior to primary antibody incubation for 3 h. Antibodies were diluted 1:250
in IGL-T-BSA buffer. Grids were washed again with 50 drops of washing buffer and drained on filter paper, then incubated on droplets of IGL-T-BSA buffer diluted secondary antibody (immunogold conjugate EM GAR 20, EM goat anti-rabbit IgG complexed to colloidal gold: 20 nm, Goldmark Biologicals, Phillipsburg, NJ; dilution 1:20) for 3 h. Finally, grids were washed with 25 drops of washing buffer and 50 drops of double distilled water, drained, contrasted with 2% uranyl acetate for 8 minutes and specimens analyzed in the transmission electron microscope either directly or after contrasting.

Results

Light micrographs.

While no bacteria were visible in uninoculated kernels (Fig. 2.1 A & B), *P. syringae* Ps 418 were located in vicinity of vascular bundles present in the husk (palea) and in the pericarp at the ventral furrow of the kernel base seven days after inoculation (data not shown). Bacteria could be visualized by ruthenium red staining and were present also in intercellular spaces of the aleurone (Fig. 2.1 C) and amyloplast cells (Fig. 2.1 C & D).

Scanning electron microscopy.

Pseudomonas syringae pv. *syringae* Pss 552 cells were located at bases of trichomes (Fig. 2.2 A & B) on the barley kernel surface seven days after inoculation or close to stomata (Fig. 2.2 D), which extend down each side of the ventral furrow on the palea (Miskin & Rasmusson, 1970). In addition, bacteria were found close to stomata-like cells on the
external epidermis of the palea (Fig. 2.2 E & F). No bacteria were observed at these sites on uninoculated kernels or 24 h after inoculation (data not shown). However, a few randomly distributed cells were located at kernel surface ridges on the lemma 24 h after inoculation (Fig. 2.2 C), suggesting initial loss of the inoculated pathogen after introduction, but multiplication and establishment after seven days of plant incubation.

Electron micrographs

confirmed the presence of Ps 418 in pericarp cells (Fig. 2.3 A & B) and in vascular tissue cells (Fig. 2.3 B) in vicinity of the pigmented strand at the ventral furrow, suggesting vertical spread of the pathogen with the transpiration stream in mature xylem vessels. Furthermore, bacteria were consistently surrounded by electron translucent halos within a fibrillar matrix of extracellular polysaccharides (Fig. 2.3 B, arrows). Figure 2.3 C revealed the disruption of primary cell walls of a xylem element and horizontal spread of *P. syringae* Ps 418 to nearby un lignified pericarp cells. Disruption occurred in the vicinity of the pathogen and cellulosic portions of the degraded primary wall were detached from the main cell frame. The host plant’s cell wall appeared to inlay a single bacterial cell (Fig. 2.3 D, arrow) in association with a pronounced wall modification, such as an erosion of the cell wall beneath the embedded bacterium. The mass of bacteria apparently induced cell wall degradations (Fig. 2.3 E & F), most likely due to toxin and/or extracellular enzyme action. Colonies of *P. syringae* Ps 418 in pericarp cells at the ventral furrow demonstrated pronounced cell wall disruptions and induced the formation of dark staining appositions at the sites of wall degradation in the collapsed plant cells (Fig. 2.3 E & F).
Immunogold labeling. The use of polyclonal antibodies in combination with goat anti-rabbit gold labels confirmed the presence of the inoculated Ps 418 pathogen in barley kernel cells (Fig. 2.4). Gold particles were found surrounding bacterial cell walls (Fig. 2.4, arrows) and were seen over the fibrillar matrix of extracellular polysaccharides that adhere to electron translucent halos, indicating specificity of primary antibodies to polysaccharide capsules of the bacteria.

Enzyme activity tests performed on ten *P. syringae* strains including strains Ps 418 and Pss 552 (data not shown) revealed that all strains tested positive for cellulase, β-glucanase and protease activity, as well as for starch hydrolysis.

Fig. 2.1. A & B: Light micrographs showing transsection of an uninoculated barley kernel 7 days after inoculation (dpi). C & D: Light micrographs showing transsection of a *P. syringae* Ps 418 inoculated barley kernel 7 dpi. A: Structures revealed a vascular bundle (arrow) in the spongy parenchyma of the palea, the pericarp (p) at the ventral furrow, the testa (t), the aleurone (a) and starchy endosperm (e) in the center of the kernel (x 100). B: Details of structures found at the ventral furrow, particularly the unlignified pericarp (p), comprising a vascular bundle (arrow), and the testa (t), which merges with the pigment strand (x 100). C: Ruthenium red enhanced resolution of Ps 418 cells (arrows) located in intercellular spaces of the aleurone layer and endosperm (x 400). D: Ps 418 (arrows) located in intercellular spaces of amyloplast cells in the starchy endosperm (x 400).
Fig. 2.2. Scanning electron micrographs of surface structures found on a barley kernel and localization of *P. s. pv. syringae* Pss 552 seven days after head inoculation (7 dpi). A: A colony of Pss 552 (arrow) close to a trichome base on the lemma of the barley kernel (7dpi). B: Close up of the Pss 552 colony at the trichome base (7 dpi). C: Single cells (arrows) of randomly distributed Pss 552 on surface ridges on the lemma of a barley kernel one day after inoculation. D: Cells of Pss 552 (arrows) close to and inside a stoma on the palea of a barley kernel (7dpi). E: Stomata-like cells (arrows) on the external epidermis of the palea (7dpi). F: Pss 552 (arrows) found close to a stoma-like cell on the external epidermis of the palea (7dpi).
Fig. 2.3. Transmission electron micrographs of *P. syringae* Ps 418 infected barley kernels seven days after inoculation. A: Ps 418 in parenchyma and vascular tissue cells of the pericarp near the pigmented strand at the ventral furrow. Scale bar = 2 μm. B: Three mature xylem cells viewed in transverse section showing electron-dense lignified wall thickenings: the cytoplasm has been digested and the primary walls are almost broken down. Note: Bacteria are surrounded by electron-translucent halos within a fibrillar matrix of extracellular polysaccharides (arrows). Scale bar = 1 μm. C: Bacteria located in a xylem vessel. The primary cell wall appears disrupted in the vicinity of the pathogen, while the secondary walls seem thicker and intact. Note: Portions of the primary cell wall are detached from the main cell frame (arrows). Scale bar = 1 μm. D: Bacterial cells located in xylem parenchyma. Note: Presence of a single bacterial cell (arrow) accompanied by localized cell wall modification. Scale bar = 1 μm. E & F: Disruption of pericarp cell walls in the vicinity of the pathogen, leading to horizontal spread of bacteria to neighboring cells. Note the formation of dark staining wall appositions at sites of cell wall disruptions. Bacteria were surrounded by electron-translucent halos within a fibrillar matrix (arrows). Scale bar = 1 μm. cw = cell wall, b = bacterium, a = wall apposition, pcw = primary cell wall, scw = secondary cell wall.
Fig. 2.4. Transmission electron micrograph of a *P. syringae* Ps 418 infected barley kernel seven days after inoculation. The infected kernel section was incubated with polyclonal antibodies and labeled with anti-rabbit immunogold-IgG conjugate. Note: The primary antibody reacted with peripheral cell surface epitopes as well as with a fibrillar matrix, (arrows), most likely extracellular polysaccharides from bacterial cell capsules, as shown by the localized distribution of gold particles; b = bacterium. Scale bar = 1 µm.

Fig. 2.5. Pss 552 inoculated barley kernels showing symptoms of basal kernel blight after harvest. Pss 552 was inoculated at soft dough stage of kernel development. Non-inoculated kernels are shown as controls (arrows). Note: Symptoms start at the kernel base and extend upward along the central vascular bundle located on the kernel lemma.
Seven days after inoculation of *P. s. pv. syringae* Pss 552, bacterial cells were located near or in stomata or stomata-like cells on barley kernels, as well as at bases of trichomes suggesting site-specific colonization of barley kernels and invasion through natural openings. The presence of stomata-like cells on the surface of the palea in mature and immature barley were not surprising to Pomeranz & Sachs (1972), since husks are remnants of the protective envelope of the flower and are ontologically leaf tissue. The diameter of about 12 μm of stomata-like cells was also within the range of stomatal cells of cereal leaves (Pomeranz & Sachs, 1972), which could be confirmed in my studies (Fig. 2.2 E & F). Unlike many fungal pathogens, most plant pathogenic bacteria enter plants only via wounds and natural openings, since they are not able to pass directly through the epidermis due to a lack of esterases or peroxidases that could degrade the outer layer of the cuticle or surface waxes (Huang, 1986). Stomata and hydathodes are the most important portals of entry for bacterial pathogens, such as *P. syringae* and *Xanthomonas campestris* pathovars, that are epiphytic residents of the leaf surface and cause foliar diseases (Huang, 1986; Hirano & Upper, 1990; Goto, 1992; Sigee, 1993). Bacteria frequently multiply in substomatal cavities and subsequently migrate into surrounding intercellular spaces (Huang, 1986; Goto, 1992). Although stomata are not found on the lemma of the kernel (Miskin & Rasmusson, 1970), they were located on either side of the midvein on the outer face of the awn and as single rows down each side of the crease on the palea. Considering the importance of stomata for *P. syringae* to penetrate and infect the plant, in addition to the
large size of a stoma compared to the small size of the pathogen, the significance of stomatal number and size in resistance to the bacteria becomes apparent and may require further examination relative to basal kernel blight disease development.

Furthermore, many foliar bacterial plant pathogens, including *P. cichori, P. s. pv. tomato, Clavibacter michiganensis* subsp. *michiganensis* and *Erwinia amylovora* invade their hosts through trichomes (Huang, 1986; Goto, 1992). Studying the epiphytic survival of *P. s. pv. syringae* on tomato and seeds Mariano & McCarter (1991) found that *P. s. pv. syringae* existed primarily around trichomes on foliage of tomato, spurred anoda, and smooth vetch, in depressions between epidermal cells and along the veins. Goto (1992) claimed that susceptibility of leaves to bacterial infection was generally correlated with the density of trichomes; thus young leaves with the greatest density of hairs were most susceptible to infection. The decreasing number of trichomes on older leaves/kernels and the fact that stomata closure is more evident in mature kernels might explain why I found less basal kernel blight disease on plants that were inoculated at hard dough stage of kernel development while early milk and soft dough stage inoculation resulted in highest susceptibility to the bacterial pathogen (Martinez-Miller, 1994; Martinez-Miller et al., 1998).

Furthermore, ectodesmata extending from the cuticle through the wall to the lumen of epidermal cells are confined to special sites such as trichomes (Goto, 1992). Since they function as foliar absorption and excretion sites of aqueous organic and inorganic substances, phylloplane residents preferentially colonized the leaf surface where trichomes and ectodesmata were concentrated (Goto, 1992). Another evidence for site-specific colonization of foliar pathogens was presented by Mew & Vera Cruz (1986), who studied
the epiphytic behavior of *X. campestris* pv. *oryzicola*. These bacteria invaded the parenchymatous tissues and were found in the vicinity of stomata, trichome bases, and other parts of the leaf surface covered with wax particles. They did not, however, colonize hydathodes, which are preferentially colonized by *X. campestris* pv. *oryzae*. Therefore, site-specificity appeared related to the nature of pathogenesis and the natural openings that bacteria can enter. The fact that only single cells of Pss 552 bacteria were found randomly distributed over the kernel surface one day after inoculation whereas colonies of Pss 552 were visible close to natural portals of entry seven days after inoculation might be explained by spatial-temporal colonization patterns not examined in my studies. Chin-A-Wong et al. (1997), who studied the daily colonization pattern of *P. fluorescens* on tomato roots, pointed out that colonization progressed down the root, initially as single bacterial cells. After 7 days, micro-colonies had developed at positions where only single cells were observed 1-3 days after inoculation. Alternatively *P. s. pv. syringae* Pss 552 could have demonstrated an extended lag phase prior to exponential growth on barley kernels. This hypothesis was confirmed by greenhouse reisolation studies (chapter 5; Fig. 5.4), in which the Pss 552 population declined 31-fold to 3.2×10^5 cfu/kernel one day after inoculation of 1×10^7 cfu/ml but recovered thereafter (10-fold increase in population size) and remained consistent at 3.2×10^6 cfu/kernel over a period of 11 days (chapter 5; Fig. 5.4).

My observations after spray inoculation of unwounded barley kernels, suggested two possible invasion strategies: (1) The pathogen may have entered through stomata on the palea and subsequently colonized intercellular spaces in the bast layer and thin-walled spongy parenchyma below the bast. Bacteria could have further migrated intercellularly to
the vascular elements located in the husk or left the husk through stomata located on the inner epidermis of the husk and entered the outer thin-walled epidermal cell layer of the pericarp (Briggs, 1978; Peters et al., 1983). Pericarp cells are compressed during development and not lignified, since lignin is confined to the husk in completely mature grain (Briggs, 1978). (2) Bacteria might have penetrated the kernel through the kernel base, which is attached to the nodes of the rachis. Water drops containing cells of the pathogen usually collect at these sites, particularly in 6-row barley at soft dough stage. Bacteria could have invaded the kernels through natural openings on the palea, spread intercellularly through the lignified husk tissue until they encountered vascular bundles. Vertical spread inside the kernel possibly occurred once the bacteria entered xylem vessels. Moreover, vascular bundles run inside the rachis and interconnect the barley stem with the spike (Briggs, 1978), indicating a potential for systemic spread of the pathogen through stem and kernel tissues with the transpiration stream. Horizontal cell-to-cell spread inside the pericarp tissues was probably accomplished by enzyme activities.

A careful observation of the disease symptomatology supported the second scenario since basal blight symptoms spread upward on the kernel, starting out as black discoloration (necrosis) on the vascular bundle located in the middle of the lemma and then spreading over the entire kernel base (Fig. 2.5).

Plant cell walls represent physical barriers to pathogen invasion, but previous work on *Pseudomonas* and *Xanthomonas*-infected plants mentioned that host cell walls were altered during the infection process (Sequeira et al., 1977; Smith & Mansfield, 1982; Boher et al., 1995). The present ultrastructural investigation clearly demonstrated that cell walls
were highly degraded in barley cultivar B 2601 infected with *P. syringae* Ps 418. Host cell walls displayed extensively disrupted areas seven days after inoculation regardless of the tissue colonized [xylem vessels (Fig. 2.3 C), xylem parenchyma (Fig. 2.3 A) or other pericarp cells (Fig. 2.3 E & F)]. Degradation affected mainly the primary cell wall allowing some bacteria to penetrate into uninvaded cells (Fig. 2.3 A,B,C&D). Subsequently, the lumen of the cells were colonized by actively multiplying bacteria. The colonized cells were filled with an extracellular fibrillar material except for an electron-transparent halo surrounding each bacterium (Fig. 2.3 A,B,E & F). Consequently, the bacterial progression in host tissue resulted in kernel necrosis and embryo damage probably due to the loss of tissue cohesion.

Boher et al. (1995) also reported cell wall damage caused by *X. c. pv. manihotis* in cassava leaves. Their studies, using anti-pectin monoclonal antibodies and β-1,4-exoglucanase-gold probes, demonstrated that middle lamellae and primary and secondary cell walls were degraded during the infection process. This indicated that enzymes such as pectinases and cellulases may be required for host colonization, although their role in pathogenicity remained unclear (Boher et al., 1995). The production of glycoside hydrolases, such as cellulases and hemicellulases in addition to xylosidase and pectinase activity was found to be a common phenomenon among soft rot bacteria as well as among bacteria that cause tissue necrosis and vascular wilt diseases (Sigee, 1993). The role of cellulases in pathogenesis has been studied in *X. campestris, E. chrysanthemi,* and *P. solanacearum* by cloning their genes. Mutational analyses demonstrated that cellulases were not essential for disease development, i.e. they were thought to be more advantageous to saprophytic life and
degradation of dead plant material than to parasitic life (Goto, 1992). Ultrastructural evidence of primary cell wall degradation by \textit{P. solanacearum} in tobacco mesophyll cells was reported by Sequeira et al. (1977). Four hours after inoculation, compatible bacteria were actively dividing (exponential growth phase) in intercellular spaces and host cell walls appeared eroded and disrupted in close proximity to the bacterial cells. Loose fibrillar material was also visible in areas where the cell wall had been weakened. Disruption of the wall was accompanied by a slight separation of the plasmalemma from the cell wall and granular material was seen between the plasmalemma and the cell wall. Furthermore, \textit{P. solanacearum} produced pectic and cellulytic enzymes in diseased tissues enabling the bacterium to invade tissues and obtain nutrients (Buddenhagen & Kelman, 1964). Thus, cell-wall degrading enzymes of \textit{P. syringae} may serve a nutritional purpose to provide nutrients that can be used as energy source or an invasive role for enhanced penetration (Gross & Cody, 1985).

Relative to enzyme activity I found that all \textit{P. syringae} strains were positive for cellulase, \(\beta\)-glucanase and protease activity as well as for starch hydrolysis. Although I do not know the relevance of these enzymes in barley pathogenesis at this point, the enzymes may be important for growth adaptation of \textit{P. syringae} to barley kernels. Gross & Cody (1985) suggested that because most strains of \textit{P. syringae} pv. \textit{syringae} cannot utilize cellobiose as an energy source, cellulase activity may function only in enhancing penetration of host tissue. Since all \textit{P. syringae} strains displayed \(\beta\)-glucanase activity, I hypothesize that cellulose present in primary plant cell walls might be degraded stepwise, first by bacterial endocellulase which cleaves \(\beta\)-glucosidic bonds at random in the middle of cellulose
molecules, releasing cellobiose and cellodextrins, with the latter being cleaved by the bacterial exo-β-glucosidase activity into glucose (Goto, 1992). These results are consistent with those of Hayward (1977), who observed differences in the reactions of fluorescent pseudomonads in tests for α-glucosidase, β-glucosidase and β-xylosidase. Whereas weak and delayed reactions for α-glucosidase were found among both plant pathogenic and saprophytic fluorescent pseudomonads, none of the saprophytes gave positive reactions in either the β-glucosidase or β-xylosidase tests. None of the 18 P. phaseolicola isolates examined gave a positive reaction in the test for β-xylosidase activity whereas six of the seven P. syringae isolates did. Many of the fluorescent plant pathogens gave positive reactions in the β-glucosidase test, except for P. fluorescens. The hydrolyzation of plant β-glucosides may result in tissue disorganization and intercellular spread of the pathogen (Gross & Cody, 1985).

The accumulation of fibrillar material surrounding P. syringae Ps 418 was observed in almost all tissues (Fig. 2.3 A, B, E& F). This extracellular material is most likely of pathogen origin since a positive labeling was obtained with antibodies made to P. syringae whole cell preparations (Fig. 2.4), which consisted mainly of extracellular polysaccharides (EPS). The many functions of bacterial EPS in plant pathogenesis have been reviewed (Sigee, 1993; Roberts, 1996). Hydrophilic EPS have been implicated in induction and maintenance of water-soaking, which is an important step in the development of the susceptible reaction for many leaf spot diseases caused by pseudomonads and xanthomonads. With plants kept under high humidity, El-Banoby and Rudolph (1979) were able to directly induce water-soaking in leaf tissue by infiltration of EPS preparations from
P. s. pv. *phaseolicola*. These EPS contained four macromolecular fractions: levan, alginate, lipopolysaccharide and protein. EPS therefore may provide some bacterial species, such as *E. coli, Erwinia stewartii, P. aeruginosa* and others with advantages for survival since the formation of a hydrated gel around the cell surface may protect them from desiccation (Roberts, 1996). Furthermore, EPS may promote the adherence of bacteria to surfaces, thereby facilitating the formation of a biofilm and the colonization of various ecological niches (Costerton et al., 1987). EPS have also been shown to be important in promoting the ability of virulent pathogenic bacteria to avoid plant recognition and thus triggering a hypersensitive reaction (HR) by masking receptor sites on the bacterial surface (Sigee, 1993). In animal systems capsular polysaccharides were found to confer resistance to phagocytosis by masking the underlying C3b recognition sites form C3b receptors on the phagocyte cell surface (Roberts, 1996). Studying the interaction between *Pseudomonas* pathogens and oat leaves, Smith & Mansfield (1982) discovered that in incompatible interactions pathogens became attached to non-host plant cell walls, whereas in compatible interactions bacteria were always surrounded by EPS. My observations with *P. syringae* and barley kernel cells were similar to this compatible interaction (Fig. 2.3 A, B, E & F). In addition, dark staining appositions were found at sites where bacteria were close to the cell wall. This response, although more frequently observed in incompatible interactions in combination with the HR (Smith & Mansfield, 1982; Politis & Goodman, 1978), was thought to represent part of the process of host resistance, but it was not clear whether it might influence bacterial growth. I also found dark staining appositions accumulating at inner plant cell wall layers, predominantly in cells that demonstrated cell wall disruptions.
(Fig. 2.3 E & F). The observation of two layers surrounding bacterial cells, one electron-translucent halo and one electron-dense fibrillar matrix was investigated by Fletcher & Floodgate (1973), who studied the adherence of marine pseudomonads to solid surfaces. They proposed that EPS comprised 2 layers, an electron translucent inner layer of primary polysaccharide and an outer layer of fibrillar polysaccharides. Smith & Mansfield (1982) hypothesized it may be comprised of only a single type of polysaccharide that shrinks away from the bacterial wall during preparation for microscopy. Recently, it was discussed that it may result from synergistic interactions between bacterial EPS and plant cell wall polysaccharides (Boher et al., 1995). Finally, I observed the embedding of a single bacterial cell by the host cell wall (Fig. 2.3 D), which most likely was an attempt of the plant to locally immobilize an individual bacterium and avoid its multiplication, but this was in general the exception rather than the rule. Since this reaction was accompanied by host cell wall modifications resulting in the embedding of the bacterium, it appeared similar to one of the two incompatible interactions described by Smith & Mansfield (1982), in which the attachment of bacteria to plant cell walls involved a localized modification of the underlying wall. In addition, Kunoh (1996) reported that defense-related reactions can occur only in the cells that are attacked by individual microbes but not in all cells within the same tissue. Alternatively, the picture (Fig. 2.3 D) might show the process of cell wall degradation by the individual bacterium.

In conclusion, the present study provides insights into invasion strategies of barley kernels and cell wall degradation by Pseudomonas syringae. My results favor the hypothesis that lytic enzymes, presumably of bacterial origin, weaken and loosen the cell walls of barley
during host colonization by *P. syringae*. In this compatible interaction, bacteria were seldom seen in close contact with the plant cell wall, which appeared to be prevented by the presence of EPS around the pathogen. Also, EPS fibrils were closely associated with detached portions of host cell walls, likely providing a more accessible nutrient supply for the pathogen (Fig. 2.2. C, E, F). Moreover, EPS could be responsible for the appearance of water-soaked symptoms on kernel bases seven days after inoculation and in combination with lytic enzymes account for kernel necrosis and basal blight symptoms. However, whether EPS and such enzymes are required for pathogenicity remains unknown and could be studied in detail using EPS-minus mutants, enzyme-truncated or deficient mutants, and a resistant barley cultivar to investigate and compare cell wall degradation.
Literature Cited

CHAPTER 3
DIVERSITY OF PSEUDOMONAS SYRINGAE PV. SYRINGAE STRAINS
ASSOCIATED WITH BARLEY KERNEL BLIGHT: CORRELATION OF
PATHOGENICITY, TOXIN PRODUCTION, NUTRITIONAL PROFILE AND
RESTRICTION-FRAGMENT LENGTH POLYMORPHISM

Introduction

Pseudomonas syringae pv. _syringae_ (Pss) van Hall 1902 is an important bacterial plant pathogen found throughout the world on a multiplicity of hosts (Bradbury, 1986; Young, 1992; Georgakopoulos & Sands, 1992; Martinez-Miller & Braun, 1997). _P. s._ pv. _syringae_ damage to barley kernels, results in black discoloration on the kernel lemma (spot blight) or base (basal blight) including the embryo (Martinez-Miller, 1994; Martinez-Miller & Braun, 1997). We have reported upon the etiology and significance of basal kernel blight of barley caused by _P. s._ pv. _syringae_ (Martinez-Miller et al., 1998). Furthermore, electron microscopy revealed data on kernel invasion, pathogenesis and compatibility in this host-parasite interaction (Braun et al., 1997 a; chapter 2). The only control measure to date is the avoidance of irrigation during the most susceptible kernel developmental stage at soft dough and the use of resistant cultivars (Martinez-Miller et al., 1998), since no bactericides are available on small grains that might provide control of the pathogen.
The heterogeneity of strains within the pathovar *syringae* has been described (Roos & Hattingh, 1987; Denny et al., 1988; Cooksey & Graham, 1989; Louws et al., 1994) using strains isolated from a limited number of hosts and/or from diverse geographical areas. RFLP analyses and DNA-hybridization successfully differentiated strains of *Pseudomonas syringae* between and within pathovars (Denny et al., 1988; Legard et al., 1993; Quigley & Gross, 1994; Martinez-Miller, 1994). In addition, rare-cutting restriction endonucleases have been used to generate distinctive patterns of large DNA fragments which could be separated by field inversion (Cooksey & Graham, 1989) or pulsed-field gel electrophoresis (Grothues & Tümmler, 1991). Such macrorestriction fingerprints of the entire bacterial genome were shown to be very sensitive to mutations at a specific restriction site, thus exposing polymorphism between and within genetically distinct bacterial species and pathovars. Furthermore, PCR-RFLP analysis of rRNA operons and rep-PCR-based amplification of variable DNA regions between conserved bacterial repetitive elements have been useful techniques for the rapid and reproducible identification of plant pathogenic bacteria at the species, pathovar and even strain level (Jensen et al., 1993; Louws et al., 1994; Manceau & Horvais, 1997). Amplified Fragment Length Polymorphism (AFLP) was employed by Bragard et al. (1997) to characterize 68 xanthomonad strains from small grains and found the results to be consistent with pathogenicity tests and RFLP analysis. Thus AFLP, has become a method of choice not only for taxonomy, but also for epidemiological studies. Each of the afore mentioned analytical techniques based on DNA characterization alone may indicate whether different field isolates represent a single evolutionary line (common ancestor) or are composed of several genetically distinct lines that might have converged to
a similar pathogenic phenotype. However, the combination of biochemical, pathological and genetic analyses has been proposed to assess the phylogenetic relatedness more appropriately in relation to the host plant (Denny, 1988; Henderson et al., 1992).

Earlier attempts to determine relationships between the host plant barley and two *P. syringae* groups, which appeared to cause distinct symptoms (spot and basal kernel blight), using RFLPs with the *syrB* gene as DNA probe, revealed the distribution of Pss strains isolated from basal blight in closely related clusters, while a few *P. syringae* strains isolated from spot blight symptoms were in a divergent cluster (Martinez-Miller, 1994). However, a large variability among strains was recorded when RFLPs also included the gene probes *hrp10* and *hrp14*, two individual fragments of a 30 kb insert containing the *hrp* region from *P. s. pv. syringae* 61 (Martinez-Miller, 1994).

This study was done to describe the phylogenetic relatedness of *P. s. pv. syringae* strains based on more phenotypic and genotypic parameters, including cultivar-strain interactions, since the genome characteristics for pathogenicity and virulence occurring at the strain level are uncertain. Isolates of Pss were selected from barley kernels obtained from resistance screening experiments in Fairfield, MT, consisting of twelve barley cultivars. Several *P. s. pv. syringae* strains from hosts other than barley and five other cereal pathovars of *P. syringae* were included to detect possible differences between host species and pathovars. Traits examined consisted of pathogenicity on barley cultivar B 2601, hypersensitivity on tobacco, syringomycin toxin production, nutritional profiles and genome organization, which is thought to be shaped by selection and evolution (Louws et al., 1994). The knowledge may be valuable since preliminary studies indicated that cultivar preferences
may have developed between Pss and barley (Braun & Sands, 1995), in a similar way as has been reported for Pss and *P. s. pv. phaseolicola* and snap bean or Pss and cherry trees (Hirano & Upper, 1990). Additionally, data on pathogen diversity may provide important information for the development of an effective biological control system based on the application of antagonistic *Pantoea agglomerans* prior to the infection window (Braun et al., 1996; Braun et al., 1997 b; chapter 4).

Materials and Methods

Bacterial isolation and identification.

Twenty-two Pss isolates were obtained from individual barley kernels after harvest in 1994 and 33 in 1995. Kernels used for pathogen isolation either exhibited basal or spot blight disease symptoms, or no symptoms at all. In addition, two strains were isolated from healthy Canada thistles (*Cirsium arvense*) surrounding the barley field in 1994 (Tables 3.1; 3.2). Isolates were collected from resistance screening experiments in Fairfield, Montana, in which 12 barley cultivars were tested for susceptibility to basal and/or spot kernel blight, respectively (Martinez-Miller et al., 1998). The semi-selective KBC medium was used for isolation of *P. s. pv. syringae* (Mohan & Schaad, 1987). Kernels were individually soaked in 1 ml sterile PBS buffer (0.85 % NaCl, 0.03 M NaOH, 0.05 M KH₂PO₄; pH 7.0) for 2 h at 4 C, then transferred to a rotary shaker at 150 rpm at 22±2 C for an additional 30 min. The suspension was diluted ten-fold in PBS and 0.1 ml portions were spread on KBC plates amended with 75 μg/ml cycloheximide and 80 μg/ml cephalexin. Plates were incubated in
the dark at 28 °C for 48 h. Fluorescent pseudomonad colonies were selected visually for further analysis based on their fluorescence under 366 nm UV light (Model UVL-21, BLAK-RAY, Ultra-Violet Products, Inc., San Gabriel, California). Putative *P. syringae* isolates were identified according to standard tests, including oxidase reaction (Kovacs, 1956), hypersensitivity (HR) on tobacco leaves (*Nicotiana tabacum* cv. *Xanthi*) (Klement, 1963), and arginine dihydrolase activity (Hildebrand et al., 1988). The *syringae* pathovar identification was based on trigonelline, L-lactate and quinate utilization as sole carbon source (Hildebrand et al., 1988). Additionally, 1994 isolates were identified using the Biolog system (BIOLOG, Inc. Hayware, CA) and 1995 isolates were identified by the Microbial Identification System (MIDI, Microbial ID Inc. Newark, Delaware). Strains were also tested for syringomycin-like toxin production by inhibition of the toxin-sensitive fungus *Geotrichum candidum* in a SRM-plate bioassay described by Gross et al. (1985). This test detects the production of syringomycin or its amino acid derivatives, syringostatin, syringotoxin (Gross, 1991) and pseudomycin (Harrison et al., 1991), but not syringopeptin (Iacobellis et al., 1992; Vassilev et al., 1996).

Pathogenicity tests on barley.

Pathogenicity of isolates was examined by inoculating a bacterial suspension (1 x 10⁶ cfu/ml sterile tapwater) containing 0.025% of Tween 20 as surfactant on spikes of the susceptible barley cultivar B 2601 at soft dough stage. Inoculum was applied until runoff (approx. 5 ml per spike) by using a hand air brush sprayer (Model Paaschi D500 1/10 H.P.). A pot (19 cm diameter) with three 3 barley heads (one spike per plant) at the appropriate
stage was inoculated per strain and pots were replicated. Pots were incubated in a mist chamber (approx. 95% r.h.) for 3 days following inoculation before being transferred to the greenhouse bench. The greenhouse was maintained at a temperature of 22/18 ± 2 C (day/night) and a 12 h photoperiod. After harvest, all kernels of one replicate (pot) were combined, and the percentage of kernels with basal blight infection was calculated by the following formula (Martinez-Miller et al., 1998):

\[
\% \text{ kernel blight} = \left(\frac{a}{b} \right) \times 100,
\]

where \(a \) = number of blighted kernels per sample; \(b \) = total number of kernels per sample.

Eleven \(P. s. \ pv. syringae \) reference strains and five other cereal pathovars, including \(P. s. \ pv. coronafaciens \), \(P. s. \ pv. atrofaciens \), and \(P. s. \ pv. striafaciens \) from several bacterial collections were included in the study for comparison. Their sources and test reactions are listed in Table 3.3. All bacteria were stored at -70 C in nutrient broth with 15 % glycerol and recovered on King’s B medium (King et al., 1954) prior to analysis.

Nutritional profiles.

\(P. s. \ pv. syringae \) isolates obtained in 1994 and reference strains Pss 552, Ps 418, Pss 529, Psc 564, Psa 570, 579, and Psst 565 (Table 3.3) were subjected to metabolic fingerprinting on GN MicroPlates (Biolog, Inc., Hayward, CA). Briefly, bacteria were grown on Tryptic Soy Agar (TSA) for 24 hours and a bacterial suspension (\(\text{OD}_{580} = 0.35 \), Spectronic 20, Milton Roy Company) prepared in sterile saline solution (0.85% NaCl). All
wells of a GN MicroPlate were filled with 150 μl of this solution, plates covered and incubated at 28 C. Since all strains required overnight incubation to give an adequate nutritional profile, the overnight reading was recorded, and the MicroLog 1 computer software program (Biolog’s MicroLog™ QC Software, Release 3.5) was used to evaluate visual readings. Nutritional diversity of strains was determined by cluster analysis from a 0/1 data matrix, based on the utilization or non-utilization of distinctive carbon and nitrogen sources.

Genetic profiles.

The intrapathovar variation of *P. s. pv. syringae* field isolates was determined by comparing genomic DNA-profiles of strains isolated from kernels of different cultivars randomly distributed in the field. Twenty-four strains from 8 cultivars were investigated in 1994 and 33 from 6 cultivars in 1995. Cultivar source and relevant information on bacterial isolates are listed in Tables 3.1 and 3.2, respectively. DNA preparation of bacterial cells for pulsed-field gel electrophoresis (PFGE) was done according to Megeed & Sherwood (1995). Agar plugs containing lysed bacterial cells were digested with 40 units of the restriction endonuclease *XbaI* [TCTAGA] or 10 units of *SpeI* [ACTAGT], respectively and stored in 0.5 M Na-EDTA (pH 8.0) at 4 C. PFGE was carried out in a 1% agarose gel using the BIO-RAD CHEF DR-II system. Lambda DNA concatomers (BIO-RAD Laboratories) were used as molecular size markers. A voltage of 200 V was applied for a running time of 22 h for *XbaI* and 23 h for *SpeI* in 0.5x TBE buffer at 18 C. Optimal separation of DNA fragments between 100-300 kb was achieved by ramping the switch time from τ = 8 to τ = 20 s during
the running time. DNA was visualized by staining the gel with ethidium bromide and subsequent UV transillumination.

Analysis of DNA fingerprints and estimation of phylogeny.

The size of restriction fragments was determined by comparison with lambda DNA size standards. For each strain binary data, coding 1 for the presence or 0 for the absence of a band, were scored at each position along a lane in the DNA-fragment size range of 100-300 kb. A total of maximal 17 band positions were obtained for *XbaI* and 18 band positions for *SpeI* haplotypes. The combined restriction enzyme digest data for the field isolates represented a total of 35 band positions. Dice similarity coefficients were calculated for each strain pair by the following equation:

\[
D = \frac{2n_{xy}}{n_x + n_y},
\]

where \(n_{xy}\) is the number of fragments shared by the two strains and \(n_x\) and \(n_y\) are the numbers of fragments in strain \(x\) and \(y\), respectively. Cluster analysis was conducted and dendrograms constructed by the unweighted pair group method with averages (UPGMA) using the NTSYSpc-program (version 2.01c; Applied Biostatistics Inc.). For the computation of dependencies between two parameters, simple correlations/regressions analyses were performed using the MSTATc program (Michigan State University), and the degree of the relationship was described as correlation/regression coefficient \((r)\) at the probability \((p)\) (Köhler et al., 1992).
Results

No spot blight symptoms were detected on kernels in 1994 field experiments, possibly due to hot and dry weather conditions during the infection window (Martinez-Miller et al., 1998). Therefore, all 1994 isolates came from kernels exhibiting basal blight symptoms (Table 3.1). Three isolates were obtained from the susceptible to moderately susceptible cultivars B 2601, Morex, Excel, and Robust and two isolates from the moderately resistant cultivars B 2912, B 1202, and Mn 567. Four isolates from the resistant cultivar Chevron and two isolates from Canada thistle (Cirsium arvense) leaves were included for comparative studies on the presence of potential pathogenic Pss strains on healthy plants and non-host plants (Table 3.1). In 1995, a year with average rainfall and extended overhead irrigation (Martinez-Miller et al., 1998), basal as well as spot blight symptoms occurred on barley kernels. Four isolates from kernels exhibiting basal symptoms were collected from cultivar B 2601, B 5133, Karl, and three from Steptoe (Table 3.2). Five isolates from spot blight symptoms were isolated from cultivar Steptoe, four from B 5133, three from Karl and two from B 1202. Four isolates from symptomless kernels of the resistant cultivar Harrington were included for comparative purposes.

Pathovar identification.

All isolates tested, except for reference strain P. s. pv. striafaciens 565, grew on quinate as the sole carbon source (Table 3.3). Isolates from kernels exhibiting basal blight symptoms (Table 3.1, 3.2) grew on trigonelline and L-lactate as sole carbon sources and
were consequently identified as pathovar *syringae* (Hildebrand et al., 1988). Isolate 779 from leaf blight symptoms and all isolates from healthy barley kernels also tested positive on these two carbon sources and were identified as *P. s. pv. syringae*. The isolates from spot blight symptoms were more variable in their growth on these minimal media. Fifty percent of isolates grew on trigonelline and L-lactate and were subsequently identified as pathovar *syringae*. Thirty-six percent did not utilize these two carbon sources as sole carbon source and 14% grew on L-lactate but not trigonelline (Table 3.2) and could therefore not clearly be identified on the pathovar level by this method. Commercially available identification systems, such as Biolog and MIDI identified all isolates as *syringae* on the species level, but were inconsistent on the pathovar level. Forty-six percent of 1994 isolates (Table 3.1) were identified by the Biolog system as pathovar *syringae* (*p* = 0.54-0.87), 17% as pathovar *aptata* (*p* = 0.71-0.85), 13% as pathovar *pisi* (*p* = 0.68-0.72) and pathovar *hibisci* (*p* = 0.62-0.78), respectively, 8% as pathovar *morsprunorum* (*p* = 0.60-0.79), and 4% as pathovar *atrofaciens* (*p* = 0.91). Fifty-six percent of isolates tested in 1995 were identified as pathovar *pisi* (*p* = 0.5-0.69) by cellular fatty acid analysis (MIDI), including all isolates from basal blight symptoms. Nineteen percent of isolates were identified as pathovar *delafieldii* (*p* = 0.67-0.73), 13% as pathovar *lachrymans* (0.59-0.68), and 6% as pathovar *maculicola* (*p* = 0.57) and species *pseudoflava* (*p* = 0.35), respectively (Table 3.2).
Table 3.1. Name and source of 1994 *Pseudomonas syringae* pv. *syringae* isolates, symptom type at isolation, commercial identification based on Biolog, trigonelline (TRI) and L-lactate (LA) utilization, hypersensitivity reaction (HR) on tobacco, syringomycin-like toxin production measured in a *Geotrichum candidum* inhibition bioassay, and pathogenicity on barley cv. B 2601 expressed as percentage of basal blight infected kernels, when inoculated at soft dough stage.

<table>
<thead>
<tr>
<th>Name</th>
<th>Source/ cultivar</th>
<th>Symptom</th>
<th>Biolog</th>
<th>TRI(^1)</th>
<th>LA(^1)</th>
<th>HR(^1)</th>
<th>Zone size(^2) (mm)</th>
<th>% Basal blight(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>789</td>
<td>2601</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>3.8</td>
</tr>
<tr>
<td>793</td>
<td>2601</td>
<td>basal</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>44.6</td>
</tr>
<tr>
<td>791</td>
<td>2601</td>
<td>basal</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>63.7</td>
</tr>
<tr>
<td>1254</td>
<td>2912</td>
<td>basal</td>
<td>morsprun.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>1213</td>
<td>2912</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>1214</td>
<td>1202</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>68.4</td>
</tr>
<tr>
<td>1224</td>
<td>1202</td>
<td>basal</td>
<td>hibisci</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>1259</td>
<td>Morex</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>1221</td>
<td>Morex</td>
<td>basal</td>
<td>apata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td>1252</td>
<td>Morex</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>1249</td>
<td>Excel</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>1251</td>
<td>Excel</td>
<td>basal</td>
<td>morsprun.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>1262</td>
<td>Excel</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>1217</td>
<td>Mn567</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>31.2</td>
</tr>
<tr>
<td>1261</td>
<td>Mn567</td>
<td>basal</td>
<td>hibisci</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>1218</td>
<td>Robust</td>
<td>basal</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>61.0</td>
</tr>
<tr>
<td>1219</td>
<td>Robust</td>
<td>basal</td>
<td>hibisci</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>1222</td>
<td>Robust</td>
<td>basal</td>
<td>apata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>779</td>
<td>Chevron</td>
<td>leaf blight</td>
<td>atrofaciens</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>12.9</td>
</tr>
<tr>
<td>1212</td>
<td>Chevron</td>
<td>no sympt.</td>
<td>apata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>33.9</td>
</tr>
<tr>
<td>1247</td>
<td>Chevron</td>
<td>no sympt.</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>1250</td>
<td>Chevron</td>
<td>no sympt.</td>
<td>syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>780</td>
<td>Thistle</td>
<td>no sympt.</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>18.4</td>
</tr>
<tr>
<td>781</td>
<td>Thistle</td>
<td>no sympt.</td>
<td>apata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>13.5</td>
</tr>
</tbody>
</table>

\(^1\) + indicates growth on trigonelline (TRI) or L-lactate (LA) as sole carbon source and a positive hypersensitivity reaction (HR) on tobacco. - indicates a negative HR reaction.

\(^2\) Values are means of 4 replications per Pss strain, and represent millimeters of *Geotrichum candidum* inhibition around 5 day old colonies on SRM medium (Gross, 1985).

\(^3\) Values represent mean percentages of basal blight infected kernels obtained from 6 replicate barley spikes inoculated at soft dough stage; -- indicates not determined.
Table 3.2. Name and source of 1995 *Pseudomonas syringae* pv. *syringae* isolates, symptom type at isolation, commercial identification based on MIDI, trigonelline (TRI) and L-lactate (LA) utilization, hypersensitivity reaction (HR) on tobacco, syringomycin-like toxin production measured in a *Geotrichum candidum* inhibition bioassay, and pathogenicity on barley cv. B 2601 expressed as percentage of basal blight infected kernels, when inoculated at soft dough stage.

<table>
<thead>
<tr>
<th>Name</th>
<th>Source/cultivar</th>
<th>Symptom</th>
<th>MIDI</th>
<th>TRI 1)</th>
<th>LA 1)</th>
<th>HR 1)</th>
<th>Zone size 2) (mm)</th>
<th>% Basal blight 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>852</td>
<td>2601</td>
<td>basal</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>18.9</td>
</tr>
<tr>
<td>853</td>
<td>2601</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>14.8</td>
</tr>
<tr>
<td>854</td>
<td>2601</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>7.6</td>
</tr>
<tr>
<td>849</td>
<td>2601</td>
<td>basal</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>32.8</td>
</tr>
<tr>
<td>860</td>
<td>5133</td>
<td>basal</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>11.9</td>
</tr>
<tr>
<td>861</td>
<td>5133</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>9.9</td>
</tr>
<tr>
<td>862</td>
<td>5133</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>25.4</td>
</tr>
<tr>
<td>864</td>
<td>5133</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>42.0</td>
</tr>
<tr>
<td>874</td>
<td>5133</td>
<td>spot</td>
<td>--</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>2.7</td>
</tr>
<tr>
<td>875</td>
<td>5133</td>
<td>spot</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>10.8</td>
</tr>
<tr>
<td>876</td>
<td>5133</td>
<td>spot</td>
<td>lachrymans</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>877</td>
<td>5133</td>
<td>spot</td>
<td>--</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>829</td>
<td>Steptoe</td>
<td>basal</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>21.0</td>
</tr>
<tr>
<td>831</td>
<td>Steptoe</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
<td>13.4</td>
</tr>
<tr>
<td>832</td>
<td>Steptoe</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
<td>19.5</td>
</tr>
<tr>
<td>822</td>
<td>Steptoe</td>
<td>spot</td>
<td>delafieldii</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>823</td>
<td>Steptoe</td>
<td>spot</td>
<td>maculicola</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>825</td>
<td>Steptoe</td>
<td>spot</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>826</td>
<td>Steptoe</td>
<td>spot</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>14</td>
<td>13.7</td>
</tr>
<tr>
<td>827</td>
<td>Steptoe</td>
<td>spot</td>
<td>lachrymans</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>14</td>
<td>32.4</td>
</tr>
<tr>
<td>836</td>
<td>Karl</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>4.4</td>
</tr>
<tr>
<td>837</td>
<td>Karl</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>4.2</td>
</tr>
<tr>
<td>839</td>
<td>Karl</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td>3.9</td>
</tr>
<tr>
<td>843</td>
<td>Karl</td>
<td>basal</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
<td>11.9</td>
</tr>
<tr>
<td>833</td>
<td>Karl</td>
<td>spot</td>
<td>pisi</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>10</td>
<td>22.0</td>
</tr>
<tr>
<td>834</td>
<td>Karl</td>
<td>spot</td>
<td>delafieldii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>835</td>
<td>Karl</td>
<td>spot</td>
<td>delafieldii</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>881</td>
<td>1202</td>
<td>spot</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>40.7</td>
</tr>
<tr>
<td>882</td>
<td>1202</td>
<td>spot</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>14.1</td>
</tr>
<tr>
<td>884</td>
<td>Harrington</td>
<td>no sympt.</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>33.1</td>
</tr>
<tr>
<td>885</td>
<td>Harrington</td>
<td>no sympt.</td>
<td>P.pseudoflava</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>886</td>
<td>Harrington</td>
<td>no sympt.</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>54.1</td>
</tr>
<tr>
<td>887</td>
<td>Harrington</td>
<td>no sympt.</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>17.6</td>
</tr>
</tbody>
</table>

1) + indicates growth on trigonelline (TRI) or L-lactate (LA) as sole carbon source and a positive hypersensitivity reaction (HR) on tobacco. - indicates a negative HR reaction.

2) Values are means of 4 replications per Pss strain, and represent millimeters of *Geotrichum candidum* inhibition around 5 day old colonies on SRM medium (Gross, 1985).

3) Values represent mean percentages of basal blight infected kernels obtained from 6 replicate barley spikes inoculated at soft dough stage; -- indicates not determined.
Table 3.3. Name and source of *Pseudomonas syringae* reference strains, symptom type at isolation, commercial identification based on Biolog and/or MIDI, trigonelline (TRI) and L-lactate (LA) utilization, hypersensitivity reaction (HR) on tobacco, syringomycin-like toxin production measured in a *Geotrichum candidum* inhibition bioassay, and pathogenicity on barley cv. B 2601 expressed as percentage of basal blight infected kernels, when inoculated at soft dough stage.

<table>
<thead>
<tr>
<th>Name</th>
<th>Cultivar/source</th>
<th>Symptom</th>
<th>Biolog</th>
<th>MIDI</th>
<th>TRI</th>
<th>LA</th>
<th>HR</th>
<th>Zone size</th>
<th>% Basal blight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pss 552</td>
<td>B 2601, MT, D.C. Sands</td>
<td>basal syringae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>62.2</td>
</tr>
<tr>
<td>Pss 537</td>
<td>B 2601, MT, D.C. Sands</td>
<td>basal</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Pss 541</td>
<td>B 5133, MT, D.C. Sands</td>
<td>basal</td>
<td>-</td>
<td>glycinea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Pss 542</td>
<td>B 5133, MT, D.C. Sands</td>
<td>basal</td>
<td>-</td>
<td>pisi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Ps 418</td>
<td>B 1202, MT, D.C. Sands</td>
<td>spot</td>
<td>pisi</td>
<td>coronafaciens</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>15.4</td>
</tr>
<tr>
<td>Ps 421</td>
<td>B 1202, MT, D.C. Sands</td>
<td>spot</td>
<td>coronafaciens</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ps 428</td>
<td>B 1202, MT, D.C. Sands</td>
<td>spot</td>
<td>-</td>
<td>coronafaciens</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Ps 492</td>
<td>B 1202, MT, D.C. Sands</td>
<td>spot</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Pss 529</td>
<td>SD202, wheat, SD, D.C. Gross</td>
<td>leaf blight</td>
<td>apta</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>12.9</td>
</tr>
<tr>
<td>Pss 530</td>
<td>W4N9, bingcherry, OR, D.C. Gross</td>
<td>canker</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td>15.4</td>
</tr>
<tr>
<td>Pss 531</td>
<td>W4N53, d'Anjou pear, OR, D.C. Gross</td>
<td>canker</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Psa 570</td>
<td>pv. atrofaciens, barley, 30/1742, K. Rudolph, F.R.G., E. Duveiller, MX</td>
<td>glume rot syringae</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
<td>20.2</td>
</tr>
<tr>
<td>Psa 579</td>
<td>pv. atrofaciens, wheat, CB168, K. Willis, WI</td>
<td>glume rot tabaci</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>8.8</td>
</tr>
<tr>
<td>Psc 564</td>
<td>pv. coronafaciens, oats, Pc27, K. Willis, WI</td>
<td>halo blight pisi</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>Psc 566</td>
<td>pv. coronafaciens, oats, K. Willis, WI</td>
<td>halo blight -</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psst 565</td>
<td>pv. striafaciens, barley, 1515, K. Willis, WI</td>
<td>stripe blight tabaci</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1) + indicates growth on trigonelline (TRI) or L-lactate (LA) as sole carbon source and a positive hypersensitivity reaction (HR) on tobacco. - indicates a negative HR reaction. 2) Values are means of 4 replications per Pss strain, and represent millimeters of *Geotrichum candidum* inhibition around 5 day old colonies on SRM medium (Gross, 1985). 3) Values represent mean percentages of basal blight infected kernels obtained from 6 replicate barley spikes inoculated at soft dough stage; -- indicates not determined.
In addition to symptom type at isolation, *P. s. pv. syringae* strains were examined for syringomycin-like toxin production and pathogenicity based on the hypersensitivity reaction (HR) on tobacco and percentage of kernel infection on the susceptible cultivar B 2601, inoculated at soft dough stage of kernel development. Ten of 57 strains (=18%) were HR-negative and 82% HR-positive. Of the HR-negative strains none produced syringomycin or its amino acid derivatives *in vitro* (Table 3.1, 3.2), indicating a positive correlation between toxin production and pathogenicity on tobacco. However, five of these HR-negative, toxin-negative strains caused between 6 to 41% basal blight infection on cv. B 2601, while the other five were non-pathogenic to this cultivar, suggesting factors other than toxin production and pathogenicity on tobacco are involved in pathogenicity on barley cultivar B 2601. Seven out of 10 (70%) HR-negative strains were isolated from spot blight symptoms, one from leaf blight symptoms and two from symptomless kernels, while the other seven isolates from spot blight symptoms were HR-positive. Out of the HR-positive strains, 81% (9/47) demonstrated varying degrees of toxin production (2-14 mm) and were pathogenic to B 2601 with varying infection levels. Nevertheless, 19% of HR-positive strains did not produce any visible amounts of syringomycin-like toxins *in vitro*, but were still pathogenic to B 2601 (Tables 3.1, 3.2). It was apparent, however, that all isolates from basal blight symptoms (32) were HR-positive, of which only 2 (6.3%) were toxin-negative and all of the tested basal isolates (22) were pathogenic to B 2601, indicating a positive correlation of HR-reaction, toxin production and pathogenicity to B 2601 with isolates of basal type symptoms. While there was an obvious overall correlation between toxin production *in vitro* and pathogenicity on tobacco, I detected only a weak correlation between toxin production and
pathogenicity on B 2601, since 67% of the toxin-negative strains were pathogenic on this
cultivar and only 33% were non pathogenic, indicating again that factors other than toxin
production must be involved in symptom appearance. In contrast, 96% (25/26) of the tested
toxin producers were pathogenic to B 2601 with varying degrees of infection, whereas only
one toxin-positive (HR-positive) strain was non-pathogenic to this cultivar. Over all levels
of toxin production, I could demonstrate a weak, significant positive relationship \(\rho = 0.31,
\ p = 0.046 \) between syringomycin-like toxin production and infection level on cultivar B
2601 (Fig. 3.1).

Fig.3.1. Linear regression of amount of syringomycin-like toxin production (X) versus
percentage of basal kernel blight infection (Y) obtained on barley cv. B 2601, when heads
were inoculated at soft dough stage
Nutritional diversity.

The nutritional diversity of 23 Pss strains isolated from barley kernels, in addition to reference strains Pss 552, Pss 529, Ps 418, Psa 570, Psa 579, Psstria 565, and Psc 564 was determined by metabolic fingerprinting after oxidation of 95 different carbon and nitrogen sources using Biolog GN plates. The phenotypic dendrogram (Fig. 3.2) created after cluster analysis demonstrated a 76-100% overall nutritional similarity among strains based on the *in vitro* nutritional overlap. However, reference strains Pss 552 and Psa 570 from barley of different geographical origins were nutritionally 100% identical. Strains 1249 and 1262, both from cultivar Excel, were also identical, and another identical pair was 1247 and 1217, one from Chevron, the other from Mn567. I detected a grouping of strains into 3 major clusters. Strains within group I revealed 92% similarity and strains within groups II and III 90% nutritional similarity. The similarity between groups was more diverse (approx. 87%). Group I included mainly isolates of cultivars B 2601, Morex, and B 2912, group II isolates of Chevron, Excel, Robust, Mn567, B 1202, and group III the strains Ps 418 from spot type symptoms, Psa 579 from wheat and Psstria 565 from Wisconsin barley. Strains 1251 from Excel, Psc 564 from oats, and strain 780 from thistle were outliers and presented only 76-86% similarity to the other groups of strains. Isolates from more susceptible cultivars in group I demonstrated an overall higher pathogenicity on B 2601 (52.9%) than isolates from moderate to resistant cultivars in group II (36.5%) or isolates from spot blight symptoms or pvs. *atrofaciens* and *striafaciens* in group III (8.6%), based on averages of B 2601 infection from the cultivars tested.
Phenotypic dendrogram based on 95 nutritional properties of 23 Pss strains isolated from kernels of different barley cultivars in 1994. Two strains (780, 781) isolated from Canada thistles (*Cirsium arvense*), one isolate from wheat (529), and 4 isolates from pathovars *atoefaiciens* (570, 579), *striafaiciens* (565), and *coronaafaciens* (564) were included for comparison. See Table 3.1 for strain source and characteristics. The cluster level is based on Dice similarity coefficients and three major clusters (I - III) of strains were obtained, which did not correlate with either cultivar of isolation, symptom type at isolation, amount of toxin production, or HR reaction on tobacco.
Genetic analysis.

To determine the intrapathovar diversity of DNA fingerprints, I examined 24 *P. s. pv.* syringae isolates from 8 cultivars of the same geographic area in 1994 and 33 isolates from 6 cultivars in the same area in 1995 (Table 3.1, 3.2). Genomic fingerprinting resulted in, at most, 17 DNA fragments in the range of 100-300 kb after digestion with *XbaI* and 18 DNA fragments after digestion with *SpeI*. *P. syringae* pathovars isolated from different hosts and geographical origin revealed differences in their banding pattern (Fig. 3.3). Strains within the *pv. syringae* were still diverse, with a 40-80% similarity between most strains or group of strains (Fig. 3.3, 3.4). However, a higher similarity (86-100%) was apparent in 48% of the strains isolated from spatially separated kernels of the same cultivar (Fig. 3.4). The dendrogram (Fig. 3.4) demonstrated 100% similarity between strains 881 and 882 from spot blighted kernels of cultivar B 1202, between strains 874 and 875 from spot blighted kernels of cultivar B 5133, and between strains 823 and 825 from spot blighted kernels of cultivar Steptoe. Furthermore, strains 884 and 885 from symptomless kernels of cultivar Harrington, strains 836 and 837 from basal blighted kernels of cultivar Karl, strains 860,861, and 862 from basal blighted kernels of cultivar B 5133 and strains 849,852, and 853 from basal blight symptoms of cultivar B 2601 demonstrated 100% similarity in their genomic profile. Moreover, strains 886 and 887 from symptomless kernels of cultivar Harrington revealed 96% similarity, strains 831 and 832 from basal blighted kernels of cultivar Steptoe 91% and strains 822, 823, and 825 from spot blighted kernels of cultivar Steptoe 86% similarity. While these clusters of similarity were striking, no obvious grouping of the other strains in relation to their cultivar of origin, symptom type at isolation or pathogenicity on cultivar B 2601 was observed. The
dendrogram demonstrated an overall heterogeneous genomic population of *P. s. pv. syringae* strains isolated from barley kernels of different cultivars within the same geographical area.

Fig.3.3. Genomic DNA-fingerprints of *P. syringae* isolates. DNA embedded in agarose was digested with *XbaI* and fragments separated by pulsed field gel electrophoresis for 22 h with ramping from 8-20 s at 200 V. Lane 1 = λ DNA size markers, lane 2 = 529 (Pss from wheat, SD), lane 3 = 530 (Pss from cherry, OR), lane 4 = 531 (Pss from pear, OR), lane 5 = 552 (Pss from B 2601, MT), lane 6 = 537 (Pss from B 2601, MT), lane 7 = 541 (Pss from B 5133, MT), lane 8 = 542 (Pss 542 from B 5133, MT), lane 9 = 579 (*P. s. atrofaciens* from wheat, MX), lane 10 = 570 (*P. s. atrofaciens* from barley, F.R.G.).
Fig. 3.4. Dendrogram of genetic relationships between 56 P. s. pv. syringae strains isolated from kernels of twelve barley cultivars in 1994 and 1995, and 2 strains from Canada thistle (Cirsium arvense). See Tables 3.1 & 3.2 for source and characteristics of strains. The dendrogram was obtained from cluster analysis of macrorestriction DNA-fingerprints by using UPGMA and Dice similarity coefficients. Each strain of Pss was digested with the restriction enzymes Xbal and Spel and run on a pulsed-field gel at 200 V for 24 h and 22 h, respectively.
Correlation analyses.

The relationship between nutritional similarity and genetic similarity based on the Dice coefficients was performed on the data obtained for 1994 isolates. Despite the overall heterogeneity of Pss populations obtained from both analyses, there was only a low but significant correlation between nutritional and genetic data \((r = -0.19; p = 0.039 \)), possibly because strains responded differently to both analyses (Fig. 3.2; 3.4). However, the overall similarity of Pss strains obtained from the nutritional profiles (average similarity = 0.89) was greater than the similarity of Pss strains derived from the genetic analysis (average = 0.56).

Discussion

The Biolog system proved useful to identify bacterial isolates on the genus and species level but was inconsistent on the subspecies or pathovar level. Despite this disadvantage it provided valuable information on the nutritional characteristics of a particular strain, which might separate it from others. The MIDI system also was advantageous on the genus and species level, but had demonstrated inconsistencies on the pathovar level. Similar insensitivities using only biochemical and pathogenicity tests have been reported by others, who therefore recommended the use of more rapid and less expensive techniques to identify and classify closely related bacteria on the pathovar and strain level (Denny, 1988; Legard et al., 1993; Louws et al., 1994).

The nutritional diversity of 1994 strains (76-100% similarity) based on \textit{in vitro} nutritional profiles (Fig. 3.2) confirmed the overall genetic heterogeneity (43-100% similarity) among Pss
populations within this pathovar (Fig. 3.4). However, there was no strong correlation between nutritional and genetic similarity ($r = -0.19; p = 0.039$), since strains, which were nutritionally similar (>90%) were only 69-77% similar based on their DNA fragment patterns. The discrepancy between diversity detected by carbohydrate utilization tests and genome analyses was also reported by Denny (1988) and Denny et al. (1988). For instance, despite their genetic diversity (Fig. 3.3; 3.4), no obvious phenotypic differences were detected between Pss 552 isolated from kernels of cv. B 2601 in MT and Psa 570 isolated from barley kernels in Germany. Both strains were pathogenic to cv. B 2601 and both demonstrated in vitro toxin production (10 mm versus 6 mm, respectively).

Syringomycin toxin production by *P. s. pv. atrofaciens* strains 570 and 579 was supported by Southern analysis of *PstI*-cut genomic DNA and hybridization to the 1.1 kb *syrB* gene fragment (Braun & Sands, 1995). Interestingly, strains 564, 566, and 565 from pvs. *coronafaciens* and *striafaciens*, which also demonstrated syringomycin-like toxin production were non-pathogenic to *B* 2601 and did not hybridize to the *syrB* fragment (Braun & Sands, 1995). The production of syringomycins and syringopeptins by *P. s. pv. atrofaciens* was demonstrated recently by Vassilev et al. (1996). Moreover, the fungus *Geotrichum candidum* used in my bioassay, although not sensitive to syringopeptins (Iacobellis et al., 1992; Vassilev et al., 1996), might still be sensitive to toxins such as tabtoxin (= monocyclic β-lactam), reported to be produced by several *P. syringae* pathovars, including *P. s. pv. coronafaciens* (Gross, 1991), which could explain the zones of inhibition, at least in pv. *coronafaciens*.

Furthermore, isolates from thistle which were phenotypically and genotypically distinct and did not produce visible syringomycin levels in vitro were pathogenic to cv. B 2601, indicating that
nutritional versatility probably enabled Pss populations to multiply on hosts other than barley until favorable conditions induced the barley infection. Similar results were obtained by Roos & Hattingh (1987), who investigated the pathogenicity and phenotypic features of \textit{P. syringae} strains isolated from fruit trees in South Africa. Most strains within the \textit{pv. syringae} were heterogeneous due to nutritional versatility, origin of isolation, and pathogenicity to several pome and stone fruit hosts.

The authors found that survival of Pss on weeds during the winter and its nutritional diversity favored its multiplication on many hosts, complicating epidemiological studies and the development of disease control strategies. According to the authors, each host fruit variety supported a heterogeneous population of Pss and some of these strains were more virulent on other host trees.

Symptoms were expressed only if conditions promoted the particular strain, since strains colonized plum tissue without causing visible symptoms, whereas on apple, pear, and cherry cankers were developed. Similar interactions between the Pss pathogen and host plants seem to be present in my barley system, since most isolates caused typical disease symptoms on B 2601 with differences in severity, probably reflecting the virulence of individual strains. Strains pathogenic to B 2601 were also isolated from symptomless kernels of cultivars Chevron and Harrington, indicating again the ubiquitous existence of the pathogen, even on more resistant cultivars.

Three groups of clusters were found among 1994 Pss strains based on nutritional profiles but this clustering did not correspond to the grouping based on toxin production, confirming earlier RFLP studies, which revealed no apparent clustering of strains in relation to syringomycin production when \textit{syrB}, \textit{hrp10kb}, \textit{hrp14kb} were used as DNA probes (Martinez-Miller, 1994). However, I could demonstrate a significant but weak correlation (\(r = 0.31, p = 0.046 \)) between
amount of syringomycin production and the percentage of kernel infection on cv. B 2601, probably reflecting the importance of syringomycin as virulence factor in Pss populations, hither to mentioned by Xu and Gross (1988) and Gross (1991).

Macrorestriction analysis estimated the genetic relatedness of P. syringae isolates within the pv. syringae from the distribution of infrequent oligonucleotide sequences in the bacterial chromosome (Fig. 3.4), which should be similar in closely related strains (Corich et al., 1991). The intrapathovar variation of 57 isolates used in my study could be roughly divided into two groups, isolates that had identical genomic DNA fingerprints and shared multiple bands of equal mobility (48% of 1995 strains), and isolates that had unique profiles (72% of all strains) and thus could be divided into separate lines that did not share common banding patterns. A high similarity of fragment profiles (100%), which may define a lineage of evolutionary related strains (Louws, 1994; Grotheus & Tümmler, 1991), was observed for strains isolated from spatially separated kernels of the same barley cultivar distributed randomly in the field screening experiment in 1995. Grotheus & Tümmler (1991) observed a high relatedness of DNA fragment patterns for P. aeruginosa isolates from individual cystic fibrosis patients and P. syringae strains from the pvs. glycinea and phaseolicola, confirming the definition of a pathovar as an infrasubspecific rank. Furthermore, some isolates were demonstrated to have originated from the same source, because 6 identical strains of P. s. pv. phaseolicola were isolated from the same host plant.

In my studies, Pss strains with identical DNA fingerprints (Fig. 3.4) could have originated from the same source (single evolutionary line, common ancestry), i.e. barley seeds, which emphasizes the assumption of seed transmittance of the pathogen. In addition, the strains displayed
similar virulence patterns, since also toxin production and the HR reaction were identical, possibly reflecting their phenotypic adaptation to certain host cultivars. On the other hand, cultivar-specificity in Pss appeared unlikely, because most strains demonstrated pathogenicity on the susceptible cultivar B 2601, even when they were isolated from cultivars other than B 2601 or from thistles surrounding the barley field (Tab. 3.1;3.2). Most variability among barley-infecting strains of Pss was due to differences in levels of virulence. In fact, barley seeds for 1995 field experiments only came from two nurseries, one in Fort Collins, CO and one in Bozeman, MT, while seeds for 1994 field experiments came from various nurseries within the US, also supporting seed transmission. Similar results have been found by Denny et al. (1988), who speculated that, although Pss strains occupy a variety of habitats in the biosphere throughout the world with many lineages and a wide genetic diversity is expected to exist within this pathovar, genetic divergence is low in a population within a pathovar which is highly adapted to a specialized environment. Legard et al. (1993) obtained genetic data on the phylogeny and heterogeneity of lima bean P. s. pv. syringae strains which appeared very scattered, unlike bean strains, which were more similar, possibly due to seed transmission. The authors speculated that heterogeneous populations may have moved to or from other hosts multiple times and a single origin may not have occurred.

Alternatively, the overall existence of many heterogeneous genomic populations of pv. syringae strains isolated from barley kernels of different cultivars within the same geographical area, might indicate a high rate of mutational and/or recombinational events between bacterial cells in the same environment to occur in otherwise clonal populations. Horizontal gene transfer of genes involved in pathogenicity could have taken place among strains or pathovars, resulting in strains
with wide host ranges (Hendson et al., 1992). The horizontal exchange of *hrp*-gene sequences between pathovars of *P. syringae* has been demonstrated in laboratory experiments and seems likely considering its sequence conservation, structural homology, and functional complementation (Lindgren et al., 1986, 1997; Scholz et al., 1992; Alfano & Collmer, 1996).

However, according to Cohan (1996) bacterial evolution and diversity between populations seem to be determined by adaptive mutations and periodic (natural) selection rather than by genetic exchange, since recombination is rare (10⁶ to 10⁷ per gene segment per genome per generation) in nature for most groups of bacteria, and recombinants are usually less well adapted to either population’s ecological niche, unless recombination occurs in functionally interchangeable alleles.

In my system, the heterogeneity of nutritional profiles and DNA-fingerprints might reflect the frequent divergence of Pss populations into different niches, representing many distinct ecological populations in a barley field composed of several cultivars. Furthermore, a stable coexistence of diverse populations may represent the three-dimensional nature of an ecological niche (resource, habitat, time) and its differential exploitation (Bianchi & Bianchi, 1995). Diverse populations might depend on each other for degradation of complex materials, hence physical or chemical stresses, such as starvation conditions, can increase bacterial diversity. Accordingly, any organism dying out can thus be replaced by a “hidden” organism functionally able to fill in for the lost organism. Although these biodiversity mechanisms seem to be important in ecosystem maintenance and adaptation and survival of microorganisms in continuously changing environments (Bianchi & Bianchi, 1995), plant pathologists need to be aware of these stability processes when thinking about effective and long-lasting disease management practices.
Finally, it should be noted that the comparison of macrorestriction fingerprints is confined to fragment size as its only quantifiable parameter. Fragment patterns per se do not provide conclusive information as to whether mutations in the restriction enzyme recognition sites or genomic insertions, deletions or rearrangements account for differences in restriction fragment size (Grotheus & Tümmler, 1991). The order of homology of DNA fragments has to be elucidated by supplementary experiments, such as cloning and sequencing or hybridization, since transposable elements can cause the above mentioned mutations in bacterial genomes with otherwise identical restriction site maps, leading to changes in fragment sizes and thus an overestimation of divergence (Denny et al., 1988; Legard et al., 1993).

It appears that the differentiation and relatedness among strains of a single heterogeneous pathovar such as P. s. pv. syringae requires more representative strains from a single cultivar and host range studies in addition to genomic profiles using macrorestriction fingerprints, RFLP analyses with selected DNA hybridization probes, repPCR or AFLP studies. The results of additional diversity studies, including mutational and recombinational events within and between marked populations, could finally lead to a better understanding of bacterial evolution, changes in virulence patterns of pathogen and improved disease control strategies for phytopathogenic bacteria.
Literature Cited

CHAPTER 4

BIOLOGICAL CONTROL OF PSEUDOMONAS SYRINGAE PV. SYRINGAE THE CAUSAL AGENT OF BASAL KERNEL BLIGHT OF BARLEY BY PANTOEA AGGLOMERANS

Introduction

Barley kernel blight has been reported to be associated with Bipolaris sorokiniana, Fusarium graminearum, and Alternaria spp. predominantly in the Upper Midwest (Banttari et al., 1975; Johnston, 1997) and with Pseudomonas syringae pathovars in the Northern Great Plains, such as Montana and Idaho (Peters et al., 1983; Martinez-Miller, 1994). The disease varies in severity with cultivars and environmental conditions regardless of the pathogen involved. Kernel blight is most severe during years of higher than average rainfall or barley production under sprinkler (Johnston, 1997; Martinez-Miller & Braun, 1997). We have reported previously about the etiology and significance of basal kernel blight of barley caused by Pseudomonas syringae pv. syringae (Martinez-Miller et al., 1998). In that study, we determined that the critical period of infection is from late milk to soft dough stages of kernel development and that high moisture is necessary during this period of infection and disease development. The disease is important because malting and brewing industries prefer barley free of discoloration. Discolored barley can be discounted or rejected. Kernel discoloration involves weight, yield and quality loss no matter which pathogen is involved
(Anderson & Banttari, 1976; Basson et al., 1990), however, weight reduction is less severe when bacteria are associated with the disease. Breeding programs in the Midwest have lead to agronomically desirable barley lines with resistance to *B. sorokiniana* (Banttari et al., 1975; Gebhardt et al., 1992). Since no bactericides are available on small grains that might provide control of bacterial pathogens, the only mitigating measure to date is the avoidance of irrigation during the most susceptible kernel developmental stage at soft dough and the use of less susceptible cultivars (Martinez-Miller et al., 1998). Over the last three years I have developed an effective biological control system based on the application of the common phyllosphere colonist *Pantoea agglomerans* prior to the *P. s. pv. syringae* infection window (Braun et al., 1996; Braun et al., 1997).

Pantoea agglomerans, syn. *Erwinia herbicola* (Gavini et al., 1989; Holt et al., 1994) has been used as biological control agent (BCA) against several fungal and bacterial diseases. Seed treatment with *E. herbicola* protected wheat from infection by *F. culmorum* (Kempf & Wolf, 1989), *F. nivale* and *Pythium ultimum* (Adetuyi, 1992; Nelson, 1988). Seed bacterization with an *E. herbicola* isolate also inhibited *Rhizoctonia solani* thus providing sheath blight protection (Rosales et al., 1993). Furthermore, a strain of *E. herbicola* isolated from sclerotia of *Verticillium dahliae* was found to inhibit this pathogen *in vitro* (Berg & Ballin, 1994). In the phyllosphere, *E. herbicola* was reported to control *Puccinia recondita* f. sp. *tritici* on wheat (Kempf & Wolf, 1989), *Alternaria solani* on tomato (Sujkowski et al., 1994), and *Sclerotinia sclerotiorum* on dry edible beans (Yuen et al., 1994). Indirect plant growth promoting effects of *P. agglomerans* strains from the winter wheat phyllosphere were noted by Ruppel et al. (1989) and Scholz-Seidel & Ruppel (1992). In addition to
nitrogenase- and phytohormone activity in some strains, the authors detected wheat and barley yield increases of up to 500 kg/ha in field experiments with prebacterized seeds.

Control of bacterial diseases by *E. herbicola* has involved antagonism against ice nucleation active (ice+) bacteria (Lindow et al., 1983 a,b) and several other bacterial pathogens. These include protection of cotton seeds from *Xanthomonas campestris* pv. *malvacearum* (Randhawa et al., 1987), rice seedlings from attack by *X. oryzae* (Hsieh & Buddenhagen, 1974), mungbeans from *X. c. pv. vingnaeradiatae* (Bora et al., 1993) and control of the fire blight pathogen *E. amylovora* on apples (Beer et al., 1984; Vänneste, 1990; Kearns & Hale, 1993; Wright, 1997) pear (Johnson et al., 1993; Stockwell et al., 1994), and hawthorn (Wilson et al., 1990).

The objectives of the present study were to develop an effective and practical biological control system using *Pantoea agglomerans* to suppress *P. s. pv. syringae* causing basal kernel blight of barley. In addition to field and glasshouse experimental results with several *Pantoea agglomerans* strains, I present data on time of application and concentration needed for successful disease prevention. Furthermore, I investigated the establishment of antibiotic resistant biocontrol bacteria in the greenhouse and field and evaluated the effectiveness of several formulations for long-term preservation of these gram-negative biocontrol agents (BCA). Data on possible mechanisms involved in the biocontrol performance have been investigated but will be discussed in more detail in chapter 5.
Materials and Methods

Bacterial cultures and inoculum preparation.

P. agglomerans were isolated from non-symptomatic barley kernels in a field that had endemic basal kernel blight in Fairfield, Montana in 1990, 1993 and 1994. *P. s. pv. syringae* (Pss) were isolated from barley kernels showing symptoms of basal blight in 1993-1995. Isolates were identified according to standard tests (Hildebrand et al., 1988; Klement et al., 1990) and based on the Biolog (Biolog, Inc., Hayward, CA) and MIDI (Microbial ID Inc., Newark, Delaware) identification systems. They were stored at -70°C in nutrient broth containing 15% glycerol. To produce bacterial cells for barley inoculation, bacteria were retrieved from storage, streaked onto King’s B medium (*P. s. pv. syringae*) or Tryptic Soy Agar (TSA, *P. agglomerans*), and incubated at 28°C for 48 or 24 hours, respectively. Cells were suspended in 10 ml PBS buffer (0.85% NaCl, 0.03 M NaOH, 0.05 M KH₂PO₄; pH 7.0) and the density of the suspension adjusted to 10⁶ cfu/ml by measuring the absorbance at 580 nm on a Spectronic 20 (Bausch & Lomb, Rochester, NY) and comparing it with a standardized growth curve developed previously. The suspension was diluted 1:10 in 90 ml sterile tapwater containing 0.025% Tween 20 (polyoxyethylenesorbitan monolaurate) as surfactant to a final concentration of 10⁷ cfu/ml. In the greenhouse *P. s. pv. syringae* was inoculated on barley heads at soft dough stage (EC85), the most critical period of infection (Martinez-Miller et al., 1998). In field experiments natural infection by *P. s. pv. syringae* was enhanced by brief periods of daily overhead sprinkler irrigation for 5 to 10 days during the window of infection (Martinez-Miller et al., 1998).
Application of *P. agglomerans* in field experiments.

In 1994, four *P. agglomerans* strains (Eh 236, 239, 454, and 460) were sprayed at a concentration of 1×10^9 cfu/ml on barley cultivars B 2601 and B 1202 prior to the expected infection window for *P. s. pv. syringae* attack at late milk stage (EC 77) in Fairfield, MT. Natural infection was favored by providing overhead sprinkler irrigation for approximately 4 h in the morning and 4 h in the evening for 5 days during soft dough stage (EC 83) from July 14th to 18th delivering an average of 15 mm of water per 4 h of irrigation (Martinez-Miller et al., 1998). Traces of precipitation (0.6 mm) fell from July 14th to 23rd in addition to the 150 mm provided by irrigation. Fifty milliliter of biocontrol bacterial suspensions were sprayed per 1.5 m row (0.4 liter/3.5 m²) on barley heads on July 10th until run-off using a compressed air sprayer (KGRO all purpose plant sprayer, K-mart Corp., Troy, MI). Assuming an average of 100 plants with 153 spikes per row and about 30 kernels per spike, the application rate was 1.1×10^7 cfu/kernel. A water/Tween 20 (formulation) check, heat-killed Eh 236, 239, 454, 460 and Tilt® (propiconazole; Novartis Crop Protection, Greensboro, NC) applied at 120 ml/A on June 17th were used as controls. At harvest fifteen randomly marked barley heads representing one sample per replication were picked and evaluated for basal kernel blight presence. The experiment was conducted as a two-factorial split plot design with cultivars as main plots (2 levels) and treatments as subplots (10 levels) with 4 blocks. Each treatment was applied to a 1.5 m long row within a plot consisting of 6 rows, 30 cm apart. The two border rows remained uninoculated and a 60 cm alley separated each plot from the adjacent ones. Percentage of basal kernel blight infection was calculated after harvest (August 2nd) according to the following formula:
% kernel blight = (a/b) x 100,
where a = number of blighted kernels per sample; b = total number of kernels per sample.

All treatments were compared to untreated water controls of each cultivar to derive blight reduction data.

In 1995, the same four *P. agglomerans* strains used in 1994 were sprayed at a concentration of 4.0 x 10⁸ cfu/ml on the four barley cultivars, B 2601, B 2912, B 5133, and B 1202 prior to the infection window at early milk stage (EC 73). Two-hundred milliliter of biocontrol bacterial suspensions were sprayed per 1.5 m row (3.0 liter/5 m²) on barley heads on July 13th until run-off. Assuming an average of 100 plants with 153 spikes per row and about 30 kernels per spike, the application rate was 1.7 x 10⁸ cfu/kernel. Control treatments included the water/Tween 20 check, the autoclaved biological control agents (BCA), a 50 mM L-tartaric acid (pH 3.5) treatment, different Pantoaea strains in combination and the Tilt® application on June 20th. Sprinkler irrigation provided 30 mm of precipitation from early milk to hard dough stage (July 15th-28th). Additionally, 16 mm rain fell during the irrigation period. The evaluation of the disease was completed after harvest (August 22nd) in the same way as in 1994. The experiment was conducted as a two-factorial split plot design with cultivars as main plots (4 levels) and treatments as subplots (16 levels) with 4 blocks.

Performance of *P. agglomerans* in glasshouse tests.

Two *P. agglomerans* strains (Eh 454, Eh 239) were sprayed on cvs. B 1202 and B 2601, respectively, at soft dough stage 3 days prior to inoculation with *P. s. pv. syringae*
strain 552. A water/Tween 20 application, the positive pathogen control (Pss 552), and the heat-killed strain Eh 239 were included as controls in each experiment. One pot (19 cm diameter) with 3 barley spikes per replication (n=5) was inoculated, and both biocontrol bacteria and the pathogen Pss 552 were sprayed on heads until run-off (approx. 5 ml per spike) using a hand air brush sprayer (Model Paaschi D500 1/10 H.P.). Plants were incubated in a mist chamber (95% r. h.) for 3 days after BCA application and again for 72 h after pathogen inoculation before being transferred to the greenhouse bench. The greenhouse was maintained at 22/18 ± 2 C (day/night) with a 12 h photoperiod. Basal kernel blight percentages were calculated after harvest by the formula described previously and blight reduction data obtained by comparing treatments with the positive control. Each experiment (cultivar) was conducted as a one-factorial completely randomized design. The same experiment was performed with strains Eh 236 and Eh 460 instead of strains Eh 454 and Eh 239 to see differences between different biocontrol strains applied.

A possible correlation between in vitro antibiosis and in vivo suppression of basal kernel blight was examined in glasshouse assays using P. agglomerans strains tested previously in plate bioassays against P. s. pv. syringae Pss 552 (Table 4.3). Strains Eh 239, Eh 460, Eh 926, Eh 981, Eh 906, and Eh 907 were sprayed on B 2601 heads 3 days prior to Pss 552 at EC 85. BCA and pathogen inoculum preparation, inoculation, incubation and disease evaluation were done as previously described.

To investigate the performance of biocontrol strains against several P. s. pv. syringae strains, another glasshouse experiment was conducted as a 2 x 4 factorial randomized complete block design with 4 replications. The biocontrol strains Eh 460, Eh 237, and Eh
234 were sprayed on B 2601 heads 3 days prior to pathogen Pss 552 or Pss 793, respectively, at soft dough stage. Controls included a water treatment and the Pss 552 and Pss 793 positive checks. Plant incubation and disease evaluation were carried out as described previously.

In vitro biotests.

P. agglomerans strains were tested for antibiotic activity against *P. s. pv. syringae* and other indicator bacteria in plate bioassays. Biocontrol isolates were spotted on Potato dextrose agar plates (PDA, 20 ml per 9 cm plate) with sterile toothpicks, 6 cm apart from each other and 3 cm from the center of the plate. Two spots were made per isolate per plate and plates were duplicated (= 4 replications per strain). Plates were incubated in the dark at 28 C for 5 days and colonies subsequently scraped off the plate with sterile cotton swabs after zones of colony growth had been marked. Plates were than exposed to CHCl₃ vapor for 20 minutes, kept open under the laminar flow hood for 20 min. to remove CHCl₃ vapors and sprayed with a suspension (10⁷ cfu/ml) of each indicator strain using an aerosol sprayer (Sigma Spray Aerosol Propellant, Sigma, St. Louis, MO). Zones of inhibition of indicator strains around marked areas where biocontrol strains had been grown previously were recorded after 24 h incubation at 28 C. For testing antifungal activity, a centered line of biocontrol bacteria was streaked onto a PDA plate. On each side of this streak (3 cm apart), an agar plug (5 mm) containing mycelium of a test fungus (2 plugs/plate) was transferred and plates were incubated for 3 days at 28 C, then at 22 C. Plates containing only the test fungi served as controls and plates were replicated 4 times per biocontrol strain and fungus tested. Fungal growth on plates was compared in the presence and absence of biocontrol
bacteria, and zones of inhibition of test fungi recorded as 0 = no inhibition, + = slight zones of inhibition (weak antifungal activity), and ++ = clear zones of inhibition (strong antifungal activity). Bioassay data were pooled over two experiments.

Time and rate of application of *P. agglomerans*.

In most glasshouse and field experiments the biocontrol agents (BCAs) were applied three days prior to the pathogen or enhanced natural infection, respectively. To determine whether time of BCA application is critical, two glasshouse tests were conducted. In one experiment the chloramphenicol resistant (chlR) *P. agglomerans* strain Eh 460 chlR was applied to barley heads (cv. B 2601) at soft dough stage 3 days prior to the rifampicin resistant (rifR) *P. s. pv. syringae* strain Pss 552 rifR (= 3d, conventional application). A second treatment consisted of the application of strain Eh 460 chlR immediately before inoculation of Pss 552 rifR (= 0d). A third treatment included the control applications of Eh 460 chlR or Pss 552 rifR, respectively, or the water check. Strain Pss 552 rifR was still pathogenic and strain Eh 460 chlR demonstrated biocontrol activity after mutagenesis as determined by plate bioassays (data not shown). Plant inoculation, incubation and disease evaluation after harvest were done as described previously. Reisolations of the pathogen and the biocontrol agent were done in this experiment to evaluate the influence of the introduction of the biocontrol agent on the pathogen population. The results of this experiment are mentioned but discussed in more detail elsewhere (chapter 5; Fig. 5.4).

The question of whether the biocontrol agent could be introduced earlier than soft dough stage was examined in a separate glasshouse experiment by applying strain Eh 239
at EC 49, the last stage of booting before seedhead emergence. The pathogen Pss 552 was inoculated as usual at soft dough stage (EC 85). Other treatments included the conventional Eh 239 application at EC 85 three days prior to the pathogen, the water control, and the Pss 552 positive control. The experiment was conducted as a completely randomized design with 4 treatments and 5 replications. Plant inoculation, incubation in the mist chamber, and disease evaluation was performed in the same way as described above.

To estimate the dose (cfu/ml) of biocontrol agents needed for basal kernel blight disease control, *P. agglomerans* strain Eh 460 was sprayed on cv. B 2601 barley heads at EC 85 at concentrations of 10^3, 10^4, and 10^7 cfu/ml, respectively, three days prior to Pss 552. The water check and the Pss 552 treatment without BCAs served as controls. The experiment was performed as a completely randomized design, with 5 treatments and 6 replications. Plant inoculation, incubation and disease evaluation was done as previously described.

Establishment of the biocontrol agents in the barley phyllosphere.

In a greenhouse experiment, Eh 239 rifR was sprayed at a concentration of 6.3×10^6 cfu/ml on barley heads (cv. Karl) at watery ripe stage (EC 71). Samples were taken for reisolation 1, 5, 10, 15, 21, and 35 days after application. Three heads per pot were taken as individual samples per isolation date and samples replicated 4 times ($n = 12$). The heads were placed in tubes containing 20 ml sterile PBS buffer and vortexed. After 30 minutes with periodical vortexing, appropriate dilutions were spiral plated (Model C spiral plater, Spiral Biotech, Bethesda, MD) on TSA plates containing 100 μg/ml rifampicin. Plates were
incubated at 28 C overnight and colonies counted and expressed as log cfu/head.

In the field, rifR-marked \textit{P. agglomerans} strains Eh 236, 239, 454, and 460 were sprayed at a concentration of 4.0×10^8 cfu/ml on cv. B 2601 and cv. B 5133 on July 13th 1995, when plants were at early milk stage (EC 73) as described previously. Three barley heads were sampled at random from each replicate row, placed in a new Ziploc plastic bag, kept on ice, transported to the laboratory, and stored at 4 C until processing the following morning. Reisolations of the rifR strains were done 1, 7, and 18 days after foliar application. Samples for reisolation were taken at 11:00 a.m. to minimize population size changes. A final isolation was done from kernels 2 months after harvest using 50 randomly picked kernels per replication ($n = 4$). Kernels were shaken in 100 ml PBS buffer at 150 rpm for 2 hours at 4 C and appropriate dilutions (to 10^{-7}) spiral plated on TSA containing 100 μg/ml rifampicin. Presence of rifR-marked biocontrol strains was calculated as log cfu/kernel.

Formulation of \textit{P. agglomerans}.

Formulations (Fig. 4.1) of biocontrol agents were prepared using the oil/starch/sugar encapsulation method developed by Zidack et al. (1995) and Quimby et al. (1996). Briefly, this involved growing the BCA on TSA plates overnight at 28 C. Plates were overlaid with 10 ml 1 M sucrose solution for membrane stabilization and bacteria scraped off the plates into 100 ml sterile beakers using a sterile cotton swab. Five g of the water-absorbent starch Water-lock® (Grain Processing Corporation, Muscatine, IA) and 5 ml unrefined corn oil (Spectrum Naturals Inc., Petaluma, CA) were added to each beaker. These primary components were blended into a dough-like mass in a Sigma mixer. 17.5 g of the silica-
based granulating agent Hi-Sil® (Cabot Corp., Tuscola, IL) was added and blending continued until the dough crumbled, thereby producing a granular product. The wettable powder granules were spread in foil pans and air dried in a laminar flow cabinet for 48 h at room temperature. The dried formulation was then sieved in the size range of 250-710 μm and viable bacterial colony counts recorded over a period of 1.5 years for *P. agglomerans* strains Eh 239 and EhL13 stored at room temperature (22 C) and 4 C, respectively. For lyophilization, strains Eh 239 and Eh 460 were grown in 200 ml 2 % Potato dextrose broth (PDB) for 20 h, centrifuged at 6000 x g for 15 min. and the cell pellet resuspended in 10 ml PBS buffer. 10 % dry milk powder (Carnation pasteurized non-fat dry milk, fortified with Vitamins A&D, but no preservatives, Los Angeles, CA) was added as a food base and the suspension vortexed. Samples were freeze-dried (Labconco Freeze dry system/Lyphlock 4.5, Kansas City, Missouri) for 24-48 h following freezing in liquid nitrogen for 10 min. Strains were kept at 4 C and viable colony counts recorded over time. For dry milk formulation of strain EhL13, the oil/starch/sugar encapsulation method (Zidack et al., 1995) was slightly modified by replacing starch with 10 g dry milk powder. The powder was stored at room temperature over a period of 1.5 years. Viable colony counts were performed by adding 0.1 g of powdered bacteria/formulation to 9.9 ml of PBS buffer. Serial dilutions were prepared from this stock solution to 10⁻⁷ and spiral plated on TSA plates. Bacterial numbers were calculated as log cfu/g powdered formulation and isolations were done 1 day, 2 weeks, 4 weeks, 3 months, 6 months, 1 year, and 1.5 years after formulation.
Fig. 4.1. Photo of *Pantoea agglomerans* strain Eh 239 formulated in the oil/starch/sugar encapsulation method (USDA) developed by Quimby et al., 1996. Bacterial formulations were sieved after air drying in granule sizes of 250-750 μm, 150-249 μm, and <150 μm and stored as wettable powders in plastic containers or gelatin capsules.

The biocontrol activity of formulated *P. agglomerans* strain Eh 239 after long-term storage against Pss 552 was tested in a glasshouse trial, which included the treatments Eh 239 non-formulated (NF), Eh 239 freeze-dried (FD) and stored at 4 C, Eh 239 (USDA) formulated and stored at 4 C or 22 C, respectively. Bacteria were recovered from formulations by diluting 0.1 g in 9.9 ml PBS buffer and streaking suspensions on TSA plates. After overnight incubation at 28 C, bacterial suspensions were prepared as previously described and all treatments sprayed on barley cv. B 2601 three days prior to Pss 552 inoculation at soft dough stage. The experiment was conducted as completely randomized
design with 4 replications per treatment. Plants were incubated and percentage of basal kernel blight assessed after harvest as described above.

Statistical analyses.

All statistical analyses were performed as appropriate to the experimental design using the MSUSTAT program (Lund, 1993). Data were analyzed by analysis of variance (ANOVA), and the sources and amount of variation were compared using an F test. To compare differences between more than two treatment means, least significant differences were calculated at $\alpha = 5\%$ unless stated otherwise. Correlation/regression analyses between two variables were performed and the degree of the relationship determined as coefficient (r) using the statistical analysis package MSTATC (Michigan State University). All calculations involving bacterial population densities were log-transformed prior to analysis and means were presented as log cfu/unit.

Results

Suppression of basal kernel blight by *Pantoea agglomerans* in field experiments.

In 1994, the *P. s. pv. syringae* induced disease levels in Fairfield, MT were below 4% for most cultivars tested due to hot and dry weather conditions (0.6 mm rainfall) and limited levels of overhead sprinkler irrigation (5 days = 150 mm precipitation) during the window of infection from heading to soft dough (Martinez-Miller et al., 1998). Nonetheless, all 4 biocontrol *Pantoea agglomerans* strains significantly reduced the basal kernel blight
percentage by 45-68% on cv. B 2601 when compared to non-treated controls (Table 4.1). On B 1202 the blight reduction ranged between 30-58% depending on the bacterial strain used. The Tilt® treatment and heat-killed biocontrol strains were not significantly different from the non-treated water control. In 1995, a year with average rainfall (16 mm) and extended overhead irrigation (10 days = 300 mm precipitation) during the infection window, significant disease developed with infection percentages of 9.5 % and 8.9% for the six-row cultivars B 2601 and B 2912, respectively, and 7.1% and 5.5% for the two-row cultivars, B 1202 and B 5133, respectively. Disease reduction by the biocontrol bacteria was 36-74% over all cultivars when compared to untreated controls (Table 4.2). On B 2601 the reduction was 49-68%, on B 2912 60-74%, on B 1202 53-68%, and on B 5133 36-61%, depending on the biocontrol strain used. Disease reductions by strain combinations were also significant in most cases (42-64%), but inferior compared to the application of individual strains. Reductions due to Tilt® application ranged between 0-43%, which were only significant on B 2601 (Table 4.2). Tartaric acid treatments ranged between 20-35% disease reduction, but were never significantly different compared to the H₂O controls.
Table 4.1. Percentage of the basal blight disease incidence over all cultivars and percentage of kernel blight reduction on barley cultivars (cv.) B 2601 and B 1202 at Fairfield, MT in 1994. The water/Tween 20 check, biocontrol P. *agglomerans* strains Eh 236, 239, 454, and 460, heat-killed bacteria (D), or Tilt®, respectively, were applied to plant heads at late milk stage prior to the *P. s. pv. syringae* infection window.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease incidence all cultivars (%)</th>
<th>% Basal kernel blight reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cv. B 1202</td>
</tr>
<tr>
<td>H₂O</td>
<td>2.3 a ²)</td>
<td>33</td>
</tr>
<tr>
<td>Eh 236</td>
<td>1.1 c</td>
<td>50</td>
</tr>
<tr>
<td>Eh 239</td>
<td>0.9 c</td>
<td>30</td>
</tr>
<tr>
<td>Eh 454</td>
<td>1.4 bc</td>
<td>58</td>
</tr>
<tr>
<td>Eh 460</td>
<td>0.9 c</td>
<td>0</td>
</tr>
<tr>
<td>Eh 236 D ¹)</td>
<td>2.2 a</td>
<td>0</td>
</tr>
<tr>
<td>Eh 239 D</td>
<td>2.5 a</td>
<td>0</td>
</tr>
<tr>
<td>Eh 454 D</td>
<td>2.7 a</td>
<td>0</td>
</tr>
<tr>
<td>Eh 460 D</td>
<td>2.0 ab</td>
<td>0</td>
</tr>
<tr>
<td>Tilt®</td>
<td>2.3 a</td>
<td>0</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

¹) Heat-killed bacteria; ²) Values are means of 4 replicates and 2 cultivars; and values followed by the same letter are not significantly different at p<0.05; ³) * represents significant reduction values of treatments compared with untreated controls within a cultivar at p<0.05, using single-degree-of-freedom contrasts.
Table 4.2. Percentage of the basal kernel blight disease incidence over all cultivars and percentage blight reduction on barley cultivars B 2601, B 2912, B 1202, and B 5133 at Fairfield, MT in 1995. The water check, *P. agglomerans* strains Eh 236, 239, 454, and 460, heat-killed bacteria (D), biocontrol strain combinations, a 50 mM L-tartaric acid treatment and Tilt® were applied to barley heads at early milk stage prior to the *P. s. pv. syringae* infection window.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease incidence all cultivars (%)</th>
<th>% Basal kernel blight reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B 2601</td>
<td>B 2912</td>
</tr>
<tr>
<td>H2O</td>
<td>7.7 a²</td>
<td></td>
</tr>
<tr>
<td>Eh 236</td>
<td>3.4 ghi</td>
<td>48.9 *³</td>
</tr>
<tr>
<td>Eh 239</td>
<td>2.7 hi</td>
<td>60.3 *</td>
</tr>
<tr>
<td>Eh 454</td>
<td>2.6 i</td>
<td>68.9 *</td>
</tr>
<tr>
<td>Eh 460</td>
<td>3.5 ghi</td>
<td>60.3 *</td>
</tr>
<tr>
<td>Eh 236 D¹</td>
<td>6.5 abcd</td>
<td>23.9</td>
</tr>
<tr>
<td>Eh 239 D</td>
<td>7.2 ab</td>
<td>0.0</td>
</tr>
<tr>
<td>Eh 454 D</td>
<td>5.9 bcd</td>
<td>0.0</td>
</tr>
<tr>
<td>Eh 460 D</td>
<td>6.6 abc</td>
<td>0.0</td>
</tr>
<tr>
<td>Eh 239+454</td>
<td>5.2 cdef</td>
<td>48.4 *</td>
</tr>
<tr>
<td>Eh 460+236</td>
<td>5.1 def</td>
<td>44.2 *</td>
</tr>
<tr>
<td>Eh 239+460</td>
<td>4.1 fgh</td>
<td>42.1 *</td>
</tr>
<tr>
<td>Eh 236+239</td>
<td>4.2 fg</td>
<td>42.1 *</td>
</tr>
<tr>
<td>all Eh</td>
<td>4.4 efg</td>
<td>45.5 *</td>
</tr>
<tr>
<td>Tartaric Acid</td>
<td>6.5 abcd</td>
<td>26.0</td>
</tr>
<tr>
<td>Tilt®</td>
<td>5.7 cde</td>
<td>40.3 *</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

¹ Heat-killed bacteria; ² Values are means of 4 replicates and 4 cultivars; data were log transformed prior to analysis and values followed by the same letter are not significantly different at p≤0.05; ³ * represents significant reduction values of treatments compared with untreated controls within a cultivar at p≤0.05, using single-degree-of-freedom contrasts.
Performance of *Pantoea agglomerans* in glasshouse tests.

Eh 239 and Eh 454 applied on B 1202 3 days prior to the *P. s. pv. syringae* challenge inoculation eliminated basal kernel blight infection completely (100%) compared to the positive control (Pss 552), which displayed 11% basal kernel blight disease. Heat-killed bacteria also reduced basal kernel blight infection levels significantly by 52% (Fig. 4.2). On cultivar B 2601 the infection level was higher (34.1%) and so was the disease reduction. Strain Eh 454 significantly reduced the infection by 48.4% and Eh 239 by 63.6%. Heat-killed strains allowed a disease incidence of 26.9% which was statistically not different from the positive control.

![Fig. 4.2.](image)

Effect of application of biocontrol strains *P. agglomerans* Eh 239, Eh 454, the heat-killed Eh 239D, and the water/Tween 20 check on the percentage of basal kernel blight caused by *P. s. pv. syringae* Pss 552 on barley cultivars B 2601 and B 1202. Treatments were applied to barley spikes three days prior to pathogen inoculation at soft dough stage. Means with the same letter are not significantly different, according to LSD test (p≤0.05; n=5); Zero values were not included in statistical analysis. **Indicates statistical differences at p≤0.05 when compared to the positive Pss 552 control according to Student's T-test.
Eh 236 and Eh 460 sprayed on B 1202 three days prior to Pss552 inoculation reduced the kernel blight disease 98% and 100%, respectively as compared to the Pss552 treatment without the BCA. On B 2601 Eh 236 reduced the blight percentage 81%, while Eh 460 reduced it 72% (Fig. 4.3).

![Figure 4.3](image_url)

Fig. 4.3. Effect of application of the biocontrol *P. agglomerans* strains Eh 460 and Eh 236 on the percentage of basal kernel blight caused by *P. s. pv. syringae* Pss 552 on barley cultivars B 2601 and B 1202. Biocontrol strains and the water/Tween 20 check were applied to barley spikes three days prior to pathogen inoculation at soft dough stage. Means with the same letter are not significantly different, according to LSD test (p≤0.05; n=5); Zero values were not included in statistical analysis. **Indicates statistical differences at p≤0.05 when compared to the positive Pss 552 control according to Student's T-test.

To investigate the question if the performance of *P. agglomerans* is consistent over a variety of *P. s. pv. syringae* strains, several biocontrol agents were applied to cultivar B 2601 at soft dough stage prior to inoculation of either Pss 552 or Pss 793. The biocontrol strains Eh 460, Eh 234, and Eh 237 all significantly reduced basal kernel blight infection...
levels, no matter which pathogenic strain inoculated (Fig. 4.4). Although the kernel infection levels were higher for Pss 793 (48%) than for Pss 552 (37%), disease reductions ranged between 96-100% in the Pss 793 system, while they ranged between 72-91% in the Pss 552 system, depending on the biocontrol strain tested (Fig. 4.4).

![Bar Chart](image)

Fig. 4.4. Effect of application of *P. agglomerans* strains Eh 460, 237, and 234 on the percentage of basal kernel blight caused by *P. s. pv. syringae* Pss 552 and Pss 793, respectively, on cultivar B 2601. Biocontrol agents were applied to barley spikes three days prior to pathogen inoculation at soft dough stage. Means with the same letter are not significantly different, according to LSD test (*p* < 0.05; *n*=4); Zero values were not included in statistical analysis.

In vitro antibiotic.

P. agglomerans strains Eh 236, Eh 235, Eh 240, and Eh 239 were the most active antibiotic producers against *P. s. pv. syringae* Pss 552 *in vitro* (Table 4.3). Strains Eh 234, 237, 238, 906, 907 were intermediate in antibiotic production, strains Eh 454 and Eh 460 low, and strains Eh 926 and 981 were naturally deficient in any detectable antibiotic
production based on the PDA bioassay.

Table 4.3. *In vitro* antibiosis of several *Pantoea agglomerans* strains against *P. s. pv. syringae* strain Pss 552.

<table>
<thead>
<tr>
<th>Pantoea agglomerans strain</th>
<th>Zone of inhibition against strain Pss 552 (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eh 234</td>
<td>11.0*</td>
</tr>
<tr>
<td>Eh 235</td>
<td>21.5</td>
</tr>
<tr>
<td>Eh 236</td>
<td>23.5</td>
</tr>
<tr>
<td>Eh 237</td>
<td>9.8</td>
</tr>
<tr>
<td>Eh 238</td>
<td>12.0</td>
</tr>
<tr>
<td>Eh 239</td>
<td>12.2</td>
</tr>
<tr>
<td>Eh 240</td>
<td>16.8</td>
</tr>
<tr>
<td>Eh 454</td>
<td>4.8</td>
</tr>
<tr>
<td>Eh 460</td>
<td>4.8</td>
</tr>
<tr>
<td>Eh 906</td>
<td>8.5</td>
</tr>
<tr>
<td>Eh 907</td>
<td>8.5</td>
</tr>
<tr>
<td>Eh 926</td>
<td>0.0</td>
</tr>
<tr>
<td>Eh 981</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Values are means of 2 experiments with 4 replications per strain

Strains Eh 236, 239, 454, and 460 were selected for further *in vitro* and *in vivo* analyses. All of the *P. agglomerans* strains demonstrated an inhibitory activity against most of the other bacteria screened, while little activity was observed against fungal pathogens such as *Bipolaris sorokiniana*, *Fusarium graminearum*, or *F. culmorum* (Table 4.4).
Table 4.4. *In vitro* antibiosis of *Pantoea agglomerans* strains Eh 236, 239, 454, and 460 against several bacterial and fungal test organisms.

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Zones of inhibition (mm) surrounding chloroform-killed colonies of P. agglomerans in lawns of different test organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eh 236</td>
</tr>
<tr>
<td>P. s. syringae 552</td>
<td>15<sup>1)</sup></td>
</tr>
<tr>
<td>P. syringae 418</td>
<td>20</td>
</tr>
<tr>
<td>P. s. atrofaciens 570</td>
<td>20</td>
</tr>
<tr>
<td>P. s. glycinea 760</td>
<td>20</td>
</tr>
<tr>
<td>P. s. phaseolicola</td>
<td>12</td>
</tr>
<tr>
<td>P. putida</td>
<td>20</td>
</tr>
<tr>
<td>X. c. pv. translucens</td>
<td>10</td>
</tr>
<tr>
<td>X. c. pv. pelargonii</td>
<td>0</td>
</tr>
<tr>
<td>Erwinia amylovora 759</td>
<td>20</td>
</tr>
<tr>
<td>Erwinia stewartii</td>
<td>20</td>
</tr>
<tr>
<td>Bacillus subtilis BacB</td>
<td>18</td>
</tr>
<tr>
<td>E. coli 808</td>
<td>13</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
</tr>
<tr>
<td>Geotrichum candidum</td>
<td>0<sup>2)</sup></td>
</tr>
<tr>
<td>Bipolaris sorokiniana-96</td>
<td>++</td>
</tr>
<tr>
<td>Bipolaris sorokiniana-65</td>
<td>+</td>
</tr>
<tr>
<td>F. graminearum-69</td>
<td>0</td>
</tr>
<tr>
<td>F. culmorum-76</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ Values are means of 2 experiments with 4 replications per strain, max. inhibition zone = 20 mm. ² 0= no zones of inhibition; +, ++ = slight, clear zones of inhibition
To address the question whether antibiotic production is important in the suppression of basal kernel blight of barley, several \textit{P. agglomerans} strains that tested positive or negative, respectively, for antibiosis against Pss 552 \textit{in vitro} were employed in a glasshouse experiment (Fig. 4.5). The results revealed that strains Eh 981 and Eh 926, which did not show any antibiotic activity \textit{in vitro} (Table 4.3), also did not display any activity against Pss 552 \textit{in vivo}. Strains Eh 907 and Eh 239 which ranked best in the \textit{in vitro} test, also demonstrated the best suppression of kernel infection levels \textit{in vivo}. Although not significant, they reduced the disease by 56% and 76%, respectively. However, strain Eh 460 which only resulted in low \textit{in vitro} antibiosis (5 mm), was one of the most efficient strains in greenhouse and field experiments (Fig. 4.3, 4.4, 4.5). In this experiment it displayed about 75% disease reduction. Moreover, strain Eh 906, which displayed an intermediate antibiotic reaction \textit{in vitro} (8.5 mm) was not very efficient \textit{in vivo}, i.e. it did not reduce the kernel infection level significantly as compared to the Pss 552 control. It appears that for some strains such as Eh 239 antibiosis might be an important mechanism in the interaction with the kernel blight pathogen, while for other strains such as Eh 460 antibiosis, at least as I detected it, was of minor importance.

Regression analysis between inhibition zone (mm) \textit{in vitro} (X) and disease reduction (\%) \textit{in vivo} (Y) revealed a correlation coefficient of \(r = 0.43 \), which was significant at \(p = 0.066 \) (\(n = 19 \)), demonstrating a weak influence of antibiotic production on disease reduction over all biocontrol agents screened.
Fig. 4.5. Effect of application of *P. agglomerans* strains Eh 239, 460, 926, 981, 906, and 907, exhibiting different degrees of *in vitro* antibiosis (in mm) against Pss 552, on the percentage of basal kernel blight caused by *P. s. pv. syringae* Pss 552 on cultivar B 2601. Biocontrol strains were applied to barley spikes three days prior to pathogen inoculation at soft dough stage. Means with the same letter are not significantly different, according to LSD test (p<0.05; n=5).

Time and rate of application of *P. agglomerans* as biocontrol agents.

An important factor in the development of an effective biocontrol system is to determine the time and dose of BCA application needed for control. In several greenhouse experiments I determined that time of application is, indeed, an aspect to consider when using *P. agglomerans* to protect barley heads from *P. s. pv. syringae* attack. For instance, when Eh 460chl⁰ was applied 3 days prior to Pss 552rif⁰ inoculation, infection levels were reduced significantly by 75%, while no significant disease reduction was noticed when Eh 460chl⁰ and Pss 552rif⁰ were coinoculated (Fig. 4.6). Data on the population dynamics in
this experiment are summarized in chapter 5 (Fig. 5.4). However, for a commercial barley grower, application of BCAs three days prior to pathogen attack at soft dough stage is still not feasible since it might be too late in the growing season. Therefore, I investigated whether an earlier BCA application, for instance at the time recommended for the last fungicide application (EC 49), could also lead to a successful biocontrol of basal kernel blight. Indeed, when Eh 239 was applied to barley heads three days prior to Pss 552 inoculation, the infection levels were significantly decreased by 87% (Fig. 4.7). When it was applied at EC 49, it decreased infection significantly by 82%, but was not different from the application three days prior to Pss 552.

![Graph showing the effect of time of P. agglomerans strain Eh 460 chlR application on the percentage of basal kernel blight caused by P. s. pv. syringae Pss 552 rifR on cultivar B 2601. Eh 460 chlR was applied three days prior to (3d) or coinoculated (0d) with Pss 552 rifR at soft dough stage. Means with the same letter are not significantly different, according to LSD test (p≤0.05; n=5); Zero values were not included in statistical analysis.]

Fig. 4.6.
Fig. 4.7. Effect of *P. agglomerans* strain Eh 239, applied three days prior (3d) to pathogen inoculation at soft dough stage or at booting stage (EC 49), on the percentage of basal kernel blight caused by *P. s. pv. syringae* Pss 552 on cultivar B 2601. Means with the same letter are not significantly different, according to Newman-Keuls test (p≤0.01; n=4); Zero values were not included in statistical analysis.

The concentration of BCA Eh 460 needed to successfully suppress the occurrence of basal kernel blight was estimated at rates of 10^3, 10^5, and 10^7 cfu/ml. When barley heads were inoculated with the pathogen Pss 552 without prior protection by *P. agglomerans*, it resulted in 26 % kernel infection levels, while it was only 7.1% when Eh 460 was applied three days prior to the pathogen at a low rate of 10^3 cfu/ml (Table 4.5). Application of Eh 460 at a rate of 10^5 cfu/ml also demonstrated significantly reduced blight levels (7.5%). However, when Eh 460 was applied in a concentration of 10^7 cfu/ml, only 3% kernel infection levels were recorded (Table 4.5). While all rates significantly reduced the disease...
by 73-89% compared to the unprotected control, there was no significant difference between the application rates. Linear regression analysis between increasing rates of biocontrol agents (cfu/ml) and the level of kernel infection (% blight) revealed a regression coefficient of \(r = -0.29 \) at \(p = 0.236 \) (\(n = 18 \)), which was not significant, probably due to high variation of data within a treatment.

Table 4.5. Effect of increasing rates \((10^3, 10^5, 10^7 \text{ cfu/ml}) \) of \(P. \text{agglomerans} \) strain Eh 460 application on the percentage of basal kernel blight caused by \(P. \text{s. pv. syringae} \) Pss 552 on cultivar B 2601. Eh 460 was applied to barley spikes three days prior to pathogen inoculation at soft dough stage.

<table>
<thead>
<tr>
<th>Treatment/Concentration</th>
<th>% Basal kernel blight</th>
<th>% Disease reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O</td>
<td>0 (^1)</td>
<td></td>
</tr>
<tr>
<td>Pss 552</td>
<td>26.3 a</td>
<td></td>
</tr>
<tr>
<td>Eh 460 ((10^3 \text{ cfu/ml}))</td>
<td>7.1 b</td>
<td>73.0</td>
</tr>
<tr>
<td>Eh 460 ((10^5 \text{ cfu/ml}))</td>
<td>7.5 b</td>
<td>71.5</td>
</tr>
<tr>
<td>Eh 460 ((10^7 \text{ cfu/ml}))</td>
<td>3.0 b</td>
<td>89.0</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>8.9</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Values are means of 6 replicates per treatment and data followed by the same letter are not statistically different at \(p \leq 0.05 \).

Establishment of biocontrol agents in the barley phyllosphere.

BCAs which do not require multiple field applications, need to establish stable and persistent antagonistic populations in the pathogen infection zone. Table 4.6 shows data on the introduction of Eh 239 rif\(^{\Delta} \) in the barley (cv. Karl) phyllosphere in a glasshouse experiment. A persistent population at about \(4 \times 10^6 \) cfu/head was revealed over a period of 5 weeks after an initial application of \(6.8 \times 10^6 \) cfu/ml. The 5 week period included all barley
head stages, watery ripe to harvest, of which early milk and soft dough are critical infection periods for a *P. s. pv. syringae* attack (Martinez-Miller, 1994; Martinez-Miller et al., 1998).

Table 4.6. Establishment of Eh 239 rif^R in the barley phyllosphere over a period of 5 weeks in the greenhouse, when applied at 6.8 x 10⁶ cfu/ml on cv. Karl at watery ripe stage (EC 71).

<table>
<thead>
<tr>
<th>Days post inoculation</th>
<th>1 dpi</th>
<th>5 dpi</th>
<th>10 dpi</th>
<th>15 dpi</th>
<th>21 dpi</th>
<th>35 dpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>log cfu/head</td>
<td>6.67<sup>1)</sup></td>
<td>6.57</td>
<td>6.56</td>
<td>7.49</td>
<td>6.49</td>
<td>6.08</td>
</tr>
</tbody>
</table>

¹⁾ Data are means of three heads per sample, with 4 replicates each.

In 1995, I followed the presence of rif^R *P. agglomerans* strains in the field. Levels of the BCAs on cultivar B 2601 remained between 2 x 10⁶ to 3.2 x 10⁷ cfu/kernel for Eh 239, 460 and 454. Eh 236 could be reisolated at levels of 1.6 x 10⁵ to 6.3 x 10⁶ cfu/kernel from early milk to hard dough stage. Levels of marked strains per kernel dropped to 2.5 x 10⁵ to 7.9 x 10⁵ cfu/kernel two months after harvest (Table 4.7). Similar results were obtained when the experiment was repeated with cv. B 5133 (data not shown).
Table 4.7. Establishment of rifampicin resistant (rif^R) *P. agglomerans* strains Eh 236, 239, 454, and 460 on cultivar B 2601 at Fairfield, MT in 1995. Reisolations were done 1 day (early milk, EM), 7 days (soft dough, SD), 18 days (hard dough, HD), and 104 days (2 months after harvest, 2 mo) after foliar application.

<table>
<thead>
<tr>
<th></th>
<th>1 day (EM)</th>
<th>7 days (SD)</th>
<th>18 days (HD)</th>
<th>104 days (2 mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log cfu/kernel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eh 236 rif<sup>R</sup></td>
<td>5.2<sup>1)</sup></td>
<td>5.3</td>
<td>6.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Eh 239 rif<sup>R</sup></td>
<td>6.6</td>
<td>6.6</td>
<td>7.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Eh 454 rif<sup>R</sup></td>
<td>6.6</td>
<td>6.5</td>
<td>7.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Eh 460 rif<sup>R</sup></td>
<td>6.3</td>
<td>6.4</td>
<td>7.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

¹⁾ Data are means of 4 replicate samples with 3 plates each.

Formulation of *P. agglomerans*.

The development of biological control agents into commercial products is dependent on stable, efficacious and economical formulations (Zidack et al., 1995). I therefore studied survival of *P. agglomerans* strains Eh 239, Eh L13, and Eh 460 after formulation in oil/starch/sugar encapsulation (USDA; Quimby et al., 1996), lyophilization in dry milk, and oil/dry milk/sugar encapsulation for up to 1.5 years (Table 4.8). The biocontrol activity of formulated strain Eh 239 after 1.5 years of storage against the *P. s. pv. syringae* Pss 552 induced basal kernel blight disease on cv. B 2601 was tested in a glasshouse experiment (Fig. 4.8).
Table 4.8. Long-term survival of *Pantoea agglomerans* strains Eh 239, Eh L13, and Eh 460 after several weeks, months and years of storage in the oil/starch/sugar formulation (USDA), lyophilized in dry milk powder (FD), and oil/starch/dry milk formulation (DM) at 4 C or 22 C, respectively.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Strain/ storage temperature</th>
<th>1dpf</th>
<th>2wks</th>
<th>4wks</th>
<th>3mo</th>
<th>6mo</th>
<th>12mo</th>
<th>18mo</th>
<th>% Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Eh 239 at 22 C</td>
<td>10.5</td>
<td>10.0</td>
<td>9.3</td>
<td>9.0</td>
<td>8.9</td>
<td>7.7</td>
<td>7.8</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>USDA Eh 239 at 4 C</td>
<td>10.5</td>
<td>9.4</td>
<td>9.7</td>
<td>9.5</td>
<td>9.9</td>
<td>8.6</td>
<td>9.5</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>USDA Eh L13 at 22 C</td>
<td>10.1</td>
<td>10.0</td>
<td>9.7</td>
<td>9.0</td>
<td>9.0</td>
<td>7.8</td>
<td>8.3</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>USDA Eh L13 at 4 C</td>
<td>10.1</td>
<td>9.8</td>
<td>9.6</td>
<td>9.3</td>
<td>9.5</td>
<td>8.8</td>
<td>9.8</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>FD Eh 239 at 4 C</td>
<td>9.8</td>
<td>8.4</td>
<td>8.2</td>
<td>8.4</td>
<td>8.4</td>
<td>7.9</td>
<td>7.4</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>FD Eh 460 at 4 C</td>
<td>9.8</td>
<td>8.9</td>
<td>8.8</td>
<td>9.3</td>
<td>9.1</td>
<td>8.4</td>
<td>8.6</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>DM Eh L13 at 22 C</td>
<td>10.4</td>
<td>10.0</td>
<td>9.6</td>
<td>9.5</td>
<td>9.0</td>
<td>8.5</td>
<td>8.4</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

1) dpf = days past formulation, wks = weeks, mo = months 2) Values are means of 3 replications, with 3 plates each (n = 9).

Over all formulations and biocontrol agents tested, there was a maximal loss of only about 1.6 log cfu/g over a period of 1.5 years (Table 4.8). The oil/starch/sugar (USDA) formulation of strain Eh 239 lost 2.7 log cfu/g when stored at 22 C, while at 4 C it ranked best and lost only 1 log cfu/g, which corresponded to a survival rate of 74% and 91%, respectively.
This formulation was more favorable for strain Eh L13 which lost only log 1.8 cfu/g at 22 C and log 0.3 cfu/g when stored at 4 C (survival rate of 82% and 98%, respectively). Lyophilization (FD) of strain Eh 239 resulted in a loss of log 2.4 cfu/g and was therefore only slightly better for bacterial survival (76%) than the USDA formulation stored at 22 C (74%), but was worse compared to the USDA formulation stored at 4 C (91%). The oil/dry milk/sugar formulation (DM) for strain Eh L13 (22 C) lost log 2.0 cfu/g and was comparable in its bacterial survival rate (81%) to the USDA formulation stored at 22 C, which lost 1.8 cfu/g (82%) (Table 4.8).

I determined no statistical significant differences between the biocontrol treatments in the greenhouse test (Fig. 4.8), indicating no apparent loss of biocontrol activity due to formulation and storage for 1.5 years. Compared to the unprotected control (Pss 552), which displayed 47.1 % basal kernel blight, Eh 239 not formulated (NF) reduced the disease by 68.6 %, Eh 239 (FD 4 C) by 82.2 %, Eh 239 (USDA 22 C) by 68.2 %, and Eh 239 (USDA 4 C) by 79.8 %.
Biocontrol activity of *P. agglomerans* strain Eh 239 (NF) after formulation in oil/starch/sugar (USDA) and storage at 22 C and 4 C, respectively, or lyophilized in dry milk (FD) and stored at 4 C against the *P. s. pv. syringae* Pss 552 induced basal kernel blight disease on barley cv. B 2601. Means with the same letter are not significantly different, according to Newman-Keuls test (p≤0.01; n=4).
Field experiments in 1994 and 1995 demonstrated 45-70% reduction in basal kernel blight infected seeds of plants which were sprayed with *Pantoea agglomerans* prior to the *P. s. pv. syringae* infection window. Glasshouse experiments resulted in 80-100% disease reduction depending on the barley cultivar used and biocontrol strain screened. Reduction due to Tilt® application could either be related to decreasing kernel blight inducing fungi or a negative effect of Tilt® on *P. s. pv. syringae*. A negative effect of Tilt® on *P. s. pv. syringae* was revealed in a batch culture bioassay, when Tilt® levels in PDB were above 100 mg/kg, which is usually exceeded in field applications (data not shown). Similar biocontrol levels have been described in other systems using *P. agglomerans* as BCAs. Lindow et al. (1983 b), obtained 50% less frost damage on field-grown corn plants treated with isolate M232ASR11 compared to untreated controls. They even achieved a 88-100% reduction of frost damage in growth chamber assays in the presence of an INA-minus *E. herbicola* isolate on plants, challenged by either INA-plus *E. herbicola* or *P. syringae*, 48 h before exposure to freezing temperatures (Lindow et al., 1983 a). Protection from fire blight was demonstrated in research orchards by spraying apple blossoms with *E. herbicola* one day prior to *E. amylovora*, which was nearly equivalent (42-51%) to the protection obtained by spraying streptomycin (61%), the most commonly used chemical control (Beer et al., 1984 a). Isenbeck & Schulz (1985) saw 20-40% fire blight disease reduction using *E. herbicola* under field conditions following natural infection with *E. amylovora*. More recently, Wilson et al. (1990) observed the reduction of fire blight of hawthorn with *E. herbicola* isolates
under controlled environmental conditions. One isolate provided over 80% control of blossom blight and 100% control of shoot blight when applied at a BCA to pathogen ratio of 10:1. Furthermore, field trials conducted with *E. herbicola* isolates in 1991 and 1992 in Oregon and 1992 in Washington revealed 87.5% fire blight disease reduction in pear blossoms in Oregon 1991 compared to water controls. In 1992 the disease was reduced by 50% in Oregon and by 56% in Washington (Johnson et al., 1993).

The antibacterial spectra of antibiotics produced by the tested *P. agglomerans* strains were not limited to *Erwinia* related test species, suggesting a multiplicity of antibiotics involved in these interactions. These appear more closely related to broad spectrum herbicolin antibiotics than to bacteriocins, since the latter by definition are active primarily against organisms closely related to the producer (Vidaver, 1983; Ishimaru et al., 1988; Wilson et al., 1992; Wodzinski & Paulin, 1994). A more detailed investigation of possible antibiotics produced by *P. agglomerans* has been described in chapter 5. In addition to *E. coli* and *E. stewartii* inhibition, compounds produced by *P. agglomerans* were also effective against several *P. syringae* and *X. campestris* pathovars, as well as against one *Bacillus subtilis* strain (Tab. 4.4). While strains tested positive for inhibition against a variety of bacterial organisms, antibiotics did not exert any activity on tested fungi with the exception of strains Eh 236, Eh 239, and Eh 454, which slightly inhibited the growth of one isolate of *Bipolaris sorokiniana*. Antibacterial spectra of antibiotics were mainly limited to *E. amylovora* and related species in studies by El-Goorani et al. (1992). The authors demonstrated only minor activity against fungal pathogens. Völksch et al. (1993) reported
that *E. herbicola* isolates showed clear antagonistic properties against a wide variety of bacteria, but did not affect the growth of *G. candidum*. Moreover, antibiotic(s) produced by a non-pigmented *E. herbicola* strain HL9N13 on PDA gave bactericidal inhibition zones when over sprayed with *E. amylovora*, *P. syringae*, *E. coli*, *S. marcescens*, *P. vulgaris*, *B. subtilis*, *B. cereus*, and *S. aureus* (Wilson et al., 1992).

My data also indicated a weak positive correlation (*r* = 0.43; *p* = 0.066) between *in vitro* antibiosis and *in vivo* disease control. It appeared that for some *P. agglomerans* strains, such as Eh 907 and Eh 239 antibiosis might be an important mechanism in the interaction with the kernel blight pathogen, while for strain Eh 460 antibiosis seemed of minor importance. Many investigations in the fire blight system have focused on the production of antibiotics and research is still ongoing concerning their genetics. Other mechanisms of disease suppression by *E. herbicola* are also being investigated. It was reported, for instance, that no correlation existed between *in vitro* bacteriocin production and the suppression of fire blight (Beer et al., 1984 a; Lindow, 1988). However, a correlation was found between antibiotic production on glucose-asparagine medium and control of fire blight in the orchard (Wodzinski et al., 1987; Wodzinski et al., 1994). *E. herbicola* produced an array of different antibiotics with antibacterial activity *in vitro* (Ishimaru et al., 1988; El-Goorani et al., 1992; Wodzinski et al., 1994 b), in addition to organic acids (Beer et al. 1984 b). However, the occurrence of nonantibiotic-producing *E. herbicola* strains that effectively suppressed disease (Lindow, 1985; Wilson et al., 1990) and Tn5-derived antibiotic-deficient mutants of *E. herbicola* (Beer et al., 1984 a; Lindow, 1985; Vanneste et al., 1992; Wright, 1997; Wright & Beer, 1998), and the studies on competition between the pathogen and biological
control agent *in planta* (Hattingh et al., 1986; Wilson et al., 1992; Wilson & Lindow, 1994 a,b) all suggest that, in addition to antibiosis, other mechanisms are apparently involved in disease suppression *in planta*. Thus, *in vitro* screening for inhibitory bacteria selects for antibiotic producers and may fail to detect bacteria that inhibit *P. s. pv. syringae* by other means. Furthermore, it is becoming apparent that no single biocontrol mechanism is responsible for the biocontrol features observed *in vitro* and *in planta*, thus the predominant operating mechanism may differ between strains of *P. agglomerans* (Wodzinski et al., 1994; Wright, 1997).

Glasshouse and field reisolation data demonstrated that rifampicin-resistant *P. agglomerans* strains were stably established in the barley phyllosphere after their initial introduction. They could be reisolated in high numbers over a period of time known to be critical for *P.s. pv. syringae* attack, suggesting one-time foliar spray application may be sufficient for controlling basal kernel blight. Many bacterial antagonists effectively colonize emerging and mature plant tissues for relatively long periods of time (1-3 months) following single foliar applications (Lindow, 1985). However, time of BCA application was critical with respect to disease control. In the greenhouse, the rifampicin-resistant pathogen population was reduced from about 2×10^6 cfu/kernel to 2×10^4 cfu/kernel after the introduction of the chloramphenicol-resistant Eh 460chlR population 3 days prior to the Pss 552rifR challenge-inoculation, while no reduction was observed when Eh 460chlR and Pss 552rifR were coinoculated (Fig. 5.4, chapter 5). Disease control data (this study) correlated well with population dynamics (Fig. 5.4, chapter 5). Kernel blight infection was significantly reduced when plants were treated with the biocontrol agent Eh 460chlR before challenge.
inoculation with the pathogen, while no disease control was observed when *P. agglomerans* and the pathogen were coinoculated. *P. agglomerans* could even be applied as early as EC 49 (before heading) and time for the last fungicide application against foliar pathogens. This offers the possibility of combining fungicides with biocontrol agents in commercial barley fields in an integrated biological and chemical control program. Similar population dynamics with respect to frost damage prevention have been found by Lindow et al. (1983 b). An *E. herbicola* isolate lacking ice nucleation activity (INA) decreased both the population of epiphytic INA bacteria 10- to 100-fold and frost damage in growth chamber and field experiments 30-95% compared to untreated plants. More recently, Johnson et al. (1993) reported on a direct relationship between lower *E. amylovora* populations on pear blossoms treated with bacterial antagonists and fire blight reduction. Lindow et al. (1983 a) also demonstrated that the percentage of leaves damaged by frost decreased significantly when the INA-minus *E. herbicola* antagonists were applied any time before, and up to 12 h after, application of the INA-plus pathogen. This was different from my studies where the antagonists had to be present prior to the pathogen and a coinoculation of antagonists and pathogen did not lead to successful disease prevention. Although not statistically different, increasing rates of Eh 460 (10³ to 10⁷ cfu/ml) applied three days prior to challenge-inoculation with the pathogen Pss 552, significantly decreased the percentage of infected barley kernels. Similarly, frost damage on corn decreased with increased densities of an INA-minus *E. herbicola* isolate M232A (10⁵ to 10⁹ cfu/ml) applied 24 h before challenging with an INA-plus isolate of *E. herbicola* (Lindow et al.,1983 a). Furthermore, plants sprayed with 10⁸ cfu/ml M232A 24 h prior to application of INA-plus isolates of *E. herbicola* or *P.
syringae sustained less damage than did plants without M232A populations, regardless of the cell densities of INA-plus bacteria inoculated (Lindow et al., 1983a). In addition, the reduced potential of *E. herbicola* to protect individual bean blossoms from infection by *Sclerotinia sclerotiorum*, suggested that low temperatures within the canopy may have limited the ability of *E. herbicola* strains to multiply to levels needed for the disease control, while blossoms were in the mature, fully expanded stage critical for *Sclerotinia* infection (Yuen et al., 1994).

A central issue in biocontrol is the large-scale, cost-efficient production and delivery of BCAs to the plant. Advances here are likely to be the single most important contribution to biocontrol in the coming decade (Andrew, 1992). Dry preparations seem to be best for commercial formulations of antagonists. Therefore, screening potential antagonists for survival and activity as early as possible seems warranted (Leben, 1985). Since there has been little progress with formulations in phylloplane microbiology, I addressed the question of long-term viability of *P. agglomerans* in storage (at least 6 month, preferably 1-2 years) and performance of stored antagonists once applied. The USDA wettable powder formulation (Zidack et al., 1995; Quimby et al., 1996) preserved the viability and biocontrol activity of the tested Gram-negative *P. agglomerans* strains efficiently over a period of 1.5 years. While there was only little strain variability, survival of formulated bacteria at 4 C was significantly better (94%) than storage at 22 C (78%). An effect of temperature on survival of *P. s. pv. tabaci* in a sucrose/oil granular formulation has been reported by Quimby et al. (1996) and was about 63% stored at 22 C for 365 days and 94% at 2 C.
Replacement of starch by dry skim milk in the oil/starch/sugar encapsulation method (USDA) of strain Eh L 13 stored at 22 C did not reveal any differences between the two formulations as to viability, suggesting that dry milk encapsulates the active bacterial ingredients as efficiently as starch, promotes bacterial biofilm formation and adherence of the encapsulated agent to treated foliage (Quimby et al., 1996). The biological control activity of \textit{P. agglomerans} strain Eh 239 after 1.5 years of storage in the USDA formulation at 22 C, at 4 C, or lyophilized in dry milk and stored at 4 C was neither negatively influenced by formulation nor by storage temperature.

In conclusion, \textit{Pantoea agglomerans} isolates indigenous to healthy barley kernels were selected for their ability to colonize barley heads, reduce kernel blight, and produce antibiotics against \textit{P. s. pv. syringae}. My data have indicated that the above described organisms when applied prior to the \textit{P. s. pv. syringae} infection window reduced the epiphytic population size of \textit{P. s. pv. syringae} (Braun et al., 1996; chapter 5) and consequently basal kernel blight infection of barley. Thus, they represent promising biological control agents, which could be used in addition to more resistant cultivars and/or reduced irrigation during the infection window to prevent the occurrence of this disease. The mechanisms by which the antagonistic strains however interact with the pathogen to control basal kernel blight warrant further investigation.

CHAPTER 5
MULTIPLE BIOLOGICAL CONTROL MECHANISMS ARE INVOLVED IN THE
PANTOEA AGGLOMERANS - PSEUDOMONAS SYRINGAE PV. SYRINGAE
INTERACTION

Introduction

Pseudomonas syringae pv. *syringae* is with *Xanthomonas campestris* pv. *translucens* and *P. s. pv. atrofaciens* the most important bacterial plant pathogen on small grains worldwide (Paul & Smith, 1989; Von Kietzell, 1995; Mathre, 1997). *P. s. pv. syringae* can cause severe damage to barley kernels, resulting in black discoloration on the kernel base, including the embryo (Martinez-Miller, 1994; Martinez-Miller & Braun, 1997). We have reported previously about the etiology and significance of basal kernel blight of barley caused by *P. s. pv. syringae* (Martinez-Miller et al., 1998). Electron microscopy has given us insights into pathogenesis as well as compatibility of this host-parasite interaction (Braun et al., 1997 b; chapter 2). Since no bactericides are available on small grains that might provide control of the pathogen, the only control measure to date is the avoidance of irrigation during the most susceptible kernel developmental stage at soft dough (EC 85; Zadok et al., 1974) and/or the use of less susceptible cultivars (Martinez-Miller et al., 1998).

We have developed an effective biological control system in the greenhouse and field based on the application of indigenous antagonistic *Pantoea agglomerans* prior to the *P. s. pv.*
syringae infection window (Braun et al., 1996; Braun et al., 1997 c; chapter 4).

Pantoea agglomerans syn. Erwinia herbicola (Gavini et al., 1989; Holt et al., 1994) has been used frequently as a biocontrol agent against fungal as well as bacterial diseases in a wide array of experimental trials (Lindow et al., 1983 a,b; Beer et al., 1984 a; Kempf & Wolf, 1989; Wilson et al., 1992; Johnson et al., 1993; Yuen et al., 1994; Zhang & Birch, 1996). A multitude of biocontrol mechanisms have been proposed, which each reflect strain variation and the pathosystem in which they were tested. Nitrogen depletion and acidification of the environment have been reported in the interaction between E. herbicola and pathogenic bacteria such as E. amylovora or Xanthomonas oryzae in vitro (Riggle & Klos, 1972; Hsieh & Buddenhagen, 1974; Beer et al., 1984 b). Herbicolin A and B lipopeptide antibiotics, which interfere with sterol synthesis in dermatophytes and plant pathogenic fungi, were described (Winkelmann & Adam, 1980; Aydin et al., 1985; Kempf & Wolf, 1989). In bacterial interactions multiple antibiotics were found in E. herbicola. Some were identified as proteinaceous bacteriocins (Beer & Vidaver, 1978; Beer & Rundle, 1980), or bacteriocin-like if they were non-proteinaceous, such as herbicolicin 112Y (Beer & Stein, 1980), or herbicolin O and I, which were protease insensitive. Herbicolin I was later identified as a monocyclic β-lactam antibiotic (Ishimaru et al., 1988), which inhibits the final stage of murein synthesis and causes cell lysis (Jacobů, 1997). Other β-lactam antibiotics from E. herbicola were described by Parker et al. (1982), Bainton et al. (1992) and Kearns & Hale (1996). Recently, E. herbicola was reported to produce pyrrolnitrin, usually found in Pseudomonas sp., which generates a wide spectrum of antagonistic activity against many fungal and bacterial phytopathogens, including P. s. pv. syringae (Chernin et
al., 1996). A heptapeptide antibiotic from strain Eh 252 shared sequence homology with microcin C7 from E. coli, which inhibits protein translation in Enterobacteriaceae (Vanneste & Yu, 1996). Strain Eh 318 was reported to produce pantocin A and B, of which pantocin A resembled microcin C7 in structure and function and pantocin B remains to be sequenced and its function determined (Wright, 1997; Wright & Beer, 1998). In addition, other mechanisms such as competition for space and/or nutrients have been suggested by several authors to operate in E. herbicola biocontrol-pathogen interactions (Hattingh et al., 1986; Lindow, 1987; Wilson et al., 1989, 1992; Wilson & Lindow, 1993, 1994 a,b). Studies on biocontrol agents causing induced resistance in host plants have been numerous in other bacteria-plant systems (Wei et al., 1991,1996; Oostendorp et al., 1996; Press et al., 1997; Sticher et al., 1997;) but have only been described twice so far for Pantoea agglomerans (Han et al., 1997; Braun et al., 1997 a).

The present study reports attempts to discover the mechanism(s) by which strains of P. agglomerans inhibit P. s. pv. syringae in vitro and in vivo. The P. agglomerans strains used have been found to be effective antagonists of P. s. pv. syringae in glasshouse and field experiments (Braun et al., 1996; Braun et al., 1997 c; chapter 4). The factors affecting antibiosis, such as pH, carbon source and growth stage were first studied. In addition, competition for organic and inorganic nutrients, including carbon/nitrogen sources and iron, as well as for space was investigated. Experiments were conducted to study the population dynamics of the pathogen with and without the application of the biocontrol agent. Finally, I report on induced resistance experiments, considering also the host plant’s reaction to
biocontrol agent application. The results of these studies should lead to a better understanding of the mechanism(s) that may be involved in the complex interaction between biocontrol agent, pathogen, and the host plant barley.

Materials and Methods

In vitro antibiosis.

To study factors influencing antibiosis, such as pH, nutrients, and growth stage, cell-free culture filtrates of *P. agglomerans* strain Eh 239 were tested for their ability to suppress *P. s. pv syringae* strain Pss 552 *in vitro*. Eh 239 was grown in 500 ml potato dextrose broth (PDB, pH 5.1) for 48 h on a rotary shaker (100 rpm) at 28 °C. The suspension was centrifuged at 8000 rpm for 15 min, the supernatant (pH 2.9) filter sterilized (0.2 µm, Nalgene® sterile filter unit, Nalge company, Rochester, NY) and the volume reduced by 1/5 using a rotary evaporator (Rotavapor R110, Buechi Laboratoriumstechnik AG, Switzerland). One aliquot of the extract was adjusted to pH 5.0 with 0.5 M NaOH. Another aliquot was autoclaved at 121 °C for 15 min. Several organic acids, including 0.1 M D-glucuronic acid (pH 2.5), 0.1 M D-gluconic acid (pH 6.8), 6 N formic acid (pH 2.0), 5 µg/µl citric acid (pH 3.0), 5 µg/µl succinic acid (pH 6.0), 50 mM L-tartaric acid (pH 2.5) were also tested. Most organic acids, which are common metabolites of glucose fermentation and Krebs cycle acids were included as additional controls to see an influence of common organic acids on the inhibition of Pss 552. Aliquots of acids were adjusted for pH using 0.1 M HCl, 0.1 M NaOH and 4 N NH₄OH, respectively (Table 5.1). Preliminary tests demonstrated that Pss 552 growth was not
influenced by the solutions used to adjust the pH. A volume of 150 μl of each suspension was added to 1 cm diameter wells in agar plates containing 20 ml PDA. Each plate had 4 wells 3 cm apart from the center of the plate, and each treatment was replicated 4 times. Plates were left with lids closed under the laminar flow cabinet until the solutions had diffused into the medium. Plates were sprayed (Sigma spray aerosol propellant, Sigma, St. Louis, MO) with a suspension of strain Pss 552 in sterile tapwater at 1 x 10⁷ cfu/ml. Zones inhibition around wells were recorded after 24 h incubation at 28 C. Maximal inhibition (30 mm) was recorded when inhibition zones reached from the edge of the well to the center of the plate.

In vivo antibiosis.

P. agglomerans strains Eh 239 and Eh 460 were sprayed on barley heads at soft dough stage of kernel development 3 days prior to the pathogen Pss 552, as described previously (Chapter 4). Additional treatments were 10 mM D-glucuronic acid (pH 3.5), Eh 239 PDB₂₄ h culture filtrate (pH 4.2), and Eh 460 PDB₂₄ h culture filtrate (pH 4.1). All suspensions were applied by spraying the spikes until runoff (approx. 5 ml per spike) using a hand air brush sprayer (Model Paaschi D500 1/10 H.P.). After application, plants were left in a mist chamber (> 95% r.h.) for 72 h, inoculated with Pss 552, followed by a second incubation period of 72 h, before being transferred to a greenhouse bench. The greenhouse was operated at 22/18 ± 1 C (day/night). Five pots, each having 3 plants at soft dough stage, were used per treatment (n=5) and completely randomized (CRD) on the greenhouse bench. After harvest, all kernels per replicate were combined, and the percentage of basal kernel
blight infected seeds was calculated by the following formula:

\[\% \text{ kernel blight} = \left(\frac{a}{b} \right) \times 100, \]

where \(a \) = number of blighted kernels per sample; \(b \) = total number of kernels per sample.

Treatments were compared to untreated water controls to derive blight reduction data.

Influence of pH on antibiosis.

Solid plate tests on PDA with pH values ranging from 4.0-8 were conducted to demonstrate the influence of pH on the *in vitro* antibiosis between *P. agglomerans* and *Pss 552*. Twenty ml PDA plates were prepared with pH values of 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 6.0, 7.0, and 8.0 by adjusting the pH prior to autoclaving with drops of 0.1 M HCl or 0.1 M NaOH, respectively. *P. agglomerans* strains Eh 236, 239, 454, 460 were grown on TSA plates at 28 C for 24 h and 2 colonies per strain transferred to duplicate PDA plates 6 cm apart from each other. Plates were closed with parafilm and incubated at 28 C. After five days, colonies were marked and removed with sterile cotton swabs. Plates were exposed to chloroform vapors for 20 minutes and vapors evaporated for an additional 20 minutes. A suspension of test strain Pss 552 (1 x 10⁷ cfu/ml) was sprayed onto prepared plates and zones of inhibition around areas where *P. agglomerans* had been grown were recorded after 24 h of incubation at 28 C. After evaluation of the experiment the pH was raised in the zones of inhibition with 1 drop of 1 M NaOH to determine whether *P. s. pv. syringae* would grow into the zones after a pH increase.
Influence of carbon source on the antibiosis.

Influence of carbon source on the antibiosis between *P. agglomerans* and *P. s. pv. syringae* was tested using minimal media (Ayers et al., 1919) containing 2% sucrose (pH 5.1), 1% glucose (pH 5.2), 1% fructose (pH 5.1), 1% maltose (pH 5.1), or 1% soluble starch (pH 5.2). Furthermore, a complex medium was prepared by boiling 100 g barley kernels (cv. B 2601) in 300 ml water for 30 min, filtering the broth through cheese cloth and adding 1.5% agar before autoclaving (pH 5.3). Two colonies of Eh 239 and Eh 460, respectively, were transferred 6 cm apart from each other and 3 cm apart from marked centers of 20 ml plates and incubated for 5 days before colonies were killed with CHCl₃ vapor and Pss 552 sprayed onto plates as described above. Mean zones of inhibition were recorded from 6 replicates per strain.

Influence of growth stage on antibiosis.

The growth, pH reduction and biocontrol activity of Eh 239 in a 300 ml PDB culture was observed over time to estimate growth stage and start of antibiotic production. The flask was inoculated with 1 ml of a Eh 239 preculture (1.3 x 10⁵ cfu/ml) at time zero, shaken at 100 rpm at 28 C, and 10 ml samples taken every hour. Samples were analyzed for bacterial growth by spiral plating serial dilutions on TSA, for pH reduction using a pH-meter (Hanna Instruments, Model HI 931000, Mauritius) and for zones of Pss 552 inhibition as previously described.
Characterization of inhibitory compounds produced by *P. agglomerans*.

Five day-old Eh 239 PDB culture filtrates (500 ml, pH 2.3) were extracted overnight with an equal volume of methylene chloride. Phases were separated, and the water phase divided and extracted again with equal volumes of ethyl acetate and n-butanol, respectively. Volumes of all solutions (250 ml) were reduced by 94% using a rotary evaporator and activities against Pss 552 determined in the plate bioassay by measuring zones of inhibition surrounding wells in 20 ml PDA plates, which were filled with 150 μl of solutions. Each plate contained 4 wells with different solutions and means of inhibition zones were based on 4 replicates.

Enzyme activity.

Cell-free culture filtrates (24 h PDB) as well as living cells of *P. agglomerans* strains Eh 236, 239, 454, and 460 were examined biochemically for enzyme activity. Protease activity was tested by gelatin hydrolysis according to Hankin & Anagnostakis (1975), pectolytic activity by growth on CVP medium (Cuppels & Kelman, 1974), cellulase activity on CMC medium described by Andro et al. (1984), and starch hydrolysis on starch agar plates flooded with Lugol’s iodine solution (Leary & Chun, 1988). Chitinase and β-glucanase production were determined by the presence of clear zones surrounding 72-h-old colonies on colloidal chitin agar (Rodriquez-Kabana et al., 1983) and 1% β-glucan agar (Nuture Inc., Missoula, MT), respectively. Lipolytic activity and DNA/RNA digesting activity were studied according to Klement et al.(1990) and HCN production and phenol oxidation as described by Kloeppep et al.(1991). Living cells were examined for all but
lipase and DNA/RNase activity and cell-free culture filtrates were tested for chitinase, cellulase, lipase and DNA/RNase activity. Sensitivity of culture filtrates to 1mg/ml solutions of pronase E, trypsin (EC 3.4.21.4), and proteinase K (Sigma Chemical Company, St. Louis, MO) was tested by the method described by Ishimaru et al. (1988). The effect of mitomycin C on antibiotic production was investigated according to Ishimaru et al. (1988) by adding 0, 0.2, 1.0, and 10 μg/ml to 25 ml PDB cultures (15 h) of Eh 239. Cultures were aerated (200 rpm) for 5 h at 28 C, cells harvested by centrifugation (10000 x g for 10 min at 4 C) and filter-sterilized supernatants assayed for antibacterial activity in the Pss 552 bioassay.

In planta acidification.

The pH of barley heads was examined before and after application of *P. agglomerans* to investigate a possible *in planta* acidification by *P. agglomerans*. Eight barley heads (cv. B 2601) were inoculated with 1 x 10^7 cfu/ml bacterial suspensions per treatment at soft dough stage. Treatments consisted of application of Eh 239, Pss 552, both bacteria in combination, and a water control. Two days after incubation of plants in a mist chamber, heads were cut and placed in sterile 20 ml tubes containing 10 ml tapwater (pH 7.4). Tubes were vortexed at high speed, left at room temperature for 30 min, before heads were removed and the pH of the remaining solution measured.

Organic nutrient competition.

Competition for organic nutrients between *P. agglomerans* strains Eh 236, 239, 454, 460 and *P. s. pv. syringae* (Pss 552) was estimated using niche overlap indices (NOI) derived
from *in vitro* carbon source utilization profiles according to the method described by Wilson & Lindow (1994 a,b). Profiles were based on Biolog GN plates (Biolog, Inc., Hayward, CA), including only carbon and nitrogen sources (Table 5.4) reported to be present in barley (Briggs, 1978). The NOI was defined as the number of carbon sources utilized by both, the pathogen (Pss 552) and the biocontrol agents (Eh 236, 239, 454, or 460, respectively) divided by the number of carbon sources used only by the pathogen or the individual biocontrol strains, respectively. While NOIs derived from total carbon source utilization data provided information on the degree of ecological similarity between the individual biocontrol strains and the pathogen Pss 552, the NOIs derived from groups of carbon sources (amino acids, organic acids, or carbohydrates) provided information on the types of carbon sources for which the strains likely competed in the barley phyllosphere (Wilson & Lindow, 1994 c).

P. s. pv. syringae inoculum rates.

Different *P. s. pv. syringae* inoculum rates were studied to estimate the population density of the pathogen needed to cause basal kernel blight infection on the susceptible cv. B 2601. Pss 552 was inoculated on barley heads in concentrations of 10^3, 10^4, 10^5, and 10^7 cfu/ml as previously described. Additional treatments included the inoculation of 1×10^7 cfu/ml heat-killed Pss 552 (D), a water control, and the application of culture filtrates from a 5 day old PDB culture of Pss 552 (cf). The experiment was conducted as CRD with 7 treatments and 5 replicates.
Population dynamics.

A time dependent glasshouse study was performed after inoculation of a rifampicin resistant (rif\(^R\)) strain of Pss 552 (1 x 10\(^5\) cfu/ml) on cv. B 2601 heads to monitor the pathogen population dynamics over a period of 7 days. Fifteen 19 cm pots each having 3 plants with 3 heads at soft dough stage were used for inoculation. One pot with 3 heads was considered one treatment and kernels of 3 heads were pooled per sampling date. Twelve kernels (= 12 replications) were randomly picked per treatment and sampling date and individually soaked in 1 ml sterile PBS buffer (0.85 % NaCl, 0.03 M NaOH, 0.05 M KH\(_2\)PO\(_4\); pH 7.0) for 2 h at 4 C with 30 min shaking at 150 rpm at 22 C. Serial dilutions were spiral plated onto KBC (Mohan & Schaad, 1987) medium containing 100 \(\mu\)g/ml rifampicin and the mean population size was calculated from 12 individual kernels and 2 replicate plates and recorded as log cfu/kernel. Seven pots were used at harvest to calculate the percentage of basal blight infected kernels (n=7) as described above.

Population dynamics of both *P. agglomerans* and *P. s. pv. syringae* in the barley phyllosphere were examined to investigate the development of the pathogen population after introduction of biocontrol bacteria. Thirty-five kernels from each of 4 barley heads were randomly collected per treatment and shaken (150 rpm) in 50 ml PBS buffer containing fifteen 5 mm glass beads for 30 min at 22 C. The suspensions were serially diluted and plated on KBC amended with 100 \(\mu\)g/ml rifampicin for Pss 552 rif\(^R\) reisolation and on TSA (tryptic soy agar) amended with 60 \(\mu\)g/ml chloramphenicol for Eh 239 chl\(^R\) isolation. Epiphytic bacterial population sizes were expressed as log cfu/kernel. The mean log-transformed population size of each strain was estimated from four heads (35 kernels) and
6 plate replicates per treatment. The experiment was conducted as a CRD and included 4 treatments: Eh 460 chlR application 3 days prior to Pss 552 rifR at soft dough stage (Eh 460 chlR 3d), coinoculation of Eh 460 chlR and Pss 552 rifR (Eh 460 chlR 0d), Pss 552 rifR alone (Pss552), and Eh 460 chlR alone (Eh 460 chlR). Eh 460 was applied at a concentration of \(7.9 \times 10^7\) cfu/ml and Pss 552 at \(6.3 \times 10^7\) cfu/ml.

Competition for space.

Three barley spikes (cv. B 2601) were inoculated \((1 \times 10^7\) cfu/ml) with the pathogen Pss 552 and three with the biocontrol strain Eh 460 at soft dough stage. Plants were left in a mist chamber at 18-20°C for 72 h. Seven days after inoculation three kernels per treatment were randomly removed from each spike \((n = 9)\). Kernels were cut longitudinally, mounted on specimen holders and sputter coated directly with 25 nm Au/Pd. Scanning electron micrographs of the barley kernel surface were examined with a JEOL 6100 scanning electron microscope at 10 KV.

Competition for iron.

To evaluate the influence of iron limitation and iron availability, respectively, on the antibiosis of \(P. \) agglomerans against \(P. \) s. pv. syringae, a plate test \((20 \text{ ml/plate})\) was conducted using iron-limited minimal medium (Ayers et al., 1919) with 0.1% glucose with and without the addition of \(10 \mu\text{M FeCl}_3\) solution. Several \(P. \) agglomerans strains were transferred to the center of the plates and incubated at 28°C for 3 days. Colony growth was marked and bacteria removed with sterile cotton swabs. Plates were exposed to CHCl₃ vapor
for 20 min as described above and strain Pss 552 sprayed on the plate's surface. Zones of inhibition were measured in four directions from the marked colony edge after 24 h incubation at 28 C and means calculated from duplicate plates per strain.

In a greenhouse experiment, plants (cv. B 2601) were treated with 100 μM FeCl₃ alone and in combination with the biocontrol strain Eh 239 three days prior to pathogen Pss 552 inoculation at soft dough stage. Pss 552 alone (positive check), water (negative check), the heat killed pathogen (Pss 552 D), a systemic resistance plant inducer benzothiadiazole (CGA-245704, 50% WG; Actigard®, Novartis Crop Protection, Greensboro, NC), and the biocontrol strain Eh 239 alone were included as additional treatments. Bacterial suspensions (1 x 10⁷ cfu/ml) were sprayed on barley spikes until runoff. Benzothiadiazole had a concentration of 100 μg/ml active ingredient (a.i.). All solutions contained 0.025% Tween 20 as surfactant. Plants were inoculated, incubated and percent kernel infection evaluated after harvest as previously described. The experiment was conducted as CRD with 4 replications.

Siderophore-minus mutants.

Siderophore excretion by *P. agglomerans* strains Eh 236, 239, 454, 460 and several *P. s. pv. syringae* strains, including 552, was determined by the presence of orange halos around colonies on the siderophore indicative medium CAS developed by Schwynn & Neilands (1987). Strains were evaluated for strong, intermediate, weak, and no siderophore production on 20 ml CAS plates. To further investigate iron competition in the interaction between biocontrol agents and the pathogen, siderophore minus mutants (sid-minus) of
parental strain Eh 239 (++) were obtained using EMS (ethanemethylsulfonate) mutagenesis. After a 105 min exposure to EMS, 99% of cells were killed and sid-minus mutants selected based on the absence of orange halos surrounding colonies on CAS. Three stable sid-minus mutants (Eh 239 Sid-1, Sid-2, Sid-3) and one stable siderophore hyperproducer (Sid+4) were selected for greenhouse inoculation. Plants were sprayed with strains 3 days prior to Pss 552 inoculation at soft dough stage and the disease evaluated after harvest as previously described. The experiment was conducted as a CRD with 6 treatments and 4 replicates.

Induction of systemic resistance by *P. agglomerans*.

To determine whether *P. agglomerans* induces systemic resistance (ISR) in barley cultivar B 2601, greenhouse experiments were conducted with biocontrol strains as well as the chemical systemic acquired resistance (SAR) plant inducer benzothiadiazole. Treatments, comprising strains Eh 460, Eh 237, Eh 234, and 100 μg/ml (a.i.) benzothiadiazole (CGA-245704, 50% WG; Actigard®; Novartis Crop Protection, Greensboro, NC), were sprayed 3 days prior to Pss 552 or Pss 793 pathogen inoculation, respectively. Plant inoculation, incubation, and percent kernel infection were evaluated as describe above. The experiment was a CRD with 12 treatments and 4 replicates.

In addition, a more classical approach was carried out to compare ISR phenomena on cv. B 2601 after treatment with benzothiadiazole and biocontrol agents. Treatments consisted of Eh 239, Eh 460, 100 μg/ml (a.i.) benzothiadiazole, a water control, and a non-induced control, and were applied on the entire upper leaf surface of the flag leaf at EC 85 using a sterile cotton swab. Leaves were covered after application with pollination bags to
avoid spread of biocontrol agents. The head was challenge-inoculated three days later with
the pathogen Pss 552. Plant inoculation, incubation, and determination of percent kernel
infection were carried out as previously described. The experiment was a CRD with 5
treatments and 6 replications.

Statistical analyses.

All statistical analyses were performed as appropriate to the experimental design
using the MSUSTAT program (Lund, 1993). Data were analyzed by analysis of variance
(ANOVA), and the sources and amount of variation were compared using an F test. To
compare differences between more than two treatment means, least significant differences
were calculated at $\alpha = 5\%$ unless stated otherwise. Means followed by different letters
demonstrated a statistical significant difference at $p \leq 0.05$. All calculations involving
bacterial population densities were log-transformed prior to analysis and means were
presented as log cfu/unit.

Results

In vitro antibiosis.

Concentrated culture filtrates (48 h) of strain Eh 239 with a pH of 2.9 as well as heat-
treated culture filtrates effectively inhibited Pss 552, while pH adjusted culture filtrates
obviously lost this ability (Table 5.1). Several organic acids, some of which are common
metabolites of glucose fermentation and Krebs cycle acids were included in this study to test
an influence of common organic acids on the inhibition of Pss 552. I noted that glucuronic, formic, citric, and tartaric acid consistently inhibited Pss 552, if the pH was between 2 and 3, while activity was lost once the pH values were raised to 5 to 6, with the exception of 6 N formic acid which was still active at pH 5.0. Gluconic and succinic acid with a pH between 4 to 6.8 were never inhibitory to Pss 552 (Table 5.1).

Table 5.1. Inhibition of P. s. pv. syringae Pss 552 (in mm) by 48 h-old concentrated culture filtrates (cf) of P. agglomerans Eh 239, pH adjusted Eh 239 cf, heat-treated Eh 239 cf, D-glucuronic acid, pH adjusted D-glucuronic acid, D-gluconic acid, pH adjusted D-gluconic acid, formic acid, pH adjusted formic acid, citric and succinic acid, L-tartaric acid, and pH adjusted L-tartaric acid.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Zones of Pss 552 inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eh 239 cf (pH 2.9)</td>
<td>10.8 (^{1})</td>
</tr>
<tr>
<td>Eh 239 cf (pH 5.0)</td>
<td>0.0</td>
</tr>
<tr>
<td>Heat-treated Eh 239 cf (pH 2.9)</td>
<td>10.5</td>
</tr>
<tr>
<td>0.1 M D-glucuronic acid (pH 2.5)</td>
<td>15.3</td>
</tr>
<tr>
<td>0.1 M D-glucuronic acid (pH 5.0)</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1 M D-gluconic acid (pH 6.8)</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1 M D-gluconic acid (pH 4.0)</td>
<td>0.0</td>
</tr>
<tr>
<td>6 N formic acid (pH 2.0)</td>
<td>30.0</td>
</tr>
<tr>
<td>6 N formic acid (pH 5.0)</td>
<td>25.2</td>
</tr>
<tr>
<td>5 (\mu)g/(\mu)l citric acid (pH 3.0)</td>
<td>9.3</td>
</tr>
<tr>
<td>5 (\mu)g/(\mu)l succinic acid (pH 6.0)</td>
<td>0.0</td>
</tr>
<tr>
<td>50 mM L-tartaric acid (pH 2.5)</td>
<td>16.3</td>
</tr>
<tr>
<td>50 mM L-tartaric acid (pH 6.0)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\(^{1}\) Data are means of two experiments with 4 replications per treatment
Influence of pH on antibiosis.

Solid plate tests with varying pH from 4 to 8 demonstrated an influence of changing pH on the *in vitro* antibiosis. Results are summarized in table 5.2. Pss 552 appeared to be pH sensitive and did not grow on plates with pHs ≤ 4.4, while *P. agglomerans* strains were still viable at pHs as low as 4.0. The inhibition of Pss 552 by either antibiotics or organic acids produced by *P. agglomerans* was greatest at pH 4.6 over all *P. agglomerans* strains screened. Eh 236 inhibited Pss 552 by 92%, Eh 239 by 100%, Eh 454 by 68%, and Eh 460 by 72%. At pH 4.8 inhibitory activity was reduced by about 50% over all strains and at pH 5.0 by 70%. Activity was completely lost at pH 6.0, 7.0, and 8.0, with the exception of strain Eh 239, showing 26% inhibition of Pss 552 at pH 6.0 (Table 5.2).

<table>
<thead>
<tr>
<th>pH of PDA</th>
<th>Eh 236</th>
<th>Eh 239</th>
<th>Eh 454</th>
<th>Eh 460</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>--- 1)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.6</td>
<td>24 2) (92%)</td>
<td>30 (100%)</td>
<td>18 (68%)</td>
<td>19 (72%)</td>
</tr>
<tr>
<td>4.8</td>
<td>13 (49%)</td>
<td>17 (63%)</td>
<td>9 (34%)</td>
<td>13 (48%)</td>
</tr>
<tr>
<td>5.0</td>
<td>10 (38%)</td>
<td>10 (37%)</td>
<td>44 (14%)</td>
<td>8 (28%)</td>
</tr>
<tr>
<td>6.0</td>
<td>0</td>
<td>7 (26%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1) --- indicates no growth of the indicator strain Pss 552
2) Data are means of 4 replicates per strain
After raising the pH in the zones of inhibition with 1 M NaOH, Pss 552 was able to renew growth into these areas, indicating pH sensitivity of antibiotics produced by \textit{P. agglomerans} (data not shown).

Influence of carbon source on \textit{in vitro} antibiotic production.

When different carbon sources were added to minimal media, I observed the strongest Pss 552 inhibition on plates containing 1% fructose. Zones were 25.3 mm for Eh 239 and 14.1 mm for Eh 460. Inhibition was slightly reduced on 1% glucose medium, 23.2 mm for Eh 239 and 12.4 for Eh 460, while Eh 239 grown on 2% sucrose medium inhibited the indicator strain only 6.8 mm and Eh 460 only 2.6 mm. No antibacterial activity was detected on 1% maltose, 1% soluble starch, and the barley kernel extract medium.

Influence of growth stage on antibiosis.

When growth, pH reduction and \textit{in vitro} antibiosis of PDB culture filtrates of strain Eh 239 were monitored over a period of 96 hours, I detected an overall pH reduction from pH 5.0 to 2.1 with increasing cell growth. The pH started to drop below pH 5.0 after 4 h of growth at the same time that Eh 239 cells started exponential phase. The pH further dropped over the next 7 hours to 3.8, while cells rapidly multiplied from 1.3×10^6 to 1.6×10^6 cfu/ml in exponential phase. After 12 h of growth, cells reached stationary phase (2×10^9 cfu/ml) in which autolysis probably contributed to a slight increase in pH from 3.8 to 4.1 and an additional increase in cell density to 6.3×10^9 cfu/ml. The stationary phase lasted for 18 hours. After 48 hours of growth in PDB, Eh 239 cells were dead (0 cfu/ml) and the pH
dropped to 2.4, and to 2.1 after 72 h and 96 h, respectively. No antibiosis by cell-free culture filtrates was observed until 48 hours after growth. Inhibition zones against Pss 552 slightly increased from 7.5 to 9.8 mm in culture filtrates from 72 h to 96 h of growth.

Characterization of inhibitory compounds.

When 5 day-old PDB culture filtrates (pH 2.3) of *P. agglomerans* strain Eh 239 were further characterized by extraction in methylene chloride (CH$_2$Cl$_2$), ethyl acetate (EtOAc), and n-butanol, activity was found in n-butanol (12 mm zones of Pss 552 inhibition) and water (8.1 mm), while inhibition was only 3 mm when filtrates were extracted with CH$_2$Cl$_2$ and 2.6 mm when extracted in EtOAc.

Enzyme activities.

The presence of extracellular enzymes in *P. agglomerans* Eh 236, 239, 454, 460 cultures and in 24 hour-old cell-free culture filtrates (cf) was studied in plate bioassays. Culture filtrates were negative for all enzymes tested, including chitinase, cellulase, lipase and DNA/RNAs. Living cells were negative for chitinase, β-glucanase, HCN production, phenol oxidation and pectinase. However, *P. agglomerans* strains tested positive for presence of protease, cellulase and α-amylase. Eh 239 was most active (+++) for cellulase production followed by Eh 460 (++), and strains Eh 236 (+) and Eh 454 (+). α-Amylase activity was most active in strains Eh 236 (+++) and Eh 454 (+++) followed by Eh 239 (+) and Eh 460 (+).
Protease sensitivity of antibiotics and induction by mitomycin C.

When the sensitivity of Eh 236, 239, 454, and 460 antibiotics to proteolytic enzymes was determined by diffusion in agar (Ishimaru et al., 1988), culture filtrates were resistant to pronase E, trypsin, and proteinase K treatment. Furthermore, the expression of antibiotic activity of strain Eh 239 was not inducible by mitomycin C, since the antibacterial activity after treatment with mitomycin C was not different from those of untreated controls.

In vivo antibiosis.

To compare the results of the *in vitro* antibiosis bioassay with the *in vivo* situation, I tested the effect of application of 24 hour-old PDB culture filtrates of strains Eh 239 (pH 4.2) and Eh 460 (pH 4.1) as well as the living strains and 10 mM D-glucuronic acid (pH 3.5) on barley heads prior to pathogen Pss 552 inoculation (Fig. 5.1). The results indicated that culture filtrates of Eh 239 significantly increased the incidence of basal blight infected kernels compared to the positive check Pss 552. Glucuronic acid and culture filtrates of Eh 460 decreased the percentage of infected kernels by 33 and 40%, respectively, which was statistically not different from the Pss 552 control. However, strains Eh 239 and Eh 460 significantly decreased the basal kernel blight disease by 76%.
Fig. 5.1. Effect of application of *P. agglomerans* strains Eh 239, Eh 460, the culture filtrates of Eh 239 and Eh 460 (cf), and the 10 mM glucuronic acid (GluR) treatment on the percentage of basal kernel blight infection caused by *P. s. pv. syringae* Pss 552 on barley cultivar B 2601. Treatments were applied to barley spikes three days prior to pathogen inoculation at soft dough stage. Means with the same letter are not significantly different, according to LSD test (p≤0.05; n=5); Zero values were not included in statistical analysis.

In planta acidification.

The possibility of barley phyllosphere acidification after application of biocontrol strain Eh 239, the pathogen Pss 552, or both at soft dough stage of kernel development was examined *in vivo*. The pH of barley heads was 5.85 in the water controls, which was not significantly different from the *P. s. pv. syringae* Pss 552 inoculated barley heads (pH 5.87), the *P. agglomerans* Eh 239 (pH 5.95) treated heads, or when both bacteria were coinoculated (pH 5.94).
In vitro nutrient competition.

Niche overlap indices (NOIs) derived from *in vitro* nutrient source utilization profiles based on 46 total compounds reported to be present in barley (Table 5.4; Briggs, 1978) are represented in Table 5.3. NOIs estimated for each strain pair provided information on the degree of ecological similarity between the biocontrol and the pathogenic strains, and NOIs derived from groups of carbon or nitrogen sources provided information on where the overlap occurred (Wilson & Lindow, 1994 a,b). A high NOI value (1.0) indicated a high degree of ecological similarity, i.e. it may predict if a biocontrol strain would be effective in the exclusion of a pathogenic strain by using a high percentage of resources that would otherwise be available to the pathogen in a nutrient limited environment. *P. agglomerans* strain Eh 236 demonstrated a large NOI (1.0) for amino acids, i.e. Eh 236 utilized 100% of the amino acids, 90% (NOI \(_{P_{s}s_{552}} = 0.9\)) of the organic acids, and 89% (NOI \(_{P_{s}s_{552}} = 0.889\)) of the carbohydrates utilized by *P. s. pv. syringae* Pss 552 (Table 5.3). Pss 552 in turn utilized 81% of the amino acids, 100% of the organic acids but only 50% of the carbon sources utilized by Eh 236. Eh 239 utilized 89% of the amino acids, 88% of the organic acids, and 100% of the carbohydrates utilized by Pss 552. Pss 552 utilized 100% of the amino acids, but only 70% of the organic acids, and 50% of the carbohydrates utilized by Eh 239 (Table 5.3).

Eh 454 utilized 89% of the carbohydrates and amino acids and 80% of the organic acids utilized by Pss 552, while Pss 552 utilized 100% of the organic acids, 89% of the amino acids, but only 50% of the carbohydrates utilized by Eh 454 (Table 5.3). Eh 460 utilized 100% of carbohydrates and organic acids and 89% of the amino acids utilized by Pss
552, while Pss 552 in turn utilized 91% of the organic acids 89% of the amino acids, but only 53% of the carbohydrates utilized by Eh 460. Overall, the *P. agglomerans* strains demonstrated large NOIs for all compounds presumed to be present in barley, such as organic acids (0.7-1.0), amino acids (0.89-1.0), and carbohydrates (0.89-1.0) compared to Pss 552, indicating a high ecological similarity and potential for preemptive exclusion of the pathogen based on competition for limited nutrients in the barley phyllosphere. The degree of ecological similarity of the Pss 552 competing with *P. agglomerans* strains was high for amino acids (0.82-1.0) and organic acids (0.88-1.0), but low for carbohydrates (0.5-0.53), suggesting less effective exclusion of *P. agglomerans* by the pathogen. The *P. agglomerans* strains utilized between 86-96% of total compounds presumed to be present in the barley phyllosphere, which were also utilized by Pss 552, while Pss 552 only utilized 72-73% of all compounds utilized by *P. agglomerans*, indicating less competitive exclusion by the pathogen (Table 5.3).
Table 5.3. Niche overlapping indices (NOIs)\(^1\) for epiphytic *P. agglomerans* strains paired with *P. s. pv. syringae* Pss 552, derived from *in vitro* carbon source utilization data (Biolog GN plates \(^2\))

<table>
<thead>
<tr>
<th>Strain competing with Pss 552</th>
<th>Total compds. utilized (^3)</th>
<th>Amino acids</th>
<th>Carbohydrates</th>
<th>Organic acids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOI(_{Pss552}) (^4)</td>
<td>NOI(_{strain}) (^5)</td>
<td>NOI(_{Pss552})</td>
<td>NOI(_{strain})</td>
</tr>
<tr>
<td>Eh 236</td>
<td>0.929</td>
<td>0.722</td>
<td>1.0</td>
<td>0.818</td>
</tr>
<tr>
<td>Eh 239</td>
<td>0.857</td>
<td>0.727</td>
<td>0.889</td>
<td>1.0</td>
</tr>
<tr>
<td>Eh 454</td>
<td>0.857</td>
<td>0.727</td>
<td>0.889</td>
<td>0.889</td>
</tr>
<tr>
<td>Eh 460</td>
<td>0.964</td>
<td>0.730</td>
<td>0.889</td>
<td>0.889</td>
</tr>
</tbody>
</table>

\(^1\) NOIs were defined according to WILSON and LINDOW (1994 a,b) by the number of carbon sources utilized by both strains as a proportion of the total number of energy sources utilized by the strain in question.

\(^2\) NOIs are based on Biolog GN plates, including 46 carbon sources reported to be present in barley (Table 5.4; Briggs, 1978). The niche size for *P. s. pv. syringae* Pss 552 was 28. It was 36 for *P. agglomerans* strain Eh 236, 34 for strain Eh 239, 33 for strain Eh 454, and 37 for Eh 460.

\(^3\) Generated by 46 carbon sources.

\(^4\) Represents the proportion of the carbon compounds utilized by Pss 552 that were also utilized by the competing strain.

\(^5\) Represents the proportion of the carbon compounds utilized by the strain that were also utilized by Pss 552.
Table 5.4. Nutrients reported to be present in barley according to Briggs (1978).

Carbohydrates: dextrin, N-acetyl-D-glucosamine, L-arabinose, D-fructose, L-fucose, D-galactose, α-D-glucose, m-inositol, α-lactose, maltose, D-mannitol, D-mannose, β-methyl-D-glucoside, L-rhamnose, D-sorbitol, sucrose, D-trehalose, glucose-1-phosphate, glucose-6-phosphate.

Organic acids: methyl pyruvate, acetic acid, citric acid, D-galacturonic acid, D-gluconic acid, D-glucuronic acid, DL-lactic acid, malonic acid, D-saccharic acid, succinic acid, glucuronamide.

Amino acids: D-alanine, L-alanine, L-alanylglycine, L-asparagine, L-aspartic acid, L-glutamic acid, L-histidine, L-hydroxyproline, L-leucine, L-ornithine, L-proline, L-serine, L-threonine, L-phenylalanine, γ-amino-butyric acid, putrescine.

Fig. 5.2. Effect of different rates of pathogen Pss 552 inoculum (10^3, 10^4, 10^5, 10^7 cfu/ml), heat-killed Pss 552 (D) pathogen (10^7 cfu/ml), and 5 day-old PDB culture filtrates of Pss 552 (Pss 552 cf) on the percentage of basal kernel blight infection obtained on barley cultivar B 2601. All treatments were applied at soft dough stage. Means followed by the same letter are not significantly different according to LSD test at $p<0.05$ (n=5). Zero values were not considered for statistical analysis.
P. s. pv. syringae inoculum rates.

The inoculation of 10^3 Pss 552 cfu/ml resulted in 5.3% infection, 10^4 cfu/ml in 7.1%, 10^5 cfu/ml in 5.9%, and 10^7 cfu/ml in 20.5% (Fig. 5.2). Pss 552 D or Pss 552 culture filtrates did not cause any disease symptoms when sprayed on barley heads at soft dough stage (Fig. 5.2). Thus, symptom occurrence seemed to be favored by increasing levels of pathogen inoculum. When the experiments was repeated with inoculum concentrations of 10^6, 10^7, and 10^8 cfu/ml, results were similar (data not shown).

Population dynamics.

When the P. s. pv. syringae population size per kernel was determined over a period of 7 days after inoculation of Pss 552 rif^R, a decline in population density from 6.3×10^4 cfu/kernel to 1.0×10^3 cfu/kernel was noticed (Fig. 5.3). The inoculation of 1.0×10^5 Pss 552 rif^R cfu/ml on B 2601 at soft dough stage resulted in 9.6% basal kernel blight infection levels after harvest.

![Fig. 5.3. Population dynamics of P. s. pv. syringae Pss 552 rif^R (log cfu/kernel) over a period of seven days after inoculation of 1×10^5 cfu/ml on barley heads (cv. B 2601) at soft dough stage.](image-url)
A glasshouse experiment was conducted to test the hypothesis that the introduction of a biocontrol population could lead to a reduced pathogen population and hence keep the pathogen population below a presumed critical threshold of about 1×10^3 cfu/kernel for basal kernel blight symptom occurrence. A chloramphenicol-resistant \textit{P. agglomerans} strain Eh 460 chlR and a rifampicin-resistant \textit{P. s. pv. syringae} strain Pss 552 rifR were chosen for this experiment. Antibiotic marked strains did not differ in activity or epiphytic growth from wildtype strains (data not shown).

![Graph of population dynamics](image)

Fig. 5.4. Population dynamics of \textit{P. s. pv. syringae} Pss 552 rifR (solid lines) and Eh 460 chlR (dotted lines) alone, after the introduction of \textit{P. agglomerans} Eh 460 chlR three days prior to Pss 552 rifR (3d) or coinoculated with Pss 552 rifR (0d) at soft dough stage of kernel development on cv. B 2601.

The treatment of barley heads with the control Eh 460 chlR alone did not result in any basal kernel blight disease symptoms, while the Pss 552 rifR inoculation alone revealed 29.3% infected kernels (Fig. 4.6, chapter 4) with the pathogen population varying between
3.2 \times 10^5 \text{ to } 6.3 \times 10^6 \text{ cfu/kernel (Fig. 5.4). The coinoculation of Eh 460 chl}^R \text{ and Pss 552 rif}^R \text{ demonstrated no significantly different infection levels (30.6%; Fig. 4.6, chapter 4) compared to the above mentioned Pss 552 rif}^R \text{ control. In this treatment both the pathogen population and the } P. \text{ agglomerans population remained relatively constant between } 4.0 \times 10^6 \text{ to } 2.5 \times 10^7 \text{ cfu/kernel for Eh 460 chl}^R \text{ and between } 1.0 \times 10^6 \text{ to } 1.6 \times 10^7 \text{ for Pss 552 rif}^R \text{ (Fig. 5.4). However, the application of Eh 460 chl}^R \text{ prior to Pss 552 rif}^R \text{ resulted in only 7.2% infected kernels (Fig. 4.6, chapter 4) and provided statistically significant disease control (75.4%), which could be due to the significantly reduced pathogen population levels in this treatment which decreased over time from } 2.0 \times 10^6 \text{ to } 2.0 \times 10^4 \text{ cfu/kernel (Fig. 5.4).}

Competition for space.

The scanning electron micrographs demonstrated that cells of both, pathogen Pss 552 and biocontrol agent Eh 460 occupied the same niches on the kernel surface 7 days after inoculation. Preferred sites appeared to be the bases of trichomes (photos not shown) and areas close to stomata (Fig. 5.5).
Fig. 5.5. Scanning electron micrograph of a *P. agglomerans* Eh 460 colony covering a stoma on the palea of a barley kernel (A, magnification x 4000) and single cells of *P. s. pv. syringae* Pss 552 in the vicinity of a stoma on the kernel surface 7 days after inoculation (B, magnification x 10000).
Iron competition.

The influence of different barley head treatments on the percentage of basal kernel blight infection, including iron amendment to the barley phyllosphere is presented in Fig. 5.6. The experiment was conducted to test the hypothesis that competition for iron between biocontrol agents and pathogen could account for the efficiency in disease reduction. It was assumed that disease reduction by the biocontrol agents would be less efficient if iron was not limited in the phyllosphere. The most effective treatment in this experiment was the application of biocontrol strain Eh 239 three days prior to pathogen inoculation (87% disease reduction). The systemic resistance inducer benzothiadiazole (SAR) provided control levels of 73% (Fig. 5.6). The application of iron as FeCl₃ in combination with the biocontrol strain Eh 239 resulted in 30% significantly less disease control (57%) than the application of Eh 239 alone, suggesting that competition for iron may be involved in the biocontrol-pathogen interaction. However, the 100 µM FeCl₃ treatment alone also resulted in 54% disease reduction (Fig. 5.6), similar to the control provided by the heat-killed pathogen (52%), indicating again the possibility of induced resistance or a direct effect of 100 µM FeCl₃ on the pathogen population. Nevertheless, zones of pathogen inhibition were smaller around six out of nine *P. agglomerans* biocontrol strains when 10 µM FeCl₃ was included in the minimal medium (Tab.5.5), supporting the hypothesis that iron competition is reduced if iron(III) is available. Furthermore, the 10 µM FeCl₃ amendment to minimal media did not show a negative effect on bacterial growth, while the results with 100 µM FeCl₃ were inconsistent (data not shown).
Fig. 5.6. Effect of biocontrol strain *P. agglomerans* Eh 239 alone and in combination with iron chloride, iron chloride alone, the systemic resistance plant activator benzothiadiazole (SAR), and heat-killed Pss 552 D on the percentage of basal kernel blight on barley (cv. B 2601). Treatments were applied 3 days prior to pathogen *P. s. pv. syringae* Pss 552 inoculation at soft dough stage. Means followed by the same letter are not significantly different at p≤0.05, according to LSD test (n=4). Zero values were not included in statistical analysis.
Table 5.5. Effect of iron amendment (10μM FeCl₃) to minimal medium on the in vitro inhibition of P. s. pv. syringae strain Pss 552 by several P. agglomerans strains and P. s. pv. syringae strain Pss 793.

<table>
<thead>
<tr>
<th>P. agglomerans/P. s. pv. syringae strain</th>
<th>Without FeCl₃</th>
<th>With FeCl₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated check</td>
<td>0.0 (1)</td>
<td>0.0</td>
</tr>
<tr>
<td>Eh 234</td>
<td>9.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Eh 235</td>
<td>19.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Eh 236</td>
<td>27.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Eh 237</td>
<td>25.8</td>
<td>27.5</td>
</tr>
<tr>
<td>Eh 238</td>
<td>29.5</td>
<td>28.0</td>
</tr>
<tr>
<td>Eh 239</td>
<td>26.1</td>
<td>22.9</td>
</tr>
<tr>
<td>Eh 240</td>
<td>28.8</td>
<td>27.8</td>
</tr>
<tr>
<td>Eh 454</td>
<td>8.0</td>
<td>10.5</td>
</tr>
<tr>
<td>Eh 460</td>
<td>9.3</td>
<td>16.3</td>
</tr>
<tr>
<td>Pss 793</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

1) Data are means of 8 replicates per strain

Siderophore production on CAS by all P. s. pv. syringae strains tested including Pss 552 was strong (+++), whereas it was intermediate (+++) for P. agglomerans Eh 239, Eh 454 and weak (+) for Eh 236 and Eh 460. Assuming iron limitation in the barley phyllosphere and a significance for iron competition in the P. agglomerans - P. s. pv. syringae interaction, I expected that siderophore deficient mutants of biocontrol strains would be less efficient in iron acquisition and hence in controlling the basal kernel blight disease compared to the
wild type strain. Therefore siderophore-minus mutants of Eh 239 were tested in their efficiency to control the disease *in vivo* (Fig. 5.7). The mutation rate was 4.8% for sid-minus mutants and 1.5% for siderophore hyperproducers, which produced much larger halos than the Eh 239 parental strain. The reversion rate was 81% for sid-minus mutants and 0% for hyperproducers. Mutants were not different in growth characteristics from Eh 239 parental strains.

Fig. 5.7. Effect of siderophore-minus mutants Eh 239 Sid-1, Sid-2, Sid-3, the sid-hyperproducer Eh 239 Sid+4 and the parental strain Eh 239 WT on the percentage of basal blight infected kernels. Strains were applied to barley heads at soft dough stage 3 days prior to pathogen Pss 552 inoculation. Means followed by the same letter are not significant different according to Tukey’s test at p≤0.05 (n=4).
The siderophore hyperproducer Eh 239 Sid+4 and the siderophore-minus strain Eh 239 Sid-1 were statistically as efficient in disease suppression as the parental strain Eh 239 WT. Eh 239 WT reduced the basal kernel blight infection by 69%, Eh 239 Sid-1 by 69.8%, and Eh 239 Sid+4 by 67.1%. However, two out of 3 tested siderophore-minus mutants were statistically less efficient in reducing the kernel blight disease, suggesting a lack in iron uptake efficiency, consequently reduced iron competition with Pss 552 and hence reduced biocontrol efficacy in these mutants. Nevertheless, Eh 239 Sid-3 revealed 40% and Eh 239 Sid-2 25% disease reduction (Fig. 5.7).

Induced resistance by *P. agglomerans*.

The possibility of *P. agglomerans* inducing systemic resistance was investigated after a strong basal blight disease reduction (73%) was noted in one experiment, in which the chemical systemic acquired resistance plant activator benzothiadiazole (SAR) had been used (Fig. 5.6). An additional experiment was conducted to confirm this observation. The influence of the SAR activator on the basal kernel blight disease caused by *P. s. pv. syringae* strains Pss 552 or Pss 793, respectively, was compared with the performance of *P. agglomerans* strains Eh 460, Eh 234, and Eh 237 (Fig. 5.8). Benzothiadiazole provided similar levels of basal kernel blight disease reduction (95-97%) as all biocontrol strains, which reduced infection levels by 72-100%, depending on which strain was tested and pathogen strain used for inoculation (Fig. 5.8). Benzothiadiazole (CGA-245704; 50% WG) itself did not affect *P. s. pv. syringae* 552, when tested in concentrations of 0, 10, 50, 100, and 200 μg/ml in PDB batch cultures.
Fig. 5.8. Effect of *P. agglomerans* strains Eh 460, Eh 237, Eh 234, and the plant activator benzothiadiazole (SAR) on the percentage of basal kernel blight infection on barley cv. B 2601. Treatments were applied to barley heads at soft dough stage 3 days prior to *P. s. pv. syringae* Pss 552 and Pss 793, respectively, inoculation. Means followed by the same letter were not significantly different according to LSD test at p<0.05 (n=4). Zero values were not considered for statistical analysis.

Preliminary data of a more classical induced resistance experiment, in which benzothiadiazole as well as the biocontrol agent Eh 239 were applied at lower leaves of 6 week old barley plants (cv. B 2601) prior to challenge-inoculation with *P. s. pv. syringae* Pss 552 on upper leaves, demonstrated similar levels of control by Eh 239 (45.6% disease reduction) and benzothiadiazole (50.5%), whereas the non-induced control resulted in 79.8% infection based on leaf necrosis caused by Pss 552 (Braun et al., 1998). Figure 5.9 shows the results of a glasshouse experiment, with biocontrol strains Eh 239, Eh 460 and benzothiadiazole applied to flag leaves of cv. B 2601 at soft dough stage three days prior to
challenge-inoculation of barley heads with pathogen Pss 552.

Fig. 5.9. Percentage of basal blight infected kernels after induction of systemic resistance, when benzothiadiazole (SAR) or the *P. agglomerans* strains Eh 239 and Eh 460, or a water control were applied to flag leaves three days prior to challenge-inoculation of barley spikes (cv. B 2601) with *P. s. pv. syringae* Pss 552 at soft dough stage. Means followed by the same letter are not significantly different according to Tukey’s test at p<0.05 (n=6).

The results revealed that the biocontrol strains Eh 239 and Eh 460 applied to flag leaves were statistically as efficient in basal kernel blight disease control as the plant activator benzothiadiazole (Fig. 5.9). Eh 239 application to flag leaves reduced the disease by 45%, Eh 460 by 53%, and benzothiadiazole by 62%. The water treatment alone resulted in 30% disease control, but was not statistically different from the pathogen control (Pss 552) or from any of the other treatments.
Discussion

Regarding the mechanisms of antagonism between *P. agglomerans* and *P. s. pv. syringae*, I focused my research on three major investigations: (1) antibiosis, (2) competition for nutrients or space and (3) induction of host plant’s resistance.

Attempts to characterize the antibacterial compounds produced by *P. agglomerans* strain Eh 239 *in vitro*, that inhibit the growth of *P. s. pv. syringae* in addition to a wide variety of other Gram-positive and Gram-negative bacteria (chapter 4) led to the discovery of a polar, thermostable, pronase E, proteinase K, and trypsin insensitive compound(s), that was not inducible by the DNA damaging/SOS-system inducing agent mitomycin C, but was base labile (pH ≥ 6.0). A similar compound was detected in culture filtrates of Eh 112Y after partial purification (Stein & Beer, 1980). This non-proteinaceous compound, herbicolicin 112Y, inhibited the growth of *E. amylovora* *in vitro*, was insensitive to autoclaving, acidic conditions, nucleolytic and proteolytic enzymes, but labile to base and had a low molecular weight of < 500 Da. Furthermore, herbicolin I, which is thought to be a dipeptide β-lactam antibiotic in nature, demonstrated similar chemical characteristics (Ishimaru et al., 1988). The striking resemblance of my compounds to the ones previously described suggests that the compounds produced by some *P. agglomerans* strains (e.g. Eh 239) with moderate to high activity against Pss 552 (chapter 4) might be microcin or β-lactam type antibiotics. Since microcins are low molecular weight amino acid-peptide antibiotics produced by Enterobacteria (Baquero & Moreno, 1984), partial purification of the compounds found in my studies and size exclusion chromatography appear to be the next steps in compound
identification. Microcin C7 type antibiotics from *P. agglomerans* strains Eh252 and Eh318 have recently been identified by cloning and sequencing (Vanneste & Yu, 1996; Wright & Beer, 1998). However, since microcin C7 is insensitive to pronase E, but sensitive to trypsin and subtilisin (Baquero & Moreno, 1984), the compounds produced by my *P. agglomerans* strains might be different (microcins?). Furthermore, the presence of low molecular weight β-lactams in *P. agglomerans* culture filtrates could be investigated by β-lactamase digestion (Kearns & Hale, 1996).

Media in which *P. agglomerans* had been grown, demonstrated a strong pH decrease over time with increasing activity against *P. s. pv. syringae*, while readjustment of pH to 5.0 resulted in loss of inhibitory activity. Similar effects were noted by Isenbeck & Schulz (1986) in the *E. herbicola* - *E. amylovora* interaction, in which pH readjustment of culture filtrates to pH 6.6 showed hardly any inhibitory activity. Antibiotics found in their system were also heat-stable, water and ethanol soluble and had a molecule size smaller than 80 Å. Maximal inhibitory activity against *E. amylovora* was detected between 48-96 h of incubation, which is identical to my studies. However, concentrated culture filtrates, which the authors tested *in vivo* on the control of fire blight, were less effective than using the living bacteria themselves. In my *in planta* studies, culture filtrates as well as organic acid treatments were low or ineffective in kernel blight disease suppression compared to living *P. agglomerans*, supporting the only weak linear relationship between *in vitro* antibiosis and *in vivo* disease control (chapter 4), assuming antibiotics released *in vitro* are present in culture filtrates. Additionally, a media acidification due to organic acid production after glucose oxidation, which I observed in PDB batch cultures and which resulted in increased
activity against the indicator strain Pss 552, is likely to occur in vitro (Riggle & Klos, 1972; Hsieh & Buddenhagen, 1974). At low dissolved oxygen levels a dramatic increase in 2-ketogluconic acid hydrogenase activity was found responsible for the conversion of D-glucose to 2,5-diketogluconic acid instead of gluconic acid after an incubation period of 40 h (Quazi et al., 1993). The production of diketogluconic acid from potato dextrose broth rather than gluconic acid in non-aerated liquid cultures of Eh 239 might explain why I did not detect any inhibitory activity of 0.1 M gluconic acid on Pss 552 in my bioassay, while Eh 239 culture filtrates demonstrated activity. However, an inhibitory effect of diketogluconic acid on Pss 552 warrants further investigation. Furthermore, acidification of the environment as a consequence of E. herbicola growth had never been demonstrated in planta (Wodzinski et al., 1994) and could not be found in my system on barley heads. Thus, it appears that organic acid production and antibiosis may only be minor mechanisms in the in vivo interaction between P. agglomerans and P. s. pv. syringae on barley. Accordingly, studies on the role of E. herbicola antibiotics in biocontrol have revealed that non-antibiotic producing strains and antibiotic-deficient mutants reduced fire blight as efficiently as antibiotic producing strains, indicating no in vivo role for antibiotics (Beer et al., 1984 a; Wodzinski & Paulin, 1994, my studies chapter 4). Similarly, Lindow (1985, 1988) found no correlation of in vitro antibiosis with antagonism of ice nucleation active (INA-plus) bacteria on leaf surfaces by non-ice nucleation active (INA-minus) bacteria. However, for strains Eh 252 (Vanneste et al., 1992) and Eh 318 (Wodzinski et al., 1994; Wright, 1997), which were effective antagonists of E. amylovora in field tests, there was evidence that their antibiotics may be an important, though not exclusive, mechanism by which E. herbicola inhibits E.
amylovora.

P. s. pv. syringae is an epiphytic foliar pathogen, which increases in population size above an apparent threshold prior to infecting the plant tissue (Hirano & Upper, 1983, 1990; Lindemann et al., 1984). My studies on pathogen population size suggested that about 10^3 cfu per kernel may represent an apparent infection threshold population of *P. s. pv. syringae*, since kernel blight percentages most likely remain below the 4% level when kernels have less than 1×10^3 cfu/kernel. The results of pathogen population dynamics in the presence and absence of *P. agglomerans* indicated that epiphytic *P. agglomerans* inhibited the development of *P. s. pv. syringae* by about 100-fold, resulting in 72% reduced kernel infections, but only if applied prior to the pathogen under controlled (Fig. 5.4) and field conditions (data not published). These results are in agreement with Wilson & Lindow’s (1993) studies, in which *P. fluorescens A506* reduced colonization of pear pistils by *Erwinia amylovora* when the biocontrol agent was inoculated 72 h in advance of the pathogen, but not when it was coinoculated. In addition, Wilson et al. (1992) observed that *E. amylovora* and *E. herbicola* inoculated alone would reach populations of 10^6 cfu/blossom, the apparent carrying capacity of the stigmatic surface of a hawthorn blossom. When coinoculated at the same concentration, *E. amylovora* never reached a population level greater than $10^3 - 10^4$ cfu/blossom, while *E. herbicola* still approached 10^6 cfu/blossom.

Several authors (Hirano & Upper, 1983, 1990; Andrews, 1992) have claimed that the leaf surface is nutrient limited, and the work by Lindow (1987) exemplified preemptive exclusion and competition for limited nutrients by biocontrol agents as a successful mechanism to control phytopathogenic INA-plus *P. syringae* bacteria. *In vitro* carbon source
utilization profiles were compared and niche overlap indices (NOIs) derived according to Wilson and Lindow (1994 a,b) to estimate ecological similarities between *P. agglomerans* biocontrol strains and the pathogen *P. s. pv. syringae* Pss 552. The varying level of coexistence and low niche overlap index between *P. agglomerans* and the INA-minus *P. syringae* TLP2del1 found by Wilson & Lindow (1994 c) on beans might reflect the nutritional diversity of strains used in their study all isolated from different environments and plants (pear, hawthorn, potatoes, citrus), while in my system all isolates of *P. agglomerans* and *P. s. pv. syringae* were isolated from the same geographical region and plant species, and hence might have been better adapted to nutrient-limited barley surfaces. *P. agglomerans* strains probably competed with *P. s. pv. syringae* for all compounds present, including amino acids, organic acids, and carbohydrates, in contrast to Wilson & Lindow’s (1994 c) studies, in which competition between *P. agglomerans* and *P. syringae* was thought to be mainly for amino and organic acids, but only a few carbohydrates. Since *P. s. pv. syringae* depends on the presence of only a few carbohydrates compared to *P. agglomerans*, its survival may be more restricted in a nutrient limited environment in which *P. agglomerans* competes for the same resources. Furthermore, I noticed that strain Eh 460, which produced only low levels of antibiotics but competed successfully with Pss 552 (NOI = 0.96) was more effective in disease reduction on cv. B 2601 in field experiments (63%; mean disease reduction over two years, chapter 4, tab. 4.1 & 4.2) than strain Eh 236, which seemed less competitive in the field (54%; chapter 4, tab. 4.1 & 4.2), but demonstrated high levels of antibiosis (23 mm). However, disease reduction by strain Eh 236 in greenhouse experiments was greater (81%; chapter 4, Fig. 4.3) compared to Eh 460, which revealed 77%
disease reduction (mean disease reduction over 5 experiments; chapter 4, Fig. 4.3, 4.4, 4.5, 4.6, tab. 4.5). This discrepancy may be due to the absence of natural competitors in greenhouse grown barley as opposed to field grown barley. It might also explain why disease levels in the greenhouse were higher than disease levels in the field. However, it seems likely that \textit{P. agglomerans} reduces \textit{P. s. pv. syringae} on barley kernels by pre-emptive exclusion, since my population dynamics data indicated that pathogen populations were reduced (about 100-fold) during the infection window almost below a presumed critical threshold for kernel infection (Fig. 5.4), resulting in reduced disease severity. Similar reductions of pathogen populations by \textit{E. herbicola} (Lindow et al., 1983 a,b; Rundle & Beer, 1987; Wilson et al., 1992; Johnson et al., 1993) or \textit{P. fluorescens} A506 (Wilson & Lindow, 1993) have been reported.

Scanning electron microscopy (SEM) has revealed the possibility of competition for the same colonization sites such as bases of trichomes and stomata in the interaction between \textit{P. agglomerans} and \textit{P. s. pv. syringae}. Competition for space has been suggested as a mechanism of microbial antagonism on the phylloplane on several occasions. A SEM study of the interaction between \textit{E. herbicola} and \textit{E. amylovora} on the stigma of apple blossoms (Hattingh et al., 1986) indicated that these two species occupy the same sites and that prior colonization of the stigma by the biocontrol agent prevented the pathogen from gaining access to these sites. Rundle & Beer (1987) reported that inoculation of the stigma of apple blossoms with \textit{E. herbicola} 24 h in advance of inoculation with \textit{E. amylovora} prevented subsequent multiplication by \textit{E. amylovora}. Wilson et al. (1992) suggested that \textit{E. herbicola} preemptively, or competitively, excluded \textit{E. amylovora} from intercellular
spaces between stigmatic papillae by utilizing a growth-limiting resource required by both species, although the competitive superiority of *E. herbicola* may have been a result of antibiosis. While two strains of bacteria may occupy the same leaf surface, antagonism between those two strains may occur only if they utilize the same limited phylloplane resources (Lindow, 1987), which I attempted to demonstrate by using the *in vitro* carbon source utilization profiles mentioned above.

Montana soils in the Fairfield area are calcareous with pH values of about pH 7.4 - 7.6 in H₂O, suggesting limited availability of free Fe³⁺ ions in the phyllosphere of plants. Furthermore, the concentration of soluble ferric ion at pH 7 is approximately 10¹⁷ M, which is far too low to sustain microbial growth, which is estimated to require at least 10⁻⁵ to 10⁻⁷ M concentrations (Leong, 1986; Loper & Buyer, 1991; Loper & Lindow, 1994). Iron requiring organisms, such as barley, *P. agglomerans*, and *P. s. pv. syringae* overcome the problem of iron limitation by secreting siderophores to chelate iron(III) from the environment. Relatively high iron concentrations were reported to increase syringomycin production in *P. s. pv. syringae* (Gross, 1985), a toxin which causes ion-channel formation and lysis of plant and fungal cellular membranes (Gross & Cody, 1985; Gross, 1991; Hutchison et al., 1995), enhancing virulence and long-term viability of the bacteria (Gross, 1985, 1991). In contrast, Loper & Lindow (1987) found no differences between sid-plus and sid-minus *P. s. syringae* mutants in their growth, survival or virulence on bean leaf surfaces, implying no importance for siderophore production, and hence, iron uptake *in situ*.

In my studies, the efficiency of *P. agglomerans* Eh 239 to suppress basal kernel blight infection was reduced by 30% when 100 μM FeCl₃ was added to the barley
phyllosphere. Additionally, two out of three siderophore-minus mutants, presumably
defective in siderophore biosynthesis or excretion based on the absence of orange halos
around bacterial colonies on chrome azurol S (CAS) agar (Schwyn & Neilands, 1987), did
not significantly reduce basal kernel blight infection, while one Sid\' strain reduced the
disease as efficiently as the parental wildtype (67-69%). These results indicated that
competition for iron may be a potential mechanism in the \textit{P. s. pv. syringae} - \textit{P. agglomerans} interaction. Competition for iron via siderophores and the conversion of
biocontrol effects by the addition of FeCl$_3$ or Fe-EDTA to an iron-limited environment has
been reported frequently in microbial systems (Kloepper et al., 1980; Weller & Cook, 1986;
beneficial bacteria such as \textit{P. agglomerans} might sequester iron(III) more efficiently in the
phyllosphere, making it unavailable to \textit{P. s. pv. syringae}'s siderophores. Leong (1986)
proposed two possible interaction mechanisms: (1) Beneficial strains inhibited the growth
of deleterious strains by depriving them of iron, because the deleterious bacteria could not
use the Fe-siderophores from beneficial strains; (2) Beneficial and deleterious strains could
not use each other's Fe-siderophores. Factors such as the relative equilibrium-binding
constants of siderophores for iron(III), the relative kinetics of the iron transport system for
ferric siderophores and the amount of siderophore production probably determines the
efficiency of each strain for iron assimilation and predicts which population predominates
in an iron-limiting environment (Leong, 1989). Since most studies on iron competition and
siderophore production are based on rhizosphere investigations, and iron availability at
bacterial colonization sites on plant surfaces cannot be quantified by conventional methods
(Loper & Lindow, 1994), an interpretation of the interaction between *P. agglomerans* and *P. s. pv. syringae* in the barley phyllosphere is difficult. Nevertheless, cross-feeding assays could provide information whether or not *P. agglomerans* can utilize ferric-siderophores produced by *P. s. pv. syringae* and vice versa. The assays rely on the inability of indicator strains, which have mutations in siderophore biosynthetic genes, to grow on an iron-limited medium unless an utilizable form of iron is provided from an exogenous source (Bull et al., 1994, 1996). Furthermore, the biological availability of iron in the phyllosphere in the presence or absence of *P. agglomerans* bacteria could be assessed by evaluating ice nucleation activity (INA) expressed *in situ* by *P. s. pv. syringae*. Therefore, an INA-minus *P. s. pv. syringae* mutant would need to carry a transcriptional fusion (*pvd-inaZ*) of an iron-regulated promoter to an ice nucleation reporter gene (*inaZ*). With this approach iron availability to *P. fluorescens* has been demonstrated in the rhizosphere (Loper & Henkels, 1997). The degree of Pss 552 inhibition by siderophore-minus mutants *in vitro*, and whether the *P. agglomerans* siderophores excreted might function as antibiotics remains to be investigated.

Since disease reduction was not completely eliminated by iron addition, and a sid-minus mutant (Sid-1) as well as *P. agglomerans* strains Eh 236 and Eh 460, which demonstrated only weak siderophore excretion on CAS, were very efficient in disease reduction (Fig. 5.1; 5.8; 5.9; Tab. 4.1; 4.2 chapter 4), mechanisms other than iron competition are most likely involved in the *P. agglomerans-P. s. pv. syringae* interaction. In addition, the single iron amendment also significantly reduced the incidence of basal kernel blight by 54% and so did the heat-killed Pss 552 pathogen control (52%), supporting
the hypothesis that other mechanisms may be involved in the interaction. Both treatments applied three days prior to pathogen inoculation might have triggered induced systemic resistance in the host plants as did the chemical inducer benzothiadiazole in the same experiment. Alternatively, the concentration of 100 \(\mu \text{M} \) FeCl\(_3\) could have been lethal to the pathogen applied three days later.

The first evidence that barley plants (cv. B 2601) might be sensitive to induced resistance mechanisms was given by the consistent performance of benzothiadiazole (CGA245704/Actigard®), which reduced the basal kernel blight disease by 62-97% over three experiments. Similar high control levels (96%) were noticed by Oostendorp et al. (1996) when they applied benzothiadiazole to cucumber leaves four days prior to challenge inoculation with \(\text{P. s. pv. lachrymans} \). Disease control on cucumber was simultaneously demonstrated against the fungal pathogen \textit{Colletotrichum lagenarium} and TNV (tobacco necrosis virus). Furthermore, benzothiadiazole activated the SAR marker genes WCI1 and 3 of wheat, while an induction of chitinase and glucanase was negative. The chemical activator was shown to induce the same resistance mechanisms in cucumber and wheat as did a biological activation by the pathogen prior to challenge inoculation (Oostendorp et al., 1996; Görlach et al., 1996). Disease control in my system was comparable to benzothiadiazole protection (73-97%), when biocontrol agents Eh 239 (87% disease reduction) and Eh 460 (84%) were applied prior to the pathogen (Fig. 5.6, 5.8). This suggested biological activation of resistance mechanisms in barley. Data of a classical induced resistance experiment, in which benzothiadiazole, as well as the biocontrol agent Eh 239, was applied to lower leaves of 6 week old barley plants prior to challenge
inoculation with *P. s. pv. syringae* Pss 552 on upper leaves, demonstrated 45.6% disease control by Eh 239 and 50.5% by benzothiadiazole, whereas the non-induced control resulted in 79.8% infection based on leaf necrosis caused by Pss 552 (Braun et al., 1997a; Braun et al., 1998). Likewise, the experiment conducted on cv. B 2601 plants at soft dough stage with application of biocontrol agents or benzothiadiazole on flag leaves 3 days prior to challenge inoculation of barley heads with Pss 552 at soft dough (Fig. 5.9) resulted in statistically similar control levels. Since no spread of biocontrol bacteria to upper plant parts (heads) was observed during the experiment, induced systemic resistance appeared to be responsible for disease reduction. However, control levels in induced resistance experiments were lower (45-62%) compared to the conventional spray application of biocontrol agents or benzothiadiazole three days prior to the pathogen at soft dough stage (72-100% disease control), suggesting that induced resistance in barley is not the only mechanism by which *P. agglomerans* reduces the basal kernel blight disease. Whether biocontrol strain-mediated induced systemic resistance (ISR) in my barley system follows a signaling pathway that, like SAR, depends on salicylic acid or other signals and pathogenesis-related protein gene activation warrants further examination. In addition, the possibility of siderophore-mediated and iron-regulated induced systemic resistance remains to be investigated. Recently Press et al. (1997) reported on a *Serratia marcescens* strain 90-166 that did not cause ISR at elevated iron levels. A siderophore-minus mutant 90-166-2882 was identified which no longer induced resistance in cucumber to *Colletotrichum orbiculare*, supporting the conclusion that iron-regulation was important in ISR. Since benzothiadiazole may have stimulated systemic resistance in the barley cultivar B 2601 against *P. s. pv. syringae*, it
appears likely that this may also provide control of other foliar pathogens of barley, including viral and fungal diseases not investigated in my studies. Therefore, a broader spectrum of ISR-mediated disease control should be considered for *P. agglomerans* research in the future. In addition, further proof is needed to determine whether SAR mechanisms associated with the systemic accumulation of PR-proteins and the translocation of systemic signals (e.g. salicylic acid, ethylene, etc) are involved in the interaction with the barley plant. However, this is the first report of *P. agglomerans* inducing systemic resistance in barley. In addition, *P. agglomerans* was recently found to induce resistance in radishes against *Xanthomonas campestris* pv. *armoraciae* (Han et al., 1997).

The results of my studies indicated that strains of *P. agglomerans* may inhibit the development of *P. s. pv. syringae* by one or more mechanisms, based on the inherent capability of the strains and the environment in which the interaction takes place. Hence, it is becoming apparent, that no single biocontrol mechanism is responsible for the biocontrol features observed *in vitro* and *in vivo*, and the predominant operating mechanism may differ between strains of *P. agglomerans* (Wright, 1997; Braun et al., 1998).
Literature Cited

Since the significance of *Pseudomonas syringae pv. syringae* on barley increased at the beginning of the 1990s in the barley growing areas of the Northern Prairies of the US, its epidemiology and cultivar response to bacterial attack has been examined (Martinez-Miller, 1994; Martinez-Miller et al., 1998). However, studies on its pathogenesis, phylogeny, and disease control management on monocots are still missing. Therefore, the present study focused on the invasion of barley kernels by and the intrapathovar variation of *P. s. pv. syringae*, as well as on its biological control by antagonistic *P. agglomerans* and mechanisms in the *P. agglomerans-P. s. pv. syringae* interaction.

Microscopic investigations and population dynamics suggested an epiphytic *P. s. pv. syringae* inoculum buildup prior to invasion through stomata. Once inside the kernel, the pathogen spread randomly in intercellular spaces and xylem vessels. There was no apparent tissue specificity. However, water-soaking and kernel necrosis developed first at the kernel base and spread upward. Enzymatic activity probably resulted in cell wall degradation, which in association with toxin production might have released nutrients required to sustain population growth under favorable environmental conditions. In addition, extracellular polysaccharide capsule production most likely contributed to disease development and kernel necrosis by protecting bacterial cells from the host plant's defense responses.
The significance of syringomycin toxin production for virulence of different *P. s. pv. syringae* strains (Xu & Gross, 1988; Gross, 1991) was supported in my studies since 96% of toxin producing isolates were pathogenic to barley cv. B 2601. However, we did not detect a correlation between amount of *in vitro* toxin production and percent kernel infection *in vivo*. The fact that genomic DNA-fingerprinting revealed genetically very distinct *P. s. pv. syringae* populations in the same geographic area, might reflect its ecological niche adaptation strategies to a dynamic and continuously changing environment, represented by its epiphytic existence on multiple plants, such as barley or weeds. In a holistic sense, diverse populations are more likely to survive changing environmental conditions than similar populations, therefore contributing to ecosystem stability and protection from extinction. Despite an overall heterogeneity of Pss populations discovered by the HR-reaction, virulence patterns, and DNA analyses, the *in vitro* nutritional profiles for Pss strains revealed a higher similarity (> 90% for most strains), which could even be increased to 97-100% similarity when only carbon and nitrogen sources available on barley were considered (data not shown). Consequently, only a low correlation between phenotypic and genotypic strain variability was observed.

However diverse the *P. s. pv. syringae* populations in the field might have been, the biocontrol experiments in 1994 and 1995 revealed 45-70% disease reduction when antagonistic *P. agglomerans* bacteria were applied to barley heads prior to the Pss infection window. Furthermore, I demonstrated that a single application of *P. agglomerans* was sufficient for disease control since antagonists were established consistently in the barley phyllosphere. Since viability and biocontrol efficiency of formulated antagonists was not
affected after long-term storage (1.5 years), I consider the oil/starch/sugar encapsulation method developed by Quimby et al. (1996) as a valuable form of preservation for Gram-negative biocontrol agents, such as *P. agglomerans*. A limited application frequency and a successful long-term storage in addition to dependable biocontrol performances of antagonists are important parameters for the development of living microbes into commercial biocontrol products. Due to these findings and the enduring and faithful biocontrol efficacy of several *P. agglomerans* strains in greenhouse and field experiments, I suggest that these bacteria are eminent biological control agents against the *P. s. pv. syringae* induced barley kernel blight disease.

Investigation of the interactions between *P. agglomerans* and *P. s. pv. syringae* and the host plant barley revealed multiple biocontrol mechanisms. Antibiotics were produced by biocontrol agents constantly *in vitro*. However, *in vitro* antibiotic production was only weakly correlated with *in vivo* disease control. Since the role of antibiotics in disease suppression is ambiguous for *P. agglomerans* (Vanneste & Yu, 1996; Wright, 1997), it seems to vary from strain to strain. This is probably a reflection of the different antibiotics produced by different strains (Ishimaru et al., 1988; Wright, 1997). *In vitro* nutrient competition studies demonstrated a high degree of nutritional similarity between *P. agglomerans* strains and the pathogen Pss 552, suggesting a low level of coexistence in a nutrient limited environment. In fact, preemptive exclusion was confirmed by isolation studies, in which pathogen populations were kept almost below a presumed threshold level (about 10^3 cfu/kernel) for barley kernel infection when *P. agglomerans* was present prior to pathogen arrival. Moreover, scanning electron micrographs revealed that cells of the
biocontrol agent and pathogen preferred the same colonization sites on the kernel surface, mainly stomata and trichomes, also implying competition for space around potential infection sites. The importance of iron(III) in the interaction between \textit{P. agglomerans} and \textit{P. s. pv. syringae} is difficult to predict and my data are not sufficient for a clear interpretation. However, the research into competition for available iron(III) and the different iron uptake systems for Fe-siderophores between the two genera is new and seems warranted in relation to the biocontrol efficacy of \textit{P. agglomerans}. Finally, I discovered that strains Eh 460 and Eh 239 significantly reduced basal kernel blight infection through induced systemic resistance. Since this is the first report on the induction of systemic resistance in barley by \textit{P. agglomerans}, the mechanisms in this biocontrol agent-barley interaction are not known and should be elucidated in future research on the molecular level.

My studies have contributed to a better understanding of \textit{Pseudomonas syringae} pv. \textit{syringae} as causal agent of basal kernel blight of barley and the mechanisms involved in its suppression by \textit{Pantoea agglomerans}. The knowledge about pathogenesis as well as diversity of \textit{P. s. pv. syringae} populations, in addition to elucidating the mechanisms by which the pathogen can be controlled by other naturally occurring phyllosphere microorganisms could be used in other plant-pathogen systems for the successful prevention of plant diseases.

Striking was the obvious multiplicity of mechanisms involved in the interaction between \textit{P. agglomerans} biocontrol agents and the \textit{P. s. pv. syringae} pathogen, which might be an evolutionary response of competitive organisms in a habitat comprising diverse populations of pathogens and biocontrol agents.