Abstract:
The first site selected UV spectra (with polarization) of matrix isolated indole, 3-methylindole, 5-methylindole, 2-methylindole, 1-methylindole, 2,3-dimethyl indole, and 4-fluoroindole in argon at 20K were obtained. The main thrusts of this research is to locate the true 1La origin, and to characterize the fluorescence and the phosphorescence.

The true 1La origin for indole lies 1100-1300 cm⁻¹ (split) above the 1Lb origin and the true 1La origin was distinguished from its false 1La origin at 455 and 480 cm⁻¹ (jet). The fluorescence was identified as 1Lb and sharp (10 cm⁻¹) phosphorescence was obtained giving the Franck-Condon factors for La emission. The 1La origin for 3-methylindole was 260 cm⁻¹ (unsplit) above the 1Lb origin, which was verified both by fluorescence anisotropy and 2-photon measurements. The fluorescence was identified as 1Lb. For 2,3-dimethylindole the combined perturbation of the two methyl groups causes the inversion of states with the 1La being 190 cm⁻¹ below the 1Lb. This was verified by 1La fluorescence identification and by 2-photon measurements. The 1La fluorescence can be distinguished from its 1Lb counterpart.

The rest of the mono-methylated indoles emit from the 1Lb state and the 1La origin lies above the 1Lb as follows: 5-methylindole (1800 cm⁻¹), 2-methylindole (400-600 cm⁻¹), 1-methylindole (430-600 cm⁻¹). For 4-fluoroindole the 1La origin lies 1520 cm⁻¹ above the 1Lb and the fluorescence is characterized by a long Franck-Condon progression of the 26°1 mode.

Also included in this work is indole and 3-methylindole in N2 at 30K, 3-methylindole in ethanol at 15K, and 3-methylindole complexed with H2O and methanol in a supersonic jet.

This information will facilitate the use of tryptophan as a spectroscopic probe molecule in the understanding of protein structure and dynamics.
SPECTROSCOPY OF INDOLES IN ARGON MATRICES AT 20K,
WITH 1La ORIGIN IDENTIFICATION

by

Bruce Jonathon Fender

A thesis submitted in partial fulfillment
of the requirements for the degree
of
Doctor of Philosophy
in
Chemistry

MONTANA STATE UNIVERSITY
Bozeman, Montana

July, 1997
APPROVAL

of this thesis submitted by

Bruce Jonathon Fender

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

July 23, 1997
Date

Patrick L. Calli
Chairperson, Graduate Committee

July 24, 1997
Date

David M. Arley
Head, Major Department

Approved for the College of Graduate Studies

7/31/97
Date

Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirement for a doctoral degree at Montana State University, I agree that the library shall make it available to borrowers under rules of the library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U. S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilm International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted "the exclusive right to reproduce and distribute my dissertation in and from microform along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part."

Signature
Date 7/23/97
ACKNOWLEDGMENTS

I wish to thank Professor Patrik Callis for his guidance, support, and insight, which has kept me on track during my graduate career. I thank the Callis group, especially Dr. Pedro Muino, Kurt Short, and David Hahn, for their advice and assistance during my stay in the group.

I also wish to thank Professor Lee Spangler and his group for their willingness to give a helpful word of advice or the lending of equipment.

I would also like to thank the rest of the members of my graduate committee, Dr. Reed Howald, Dr. Jan Sunner, Dr. Eric Grimsrud, and Dr. Myles Watts for their time and commitment.

And a final word of thanks goes to my family (to my Mom and Dad, to my brother and his family, and to my sister) for their constant love and support through the years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>4</td>
</tr>
<tr>
<td>Statement of Problem</td>
<td>11</td>
</tr>
<tr>
<td>2. THEORY</td>
<td>14</td>
</tr>
<tr>
<td>Emission Anisotropy</td>
<td>14</td>
</tr>
<tr>
<td>The Onsager-Mataga-Lippert Model</td>
<td>16</td>
</tr>
<tr>
<td>Herzberg-Teller Coupling</td>
<td>18</td>
</tr>
<tr>
<td>Fermi Resonance</td>
<td>20</td>
</tr>
<tr>
<td>Site Selective Spectroscopy</td>
<td>21</td>
</tr>
<tr>
<td>Phosphorescence</td>
<td>25</td>
</tr>
<tr>
<td>Principles of Supersonic Jet Spectroscopy</td>
<td>28</td>
</tr>
<tr>
<td>Two-Photon Spectroscopy</td>
<td>29</td>
</tr>
<tr>
<td>3. EXPERIMENTAL SECTION</td>
<td>34</td>
</tr>
<tr>
<td>Matrix Isolation</td>
<td>34</td>
</tr>
<tr>
<td>Absorption Measurements</td>
<td>39</td>
</tr>
<tr>
<td>Phosphorescence Measurements</td>
<td>41</td>
</tr>
<tr>
<td>Two-Photon Spectroscopy</td>
<td>41</td>
</tr>
<tr>
<td>Formation of the Matrices</td>
<td>42</td>
</tr>
<tr>
<td>Supersonic Jet Instrument</td>
<td>45</td>
</tr>
<tr>
<td>4. RESULTS AND DISCUSSION</td>
<td>49</td>
</tr>
<tr>
<td>Indole in an Argon Matrix</td>
<td>49</td>
</tr>
<tr>
<td>Fermi Resonance</td>
<td>56</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS—Continued

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herzberg-Teller</td>
<td>59</td>
</tr>
<tr>
<td>The 1L_0 Origin</td>
<td>60</td>
</tr>
<tr>
<td>Site Structure</td>
<td>63</td>
</tr>
<tr>
<td>Phosphorescence</td>
<td>68</td>
</tr>
<tr>
<td>3-Methylindole</td>
<td>74</td>
</tr>
<tr>
<td>5-Methylindole</td>
<td>84</td>
</tr>
<tr>
<td>2,3-Dimethyindole</td>
<td>86</td>
</tr>
<tr>
<td>2-Methylindole</td>
<td>96</td>
</tr>
<tr>
<td>1-Methylindole</td>
<td>98</td>
</tr>
<tr>
<td>Phosphorescence</td>
<td>104</td>
</tr>
<tr>
<td>4-Fluoroindole</td>
<td>106</td>
</tr>
<tr>
<td>Phosphorescence</td>
<td>118</td>
</tr>
<tr>
<td>Comparison Of Properties</td>
<td>120</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>124</td>
</tr>
<tr>
<td>Indole in N$_2$ at 30K</td>
<td>124</td>
</tr>
<tr>
<td>3-Methylindole in N$_2$ at 30K</td>
<td>129</td>
</tr>
<tr>
<td>3-Methylindole in Ethanol at 15K</td>
<td>131</td>
</tr>
<tr>
<td>3-Methylindole Complexes in a Supersonic Jet</td>
<td>135</td>
</tr>
<tr>
<td>Water Complex</td>
<td>135</td>
</tr>
<tr>
<td>Methanol Complex</td>
<td>139</td>
</tr>
</tbody>
</table>

5. SUMMARY ... 146

REFERENCES ... 148
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The two-photon values of the argon matrix and the jet spectra</td>
<td>54</td>
</tr>
<tr>
<td>2.</td>
<td>Indole Phosphorescence</td>
<td>73</td>
</tr>
<tr>
<td>3.</td>
<td>1-Methylindole phosphorescence</td>
<td>105</td>
</tr>
<tr>
<td>4.</td>
<td>4-Fluoroindole phosphorescence</td>
<td>119</td>
</tr>
<tr>
<td>5.</td>
<td>The energy difference for the (^1L_a) and (^1L_b) states of substituted indoles relative to indole</td>
<td>121</td>
</tr>
<tr>
<td>6.</td>
<td>The frequencies of modes 28, 27, 26</td>
<td>121</td>
</tr>
<tr>
<td>7.</td>
<td>Site energies for the (S_1), (S_2), (T_1) states of indole in argon at 20K</td>
<td>122</td>
</tr>
<tr>
<td>8.</td>
<td>Indole + H₂O</td>
<td>139</td>
</tr>
<tr>
<td>9.</td>
<td>Indole + Methanol</td>
<td>142</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tryptophan</td>
<td>3</td>
</tr>
<tr>
<td>2. Indole with numbering system</td>
<td>3</td>
</tr>
<tr>
<td>3. Excitation to the (^1L_a) and (^1L_b) states, where (r) is a distortion along a general coordinate that takes the geometry from the (^1L_b) minimum to the (^1L_a) minimum</td>
<td>5</td>
</tr>
<tr>
<td>4. Schematic diagram for determining the emission anisotropy</td>
<td>15</td>
</tr>
<tr>
<td>5. Site structure of the supersonic jet environment, (a), argon matrix environment, (b), and solution environment, (c)</td>
<td>23</td>
</tr>
<tr>
<td>6. Phosphorescence (Ph) and fluorescence (Fl)</td>
<td>27</td>
</tr>
<tr>
<td>7. Supersonic jet expansion</td>
<td>28</td>
</tr>
<tr>
<td>8. One and two-photon spectroscopy</td>
<td>30</td>
</tr>
<tr>
<td>9. Matrix isolation experimental setup</td>
<td>35</td>
</tr>
<tr>
<td>10. Transmittance experimental setup</td>
<td>40</td>
</tr>
<tr>
<td>11. Jet experimental setup</td>
<td>48</td>
</tr>
<tr>
<td>12. Transmittance spectrum of indole in argon at 20K, with 0.2 cm(^{-1}) bandpass</td>
<td>50</td>
</tr>
<tr>
<td>13. The (26^0), line excited at 285.84, 285.85, 285.86, 285.87, 285.88 nm, with a 2 cm(^{-1}) bandpass</td>
<td>51</td>
</tr>
<tr>
<td>14. Supersonic jet fluorescence excitation spectrum of indole (with (\Omega) values), (a), simulated matrix spectrum, (b), fluorescence excitation spectrum of indole in argon at 20K, (c), and the fluorescence anisotropy, (d)</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF FIGURES - Continued

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>Two-photon spectrum of the 1L_b origin, (a), 26^1_b, (b), and 28^1_b, (c), of indole in argon at 20K</td>
<td>55</td>
</tr>
<tr>
<td>16.</td>
<td>Fermi resonance of the 29^1_b and the 41^1_0, 42^1_0 lines</td>
<td>59</td>
</tr>
<tr>
<td>17.</td>
<td>Fluorescence spectrum of indole in argon at 20K (500-800 cm$^{-1}$), (a), and fluorescence anisotropy, (b)</td>
<td>61</td>
</tr>
<tr>
<td>18.</td>
<td>Fluorescence spectrum of indole in argon at 20K, (a), and the stick spectrum, (b)</td>
<td>64</td>
</tr>
<tr>
<td>19.</td>
<td>Fluorescence excitation spectra (200-1400 cm$^{-1}$) of indole in argon at 20K from site 1, (a), site 2, (b), site 5, (c), and site 3, (d)</td>
<td>67</td>
</tr>
<tr>
<td>20.</td>
<td>The phosphorescence decay, (a), and the log plot, (b)</td>
<td>68</td>
</tr>
<tr>
<td>21.</td>
<td>The phosphorescence spectra of indole in argon at 20K from site 1, (a), site 5, (b), and site 2, (c)</td>
<td>71</td>
</tr>
<tr>
<td>22.</td>
<td>The phosphorescence spectrum of indole in argon at 20K from site 5, (a) and the stick spectrum</td>
<td>72</td>
</tr>
<tr>
<td>23.</td>
<td>Transmittance spectrum of 3MI in argon at 20K, with a 0.2 cm$^{-1}$ bandpass</td>
<td>75</td>
</tr>
<tr>
<td>24.</td>
<td>Supersonic jet fluorescence excitation spectrum of 3MI (with Ω value), (a), fluorescence excitation spectrum of 3MI in argon at 20K, (b), and fluorescence anisotropy, (c)</td>
<td>78</td>
</tr>
<tr>
<td>25.</td>
<td>Two-photon spectrum of the 1L_a and 1L_b origin region (-50-400 cm$^{-1}$) of 3MI in argon at 20K</td>
<td>79</td>
</tr>
<tr>
<td>26.</td>
<td>Dispersed fluorescence spectrum of 3MI in argon at 20K</td>
<td>82</td>
</tr>
<tr>
<td>27.</td>
<td>Dispersed phosphorescence spectrum of 3MI in argon at 20K, with 1L_b origin excitation at 288.78 nm</td>
<td>83</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>28.</td>
<td>Supersonic jet fluorescence excitation spectrum of 5MI (with Ω values), (a), fluorescence excitation spectrum of 5MI in argon at 20K, (b), and fluorescence anisotropy, (c)</td>
<td>87</td>
</tr>
<tr>
<td>29.</td>
<td>Dispersed fluorescence spectrum of 5MI in argon at 20K</td>
<td>88</td>
</tr>
<tr>
<td>30.</td>
<td>Dispersed phosphorescence spectrum of 5MI in argon at 20K, with (^1L_b) origin excitation at 291.75 nm</td>
<td>89</td>
</tr>
<tr>
<td>31.</td>
<td>Fluorescence excitation spectrum of 2,3DMI in argon at 20K, (a), and the fluorescence anisotropy, (b)</td>
<td>93</td>
</tr>
<tr>
<td>32.</td>
<td>Dispersed fluorescence spectrum of 2,3DMI in argon at 20K</td>
<td>94</td>
</tr>
<tr>
<td>33.</td>
<td>Dispersed phosphorescence spectrum of 2,3DMI in argon at 20K, with (^1L_a) origin excitation at 288.66 nm</td>
<td>95</td>
</tr>
<tr>
<td>34.</td>
<td>Transmittance spectrum of 2MI in argon at 20K, with a 0.2 cm(^{-1}) bandpass</td>
<td>99</td>
</tr>
<tr>
<td>35.</td>
<td>Fluorescence excitation spectrum of 2MI in argon at 20K, (a), and the fluorescence anisotropy, (b)</td>
<td>100</td>
</tr>
<tr>
<td>36.</td>
<td>Dispersed fluorescence spectrum of 2MI in argon at 20K</td>
<td>101</td>
</tr>
<tr>
<td>37.</td>
<td>Dispersed phosphorescence spectrum of 2MI in argon at 20K, with (^1L_b) origin excitation at 286.07 nm</td>
<td>102</td>
</tr>
<tr>
<td>38.</td>
<td>Transmittance spectrum of 1MI in argon at 20K, with a 0.2 cm(^{-1}) bandpass</td>
<td>107</td>
</tr>
<tr>
<td>39.</td>
<td>Fluorescence excitation spectrum of 1MI in argon at 20K, (a), and the fluorescence anisotropy, (b)</td>
<td>108</td>
</tr>
<tr>
<td>40.</td>
<td>Dispersed fluorescence spectrum of 1MI in argon at 20K</td>
<td>109</td>
</tr>
<tr>
<td>41.</td>
<td>Dispersed phosphorescence spectrum of 1MI in argon at 20K, with (^1L_b) origin excitation at 291.55 nm, and stick spectrum, (b)</td>
<td>110</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>42.</td>
<td>Transmittance spectrum of 4FI in argon at 20K, with a 0.2 cm$^{-1}$ bandpass</td>
<td>114</td>
</tr>
<tr>
<td>43.</td>
<td>Fluorescence excitation spectrum of 4FI in argon at 20K, (a), and fluorescence anisotropy, (b)</td>
<td>115</td>
</tr>
<tr>
<td>44.</td>
<td>Dispersed fluorescence spectrum of 4FI in argon at 20K</td>
<td>116</td>
</tr>
<tr>
<td>45.</td>
<td>Dispersed phosphorescence spectrum of 4FI in argon at 20K, with 1L_b origin excitation at 281.89 nm, (a), and the stick spectrum, (b)</td>
<td>117</td>
</tr>
<tr>
<td>46.</td>
<td>Energies of the 1L_a and 1L_b states</td>
<td>123</td>
</tr>
<tr>
<td>47.</td>
<td>The fluorescence excitation spectrum of indole in N$_2$ at 30K, (a), and the fluorescence anisotropy, (b)</td>
<td>126</td>
</tr>
<tr>
<td>48.</td>
<td>Fluorescence spectra of indole in N$_2$ at 30K, (a), and N$_2$ at 15K, (b)</td>
<td>127</td>
</tr>
<tr>
<td>49.</td>
<td>The phosphorescence spectrum of indole in N$_2$ at 30K</td>
<td>128</td>
</tr>
<tr>
<td>50.</td>
<td>Transmittance spectra of 3MI in argon at 20K, (a) and N$_2$ at 30K, (b)</td>
<td>130</td>
</tr>
<tr>
<td>51.</td>
<td>Fluorescence spectra of 3MI in ethanol at 300K, (a), 15K, (b), and red-edge excitation (307 and 303.5 nm) at 15K, (c)</td>
<td>134</td>
</tr>
<tr>
<td>52.</td>
<td>The fluorescence excitation spectrum of 3MI(H$_2$O)$_1$ in a supersonic jet (with Ω values)</td>
<td>137</td>
</tr>
<tr>
<td>53.</td>
<td>Two-photon spectrum of 3MI(H$_2$O)$_1$, complex origin (with Ω values)</td>
<td>138</td>
</tr>
<tr>
<td>54.</td>
<td>The fluorescence excitation spectrum of 3MI(methanol)$_1$ in a supersonic jet (with Ω values)</td>
<td>143</td>
</tr>
<tr>
<td>55.</td>
<td>Two-photon spectra of the bare 3MI origin, (a), and 3MI(methanol)$_1$, complex origin, (b), (with Ω values)</td>
<td>144</td>
</tr>
<tr>
<td>56.</td>
<td>Two-photon spectra of the first quanta at -268.3 cm$^{-1}$, (a), and the second quanta at -247.2 cm$^{-1}$, (b), (with Ω values)</td>
<td>145</td>
</tr>
</tbody>
</table>
The first site selected UV spectra (with polarization) of matrix isolated indole, 3-methylindole, 5-methylindole, 2-methylindole, 1-methylindole, 2,3-dimethylindole, and 4-fluoroindole in argon at 20K were obtained. The main thrusts of this research is to locate the true \(^1L_a \) origin, and to characterize the fluorescence and the phosphorescence.

The true \(^1L_a \) origin for indole lies 1100-1300 cm\(^{-1}\) (split) above the \(^1L_b \) origin and the true \(^1L_a \) origin was distinguished from its false \(^1L_a \) origin at 455 and 480 cm\(^{-1}\) (jet). The fluorescence was identified as \(^1L_a \) and sharp (10 cm\(^{-1}\)) phosphorescence was obtained giving the Franck-Condon factors for \(L_a \) emission. The \(^1L_a \) origin for 3-methylindole was 260 cm\(^{-1}\) (unsplit) above the \(^1L_b \) origin, which was verified both by fluorescence anisotropy and 2-photon measurements. The fluorescence was identified as \(^1L_b \). For 2,3-dimethylindole the combined perturbation of the two methyl groups causes the inversion of states with the \(^1L_a \) being 190 cm\(^{-1}\) below the \(^1L_b \). This was verified by \(^1L_a \) fluorescence identification and by 2-photon measurements. The \(^1L_a \) fluorescence can be distinguished from its \(^1L_b \) counterpart.

The rest of the mono-methylated indoles emit from the \(^1L_b \) state and the \(^1L_a \) origin lies above the \(^1L_b \) as follows: 5-methylindole (1800 cm\(^{-1}\)), 2-methylindole (400-600 cm\(^{-1}\)), 1-methylindole (430-600 cm\(^{-1}\)). For 4-fluoroindole the \(^1L_a \) origin lies 1520 cm\(^{-1}\) above the \(^1L_b \) and the fluorescence is characterized by a long Franck-Condon progression of the 26\(^0\) mode.

Also included in this work is indole and 3-methylindole in \(N_2 \) at 30K, 3-methylindole in ethanol at 15K, and 3-methylindole complexed with \(H_2O \) and methanol in a supersonic jet.

This information will facilitate the use of tryptophan as a spectroscopic probe molecule in the understanding of protein structure and dynamics.
Chapter 1

INTRODUCTION

Proteins are one of the basic building blocks of life consisting of chains of amino acids linked together through amide bonds. One amino acid is distinguished from another by its side chain. Protein chemistry is quite complex; the sequence and conformation of amino acids of proteins are needed to completely understand its functionality. There are many ways of understanding protein conformation: from a theoretical standpoint using molecular modeling and dynamic simulations or from an experimental standpoint using NMR, X-ray crystallography, and spectroscopy. A common technique, X-ray diffraction, obtains a three-dimensional structure but requires the protein to be crystalline, which is quite difficult to nearly impossible for certain proteins. Furthermore, since the protein is not in its natural environment, the information gained is questionable when extended to living systems. This technique is also unable to study conformational changes in proteins due to environmental changes.

Spectroscopic techniques, where light is used to interact with an environmentally sensitive probe molecule, revealing structural and environmental information about the protein in vivo (living systems), offers useful complementary information. Three amino acids could be used as natural
spectroscopic probes in proteins when monitoring fluorescence with UV excited light: tyrosine, tryptophan, and phenylalanine. However, tyrosine is insensitive to its local environment and phenylalanine has a poor quantum yield. Furthermore, if tryptophan was present in the residue, then observing the fluorescence from either tyrosine or phenylalanine would be difficult. Tryptophan, on the other hand, is a more sensitive probe because of its low-lying 1L_a excited state, whose large permanent dipole interacts strongly with its local environment. Tryptophan can also be selectively excited on the long-wavelength absorption edge. For these reasons tryptophan has served as a spectroscopic probe molecule in proteins for over 30 years. The structure of tryptophan in its zwitterion state is shown in Figure 1.

Tryptophan is naturally incorporated in many proteins, and it may be inserted by point mutations if needed. Indole, the chromophore of the amino acid tryptophan, accounts for much of the UV absorption of proteins. The structure of indole and its numbering system is shown in Figure 2. Indole has two low lying $\pi\pi^*$ singlet excited states, labeled 1L_a and 1L_b, using Platt notation. The overlap of these nearly degenerate states causes the absorption spectrum to be quite complicated. A considerable amount of experimental and theoretical data on indole exists, but because of its complicated nature, its spectroscopic properties are still not fully known. Consequently, a more comprehensive picture of the electronic structure of indole is needed.
Figure 1. Tryptophan

Figure 2. Indole with numbering system.
In 1976, Valeur and Weber completed work on indole in propylene glycol at -58° C with polarized emission. They concluded from the emission anisotropy that the 280 nm band consisted of two excited states, 1L_a and 1L_b, whose transition moments lie in the plane of the molecule at approximately 90° relative to each other (see Figure 3). They went on to separate and resolve the two excited states using the anisotropy. However, their experiment lacked resolution, so they could not resolve individual vibrational lines.

The 1L_b state of indole is known to have a smaller geometry change upon excitation and a permanent dipole similar to the ground state. Therefore, the 1L_b state is less perturbed by its local environment and can be recognized by its relatively sharp structure. The 1L_b state is the S_1 state for indole, 5-methylindole (5MI), and 3-methylindole (3MI) in a nonpolar (low-interacting) environment.

The 1L_a state, on the other hand, has a large permanent dipole because its transition involves charge transfer, where electron density is shifted from the 5-member ring to the 6-member ring. This increase in dipole causes its fluorescence to be red-shifted and broadened by large Stokes shifts because of the larger interaction between its permanent dipole and the environment. These two factors cause the 1L_a state in solution to be recognized by its broad structure. In a polar environment, the 1L_a state will be the S_1 state for indole, 3MI, and 2,3-dimethylindole (2,3DMI). 5MI is one exception and emits from
Figure 3. Excitation to the 1L_a and 1L_b states, where r is a distortion along a general coordinate that takes the geometry from the 1L_b minimum to the 1L_a minimum.
both states in a polar environment

Comparing vapor phase spectra and partially resolved room temperature solution spectra, Strickland et al.7,8 have given evidence for these two electronic states in indole and indole derivatives (3MI and 2,3DMI). The 1L_a lines were distinguished from the 1L_b lines by differential solvent shifts due to their differences in permanent dipole and differences in dispersion interactions. The 1L_a origin of indole was postulated to lie 1460 cm-1 above the 1L_b origin in the vapor. They first noted that methylation in the 3-position caused significant changes to the absorption spectrum; the 1L_a origin was found to be extremely sensitive to this methylation, drastically red-shifting to 680 cm-1 above the 1L_b origin in vapor and 340 cm-1 in perfluorohexane. The Callis group verified the latter result with a value of 300 cm-1 in perfluorohexane, using a 2-photon technique9. By the addition of a second methyl group to indole in the 2-position producing 2,3DMI, further red-shifts the 1L_a origin. Strickland et al.7 concluded that the 1L_a and the 1L_b origins nearly overlap both in vapor and in perfluoromethylcyclohexane. This evidence points toward substitutions and solvation playing an important role in the photophysics of indole.

Utilizing supersonic jet spectroscopy, Wallace and coworkers have done extensive spectroscopy on indole and indole derivatives as isolated molecules or molecular complexes10-16. They used a variety of experimental techniques in their thorough investigation of indole: nanosecond fluorescence excitation, picosecond 2-photon resonant ionization, lifetime measurements via picosecond
excitation, and dispersed emission. Extensive lifetime measurements of the excited state were made and attempts were made to use lifetimes as a method to distinguish 1L_b states with longer lifetimes from 1L_a states with shorter lifetimes. This method reveals lifetimes, but lifetime measurements cannot be used as a positive means of identifying the state. There tends to be a general connection between the $^1L_a-^1L_b$ energy gap and the lifetimes, where smaller $^1L_a-^1L_b$ energy gaps produce shorter lifetimes and vice versa. These experiments simply tuned the $^1L_a-^1L_b$ energy gap of indole by methylation and/or complexation. Through this work, Wallace et al. and Lami and Glasser suggested that the 1L_a state is a nonradiative state through dissociation of the N-H bond. However, this nonradiative mechanism was later experimentally proven incorrect.

Callis and coworkers made huge strides in the development of a 2-photon technique, which had the ability to separate 1L_a lines from 1L_b lines through the absorption event. The two photon technique used the preferential absorption of circular versus linear polarized light, where the polarization ratio Ω can be measured, where $\Omega=\text{intensity using circular polarized light/intensity using linear polarized light}$. For an 1L_b transition the $\Omega \sim 1.5$ and for an 1L_a transition the $\Omega \sim 0.5$. The absorption of the two photons happens on the femtosecond time scale; therefore, this technique can be used under nonrigid conditions such as liquids and gases because the two photons absorb before the molecule loses its orientation due to rotational motion. This method has had profound ability to separate 1L_a and 1L_b states in the excited state manifold, except vibronically
coupled lines. The method was first applied to indole and indole derivatives in various solvents at room temperature18 and subsequently used on indole vapor19,20 and 3MI vapor20, where the 1L_a intensity was found 1454 cm$^{-1}$ above the 1L_b origin for indole and 400 cm$^{-1}$ for 3MI.

The recent expansion of supersonic jet spectroscopy, and in conjunction with this two-photon technique gave the experimenter the highest resolution and the clearest picture of the two excited states. The Callis group completed many experiments on a variety of indoles (indole, 3MI, (d$_7$-3MI), and 5MI); the positions of the 1L_a and 1L_b lines were located and identified, and a picture was made between methylation and the 1L_a and 1L_b states. For the first time, a more definitive statement could be made concerning these two states.

Indole had two small lines at 455 and 480 cm$^{-1}$ above the 1L_b origin that gave an 1L_a signature, but most of the 1L_a intensity sat 1000 cm$^{-1}$ higher in energy. It was first speculated that these two lines were in fact the 1L_a origin and were split (25 cm$^{-1}$ splitting) by coupling to the nearby 1L_b origin, but there was much hesitation about this assignment. First, the combined intensity of these two lines was much lower than the intensity of the 1L_b origin. This result was later contradicted by theory5. Second, it was theorized that these lines were not the 1L_a origin, but vibronically coupled 1L_b lines. Bickel et al.10 performed extensive dispersed fluorescence experiments on indole in a jet, using ground state assignments, then assigning the corresponding excited state frequencies; the 480 cm$^{-1}$ line was assigned 28^1_o and the 455 cm$^{-1}$ line was assigned $39^1_o41^1_o$.
These lines were not assigned to a different origin. Later experiments involving hydrogen bonded complexes in the jet were completed to shed light on this assignment. It was postulated that the 1L_a lines should have a greater red-shift upon complexation than corresponding 1L_b lines due to their difference in permanent dipole. Upon complexation (methanol, H_2O, and D_2O), the 480 cm$^{-1}$ and 455 cm$^{-1}$ lines of indole did not red-shift relative to the complexes' origin, but the intensities of the lines varied. The lines not red-shifting gave evidence for vibronic coupling, and the line intensity variation gave evidence for Fermi resonance.

The 1L_a origin of 3MI lies in several lines between 300-900 cm$^{-1}$ above the 1L_b origin, with no discernable prominent 1L_a origin. The 1L_a origin is split due to coupling to the 1L_b manifold. Also, the methyl rotor is inactive on excitation. For 5MI, the 1L_a intensity lies approximately 1400 cm$^{-1}$ above the 1L_b origin, and the methyl rotor is active upon excitation with a 60° conformational change of the methyl group. This coupling lowers the line intensity because the intensity is distributed over the entire methyl rotor structure.

Due to the popularity of using tryptophan as a spectroscopic probe, currently several tryptophan analogues are being used as optical probes in proteins in replacement of tryptophan. One of these analogues is 4-fluorotryptophan (4-FT), where 4-fluoroindole (4FI) replaces indole as the chromophore. The purpose of this change is to select the desired emission characteristics by selecting the desired chromophore. 4-FT was selected
because it could be naturally incorporated into proteins in the place of tryptophan did not change the functionality of the protein, and would not fluoresce. In practice, one or more of the tryptophan(s) in a protein containing multiple tryptophans could in essence be “turned off” with the goal of unraveling a complex fluorescence spectrum by selectively deleting emitters. Because of this characteristic, there is a renewed interest in understanding fluorinated indoles27,28.

Low temperature glasses/matrices have been studied for the last several decades. Low temperature matrices have given experimenters the ability to study reactive species, radicals, and ions29-31, which would be nearly impossible to study otherwise. In recent years, there has been a renewed interest in matrix isolated spectroscopy with the advent of narrow band laser excitation sources, which selectively excite molecules that are in a narrow range of energy, giving site selection capabilities. The matrix material ranges from noble gases (as in this thesis) to various hydrocarbons made popular by Shpol'skii32,33.

Indole has also been studied in low temperature glasses. As mentioned earlier, Valeur and Weber studied indole and various related compounds in propylene glycol at -58\textdegree C. Kawski \textit{et al.}34 did room temperature study on indole incorporated in a poly(vinyl alcohol) film, with polarized fluorescence and phosphorescence. Illich \textit{et al.} studied indole in an argon matrix at 10K, but was unable to select from a single site35. This experiment gave a blurred excitation spectrum that consisted of several spectra on top of one another.
The research that influenced our decision to explore indole in argon was completed by Gutmann et al.36, who studied naphthalene and octadeutonaphthalene in argon at 12K, with both one and two-photon techniques. They could produce extremely sharp lines, some as narrow as 4 cm-1, which could compete with the resolution of the jet. Gupiapati et al.37 later studied anthracene and pyrene in argon with polarized emission measurements. These experiments gave us the evidence we needed: argon matrices can produce sharp lines and polarized emission.

Statement Of The Problem

Previous research has positively identified \(^1L_a \) transitions in various indoles; the two-photon technique incorporated with jet expansion has given a high resolution picture of the excited state manifold of various indoles. Still, there has been no positive identification of the \(^1L_a \) origin for indole, 3MI, \(d_3 \)-3MI, and 5MI, using 2-photon spectroscopy because it cannot distinguished between true \(^1L_a \) lines and vibronically coupled \(^1L_b \) lines.

In indole, there is speculation that the 480 cm-1 and 455 cm-1 lines do not constitute the true \(^1L_a \) origin, but a split false origin. For 3MI, there is no discernable prominent \(^1L_a \) origin; instead the intensity is spread over several lines spanning 400 cm-1. For 5MI, the \(^1L_a \) origin is well above the \(^1L_b \) origin, but the exact location has not been found. For 2,3DMI the \(^1L_a \) origin is supposed to be near the \(^1L_b \) origin, and for 2MI, 1MI, and 4FI the \(^1L_a \) origins are completely
unknown.

In proteins there is some uncertainty with fluorescence, because of two possible fluorescent states of indole. For indole, polar environment favors 1L_a emission, and nonpolar favors 1L_b emission; however, proteins lie somewhere between these extremes. A question remains about the existence of sharp 1L_a fluorescence and its structure. Fluorescence monitoring is an experimental aid in the understanding of protein chemistry, and there is a common practice: if the fluorescence is sharp then it is considered to be 1L_b, but if the fluorescence is diffuse then it is considered to be 1L_a fluorescence. This assumption may be flawed. There is no fundamental reason there could not be sharp 1L_a fluorescence, except that the conditions that are conducive to producing 1L_a fluorescence, i.e. polar environments, are also conducive to broadening it. If an incorrect fluorescence assignment of a protein is made, then false information about the protein environment is given. Theoretical results have shown some significant differences between 1L_a and 1L_b emission due to differences in Franck-Condon factors between the two excited state potentials and the ground state potential38, but experimental verification is needed.

This research will use site selective matrix isolation of indole, 3MI, 5MI, 2,3DMI, 2MI, 1MI, and 4FI to unravel the complex photophysics of indole. Site selection produces sharp lines, and matrix isolation produces a rigid trapping environment, where photoselection leads to anisotropic emission. This method incorporates a small-bandpass laser in conjunction with a small-bandpass
monochromator, giving the experimenter the ability to produce sharp fluorescence excitation, fluorescence, and phosphorescence spectra. This technique can distinguish between 1L_a and 1L_b states by emission anisotropy and by differential solvent shift. The differential shift will be able to separate false 1L_a lines (vibronically coupled lines) from true 1L_a lines. This technique can help complete the picture painted by the jet and positively identify the true 1L_a origins, identify the emission, and examine the phosphorescence. This data will also give pertinent information as to how substitutions to the indole ring affect both the electronic energies of the 1L_a and 1L_b states and normal modes frequencies.
Chapter 2

THEORY

Emission Anisotropy

The emission anisotropy measurements are critical to the experiments carried out in this thesis. The discussion will follow the theory laid out by Kawski39 and will depend on these four basic assumptions:

1) Considering the case of linear polarized excitation of a dilute fluorophore in a rigid environment, where rotation between excitation and emission is impossible.

2) There is no phase relation between the exciting light and the emitting light.

3) The direction of the emission transition dipole, relative to the molecular axis, does not depend on the excitation, but only on the molecular states between which the transition occurs.

4) No other depolarizing factors will be taken into account.

Consider the case of an excitation vector, E, vertically polarized along the x-axis, see Figure 4.
Figure 4. Schematic diagram for determining the emission anisotropy.

According to Jablonski41, the anisotropy of the emission, \(r \), for the emission field can be defined as:

\[r = \frac{l_1 - l}{l_1 + 2l} \]

Equation 1 is used in the laboratory to calculate the anisotropy of the emission. The denominator is proportional to the total emission intensity. The perpendicular term can be factored out using the following relation \(l_\perp = (l - l_1)/2 \) giving Equation 2:

\[r = \frac{3}{2} \cdot \frac{l_1}{l} - \frac{1}{2} \]
Equation 2 is expanded to incorporate the angular dependence of the absorption and emission moments on the anisotropy giving the Perrin equation40:

\[
 f(P) = \frac{2}{5} \left(\frac{3}{2} \cos^2 \beta - \frac{1}{2} \right),
\]

where β is the angle between the absorption and emission moments. For a complete discussion see Kawski39. The first part of Equation 3 is the maximum anisotropy due to photoselection, $2/5$, and the second part in brackets is the angular dependence of anisotropy. The emission anisotropy (r) will have values ranging from -0.2 to 0.4, for $\beta = 90^\circ$ and $\beta = 0^\circ$, respectively. These are the theoretical values and the experimental values will deviate somewhat due to depolarization in the experiment. If depolarization does occur, then it is important check for the anisotropy values be at the proper ratio (2:-1).

The Onsager-Mataga-Lippert Model

The Onsager-Mataga-Lippert Model42-49 will be used as a method of calculating spectral shifts that result from the solute molecule placed in a medium with a constant dielectric constant (ε). This model is based on the Onsager reaction field. The model is used to calculate the energy correction for absorption in vacuum compared with absorption in a solvent. The model is based on the representation of the solute molecules as point dipoles, with both the ground state dipole, u_g, and the excited state dipole, u_e, in a solvent sphere.
with a radius \((a) \), a static dielectric constant \((\varepsilon) \), and a refractive index \((n) \), see Equation 4.

\[
hc\Delta\bar{\nu}_{\text{ground}} = -(\mu_g)^2 \frac{2}{a^3} \left[\frac{\varepsilon-1}{2\varepsilon+1} - \frac{n^2-1}{2n^2+1} \right] - (\mu_g)^2 \frac{2}{a^3} \left[\frac{n^2-1}{2n^2+1} \right]
\]

Equation 4 is broken into two terms, the first term corrects the energy due to the reaction field caused by the reorientation of the solvent. This does not change during excitation period of the solute, analogous to the Born-Oppenheimer approximation. This first term does not play a factor in the matrix experiments, because the matrix material does not have a permanent dipole and can be removed from the Equation 4. Even if there was a permanent dipole, the temperature and/or the rigidity of the matrix would not allow for this type of reorientational motion of the matrix.

The second term corrects the energy due to electronic polarizability of the solvent molecules. Since electrons are small, this electronic term is in equilibrium with the solvent molecules during the excitation period. The energy difference of excitation from the ground state to an excited state can be calculated as follows21,86:

\[
\Delta\bar{\nu}(cm^{-1}) = \frac{(\mu_e^2 - \mu_g^2)}{2a^3} \left[\frac{2n^2-1}{2n^2+1} \right] \times 5035
\]
where the numerical constant 5035 converts the energy change into cm⁻¹ units. The first term is divided by two so that the free energy change is calculated and the equation requires the actual dipole. This model will be used to calculate the theoretical energy (free energy) shifts for the two excited states \(\text{L}_\text{a} \) and \(\text{L}_\text{b} \), by the differences in their actual permanent dipoles.

This model is better suited for systems in polar solvents. For the argon matrix, this model is incomplete because it only deals with the more tangible permanent dipole difference and does not include a dispersion term. For molecules that do not have a permanent dipole by symmetry, these dispersion forces alone are responsible for the shifts. They can be quite large and are proportional to the polarizability of the solvent. The \(\text{L}_\text{a} \) state of naphthalene and anthracene is known to red-shift about 500 cm⁻¹ more than the \(\text{L}_\text{b} \) state in hydrocarbon solvent. Anthracene's \(\text{L}_\text{a} \) state is known experimentally to red-shift 500-700 cm⁻¹ by going into solid argon and red-shifts 1200 cm⁻¹ further by incorporation into fluorene. It would be reasonable to expect part of the red-shift seen in the argon matrix to come from dispersion forces.

Herzberg-Teller Coupling

The intensity of a transition or the probability that a transition between two state occurs is proportional to the square of the transition dipole

\[
\mathcal{I} \propto |\bar{M}_{\text{ge}}|^2,
\]

(6)
where I is the intensity of the transition and M_{ge} is the transition dipole between
the ground state and the excited state. The transition dipole can be written
explicitly:

$$\bar{M}_{ge} = \int \int \psi_g(r,Q) \phi_g(Q) \bar{M} \psi_e(r,Q) \phi_e(Q) drdQ,$$

and can be rearranged

$$\bar{M}_{ge} = \int \phi_g(Q) \left[\int \psi_g(r,Q) \bar{M} \psi_e(r,Q) dr \right] \phi_e(Q) dQ,$$

where ψ is the electronic wavefunction and ϕ is the nuclear wavefunction, the
subscripts g and e refer to the ground and excited states, respectively, and, r
refers to the electronic coordinates and Q to the nuclear coordinates. The term
in the square brackets is dependent on the nuclear coordinates and is constant
under the Condon approximation. Herzberg-Teller vibronic coupling occurs
when there is a failure of the Condon approximation and the term in the bracket
needs to be expanded:

$$\bar{M}_{ge} = \int \phi_g(Q) \left[\bar{M}_{ge} ^0 + \sum_a \frac{\partial \bar{M}_{ge}}{\partial Q_a} Q_a + \cdots \right] \phi_e(Q) dQ,$$

where the first term is the transition dipole at the equilibrium position, and the
second term has the vibronic coupling constants and is a function of nuclear
motion. Therefore, nuclear motion can couple intensity into a transition through this term.

Herzberg-Teller coupling occurs when a vibronic transition that is forbidden due to no displacement of the potential well, is observed due to nuclear displacement along a normal coordinate that comes from zero point vibrational motion of a ground state normal mode. If one of these modes has a non zero coupling constant, then the vibronic transition will be observed.

Fermi Resonance

Fermi resonance occurs when two vibrations are nearly degenerate in energy and in proper symmetry. This coupling occurs due to anharmonic behavior of the vibrations; one vibration interferes with the other, because they are not displaying 100% normal mode behavior. If they meet the proper symmetry conditions, then a perturbation can occur that mixes the two levels. This mixing causes intensity redistribution and splitting of these two levels, which depends on the energy separation and the interaction between the levels.

Fermi resonance can most easily be explained using the variation method rather than perturbation theory, because the interaction is typically beyond the perturbation limit. Fermi resonance can be explained by two cases of the variation method. In case 1 the energy levels are degenerate ($\alpha_1 - \alpha_2 = 0$) and in case 2 the energy separation is on the order of the interaction between the two states ($\alpha_1 - \alpha_2 \approx \beta$), where α_1 and α_2 are the energies of levels 1 and 2,
and β is the interaction between the levels. In case 1 there is an equal state mixing and in case 2 there is unequal state mixing. The wavefunction that describes the mixed states is a combination of the original wavefunctions. Through this mechanism, intensity can be redistributed from strongly allowed state and given to a weakly allowed state. Spectroscopists widely use Fermi resonance in data interpretation.

Site Selective Spectroscopy

Site selective spectroscopy is the technique used in these experiments to improve the spectral data. It is a method of acquiring spectral data from a matrix embedded sample that achieves the sharpest lines possible. This occurs because all the absorption and emission are from only one site, which sharpens and simplifies the spectra.

In a chemical system all molecules are perturbed by their local environment, the environment actually produces an electric field that the molecule senses. This field can interact with any changes made in the molecule, especially in the absorption and emission of photons. For a simple example, let us only consider a single electronic transition. The energy of such a transition will be designated by a vertical line in Figure 5. If the solvent field is oriented in such a way to facilitate the electronic transition, then the energy for the transition will red-shift to lower energy, but if the solvent field is opposed to the transition, the energy will blue-shift to higher energy. In solution there is a
"gaussian" distribution of environments; therefore, there is a "gaussian" distribution of perturbed molecules leading to broadening of the spectra, see Figure 5c. In the jet expansion there is a much smaller distribution of environments; the molecules are vibrationally and rotationally cold and isolated in a vacuum, see Figure 5a. This leads to narrow spectra. In the argon matrix at 20K there are several sites within the matrix, which are highly populated by the guest molecules, see Figure 5b. This can lead to narrow spectra. The term "site" selection is commonly used, but in actuality the correct term is "energy difference" selection or just "energy" selection.

First, site selection requires the guest molecule to be incorporated into a host matrix at a temperature well below the melting point of the host material. This low temperature of the matrix produces a rigid trapping environment for the guest molecule, where rotational structure and hot bands (hot bands are transitions caused by thermally excited molecules in the ground state.) are eliminated. The concentration of the guest molecule is kept low to reduce guest molecule/guest molecule interactions, so all environmental electronic influences come exclusively from the host matrix. Interaction (induced electric field) can be controlled, by controlling the polarizability of the matrix material. A less polarizable matrix should in theory interact less with the guest molecule and vice versa.

The basis behind site selection is that the guest molecule will occupy particular sites within the host matrix. Small guest molecules occupy interstitial
Figure 5. Site structure of the supersonic jet environment, (a), argon matrix environment, (b), and solution environment, (c).
holes (sites) that are analogous to those of the host molecules, and larger guest molecules occupy sites formed by actual displacement of one or more of the host atom(s) or molecule(s). In theory, these sites should be highly populated, with a large number of molecules sitting in a similar site (solvent cage) produced by a similar matrix arrangement around the guest molecules, producing similar molecular energies. There is extensive evidence of noble gas matrices having multiple sites in which aromatic molecules display transition energies differing about 100 cm$^{-1}$, which leads to band congestion in a conventional absorption spectroscopy. The reproducibility of the site structure in argon suggests that the argon matrix is indeed polycrystalline and indole fits into lattice planes within argon's the face center cubic (FCC) lattice structure by the removal of several argon atoms.

Second, to achieve site selection, the energy spacing between the sites must be far enough apart so that sites can be independently excited by a small bandpass laser, while monitoring a single vibrational line in the emission or vice versa. A small bandpass laser in conjunction with a small bandpass monochromator has the capabilities of producing sharp fluorescence excitation, dispersed fluorescence, and phosphorescence spectra. Because of this arrangement, there is an intensity limitation on the experiment because only a small portion of the emission is collected.

There is also an intrinsic problem that arises for site selection if the sites are closer than either the laser bandwidth or the spectral linewidth. This spectral
overlap is problematic because the phonon wing extends at least 100 cm\(^{-1}\) to the blue of the zero-phonon band. The zero-phonon band is strictly a molecular transition, where the lattice absorbs none of the photon’s energy, whereas the phonon wing is caused by a slightly higher energy photon causing a molecular transition plus lattice excitation. For indole, there are 6 sites within 213 cm\(^{-1}\), for 2MI 4 sites within 55 cm\(^{-1}\), and for 4FI 6 sites within 117 cm\(^{-1}\). These closely spaced sites can lead to site contamination in the spectra due to overlapping spectra, with a major contribution from one site and minor contributions from other sites.

The term “sharp site” will refer to sites in which indole gives an energy width of about 10 cm\(^{-1}\) through transmittance measurements. Likewise, any site giving an energy width greater than 20 cm\(^{-1}\) will be referred to as a “broad site.” In addition, fluorescence excitation, fluorescence and phosphorescence lines will also be referred to in the same manner, any line around 10 cm\(^{-1}\) will be considered “sharp” and any line greater than 20 cm\(^{-1}\) will be considered “broad”, regardless as to the site in which it sits. The general statement usually holds: sharp sites produce sharp spectra and broad sites produce broad spectra.

Phosphorescence

Phosphorescence is light emitted from the lowest triplet state (T\(_1\)) to the ground state (S\(_0\)). Due to Hund’s rule the triplet state (T\(_1\)) state always lies lower in energy than the first singlet state (S\(_1\)). The T\(_1\) state is very difficult to populate.
by direct excitation from the ground state manifold, because it is spin forbidden and therefore has a small oscillator strength. The T₁ state is therefore populated indirectly through the S₁ state, see Figure 6. The energy transfer from the S₁ state to the T₁ state is denoted as intersystem crossing (ISC). For this to occur, the S₁ and the T₁ must have a common intersection point between their two potential wells, and there must be some mechanism for unpairing two electrons spins. If these two requirements are met, then ISC can occur and some of the population of the S₁ state can drain into the T₁ state.

The mechanism of spin-orbit coupling is the mechanism by which the spin conversion is made possible. Phosphorescence is enhanced in solids because of reduced diffusional quenching of the triplet, which means, the quenching agent can not diffuse to the excited chromophore in the solid lattice, therefore reducing quenching. Also, ISC is enhanced in the presence of heavier atoms, which have greater coupling between their orbital and spin angular momenta. This makes the cryogenic matrices ideal for the production of phosphorescence and heaver atoms can be used to increase the phosphorescence signal if it is desired.

For Indole phosphorescence, the transition dipole direction is perpendicular to the plane of the molecule and the phosphorescence occurs exclusively from the T₁ state¹.
Figure 6. Phosphorescence (Ph) and fluorescence (Fl).
Supersonic jet expansion is an experimental method by which molecules are collisionally cooled to cryogenic temperatures. These temperatures are achieved when sample molecules and carrier gas from a pressurized region (3-10 atmospheres) are expanded through a nozzle, diameter 0.5 to 1.0 mm, into an evacuated chamber, 10^{-5} to 10^{-6} torr, and collisions occur between the carrier gas and the sample molecules in the nozzle region. The sample molecule's energy in the form of vibrational, rotational, or other degrees of freedom is transformed into a large translational energy in the evacuated chamber. In the evacuated chamber, the molecules are in a collisionless environment as they move along their trajectories, see Figure 7. Therefore, all excitations occur from the zero vibrational level in the ground state; eliminating most hot bands and simplifying the spectrum.

Figure 7. Supersonic jet expansion.
Two-Photon Spectroscopy

The traditional method of spectroscopy, known as one-photon spectroscopy, is the main focus of the matrix isolation work. The energy of the single photon absorbed exactly equals the energy difference needed to place the molecule into resonance—reach an excited energy level of the molecule. The simple equation is used:

$$\Delta E = h\nu$$ \hspace{1cm} (10)

where h is Planck's constant and ν is the frequency of the photon, and ΔE is the energy difference between the states.

In the 1960’s, with the advent of high powered lasers, a second type of spectroscopy was developed known as two-photon spectroscopy, where two photons absorb simultaneously to achieve resonance energy of the molecule. The energy of the two photons add together using the modified energy formula:

$$\Delta E = h\nu_1 + h\nu_2$$ \hspace{1cm} (11)

where ν_1 and ν_2 are the frequencies the first and second photons respectively. This allows for two general types of two photon spectroscopy: one-color where the photons have the same frequency and two-color where the photons have different frequencies. The first photon that absorbs excites the molecule to a virtual state (non-resonant state) and the second photon further excites the molecule from the virtual state to the final resonant state, see Figure 8.
Consequently, the photons must be absorbed almost simultaneously (within about a femtosecond (10^{-15} s)) or the first photon is emitted as scattered light. Today with the advent of high-powered ultra-short pulsed lasers (picosecond to femtosecond pulses) three or more-photon absorption is possible and experiments have been completed.

Experimentally, a useful aspect of two-photon spectroscopy is its ability to probe the excited state through photoselection, where the information gained is conserved in the system regardless of vibrational relaxation or internal conversion in the system. It is strictly an absorption event. Since the photons absorb simultaneously, rotational motion of the molecule is meaningless. Therefore, this method can be used on gas and solution phase systems, where
there is continual motion, and can likewise be used on static systems, such as, the argon matrix.

The theory of two-photon spectroscopy was first deduced by Goppert-Mayer in 1939 using perturbation theory. The two-photon absorption process is a second-order perturbation and requires a high flux of laser light. However, as frequently happens in science, experiments were not yet feasible until a much later time with the advent of lasers.

McClain has done extensive work on the theory of two-photon absorption spectroscopy. For absorption of two identical photons the rate of absorption (R) is proportional to the following equation:

\[R \propto | \mu \cdot S \cdot \mu |^2 I^2 \] \hspace{1cm} (12)

where \(\mu \) is the unit polarization vector of the exciting light, \(S \) is the two-photon absorptivity tensor, and \(I \) is the intensity of the exciting laser light. The equation stipulates that the rate of absorption is proportional to the square of the laser light intensity. This square dependence is a good check for 2-photon absorption; the absorption intensity must be proportional to the square of the laser intensity. The two-photon tensor is given in Cartesian coordinates by a 3 x 3 matrix:

\[S_{ab} = \sum_i \frac{a_{fi} \cdot b_{lg}}{v_{ig} - v_{laser}} \] \hspace{1cm} (13)
where a, b are x, y, and z and the summation is over all the states of the molecule, including the ground states and the excited state (a complete set). There is also a direct connection between the relative directions of the two photons and the intensity of the fluorescence due to photoselection. From McClain's work, the expression for fluorescence intensity \(I_f \) for the absorption of two identical photons with isotropic emission is

\[
I_f = \sum_{i,j=1}^{4} P_i M_{ij} Q_j,
\]

where \(P_i \) are geometric factors which depend on the orientation of the polarization vectors of the exciting and emitting light, the \(Q_j \) factor depends on the molecular two-photon tensor (see Equation 12) and the fluorescence transition dipole, and \(M_{ij} \) is a matrix that binds the \(P_i \) factor and the \(Q_j \) factor. The important point to mention here is the direct link between the direction of polarization of the photons and the resulting fluorescence intensity; therefore, polarization changes will change fluorescence intensity.

Also from McClain's work two other parameters are defined:

\[
\delta_F = \sum_{a,b} S_{aa} S_{bb}^* \]

(15)
From these two parameters another important parameter, Ω, the two-photon polarization ratio, can be defined. Ω is the ratio of intensities of the emission using linearly and circularly polarized light

$$\Omega = \frac{I_{\text{circular}}}{I_{\text{linear}}} = \frac{3 - \frac{\delta_f}{\delta_G}}{2 + \frac{\delta_f}{\delta_G}}$$

The value of Ω can range from 0.0 to 1.5\(^8\). The experimental results are in good agreement with theoretical results\(^8\); the Ω value for the \(^1\)L\(_b\) state is ~1.5 and the Ω value of the \(^1\)L\(_a\) state is ~0.5. The \(^1\)L\(_a\) state preferentially absorbs two parallel photons and the \(^1\)L\(_b\) state preferentially absorbs two perpendicular photons; therefore, we have a means of differentiating between the two states by preferential absorption.
Chapter 3

EXPERIMENTAL SECTION

Matrix Isolation

The experimental apparatus, shown in Figure 9, consists of a Janis Research Company closed cycle helium refrigerator (CCS-650) integrated with a Lakeshore autotuning temperature controller. The cold head portion of the unit was kept under vacuum at a pressure of 10^{-5} to 10^{-6} torr, maintained by a Knutes glass diffusion pump (#924785) that was backed by a mechanical roughing pump. The temperature of the cold head was kept constant at 20K (Ar) and 30K (N$_2$) throughout the experiment. The sample was layered on a sapphire window bolted to the cold head; thermal grease was used to maintain good thermal contact between the cold head and the sapphire window. The sapphire window was tilted to achieve a 45-degree angle with the excitation beam.

The matrices were prepared using a bulk tank of an ultra-pure (99.99999%) matrix gas, argon or nitrogen, which was fed through a regulating system containing a sample chamber, a toggle valve, and a metering valve. The matrix gas/sample mixture was produced by sending the matrix gas (with a backing pressure of 2 to 3 PSI) through the sample chamber where gaseous sample molecules were transported along with the matrix gas. The matrix
Figure 9. Matrix isolation experimental setup.
gas/sample mixture finally arrived at a small 1/16 in. capillary, shot through the vacuum, and deposited on the window at the prescribed temperature. The temperature of the sample chamber was increased for less volatile 2,3-DMI crystals, using heating tape (60V). This increase in temperature resulted in an increased sample concentration. The regulating system noted above, controlled the layering speed of the matrix. All crystalline samples were placed in the sample chamber as described, except for 1MI because it was a liquid, and required a special handling procedure. This procedure required a small amount of 1MI being placed in the sample chamber, with any excess being removed. The sample chamber was then purged with argon, so only a film of 1MI was left on the wall of the sample chamber. This simple procedure worked well to reduce the amount of 1MI in the matrix.

The chemicals were obtained from Aldrich and were used without further purification: indole (99+%, Lot # 03231AZ), 3-methylindole (98%, Lot # 11822CF), 5-methylindole (99%, Lot # 06701HX), 2,3-dimethylindole (99%, Lot # 092767), 2MI (98%, Lot # 08019EG), 1MI (97%, Lot # 09327EZ), and 4FI (99%, Lot # 24H0685).

The sample was irradiated with UV laser light for one-photon experiments. The laser light was produced by a pulsed Q-switched Lumonics Nd:YAG (HY-200) laser and later by a Continuum Surelite III-10 laser, that pumped a Lumonics (HD-300) tunable dye laser. For wavelengths between 566nm and 600nm, a dye combination of Rhodamine 590 (53 mg/l) and Rhodamine 610
(7mg/l) was pumped with the second-harmonic of the YAG, 532nm. For wavelengths between 523nm and 586nm, Coumarin 540A dye (1082 mg/l) was used and was pumped with the third-harmonic of the YAG, 355 nm. The beam coming from the dye laser was expanded to 8mm by a 4X Galilean telescope, which consists of two lenses: 120mm f.l. convex and a -30 mm f.l. concave (Oriel). The beam was expanded to reduce damage to the directing mirrors. The laser light was then doubled into the UV wavelength using an Inrad Autotracking II frequency doubler. The UV light coming from the doubler was horizontally polarized and was converted to vertical polarization by a depolarizing wedge followed by a glan polarizer oriented to pass vertically polarized light. The laser excitation linewidth was 0.20 cm⁻¹.

The fluorescence was collected at 90° from the exciting beam, collimated using an Esco S1-UV grade lens (d=50.8mm, f.l=76.2mm), and then focused onto the entrance slit of the monochromator using an Esco S1-UV grade lens (d=50.8mm, f.l=305mm). The f/number of the collecting lens was chosen to collect a large solid angle of emission, and the f/number of the focusing lens was matched, as closely as possible, to the f/7 optics of the monochromator, in order to maximize the focusing of the fluorescence onto the gratings. If the experiment required polarization measurements of the emission, a polacoat sheet polarizer was placed in front of the entrance slit of the monochromator, and the polarizer could be oriented to pass vertically and horizontally polarized light. A quartz depolarizing wedge was also mounted in front of the entrance slit to avoid
spurious polarization, due to the polarization dependent transmission of the gratings. The emission light was dispersed using a Spex 1404 double monochromator (grating 2400 gr/mm, fl=0.85). The monochromator’s linear dispersion was 0.2nm/mm for the above grating, and the slit widths used for the 1-photon experiments varied from 70 μm to 200 μm (1.5-4 cm⁻¹ bandpass) and for 2-photon experiments from 2 mm to 3 mm (40-60 cm⁻¹ bandpass). The light was collected using a Hammamatsu R928 PMT cooled to -25° C using a Product For Research thermally cooled PMT housing (TE177RF.005).

The signal was amplified and gated using Evans Associates circuitry in conjunction with a boxcar built by Anderson and Callis⁵⁹. The boxcar was triggered by two photodiodes and its gating was set for 200 usec. The signal was digitally converted using a Data Translation A/D converter and the data was stored on a PDP-11 computer.

The computer program that controls the laser, the polarizer, and data collection was written by former group members Anderson, Callis, Jones, Rehms, Theiste, and Williams, and was later modified by Sammeth and Muino. I have since modified this program to control the monochromator, the emission polarizer, and the anisotropy calculation.

The fluorescence excitation scan was completed by scanning the laser across the excitation manifold while monitoring a strong line in the emission, usually the 26⁰ line. The fluorescence spectra was obtained by exciting a strong line in the excited state, usually the 26¹₀ line, while scanning the
monochromator. This method allows for selective monitoring at specific sites.

Absorption Measurements

The absorption measurements of the origin regions of the spectra were made using a broadband Xe lamp excitation source, see Figure 10. The lamp sat directly across from the monochromator and the exciting light directly impinged on the Ar sample on the cold finger. Between the light source and the sample sat a 3mm thick UG-11 filter (transmit 400-250 nm) which allowed only the UV light to pass. The resulting light was focused into the monochromator through small slits, using the lens system mentioned earlier, while the monochromator was scanned over the origin region of the spectrum. This set up produced a transmittance spectrum and the spectrum could be transformed into an absorption spectrum, if desired. A Laboratory Photometer model 11 powered the phototube and amplified the resulting signal. The amplified signal was then sent to an X-Y recorder and a hard copy was later digitized by hand.
Figure 10. Transmittance experimental setup.
Phosphorescence Measurements

The phosphorescence spectra were not taken in the same fashion as the fluorescence measurements, because the lifetimes of the phosphorescence was nearly 10 second, which was outside the limits of our gated electronics. The measurements were taken using the same detection system used in the absorption measurements, except the source of excitation was the laser tuned to the S₁ origin of the sample.

Two-Photon Spectroscopy

The same system used for the one-photon measurements was modified for use in two-photon spectroscopy measurements. The Inrad II frequency doubler was removed and replaced by several optical components capable of producing linear and circular polarized light, without altering the spatial position of the laser beam. To accomplish this, the laser light coming from the dye laser passed first through a Glan-Foucault polarizer to ensure 100% vertically polarized light. The light then passed through a series of three Fresnel rhombs, consisting of a double rhomb and a single rhomb. If the double rhomb was not rotated, relative to the axis of the rhomb, then the light passing through the system remains vertically polarized. If the double rhomb was rotated by 22.5°, with respect to the plane of the incident laser light, then the E vector of the light exiting the double rhomb was rotated by 45°, by 4 internal reflections. This light
then entered the single rhomb at an angle of 45° and was converted to circular polarized light by two internal reflections. Therefore, both types of polarized light were produced by simple rotation of the double rhomb, which was controlled by a stepping motor. To ensure accurate data acquisition, back to back linear and circular measurements were made for each laser step and the signal was normalized by dividing by the square of the laser intensity.

Since 2-photon absorption requires strong laser intensity, focusing of the laser beam by a focusing lens might be required to increase the laser intensity. The jet data was taken using a Esco focusing lens (d= 50.8 mm, f.l.= 700 mm) placed at the front of the jet, and no focusing lens was used in the argon matrix experiment.

The total emission was collected during the jet two-photon experiments, and to reduce scattered light from hitting the phototube in the jet, a 3mm UG-11 filter, a saturated NiSO₄ solution, and a 5 mm diaphragm was used. For two-photon spectroscopy using the matrix isolation setup, the monochromator was locked onto the strongest emission line and the monochromator’s slits were open 2 to 3 mm (40-60 cm⁻¹). To reduce scattered light from entering the monochromator a 1 mm UG-11 filter was placed at the entrance slit of the monochromator, allowing only 400-250 nm light to pass.

Formation Of The Matrices

The success of these experiments hinges on the quality of the matrix.
Here are some guidelines for producing good matrices. The matrix should be layered at a relatively slow rate for two important reasons: to produce a more uniform matrix and to control the temperature load on the cold finger. The rate of deposition should be kept around 4 millimoles matrix gas/hr. The matrix layering speed should be controlled to limit the heating of the cold finger to no more than 0.20K. This was especially critical with argon, because argon forms extremely brittle matrices, where only a minor temperature change (±0.30K) caused the matrix to shatter. This was less critical for nitrogen, but still was important. Cracking was the process by which the matrix relieved strain, but left the matrix unusable for polarization measurements. This cracking can also be caused by the thickness of the matrix, due to temperature gradients within the matrix.

These experiments require fine temperature control of the cold finger. The cold head has two small built in heaters that are cycled electronically to hold the cold finger at a specified temperature, and how precisely these heaters were cycled related to the temperature stability of the cold finger. The cold head incorporates a Lakeshore temperature controller (model 330) that can operate in autotune mode or in manual mode (see owner’s manual). In manual mode there were three settings that are critical for fine temperature control: P (gain), I (reset), and D (rate). All the experimental data in this thesis were taken in manual mode using the following settings: P=15, I=90, and D=0. These settings all need to be altered if the pressure changes drastically in the cold head and
the "I" value will need to be altered if the temperature setting is changed. Read the manual for more details.

Polarization measurements required the matrix to be of high quality, transparent, and have no cracks. A cracked or cloudy matrix depolarizes the light. It should also be noted that annealing of a matrix utterly destroys its optical quality, which is needed for polarization measurements.

Furthermore, the concentration of the guest molecules in the matrix was important. If the matrix was too concentrated or too thick, it caused spectral aberrations, due to self-absorption. Self-absorption could be checked by examining the dispersed fluorescence spectrum; self absorption would lead to a reduction in the relative intensity of the origin compared with other lines. The sample concentration should also be kept low (molar ratio of matrix gas to guest molecule 10^{-4}) to reduce dimer formation, because most guest molecules have a greater affinity for themselves rather than the matrix.

It had been suggested that the best temperature to use should be approximately 0.3 the melting temperature of the matrix material. The melting temperature of argon is 83.85^0K and nitrogen is 63.15^0K. The temperatures used in these experiments were found by trial and error, and the best temperature for argon was 20K and for nitrogen 30K (consistent with the above recipe).

Finally, O_2 will kill both the fluorescence and phosphorescence intensities. If air is in the system, then the matrix will appear cloudy with a slight
brown tint. This occurred because one or more of the gas inlet system fittings was leaking. To reduce these problems, the gas inlet system should be kept as simple as possible. If the gas line was ever opened up to the air, then it was reconnect and the line purged through the cold head with matrix gas for 20 minutes, before the experiment was started.

Supersonic Jet Instrument

The supersonic jet was built by Jungst Scientific located in Bozeman, MT to the specifications made by Callis and Sammeth, see Figure 11. The jet consisted of an aluminum box that was 25 cm on a side, with three axes (x, y, and z) running straight through the center of each face intersecting at the center of the box. Along the x-axis are two long cylindrical tubes extended from both ends of the jet. These tubes allowed the excitation laser beam to pass straight through the jet, with interior baffles to keep room light out of the jet. Two quartz windows (d=101.6 mm) were cemented to the end of the tubes to achieve the desired vacuum pressure. The nozzle, sample chamber, and solvent chamber were located on the z-axis (vertical). The nozzle is positioned 2.0 cm above the x-axis in one-photon experiments and 0.5 cm in two-photon experiments. The fluorescence was collected on the y-axis using a system of a mirror and lenses. The mirror, coated spherical mirror (d=60mm, f.l.=25mm), was placed opposite the PMT, while a fused quartz collecting lens (d=50.8mm, f.l.=50.8mm) and a focusing lens (d=50.8, f.l.=101.6mm) were placed in line with the PMT, thus all
three were used to focus the fluorescence onto a Hamamatsu R928 PMT cooled to -26°C.

The low pressure (~10⁻⁶ torr) in the jet was maintained by a 6 inch Varian (VHS-6) diffusion pump backed by a Varian roughing pump. A gate valve was also connected to the jet chamber so the chamber could be isolated and opened to the atmosphere while the diffusion pump was operating. A cryogenic pump (kept at room temperature) was placed between the gate valve and the diffusion pump as a spacer to keep diffusion pump oil from entering the jet. The jet apparatus used three pressure gauges: 2 thermocouple gauges Varian (531) and accompanying controllers Varian (801), and for low pressure reading a Varian (524-EF) cold cathode ionization gauge with the accompanying Varian (860A) cathode gauge.

The laser and the nozzle were driven by a General Valve IOTA I controller operating at 20 Hz. The laser triggering pulse was delayed between the controller and the laser by 600 microseconds by the use of a Stanford research System (D6535) Digital Delay/Pulse Generator. The laser signal intensity was monitored at the end of the chamber on the x-axis by a Rhodamine B quantum counter built by Jones and Callis⁶³. The sample chamber was heated to 60⁰/70⁰ C and the nozzle was heated to 100⁰C using heat tape and Omega temperature controllers.

The carrier gas was ultra pure (99.99999%) helium and the sample chamber was pressurized to 4 atm. For complexation experiments, a desired
part of the helium was channeled through the solvent chamber and rerouted back to the sample chamber, and this flow was controlled by metering valves and toggle valves.

For one-photon experiments a 1 mm WG-320 filter (transmit 310-4200 nm) was used to block scattered exciting light and for two-photon experiments a 3mm UG-11 filter, saturated solution of NiSO₄, and a 0.5 cm aperture were used.

For complex experiments in the jet the metering valves had to be adjusted to suit the solvent. The valves had to be opened wide for water because of its low vapor pressure, and once water was in the system it was hard to get rid of. Deionized water was used entirely in this experiment. For the methanol experiments, the metering valves had to barely be open to achieve good complex signal, because of its higher vapor pressure, and care had to be taken not to get too much methanol in the system leading to cluster formation. This experiment used spectral grade methanol.
Figure 11. Jet experimental setup.
Chapter 4

RESULTS AND DISCUSSION

Indole In An Argon Matrix At 20K

The S₁ origin region of indole in an argon matrix was scanned for absorption, to get an idea of the site structure, the number of sites, and their locations. Figure 12 displays the transmittance spectrum of indole in argon at 20K. In the spectrum each site has a different absolute energy that corresponds to differences in the environment of each site. Indole entrained in argon at 20K under our experimental conditions resides mainly in five energy sites: site 1 at 285.85 nm (34,981 cm⁻¹), site 2 at 286.8 nm (34,858 cm⁻¹), site 3 at 286.4 nm (34,916 cm⁻¹), site 4 at 285.95 nm (34,971 cm⁻¹), and site 5 at 285.05 nm (35,081 cm⁻¹). These five sites each have a unique absorption strength that corresponds to the population of the site, and an intrinsic site width. Site 1 (34,981 cm⁻¹) was the main site used in the indole work because of its absorption strength and its narrow site width, 10 cm⁻¹. Site 2 (34,858 cm⁻¹) was the broadest site, with a site width of 30 cm⁻¹.

The indole lines are inhomogeneously broadened by the site, and variation in excitation frequency over the site produces subsequent shifts in the fluorescence. This is illustrated in Figure 13. This data is obtained by the laser
Figure 12. Transmittance spectrum of indole in argon at 20K, with a 0.2 cm\(^{-1}\) bandpass.
incrementally stepping across the S_1 origin, while at each increment the monochromator is scanned over the 260 line. It should be noted that, the fluorescence tracks the excitation frequency. The decrease in line intensity for redder excitation means that the laser is beginning to be scanned off the site.

![Figure 13. The ZG01 line excited at 285.84, 285.85, 285.86, 285.87, 285.88 nm, with a monochromator bandpass of 2 cm$^{-1}$.](image)

The matrix environment affects the electronic energy of the molecule through stabilization without affecting the vibrational energy of the molecule, except for a few out-of-plane modes. This spectral alignment simplifies the comparison between the jet and argon spectra. Site 1, whose origin is 251 cm$^{-1}$ red of the vacuum value, is used for the investigation of indole. The fluorescence excitation spectra were taken with the monochromator set at the
The strongest fluorescence line (760 cm⁻¹), that being 26°.

The fluorescence excitation spectrum of indole in argon at 20K is shown in Figure 14c, with the accompanying anisotropy in Figure 14d. For comparison, the jet fluorescence excitation spectrum is shown in Figure 14a and a simulated matrix spectrum from the jet data is shown in Figure 14b. All spectra are zeroed to the S₁ origin and have been aligned for comparison purposes in Figure 14. There are many similarities between the argon and the jet spectra, with many ¹Lb lines (Ω >1.3) have an accompanying line at the same relative position in the argon. The linewidths in the argon matrix are about 10 cm⁻¹ and the phonon side band extends for 150 cm⁻¹ to the blue.

The ¹Lb state is the S₁ state for indole, with high emission anisotropy. This anisotropy falls short of the theoretical maximum of r=+0.4 and theoretical minimum of r=-0.2, with an experimental high of r=0.1, indicative of a ¹Lb state, and an experimental low of r=-0.05, indicative of a ¹Lₐ state. These values are low in comparison to the theoretical values, but are at the proper ratio for perpendicular transition moments. This deviation from the theoretical values is due to depolarization of the light by matrix strained birefringence and simple light scattering. These reasons for the depolarization of light are not wavelength dependent, and do not hamper the experimental results. Therefore, the anisotropy is good for data analysis.

The jet spectrum in Figure 14a (with its 2-photon Ω values), the matrix spectrum and its emission anisotropy in Figures 14c and 14d display good
Figure 14. Supersonic jet fluorescence excitation spectrum of indole (with Ω values), (a), simulated matrix spectrum, (b), fluorescence excitation spectrum of indole in argon at 20K, (c), and the fluorescence anisotropy, (d).
correlation. Note that the 2-photon data is an absorption event and the anisotropy is an absorption + emission event. This provides a check of the experimental results with previous experimental data. Two good examples of this correlation are shown in both spectra, the 400-500 cm\(^{-1}\) region (\(\Omega=0.7\) and \(r=-0.05\)) and the line sitting at 780 cm\(^{-1}\) (\(\Omega=0.9\) and \(r=0.0\)), both displaying \(1L_a\) type character.

The final verification that the \(S_1\) origin is indeed the \(1L_b\) came through 2-photon spectroscopy of indole in argon at 20K. The \(1L_b\) origin is found to have an \(\Omega=1.3\), the \(26^1\) \(_{0}\) line to have an \(\Omega=1.3\), and the \(28^1\) \(_{0}\) line to have an \(\Omega=0.6\) (the 2-photon spectra are shown in Figure15), also the \(37^2\) \(_{0}\) line has an \(\Omega=1.2\) and the vibronic active line around 780 cm\(^{-1}\) has an \(\Omega=1.0\). The line positions and the \(\Omega\) values for the argon matrix and the jet are listed in Table 1. This data shows the compatibility between the argon matrix and the jet experiment.

<p>| Table 1. The two-photon (\Omega) values of the argon matrix and the jet spectra. |
|---------------------------------|---------------------------------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>Spectral shift (^a) argon (jet)</th>
<th>Argon matrix (^b) 20K</th>
<th>Jet (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>471(454+480)</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>720(718.5)</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>763(737)</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>778(781.6)</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

\(^a\) Values relative to the \(1L_b\) origin.
\(^b\) The uncertainty is ±0.1.
Figure 15. Two-photon spectrum of the 1L_b origin, (a), 26^1_0, (b), and 28^1_0, (c), of indole in argon at 20K.
Fermi Resonance

The fluorescence excitation spectrum of indole in the jet gives lines at 455 and 480 cm\(^{-1}\), which have an \(^1L_a\) signature \(\Omega=0.7\) (see Figure 14a). In the same region in the argon matrix spectrum there is only one line at 471 cm\(^{-1}\), \(r=-0.05\). It has not yet been proven, but Fermi resonance has been proposed as a possible mechanism to explain these jet spectrum results. The 455 cm\(^{-1}\) line has been given the assignment 39\(^1\)o41\(^1\)o\(^10\) which is an out-of-plane combination vibration, and the 480 cm\(^{-1}\) line has been assigned 28\(^1\)o, an in-plane vibration. The 455 cm\(^{-1}\) vibration is more intense than would be Franck-Condon allowed for an out-of-plane combination vibration of a planar molecule. This intensity can easily be explained if its intensity could be obtained by mixing with the strong neighboring 28\(^1\)o vibration.

The argon matrix spectrum, on the other hand, has broken the Fermi resonance and only one line appears at 471 cm\(^{-1}\). The argon matrix increases the 39\(^1\)o41\(^1\)o energy, removing the energy degeneracy and the weak 39\(^1\)o41\(^1\)o line goes back down into the noise level of the spectrum. Since the Fermi resonance has been removed, then it would be expected that the 28\(^1\)o should be slightly red-shifted in energy. The 28\(^1\)o does red-shift by 9 cm\(^{-1}\) by the collapse of the Fermi resonance, which is nearly half the energy difference between the 480 and 455 cm\(^{-1}\) lines.

Yet another clear example of Fermi resonance can be seen in the out-of-plane 37\(^2\)o vibration, in which intensity is stolen from the in-plane 26\(^1\)o vibration.
The 37^2_0 line at 737 cm$^{-1}$ in the jet and in the argon matrix the line blue-shifts 23 cm$^{-1}$ to 760 cm$^{-1}$ and loses much of its intensity. The intensity of the 37^2_0 line in the excited state is directly linked to its coupling to the 26^1_{0} (718 cm$^{-1}$, jet) line, since the intensity of the 37^2_0 line in the fluorescence is relatively weak.

As listed below, additional evidence points to the 455 cm$^{-1}$ and 480 cm$^{-1}$ lines being a Fermi doublet:

1. When complexed with H$_2$O, D$_2$O, and methanol in the jet, or when placed in an argon matrix, the doublet intensity ratio varies or collapses into a single line.

2. The aforementioned theoretical and empirical calculations predict the Franck-Condon factors for the $39^1_0,41^1_0$ combination to be small, and experimentally the $39^0,41^0$ is absent in the emission spectrum (660 cm$^{-1}$ jet).

3. Upon excitation of 28^1_0, some $28^0,39^0,41^0$ appears in the dispersed emission. Likewise, when $39^1_0,41^1_0$ is excited some $28^0,39^0,41^0$ also appears in the emission.

4. There is evidence for the argon matrix shifting out-of-plane vibrations to higher energy. This is exemplified in the example of the 37^2_0 vibration mentioned above.

This and the evidence above confirm that the 455 cm$^{-1}$ and the 480 cm$^{-1}$ lines in the jet spectrum of indole are indeed a Fermi doublet.

From theory, the Fermi resonance coupling scheme can be deduced for these two lines. The intensity ratio of the 28^1_0 to the $39^1_0,41^1_0$ modes is 2 to 1.
and it can be assumed that all the intensity of the $39^{1}_0 41^{1}_0$ combination band came from the 28^{1}_0 line. Therefore, working backward and using the variation method, we can estimate the unperturbed energy separation and the coupling constant, β. The matrix that gives the proper coupling scheme is as follows:

\[
\begin{bmatrix}
1 & 12 \\
12 & 10
\end{bmatrix}
\begin{align*}
E_1 &= -7.316 & c_1 &= 0.822 & c_2 &= 0.570 \\
E_2 &= 18.316 & c_1 &= -0.570 & c_2 &= 0.822
\end{align*}
\]

(18)

where E_1 and E_2 are α_1 and α_2, respectively, and c_1 ($c_1^2=0.325$) and c_2 ($c_2^2=0.676$) are the linear combination coefficients. The variation method places the unperturbed energy separation at $(10-1 = 9 \text{ cm}^{-1})$ and the coupling constant (β) at 12 cm^{-1}.

Another case of Fermi resonance encompasses the out-of-plane combination band $41^{1}_0 42^{1}_0$ and the in-plane 29^{1}_0. The argon matrix apparently blue shifts the 41^{2}_0 and 42^{2}_0 lines from 315.7 and 364.9 to 364 and 403.2 cm$^{-1}$, respectively. The $41^{1}_0 42^{1}_0$ should have no Franck-Condon activity and it is not seen in the jet, yet it couples with the neighboring 29^{1}_0 line and its intensity is about the same as that of the 41^{2}_0 or the 42^{2}_0 line, see Figure 16. This increase in intensity is attributed to intensity borrowing via Fermi resonance.
Herzberg-Teller Coupling

The 455 cm\(^{-1}\) and the 480 cm\(^{-1}\) lines in the jet spectrum of indole, which give \(^1\!L_a\) signature, are really a Fermi doublet, as proven above. The line at 480 cm\(^{-1}\) is mostly the 28\(^1_0\) vibration, which has red-shifted to 471 cm\(^{-1}\) in the matrix. The 28\(^1_0\) still gives the \(^1\!L_a\) signature in the argon matrix (low anisotropy), but the line shifts as an \(^1\!L_b\) line. One explanation of this is Herzberg-Teller (HT) vibronic coupling by the 28\(^1_0\) vibration between the \(^1\!L_b\) and the \(^1\!L_a\) manifold. If the 28\(^1_0\) line displays vibronic coupling in the excited state, then it should be displayed in
the fluorescence. This requires polarization measurements both in the excited state and in the ground state. The excited state has already been examined, which leaves the ground state to be addressed, see Figure 17. Figure 17 shows three neighboring vibrational lines $28^0_{1,2}(545 \text{ cm}^{-1})$, $27^0_{1,2}(610 \text{ cm}^{-1})$, and $26^0_{1,2}(760 \text{ cm}^{-1})$; $26^0_{1,2}$ and $27^0_{1,2}$ are shown for contrast. The following anisotropy values for the $26^0_{1,2}$, $27^0_{1,2}$, and $28^0_{1,2}$ lines are respectively: $r=0.07$, $r=0.06$, $r=-0.02$. Herzberg-Teller vibronic coupling can be proven by the following; first, the $28^1_{1,0}$ and $28^0_{1,1}$ lines are seen due to zero point motion (both in the ground state and the excited state) coupling intensity into the Franck-Condon integral in Equation 9. Second, the reason the lines are known to be coupled in because the vector that couples the intensity in Equation 9 is perpendicular the 1L_b moment, giving low polarization both in the excited and the ground state of mode 28.

The 1L_a Origin

The 1L_a state of indole is expected to be differentially red-shifted relative to the 1L_b state, due to their different permanent dipoles and their different dispersion interactions. The permanent dipole argument is the easier to grasp. The 1L_a state is known experimentally and empirically to have a large permanent dipole (5-10 debye), which is much stronger than the dipole of the 1L_b state (~2 debye)64,65. The relative shifts from vacuum to condensed phase medium caused by the permanent dipole difference can be estimated by the Onsager Mataga-Lippert type formula discussed in the theory section, with the refractive
Figure 17. Fluorescence spectrum of indole in argon at 20K (500-850 cm\(^{-1}\)), (a), and fluorescence anisotropy, (b).
index of solid Ar (1.28), cavity radius of 3.4 Å, ground dipole 2 debye, 1L_a dipole 5 debye, and 1L_b dipole 3 debye. The red-shift estimates are 400 cm$^{-1}$ for the 1L_a and 100 cm$^{-1}$ for the 1L_b. Following the method of Lami and Glasser65, the estimates are 470 cm$^{-1}$ for the 1L_a and 120 cm$^{-1}$ for the 1L_b.66 The 1L_b red shift is known experimentally to be between 250 and 375 cm$^{-1}$, depending on the site. It would be feasible for the 1L_a state to shift 100-200 cm$^{-1}$ more than the 1L_b state by this mechanism.66

As mentioned in the theory section, a good portion of the observed shift comes from a dispersion mechanism, which is known to red-shift the 1L_a state about 500 cm$^{-1}$ more than the 1L_b state in hydrocarbon solvent for naphthalene and anthracene.52 The 1L_a state of anthracene is known to red-shift 500-700 cm$^{-1}$ in solid argon.51 The process by which this shift occurs is not well understood.

Concerning the true location of the 1L_a origin in published literature, there has been no definite conclusion found. However, there is a region (1100-1500 cm$^{-1}$) in the fluorescence excitation spectra of the argon matrix and the supersonic jet that does not correlate. It is this region that gives the true location of the 1L_a origin. In the jet spectrum (Figure 14a) many 1L_a lines appear between 1300-1500 cm$^{-1}$ and no lines appear between 1100-1300 cm$^{-1}$. In contrast, in the matrix spectrum (Figure 14c) many 1L_a lines appear between 1100-1300 cm$^{-1}$, but little 1L_a intensity appears between 1300-1500 cm$^{-1}$. It can be concluded that the 1L_a intensity has red-shifted approximately 200 cm$^{-1}$ in the matrix when compared to the jet. Since the 1L_a state differentially red-shifts
relative to the 1L_b state in the matrix, a distinction can be made between actual
1L_a lines and vibronically coupled 1L_b lines (471 and 780 cm$^{-1}$ lines). The 1L_a
origin is split into several lines in the argon matrix just as it is in the jet.

As observed in the ground state, the dispersed fluorescence spectrum of
indole in an argon matrix at 20K is shown (Figure 18b) with excitation at the 261_0
(720 cm$^{-1}$) line and linewidths of 10 cm$^{-1}$. For comparison, the jet fluorescence
spectrum is shown (Figure 18a, Kurt Short)67, with the origins aligned. The line
positions and intensities are very similar between the spectra, thus the matrix
does not perturb ground state vibrational energy. The important regions of the
spectrum are the strong 260_1 transition (760 cm$^{-1}$) and the region of strong
intensity near 1250 cm$^{-1}$ that suggest 1L_b fluorescence. These differences will be
discussed later in the thesis. Be it noted that the fluorescence spectrum also
includes strong phonon wings extending to the blue 100 cm$^{-1}$ from the zero-
phonon line.

Site Structure

Indole incorporated in an argon matrix at 20 K fits into specific
reproducible site classes within the argon matrix. Each separate site class has a
distinctive solvent orientation and in turn, each site has a different induced field
which indole causes and senses, due to its interaction with the surrounding
argon. These fields are different enough in strength to cause the 1L_b origin to
vary by 223 cm$^{-1}$ between the most blue and red-shifted sites. Since the 1L_b
Figure 18. Fluorescence spectrum of indole in argon at 20K, (a), and the stick spectrum, (b).
origin shifts that much, it would be expected that the $1L_a$ origin would shift as much or more, similar to anthracene shifts in solid argon51. Therefore, by inspecting the spectra of indole from different sites we can, in essence, track spectral differences caused by differences in $1L_a - 1L_b$ energy gaps tuned by the site, see Figure 19. All spectra were taken while monitoring the 26^0_1 line in the emission.

The fluorescence excitation spectrum of indole in site 1 (the main site) is shown in Figure 19a. The $1L_b$ origin of site 1 red-shifts 251 cm$^{-1}$ from its vacuum value and the $1L_a$ origin sits 1100-1300 cm$^{-1}$ above the $1L_b$ origin. The out-of-plane vibrations are blue-shifted by the argon matrix from their vacuum values; which are as follows, 37^2_0 shifts 27 cm$^{-1}$ to 764 cm$^{-1}$, 42^2_0 shifts 48 cm$^{-1}$ to 364 cm$^{-1}$, and 41^2_0 shifts 37 cm$^{-1}$ to 403.2 cm$^{-1}$. The Fermi doublet made up of the 29^1_0 and the $41^1_0, 42^1_0$ is at 381.2 and 386.7 cm$^{-1}$ respectively. For simplicity, the rest of the sites will be compared with site 1.

The $1L_b$ origin for site 5 is blue-shifted 100 cm$^{-1}$ from site 1 (see Figure 19c) and the $1L_a$ grouping is in the 1200 to 1400 cm$^{-1}$ region, further blue-shifted 70 cm$^{-1}$ from site 1. This can be attributed to a larger $1L_a - 1L_b$ energy gap. The larger energy gap has led to a reduction in the intensity of the 28^1_0 (vibronically active) line when compared with the 27^1_0 line. The out-of-plane vibrations all red-shift: 37^2_0 10 cm$^{-1}$ to 755 cm$^{-1}$, 42^2_0 to 356 cm$^{-1}$, and 41^2_0 to 401.5 cm$^{-1}$. The Fermi doublet is also present at 375.3 cm$^{-1}$ (29^1_0) and 380.7 cm$^{-1}$ ($41^1_0, 42^1_0$).
Site 2 displays the greatest red-shift of all the sites and gives the broadest lines (30 cm$^{-1}$). Also, the fluorescence excitation spectrum (see Figure 19b) has more unusual features than the other spectra. The unique feature of this is the broad line (60 cm$^{-1}$) at 638 cm$^{-1}$ giving 1Lα intensity. It is speculated that this is the vibronically active line that sits at 780 cm$^{-1}$ in site 1, that red-shifts by 142 cm$^{-1}$, broadening to 60 cm$^{-1}$, and increasing in intensity, due to coupling to the nearby 1Lα state. Furthermore, the vibronically active 281_0 line behaves similarly. This line red-shifts 27 cm$^{-1}$ to 444 cm$^{-1}$, it also broadens, and increases in intensity to a point that it is nearly equal in intensity to the strong 261_0 line. It is the line at 776.4 cm$^{-1}$ that is believed to be the out-of-plane 372_0 line that blue-shifts 12.2 cm$^{-1}$ to this position, with its high anisotropy. Due to the broadness of this site, clarification of other points is difficult.

Lastly, site 3 is a weak site with high spectral background, therefore, making many comparisons to site 1 and 2 is difficult. This spectrum is very similar to the spectrum of site 1, with the out-of-plane 372_0 sitting at 760.5 cm$^{-1}$.
Figure 19. Fluorescence excitation spectra (200-1400 cm$^{-1}$) of indole in argon at 20K from site 1, (a), site 2, (b), site 5, (c), and site 3, (d).
Phosphorescence

The phosphorescence spectrum of indole in argon at 20K shows up in the blue region of the visible spectrum, with a triplet state lifetime of nearly 10 s. For the phosphorescence lifetime decay and the log plot, which is a single exponential, see Figure 20. The phosphorescence is also quite intense, about 1/3 the fluorescence intensity.

Figure 20. The phosphorescence intensity decay, (a), and the log plot, (b).
The accompanying phosphorescence spectra of indole in argon at 20K are shown in Figure 21 on an absolute wavelength scale. The three phosphorescence spectra shown are site selected from three different singlet energy sites. Figure 21a displays the phosphorescence from site 1 at 285.8 nm with the triplet origin 3L_a at 403.4 nm (24,789 cm$^{-1}$), Figure 21b displays the phosphorescence from site 5 (the most blue site) at 285.05 nm with the 3L_a origin at 401.07 nm (24,933 cm$^{-1}$), and Figure 21c displays the phosphorescence from site 2 (the most red site) at 286.8 nm with the 3L_a origin at 403.8 nm (24,764 cm$^{-1}$). All three spectra have the phosphorescence originating from the lowest triplet state, that is, the 3L_a state.

The phosphorescence from both sites 1 and 2 has a linewidth of 100 cm$^{-1}$, which is quite broad when compared to the sharp fluorescence and the sharpness of the sites, which has been noted previously by Williamson and Kwiram. The triplet state is known, from experiment, to have a smaller oscillator strength than the singlet state, and from theory, a smaller permanent dipole than the ground state. If the broadness is solely due to the dipole, then phosphorescence would be expected to have sharper lines. Yet the phosphorescence is unexpectedly broad. An important point to remember is that the singlet sites are in resonance (tuned by the laser) and the triplet sites are not. The experiment results suggest that these molecules in this selected singlet site have differing triplet energies of about 200 cm$^{-1}$. This energy difference is similar to the energy difference between 1L_b sites within the argon.
Experimentally, sharp singlet sites give broad phosphorescence and in one case, sharp phosphorescence. The phosphorescence spectrum from site 5 is shown (Figure 21b) and is made up of a sharp component (10 cm$^{-1}$) and a broad component (300 cm$^{-1}$) lying toward the red. The spectral data suggests that the phosphorescence from site 5 is really composed of two types of sites, one being highly ordered, giving sharp 3L$_a$ emission, and the others being more disordered, giving broad 3L$_a$ emission. The highly ordered component could be composed of indole in identically oriented argon cages, yielding a narrow energy distribution of triplet sites. The other component could be composed of indole all having identical S$_1$ energies, but in different oriented argon cages giving a broader energy distribution of triplet energy. This theory is speculative, and the real reason may include differences in lifetime and spin-orbit coupling.

The phosphorescence spectrum from site 5 is shown in Figure 22a and the accompanying stick spectrum is shown Figure 22b. Both spectra are zeroed to the 3L$_a$ origin and are aligned for convenience of comparison. The stick spectrum is made from the phosphorescence spectrum by taking the peak heights of all the lines and subtracting the background, giving sharp L$_a$ emission. The line frequencies, intensities, and assignments are listed in Table 2. This emission has the 1L$_a$ fingerprint and can be distinguished easily from its 1L$_b$ counterpart. It has nearly equal intensity in the 270_1 at 599 cm$^{-1}$ and the 260_1 at 750 cm$^{-1}$ lines and has strong intensity in the 100_1 line at 1502 cm$^{-1}$, the 90_1 line at 1570 cm$^{-1}$, and the 80_1 line at 1608 cm$^{-1}$, which are absent in 1L$_b$.
Figure 21. The phosphorescence spectra of indole in argon at 20K from site 1, (a), site 5, (b), and site2, (c).
Figure 22. The phosphorescence spectrum of indole in argon at 20K from site 5, (a), and the stick spectrum, (b).
<table>
<thead>
<tr>
<th>Spectral shift (cm⁻¹)</th>
<th>Intensity</th>
<th>Assignment</th>
<th>Spectral shift (cm⁻¹)</th>
<th>Intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00</td>
<td></td>
<td>1354.6</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>392.5</td>
<td>0.05</td>
<td>29₀¹</td>
<td>1502.0</td>
<td>0.12</td>
<td>10₀¹</td>
</tr>
<tr>
<td>408.7</td>
<td>0.01</td>
<td></td>
<td>1537.4</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>418.4</td>
<td>0.01</td>
<td>42₀² (?)</td>
<td>1546.3</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>537.7</td>
<td>0.06</td>
<td>28₀¹</td>
<td>1569.8</td>
<td>0.21</td>
<td>9₀¹</td>
</tr>
<tr>
<td>598.5</td>
<td>0.11</td>
<td>27₀¹</td>
<td>1608.0</td>
<td>0.06</td>
<td>8₀¹</td>
</tr>
<tr>
<td>750.7</td>
<td>0.10</td>
<td>26₀¹</td>
<td>1857.5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>832.4</td>
<td>0.02</td>
<td></td>
<td>1866.1</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>838.6</td>
<td>0.04</td>
<td>39₀¹ (?)</td>
<td>1894.8</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>869.9</td>
<td>0.03</td>
<td>25₀¹</td>
<td>1900.5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>888.6</td>
<td>0.01</td>
<td>24₀¹</td>
<td>1920.5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>944.6</td>
<td>0.01</td>
<td></td>
<td>1926.2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>987.9</td>
<td>0.01</td>
<td></td>
<td>1963.2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1000.3</td>
<td>0.02</td>
<td></td>
<td>2073.6</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1006.4</td>
<td>0.01</td>
<td>23₀¹</td>
<td>2110.2</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>1052.6</td>
<td>0.05</td>
<td>22₀¹</td>
<td>2174.5</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1101.7</td>
<td>0.03</td>
<td>21₀¹ (?)</td>
<td>2213.6</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1112.4</td>
<td>0.07</td>
<td>20₀¹</td>
<td>2258.0</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1138.4</td>
<td>0.05</td>
<td>19₀¹</td>
<td>2324.3</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1190.1</td>
<td>0.01</td>
<td></td>
<td>2382.0</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1232.6</td>
<td>0.03</td>
<td>16₀¹</td>
<td>2412.1</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1262.8</td>
<td>0.05</td>
<td>15₀¹</td>
<td>2561.5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1315.6</td>
<td>0.06</td>
<td>14₀¹ (split)</td>
<td>2692.9</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1323.1</td>
<td>0.04</td>
<td>14₀¹</td>
<td>2720.8</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1338.1</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Continued

<table>
<thead>
<tr>
<th>Spectral Shift (cm⁻¹)</th>
<th>Intensity</th>
<th>Assignment</th>
<th>Spectral Shift (cm⁻¹)</th>
<th>Intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2732.8</td>
<td>0.01</td>
<td></td>
<td>3010.9</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2817.5</td>
<td>0.01</td>
<td></td>
<td>3088.3</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>2846.4</td>
<td>0.02</td>
<td></td>
<td>3126.8</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2897.6</td>
<td>0.02</td>
<td></td>
<td>3157.5</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

a Frequencies ± 10 cm⁻¹.
b Intensity relative to the 3La origin.

3-Methylindole

3-methylindole (3MI) is an important molecule to study because it bridges the gap between indole and tryptophan. It is the 3-position at which indole links to form tryptophan, therefore, the perturbation made by the methyl group to the energy levels would be similar to indole found in tryptophan. This aids the understanding of the photophysics of indole in proteins. It is also known from previous spectroscopic studies that methyl substitution in the 3-position reduces the 1La-1Lb separation and the methyl rotor is not active upon excitation.

The S₁ origin region of 3MI, incorporated into solid argon at 20K is shown in the transmittance spectrum in Figure 23. The spectrum displays the 1Lb origin at 288.8 nm and the 1La origin 260 cm⁻¹ higher in energy at 286.6 nm. Neither origin region shows any intrinsic narrow site structure, only a broad site of 200 cm⁻¹ that is most likely composed of many closely spaced narrow sites.

Figure 24b displays the fluorescence excitation spectrum of 3MI in solid argon at 20K, with the emission monitored at the 760 cm⁻¹ line, 260, and Figure
Figure 23. Transmittance spectrum of 3MI in argon at 20K, with a 0.2 cm$^{-1}$ bandpass.
24c displays the fluorescence anisotropy. For comparison, Figure 24a displays the fluorescence excitation spectrum of 3MI in the jet (with Ω values indicated). All spectra are zeroed to the \(^1L_b\) origin. The argon matrix stabilizes the \(^1L_b\) origin 254 cm\(^{-1}\) from its vacuum value, and is located at 288.78 nm (34,628 cm\(^{-1}\)).

By examining Figure 24b, the first thing to note is that 3MI has broader lines (70 cm\(^{-1}\)) than the sharp lines intrinsic to indole (12 cm\(^{-1}\)) in an argon matrix at 20\(^o\)K. However, this difference is expected upon examination of the site structure (see Figure 23). The lineshape of 3MI is quite different from indole. 3MI has a sharp zero-phonon component (but, not as sharp as indole’s) with a phonon sideband that extends further up the zero-phonon band, giving an apparent broadness of 70 cm\(^{-1}\) at half width.

The site width comes from either the intrinsic site that 3MI holds within the argon matrix under these conditions, or the energy separations of these sites. It would be reasonable to suppose that indole and 3MI occupy different sites and 3MI only occupies a site with greater inhomogeneous broadening, possibly a more loose fitting site. Structurally 3MI and indole are very different. The alternative is that this broad site is composed of many overlapping sharp sites that are close in energy, and cannot be site selected. 1MI clarifies this issue. 1MI is nearly geometrically equivalent to 3MI and expecting both 3MI and 1MI to sit in a similar site would be reasonable. 1MI fits into at least one sharp site within the argon (see Figure 38); therefore, it is also conceivable that 3MI also fits into sharp sites. This evidence suggests that the broadness comes from
tightly packed overlapping sites.

The anisotropy in Figure 24c is low in comparison to the theoretical values (maximum anisotropy=+0.08 and minimum=-0.04). However, they are at the proper ratio for perpendicular transition moments, and the anisotropy is useful for analyzing data.

In Figure 24a and 24b there exist many differences between the two spectra. The jet spectrum in Figure 24a contains many 1L_a lines ($\Omega$$\sim$0.5) between 300 cm$^{-1}$ and 800 cm$^{-1}$ that are absent in the matrix spectrum in Figure 24b. The major line contributors being the 356, 409, 420, 467(?), 609, 617, and 739-749 cm$^{-1}$ lines. The sum of these lines is close to the intensity of the 1L_b origin, supporting the notion of a split origin. The 467.5 cm$^{-1}$ line will not be counted as an 1L_a line and is believed to be the vibronically active $28^1_0^1L_b$ line, because the 2-photon spectral contour using linear polarized light shows no a$_i$ e splitting seen for all other 1L_a lines22. The intensity of the 28^1_0 line is also greater than its indole counterpart, which can be explained by the closer proximity of the 1L_a state, thus enhancing the coupling.

The matrix fluorescence excitation spectrum in Figure 24b displays a distinct, intact 1L_a origin (r=-0.04) 260 cm$^{-1}$ to the blue of the 1L_b origin. By 3MI being placed in the argon matrix, the 1L_a origin has been red-shifted 100 to 200 cm$^{-1}$ more than the 1L_b origin, which is similar to that found in indole. The integrated intensities of the two origins are nearly equivalent, as predicted by theory36,70. The 1L_a origin is not split in this case. The reason the 1L_a origin is
Figure 24. Supersonic jet fluorescence excitation spectrum of 3MI (with Ω values), (a), fluorescence excitation spectrum of 3MI in argon at 20K, (b), and fluorescence anisotropy, (c).
Figure 25. Two-photon spectrum of the 1L_a and 1L_b origin region (-50-400 cm$^{-1}$) of 3MI in argon at 20K.
intact may lie in its new position 260 cm\(^{-1}\) above the \(^1L_b\) origin, where many vibrational states do not exist, or perhaps the vibrational states (out-of-plane) that are in the vicinity cannot couple. Working backwards from the argon into the jet, the uncoupled \(^1L_a\) origin in the jet should lie 450 cm\(^{-1}\) above the \(^1L_b\) origin under jet conditions. The \(^1L_a\) and \(^1L_b\) origins are verified by 2-photon data taken of 3MI in argon at 20K, see Figure 25. The \(S_1\) has \(\Omega=1.03\) and the \(S_2\) has \(\Omega=0.54\). The two photon spectrum displays at least two sites on the \(^1L_b\) origin, due to the large slit width (40 cm\(^{-1}\) bandpass) used in collecting the 2-photon data.

In the jet fluorescence excitation spectrum, two prominent lines have \(^1L_b\) character: 27\(^1\)\(_o\) at 427 cm\(^{-1}\) and 26\(^1\)\(_o\) at 715 cm\(^{-1}\). These two lines also appear in the matrix spectrum at the same relative positions and can be identified by their high anisotropy. The 27\(^1\)\(_o\) line at 427 cm\(^{-1}\) is the small line in the phonon shoulder of the \(^1L_a\) origin. The anisotropy jumps from -0.04 to 0.0 over this line, clearly displaying \(^1L_b\) character. The other line is the strong 26\(^1\)\(_o\) line at 715 cm\(^{-1}\) and it is clearly \(^1L_b\), \(r=+0.06\). The matrix spectrum also has a strong \(^1L_b\) line centered at 930 cm\(^{-1}\), \(r=+0.06\), and in the jet spectrum there lie many lines in this region, yielding great intensity.

The \(^1L_a\) manifolds are difficult to compare due to the splitting in the jet, but in the argon matrix spectrum there is a strong \(^1L_a\) line centered at 980 cm\(^{-1}\) with an anisotropy dip from \(r=+0.075\) to \(r=0.0\). This \(^1L_a\) line lies 720 cm\(^{-1}\) above the \(^1L_a\) origin and identifies it possibly as the 26\(^1\)\(_o\) line of the \(^1L_a\) manifold. The
anisotropy above 1000 cm$^{-1}$ pivots around zero due to overlapping of low 1L_a and 1L_b intensity.

The fluorescence spectrum of 3MI in argon at 20K is shown in Figure 26. The fluorescence spectrum lines are as broad as the fluorescence excitation spectrum lines (70 cm$^{-1}$) and are composed of two narrow lines. There are three strong lines in this spectrum, with the strongest Franck-Condon line being the 260,1 vibration at 760 cm$^{-1}$ and the other lines occur at 1230 and 1350 cm$^{-1}$. The strength of the 260,1 line and the weakness of the 270,1 (500 -600 cm$^{-1}$ region) is characteristic of 1L_b emission. The emission has a similar appearance to that of indole and has been assigned 1L_b. There is also the appearance of site structure, with at least two sites visible, reaffirming the conviction that the broadness is due to overlapping sharp sites.

The phosphorescence spectrum of 3MI in solid argon at 20K is shown in Figure 27 with excitation from the 1L_b origin at 288.78 nm. The 3L_a origin of the triplet state is at 416.5 nm (24,009 cm$^{-1}$), which is 900 cm$^{-1}$ lower in energy than that of indole under similar conditions. It also gives the characteristic L_a emission with no features in the 760 cm$^{-1}$ region and strong intensity in the 1500 cm$^{-1}$ region.
Figure 26. Dispersed fluorescence spectrum of 3MI in argon at 20K.
Figure 27. Dispersed phosphorescence spectrum of 3MI in argon at 20k, with 1L_b origin excitation at 288.78 nm.
5-Methylindole

From previous spectroscopic studies of 5MI, it is known that methylation in the 5-position increases the $^1L_a-^1L_b$ energy separation with 1L_b being the lowest state70,71,8. 5MI is also known to have the methyl rotor potential surface displaced 60° upon excitation, giving strong Franck-Condon activity in the methyl rotor normal mode22,15. In Figure 28a, the methyl rotor progression is quite extensive and is built off the origin and all other skeletal modes of the molecule. The individual line intensities are low because the intensity is distributed over the entire methyl progression of five major lines spanning 200 cm-1 rather than a single line.

Figure 28b displays the fluorescence excitation spectrum of 5MI in solid argon at 20K when the fluorescence is monitored at the 760 cm-1 line. The matrix spectrum in Figure 28b, extends to 2750 cm-1 above the 1L_b origin and displays 200 cm-1 linewidths. This broadness is believed to be caused by the underlying methyl rotor structure. The matrix broadens all methyl rotor lines, causing them to collapse and fuse into broad lines. The argon matrix spectrum matches the jet spectrum for the first 1000 cm-1. After this, the matrix spectrum has features that lie between 1000-1500 cm-1, which are not present on first inspection of the jet spectrum. However, in the jet spectrum there exists great integrated intensity, due to the high density of lines between 1000-1500 cm-1. Figure 28c displays the fluorescence anisotropy and Figure 28a displays the jet...
fluorescence excitation spectrum (with \(\Omega \) values). The spectra are all zeroed at the \(^1L_b \) origin and are aligned for convenience of comparison. The \(^1L_b \) origin of 5MI is stabilized by 80 cm\(^{-1} \) from its vacuum value by the argon matrix and sits at 291.75 nm (34,276 cm\(^{-1} \)).

The anisotropy values for 5MI are low (maximum value of \(r=0.075 \) and a minimum value of \(r=-0.03 \)), but are nearly in the proper ratio for the perpendicular transition moments, thus, the anisotropy is useful for data analysis. The \(^1L_b \) features of the spectrum are the \(^1L_b \) origin at 0 cm\(^{-1} \) (\(r=0.075 \)), the \(26_{1}^0 \) line at 720 cm\(^{-1} \)(\(r=0.06 \)), the \(^1L_b \) intensity between 800-1000 cm\(^{-1} \) (\(r=0.075 \)), and the strong \(^1L_b \) transition at 1450 cm\(^{-1} \) (\(r=0.06 \)).

The low anisotropy (\(r=0.0 \)) region between 400-600 cm\(^{-1} \), \(r=0.0 \), corresponds to the vibronically active \(28_{1}^0 \). There are also several anisotropy dips between 700 and 1500 cm\(^{-1} \) that can also be explained by this mechanism.

The emission anisotropy remains high, for the most part, until 1800 cm\(^{-1} \) above the \(^1L_b \) origin where the \(^1L_a \) intensity manifests itself at this point where the anisotropy drops to \(r=-0.03 \) and remains at this level throughout the rest of the spectrum. There are three strong transitions at 2100, 2350, and 2600 cm\(^{-1} \), all giving identical anisotropy, \(r=-0.03 \), and with a separation of 250 cm\(^{-1} \). These lines are assigned to the split \(^1L_a \) origin and the linewidths are 200 cm\(^{-1} \), which are equivalent to the \(^1L_b \) linewidths.

Figure 29 is the fluorescence spectrum of 5MI, with excitation at the \(26_{1}^0 \) line at 285.9 nm. The spectrum positively exhibits \(^1L_b \) fluorescence because the
‘L_a origin is 2000 cm$^{-1}$ above the ‘L_b origin. Although, the spectrum is broad (200 cm$^{-1}$), attributed to the methyl rotor structure, it still has the pronounced ‘L_b features at the 760 cm$^{-1}$ (26^0_1) and the 1200-1300 cm$^{-1}$ regions.

The phosphorescence spectrum of 5MI in solid argon at 20K is shown in Figure 30 with excitation from the ‘L_b origin at 291.75 nm and linewidths of 200 cm$^{-1}$. The origin of the triplet state is located at 406.0 nm (24,630 cm$^{-1}$), 400 cm$^{-1}$ lower in energy than indole under similar conditions. This emission exhibits the characteristic ‘L_a emission profile, with near equal intensity of the $28^0_1 + 27^0_1$ modes in the 400-600 cm$^{-1}$ region and the 26^0_1 mode centered at 760 cm$^{-1}$, and the large intensity centered at 1550 cm$^{-1}$ composed of the 8^0_1, 9^0_1, and 10^0_1 modes.

2,3-Dimethylindole

2,3-Dimethylindole (2,3DMI), in many respects, has been a difficult molecule to understand in the jet. The jet fluorescence excitation spectrum is unusual in that it has no resemblance to the other indoles. It has a strong S_1 origin, but all the vibrational lines are extremely weak due to a non-radiative process, and there is no correlation with indole’s normal mode frequencies. Even the strong 26^1_0 line is absent. It is known through this research that methylation in the 3-position brings the origins to within 260 cm$^{-1}$ in the argon matrix and methylation in the 2-position is known to stabilize the excited states further.
Figure 28. Supersonic jet fluorescence excitation spectrum of 5MI (with \(\Omega \) values), (a), fluorescence excitation spectrum of 5MI in argon at 20K, (b), and fluorescence anisotropy, (c).
Figure 29. Dispersed fluorescence spectrum of 5MI in argon at 20K.
Figure 30. Dispersed phosphorescence spectrum of 5MI in argon at 20k, with 1L_b origin excitation at 291.75 nm.
The fluorescence excitation spectrum and the emission anisotropy of 2,3-DMI in argon at 20K are shown in Figure 31a and 31b respectively, and are zeroed to the S_1 origin at 288.6 nm (34,642 cm$^{-1}$). The anisotropy is also at the proper ratio (2:-1), for perpendicular transition moments making it useful for data analysis. One striking detail is the broadness of the fluorescence excitation spectrum, which is even broader than the 5-MI case. This broadness is most likely due to the intrinsic site structure that 2,3-DMI holds within solid argon, possibly by overlapping of closely packed sites. Displayed here are two origins separated by 190 cm$^{-1}$ and the anisotropy drops from $r=+0.08$ to $r=-0.05$ across the pair. This raises the question of which origin is the 1L_a and which is the 1L_b. The anisotropy does answer this question. The fluorescence spectrum and the 2-photon data must be taken into account to identify the S_1 and S_2 origins positively.

The fluorescence spectrum of 2,3DMI in argon at 20K is shown in Figure 32. There are two major differences between the emission of 2,3DMI and known 1L_b emitters indole, 3MI, and 5MI in argon. First, the linewidths are much wider, on the order of 300 cm$^{-1}$. Second, the fluorescence spectrum does not have the same general structure as 1L_b fluorescence with two profound differences: there is less intensity in the 750 cm$^{-1}$ region and intensity has shifted from the 1350 cm$^{-1}$ region to the 1600 cm$^{-1}$ region of the spectrum as compared to the 1L_b fluorescence.

An aid to understanding the emission result comes from theoretical
treatment of indole, phosphorescence data, and 2-photon data. Along these lines, Callis et al.38 have shown through theoretical results that there are stark differences between the Franck-Condon factors of the \(^1L_a \) and \(^1L_b \) states due to the distinct nature of the excited state potential wells. \(^1L_b \) emission is expressed through dominant modes 26 (760 cm\(^{-1}\) region), 23 (1000 cm\(^{-1}\) region), 14 (1350-1450 cm\(^{-1}\) region) with the absence of modes 25, 19, 18, 10-8, and a strong origin. This explains the fundamental expression of \(^1L_b \) emission intensity in the 750 cm\(^{-1}\) and the 1200-1400 cm\(^{-1}\) regions, as expressed in 5MI fluorescence. On the other hand, \(^1L_a \) emission has a reduction of mode 26 (760 cm\(^{-1}\) region) and an increase in mode 27 (610 cm\(^{-1}\) region) to the extent that they are nearly identical in intensity. Also, there is an increase in the CC stretches with modes 8, 9, and 10 active and predicted to lie near 1600 cm\(^{-1}\). Theory explains the exact differences noted between 2,3DMI fluorescence and other known \(^1L_b \) emitters.

In further support of this theory, the comparison of 2,3DMI fluorescence to indole phosphorescence (known to emit from the \(^3L_a \) state1) is made (see indole phosphorescence spectra in Figures 21 and 22). There are many similarities in these spectra, especially in the dominant intensity region between 1500-1700 cm\(^{-1}\). 2-photon data (\(S_1 = 0.6 \) and \(S_2 = 0.9 \)) verifies that the \(S_1 \) state is indeed \(^1L_a \).

In conclusion, theory, phosphorescence data, and 2-photon data (not shown) proves that for 2,3DMI the \(S_1 \) state is the \(^1L_a \) state and the fluorescence is \(^1L_a \) and this fluorescence can be distinguished from its \(^1L_b \) counterpart by
distinct Franck-Condon differences. Furthermore, this is the sharpest 1L_a fluorescence seen and is much sharper than Rnase fluorescence72.

The question of which origin is lower is answered; the 1L_a origin of 2,3DMI is 190 cm-1 below the 1L_b origin in argon at 20K. The combined perturbation of the two methyl groups has caused the 1L_a state to be pushed to lower energy. If the energy difference between the two states is 190 cm-1 in argon, and the argon matrix is known to stabilize the 1L_a state approximately 200 cm-1 more than the 1L_b, then it would be reasonable to expect the 1L_a and 1L_b states to be nearly equivalent in energy in the jet. The convergence of the two states in the jet may be the reason behind the non-radiative process that plagues the jet fluorescence excitation spectrum.

The phosphorescence spectrum of 2,3DMI in solid argon at 20K is shown in Figure 33 with excitation from the 1L_a origin at 288.66 nm and linewidths of 200 cm-1. The 3L_a origin of the triplet state is located at 411.2 nm (24,319 cm-1), 600 cm-1 red-shifted in comparison to indole under similar conditions. The emission is characterized as 3L_a with similar features to the fluorescence spectrum with a broad line centered at 500 cm-1 made up of the 28^0_1 and 27^0_1 modes, lower intensity over the 26^0_1 region, and strong intensity centered at 1550 cm-1 (the 8^0_1, 9^0_1, and 10^0_1 modes).
Figure 31. Fluorescence excitation spectrum of 2,3DMI in argon at 20K, (a), and the fluorescence anisotropy, (b).
Figure 32. Dispersed fluorescence spectrum of 2,3DMI in argon at 20K.
Figure 33. Dispersed phosphorescence spectrum of 2,3DMI in argon at 20k, with 1L_a origin excitation at 288.66 nm.
2-Methylindole

In 2MI, the methyl group is attached to the main axis of indole, affecting certain normal mode frequencies. 2MI is not methyl rotor active on excitation, and the fluorescence excitation manifold in a jet is weak due to a nonradiative process, similar to 2,3DMI17.

The incorporation of 2MI into argon at 20K produces an array of closely spaced sites, see the transmittance spectrum in Figure 34. There are five main sites, four within a 55 cm-1 region (site 1 at 285.6, site 2 at 285.72, site 3 at 285.91, and site 4 at 286.07 nm and site 5 at 286.32 nm), each site having an intrinsic site width of 10 cm-1. This evidence proves that methylated indoles can sit in sharp sites within argon and may shed light on the 3MI case.

To eliminate site contamination due to the closely spaced sites, all spectra were taken from site 4 (unless specifically noted) at 286.07 nm (34, 956 cm-1), which is 214 cm-1 to the red of its vacuum value. Figure 35a displays the fluorescence excitation spectrum of 2MI in argon at 20K taken while monitoring the 260 line in the emission and Figure 35b displays the fluorescence anisotropy. Both spectra are zeroed to the 1L\textsubscript{b} origin and have spectral linewidths of 10 cm-1.

The 1L\textsubscript{a} origin lies between 400-600 cm-1 with 2 main lines at 418.1 and 488.2 cm-1 and two small lines at 529 and 574 cm-1 (low anisotropy). These lines are not in a jet spectrum17 and have red shifted by incorporation into argon,
giving supporting evidence for their \(^1\text{L}_a \) assignment. The \(^1\text{L}_a \) intensity in this region is reasonable from our data on indole, 3MI, and 2,3DMI in argon at 20K.

The strong \(26^\dagger_0 \) normal mode is believed to be split into two lines at 611.9 and 647.6 cm\(^{-1}\); both lines have high anisotropy, \(r=+0.12 \). Another possibility is that indole’s \(26^\dagger_0 \) is a linear combination of \(26^\dagger_0 \) and \(25^\dagger_0 \) in 2MI. These lines are The positions of these lines agree with MOPAC, which predicts a 100 cm\(^{-1}\) red-shift \(26^\dagger \), mode (ground state), due to the large amplitude motion of the 2-position in mode 26. Lastly, there is a small line at 251.1 cm\(^{-1}\) that is common for substituted indoles.

The emission spectrum of 2MI in argon at 20K is shown in Figure 36 with excitation at the 611.9 cm\(^{-1}\) line in the excited state. This emission does not have the exact appearance of indole fluorescence, but it is definitely \(^1\text{L}_b \) fluorescence. The most intense line is the \(26^\dagger_1 \) line at 659.7 cm\(^{-1}\) (50% of the origin), which is red-shifted by 110 cm\(^{-1}\). This, as mentioned earlier, was predicted by MOPAC. The second quantum \(26^\dagger_2 \) line is also present at 1316 cm\(^{-1}\).

The two small lines lying to the red of the \(26^\dagger_1 \) line are identified as the \(27^\dagger_1 \) line at 612.2 cm\(^{-1}\) and the \(28^\dagger_1 \) line at 493.2 cm\(^{-1}\). The \(28^\dagger_1 \) line lies 43 cm\(^{-1}\) to the red of indole’s, which is the exact difference predicted by MOPAC. There are also three lines from site contamination built off the \(26^\dagger_1 \) line at 537.1, 577.4, and the red shoulder of the 611.9 cm\(^{-1}\) line. Care must be taken not to confuse site contamination with normal mode lines. These lines can also be seen built
off the S₁ origin.

The phosphorescence spectrum for 2MI in solid argon is shown in Figure 37 with excitation from the ₁L₉ origin of site 4 at 286.07 nm. The ₃L₉ triplet origin is at 398.5 nm (25,095 cm⁻¹), which is 160 cm⁻¹ higher in energy than indole. This spectrum is composed of a sharp component (13 cm⁻¹), suggesting a component from an ordered site, and a broad component that adds to the high background. The phosphorescence and the fluorescence frequencies for the 28°₁ (493 cm⁻¹), 27°₁ (612 cm⁻¹), and 26°₁ (660 cm⁻¹) are in agreement, affirming the assignment of the 26°₁ vibrational mode. The phosphorescence displays the Lₙ characteristics with the low frequency 28°₁ and 27°₁ modes having greater intensity than the accompanying 26°₁ mode. Moreover, the large intensity in the 9°₁ (1584 cm⁻¹) and the 8°₁ (1616 cm⁻¹) modes. The 10°₁ mode does not appear to stand out in the spectrum, perhaps it is seen in the red-shoulder of the 9°₁ line or it has drastically red-shifted at least 300 cm⁻¹ to a region where it is indistinguishable from other lines.

1-Methylinole

1-Methylinole (1MI) is not only the near geometric equivalent to 3MI, but it is also the only methylated indole in this study that is not in crystalline form at room temperature. The methyl rotor is known to be inactive upon excitation.¹⁷

The transmittance spectrum of the S₁ origin region is shown in Figure 38. The spectrum displays a broad site from 290.6 to 291.4 nm, with one strong
Figure 34. Transmittance spectrum of 2MI in argon at 20K, with a 0.2 cm$^{-1}$ bandpass.
Figure 35. Fluorescence excitation spectrum of 2MI in argon at 20K, (a), and the fluorescence anisotropy, (b).
Figure 36. Dispersed fluorescence spectrum of 2MI in argon at 20K.
Figure 37. Dispersed phosphorescence spectrum of 2MI in argon at 20k, with 1L_b origin excitation at 286.07 nm.
narrow site (site 1) at 291.55 nm (34,300 cm\(^{-1}\)). Site 1 has an intrinsic site width of 10 cm\(^{-1}\), from which all the data is collected, and the electronic energy is red-shifted 246 cm\(^{-1}\) from its vacuum value. The fluorescence excitation spectrum and the accompanying anisotropy of 1MI in solid argon at 20K are shown in Figure 39a and 39b respectively, and are zeroed to the S\(_1\) origin. The fluorescence excitation spectrum was taken by monitoring the 26\(_0\) line in the emission. The emission spectrum is shown in Figure 40 and was taken by exciting the 713.3 cm\(^{-1}\) line in the excited state.

The S\(_1\) origin of the fluorescence excitation spectrum in Figure 39a is the \(^1\)L\(_b\) origin, because the emission has been identified as \(^1\)L\(_b\). It should be noted that for 1MI, the anisotropy is not at the proper ratio with maximum anisotropy (r=0.3) and a minimum anisotropy (r=-0.075). This deviation could be caused by, \(^1\)L\(_b\) intensity in this region, an experimental artifact of polarizer alignment, or an angle less than 90\(^{0}\) between the absorption and emission moments. Lastly, the spectral linewidths are 15 cm\(^{-1}\).

Two key \(^1\)L\(_b\) lines may be identified by their high anisotropy. The 27\(^1\)\(_0\) line can be identified at 528.0 cm\(^{-1}\) (r=0.15). The anisotropy is lower than the origin because of \(^1\)L\(_a\) intensity in the vicinity. The 27\(^1\)\(_0\) mode is also 12 cm\(^{-1}\) lower in frequency than indole's. Secondly, the 26\(^1\)\(_0\) line can be identified at 713.3 cm\(^{-1}\) (r=0.2), which is only slightly frequency shifted. Lastly, there is an \(^1\)L\(_b\) line present at 253 cm\(^{-1}\) which is common for certain substituted indoles.

Also observed is the \(^1\)L\(_a\) origin 430-700 cm\(^{-1}\) above the \(^1\)L\(_b\) origin (low
anisotropy), and is split into three strong lines at 445.1, 472.9, and 555.9 cm\(^{-1}\).
The spectrum also displays low anisotropy between 1150-1300 cm\(^{-1}\),
corresponding to the 26\(^{1}_0\) line of the \(^1\)La state which is 720 cm\(^{-1}\) higher in energy.

The fluorescence spectrum of 1MI in argon at 20K in Figure 40 displays
\(^1\)L\(_b\) emission. The four characteristic lines are as follows: 29\(^0\)\(_1\) (470.0 cm\(^{-1}\)), 28\(^0\)\(_1\)
(540 cm\(^{-1}\)-red shoulder of the 27\(^0\)\(_1\)), 27\(^0\)\(_1\) (576 cm\(^{-1}\)), and 26\(^0\)\(_1\) (765 cm\(^{-1}\)).
Compared to indole, mode 27\(^0\)\(_1\) is also 28 cm\(^{-1}\) lower in frequency, while modes
28\(^0\)\(_1\) and 26\(^0\)\(_1\) remain at their usual frequency in the ground state. The low
frequency line at 256 cm\(^{-1}\) is also observed. There are also three unusual lines
in the 1MI fluorescence spectrum at 1528.8, 1588.4, and 1620 cm\(^{-1}\), identified as
the 26\(^0\)_2 (partially 10\(^0\)_1), identified as a combination of 27\(^0\)_1 (575.6 cm\(^{-1}\)) and the
1010.6 cm\(^{-1}\) line (partially 9\(^0\)_1), and 8\(^0\)_1 modes, respectively, using
phosphorescence data. These lines are usually \(^1\)La active only. The lines at
1918, 2106, and 2348 cm\(^{-1}\) are combination bands as follows respectively: 1340
cm\(^{-1}\) line and 27\(^0\)_1 line, 1340 cm\(^{-1}\) line and 26\(^0\)_1 line, and, 1340 and 1010.6 cm\(^{-1}\)
lines.

Phosphorescence

The phosphorescence spectrum of 1MI in argon at 20K is shown in Figure
41a with excitation from the \(^1\)L\(_b\) origin at 291.55 nm. The stick spectrum shown
in Figure 41b was produced by subtracting the background from the line heights.
The \(^3\)La state is located at 407.4 nm (24,546 cm\(^{-1}\)) and is 387 cm\(^{-1}\) to the red of
The emission is definitely La, with near equal intensity of the 280, line (534 cm-1) and the 260, line (762 cm-1), intensity in the 270, line (592 cm-1), and strong intensity in the 100, line (1522 cm-1), the 90, line (1580 cm-1), and the 80, line (1622 cm-1). There is a slight frequency discrepancy of 16 cm-1 for the 270, between the phosphorescence and the fluorescence data, which is within experimental error. The phosphorescence data also displays strong lines at 717, 836, 1008, 1157, 1206, and 1330 cm-1. The corresponding line frequencies, intensities, and assignments are found in Table 3.

Table 3. 1-Methylindole phosphorescence

<table>
<thead>
<tr>
<th>Spectral shift (cm-1)</th>
<th>Intensitya</th>
<th>Assignment</th>
<th>Spectral shift (cm-1)</th>
<th>Intensityb</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>9.0</td>
<td></td>
<td>717</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>0.1</td>
<td></td>
<td>762</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>0.3</td>
<td></td>
<td>836</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>349</td>
<td>0.15</td>
<td></td>
<td>852</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>0.1</td>
<td></td>
<td>885</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>1.0</td>
<td></td>
<td>919</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>0.15</td>
<td></td>
<td>947</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>569</td>
<td>0.07</td>
<td></td>
<td>1008</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>586</td>
<td>0.5</td>
<td></td>
<td>1080</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>0.18</td>
<td></td>
<td>1135</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
4-Fluoroindole (4FI) was examined because of its connection to the tryptophan analogue 4-fluorotryptophan (4FT) used recently as an antiprobe in proteins since it is the only fluorinated analogue found not to fluoresce23. Upon spectroscopic investigation of 4FI, carried out at room temperature, with 0.75 absorbance solutions (1 cm path), and a nonpolar solvent (methylcyclohexane), 4FI fluoresced strongly whereas 4FI in a polar solvent (H\textsubscript{2}O) was 10 times weaker.

Encouraged by these results, the investigation was expanded. 4FI was incorporated into solid argon at 20K and measurements were taken. The transmittance spectrum of the S\textsubscript{1} region of 4FI is shown in Figure 42. The
Figure 38. Transmittance spectrum of 1ML in argon at 20K, with a 0.2 cm$^{-1}$ bandpass.
Figure 39. Fluorescence excitation spectrum of 1MI in argon at 20K, (a), and the fluorescence anisotropy, (b).
Figure 40. Dispersed fluorescence spectrum of 1MI in argon at 20K.
Figure 41. Dispersed phosphorescence spectrum of 1MI in argon at 20k, with 1L_b origin excitation at 291.55 nm, (a), and the stick spectrum, (b).
spectrum displays six energy sites that 4FI populates in the argon under these conditions. Site 1 is located at 281.9, site 2 at 282, site 3 at 282.1, site 4 at 282.4, site 5 at 282.6, and site 6 at 282.8 nm. These site widths range from 5 to 20 cm\(^{-1}\). All the data was taken from site 1 at 281.9 nm (35,476 cm\(^{-1}\)). The argon matrix has red-shifted the S\(_1\) origin of site 1 167 cm\(^{-1}\) from its vacuum value, and the intrinsic site width is 5 cm\(^{-1}\).

The fluorescence excitation spectrum of 4FI is shown in Figure 43a with the accompanying emission anisotropy in Figure 43b. The spectra are zeroed to the S\(_1\) origin, which is believed to be the \(^1L_b\) origin at 281.875 nm. Due to the number of sites lying in close proximity, site contamination was unavoidable, and is evident at -72, 30, and 70 cm\(^{-1}\). These contamination lines were built off all molecular normal modes and should not be confused with the 4FI normal mode lines. The anisotropy values, however, are closer to the theoretical values and have approximately the proper ratio for perpendicular transition moments, with a maximum anisotropy \(r=0.26\) and a minimum anisotropy \(r=-0.15\). This anisotropy is higher than other indoles in argon, which is possibly produced by a more oriented sample caused differences in the argon matrix (moving towards a single crystal lattice).

In the literature, there is a slight normal mode numbering difference between indole and 4FI. The excited state normal modes of 4FI are one number lower than the corresponding normal modes for indole, but in the ground state they are identical. For convenience of comparison and clarity all excited
state normal modes of 4FI will have the corresponding normal mode of indole in parentheses. The strong 1L_b line 25^1_0 (26^1_0) line is located at 646 cm$^{-1}$ and is 75 cm$^{-1}$ lower in frequency than indole’s. This red-shift is verified in the jet spectra and predicted in theory. Callis et al., through a theoretical model, predicts a large amplitude motion of the 4-position in the $25^1_0(26^1_0)$ mode. The added mass of the fluorine in the 4-position causes a frequency reduction of the mode. Also, MOPAC predicts the 25^1_0 mode to be 65 cm$^{-1}$ lower in energy than indole’s 26^0_1 (ground state). This spectrum also displays a strong second quantum 25^2_0 (26^2_0) at 1290.9 cm$^{-1}$, signifying a large displacement of this mode upon excitation. This large displacement of this mode will become more evident when examining the fluorescence. The line at 718 cm$^{-1}$, sitting 72 cm$^{-1}$ to the blue of the 25^2_0 (26^2_0) line, is believed to be site contamination, although its intensity is rather large. There are two reasons for making this prediction: 1) the line sits at the proper relative position to the 25^2_0 (26^2_0) line for site contamination and 2) there is no line that intense in that location in a comparable jet spectrum.

Many lines in the spectrum display low polarization. The 27^1_0 (28^1_0) line at 430 cm$^{-1}$ gives an 1L_a signature ($r=-0.12$) from Herzberg-Teller vibronically coupling. This mode has red-shifted 41 cm$^{-1}$ relative to indole which MOPAC predicts. The low anisotropy region centered at 430 cm$^{-1}$ extends between 350-500 cm$^{-1}$, which is due to site contamination. In addition to, many other lines also give an 1L_a signature seen at 1392.3, 1304, 1206, 1075, 912, and 900 cm$^{-1}$.
Most of these lines receive their 1L_a intensity through a similar mechanism.

The 1L_a origin of 4FI is assigned at 1520.5 cm$^{-1}$ above the 1L_b origin and can be seen by its low anisotropy, r = -0.15. The 1L_a origin is strong and is comparable to the 1L_b origin in intensity. No splitting of the 1L_a origin has occurred, apparently because of less coupling between the two states. With the addition of the fluorine in the 4-position, the 1L_a energy has increased by 900 cm$^{-1}$ and the 1L_b energy by 500 cm$^{-1}$.

The fluorescence spectrum of 4FI is shown in Figure 44 with excitation at the 261_0 line. Self-absorption posed a problem for 4FI, possibly due to a higher vapor pressure, and to combat this, thinner matrices were used. The fluorescence spectrum of 4FI is different from other indole analogs studied, in that, it is dominated by a long Franck-Condon progression (4 quanta) of the 260_1 vibration at 673, 1352, 2025, and 2699 cm$^{-1}$. This progression consumes most of the fluorescence intensity. Because of this, the fluorescence spectrum does not mirror the fluorescence excitation spectrum. Therefore, since all of the Franck-Condon intensity is found in the 261_0 mode, there must be a large molecular displacement along the coordinates of this mode upon excitation. Secondly, the resulting progression does not follow the proper Franck-Condon intensity distribution. None of the other indoles behave in this manner and it is not understood, at this point, why a fluorine in the 4-position would cause these dramatic spectral changes.

Lastly, the frequency of the 260_1 mode is 673 cm$^{-1}$ and is 87 cm$^{-1}$ lower in
Figure 42. Transmittance spectrum of 4FI in argon at 20K, with a 0.2 cm$^{-1}$ bandpass.
Figure 43. Fluorescence excitation spectrum of 4FI in argon at 20K, (a), and the fluorescence anisotropy, (b).
Figure 44. Dispersed fluorescence spectrum of 4FI in argon at 20K.
Figure 45. Dispersed phosphorescence spectrum of 4FI in argon at 20k, with 1L_b origin excitation at 281.89 nm, (a) and the stick spectrum, (b).
energy, also predicted by MOPAC, which estimates a red-shift of 65 cm$^{-1}$. Also, the other medium strength vibration is the 210, at 1076 cm$^{-1}$.

Phosphorescence

The phosphorescence spectrum of 4FI in argon at 20K is shown in Figure 45a with excitation at 281.89 nm, the 1L_b origin of site 1. The stick spectrum (shown in Figure 45b) was again produced by subtracting the background from the individual line heights. The intensity lying in the first 300 cm$^{-1}$ is considered to be site contamination and subsequently, is not included in the stick spectrum or in the following discussion. The sharp component of the phosphorescence spectrum has linewidths of 10 cm$^{-1}$, coming from what is believed to be a more ordered site, while the broad background comes from what is believed to be one or more disordered sites.

A triplet 3L_a origin is found at 395.5 nm (25,284 cm$^{-1}$) in solid argon which is 350 cm$^{-1}$ higher in energy than that of indole under similar conditions. Line identifications were made by comparing the fluorescence and the phosphorescence spectra. The phosphorescence spectrum has the distinct L_a appearance with stronger intensity in the 270, line (the strongest line in the spectrum) at 598 cm$^{-1}$ rather than the 260, line at 669 cm$^{-1}$, and high intensity in the 280, line at 498 cm$^{-1}$. In the higher energy region of the spectrum, the 101, line (1517 cm$^{-1}$), the 91, line (1583 cm$^{-1}$), and the 81, line (1641 cm$^{-1}$) also display high intensity. There are also several other strong lines found at 533, 619,
1114, 1277, and 1350 cm\(^{-1}\). The corresponding line frequencies, intensities, and assignments are found in Table 4.

Table 4. 4-Fluoroindole phosphorescence

<table>
<thead>
<tr>
<th>Spectral shift (cm(^{-1}))</th>
<th>Intensity(^{b})</th>
<th>Assignment</th>
<th>Spectral shift (cm(^{-1}))</th>
<th>Intensity(^{b})</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>7.5</td>
<td></td>
<td>1018</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>0.09</td>
<td></td>
<td>1052</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>1.1</td>
<td></td>
<td>1073</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>476</td>
<td>0.35</td>
<td></td>
<td>1114</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>0.22</td>
<td></td>
<td>1155</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>0.5</td>
<td></td>
<td>1212</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>583</td>
<td>0.1</td>
<td></td>
<td>1229</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>1.6</td>
<td></td>
<td>1256</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>0.6</td>
<td></td>
<td>1277</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>0.22</td>
<td></td>
<td>1313</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>669</td>
<td>0.65</td>
<td></td>
<td>1350</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>718</td>
<td>0.15</td>
<td></td>
<td>1391</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>739</td>
<td>0.15</td>
<td></td>
<td>1440</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>0.3</td>
<td></td>
<td>1517</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>796</td>
<td>0.15</td>
<td></td>
<td>1583</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>817</td>
<td>0.05</td>
<td></td>
<td>1641</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>859</td>
<td>0.2</td>
<td></td>
<td>1681</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>893</td>
<td>0.05</td>
<td></td>
<td>1713</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>936</td>
<td>0.2</td>
<td></td>
<td>1733</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>990</td>
<td>0.05</td>
<td></td>
<td>1784</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Of Properties

There are several tables that summarize much of the data from the above results and discussion section on argon. Table 5 displays the energy difference (Δ value) between the 1L_a and the 1L_b states in substituted indoles. Table 7 displays the absolute energies of the 1L_a, 1L_b, and 3L_a states of the seven indoles. Table 6 lists the ground state vibrational energy of modes 28, 27, and 26 for indole, 3MI, 1MI, 2MI, and 4FI. The absolute energies of the 1L_a and 1L_b states for the substituted indoles are shown pictorially in Figure 46.
Table 5. The energy differences for the 1L_a and 1L_b states of substituted indoles relative to indole.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Δ^1L_b (cm$^{-1}$)a,b</th>
<th>Δ^1L_a (cm$^{-1}$)a,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3MI</td>
<td>-353</td>
<td>-1194</td>
</tr>
<tr>
<td>5MI</td>
<td>-705</td>
<td>-5.0</td>
</tr>
<tr>
<td>23DMI</td>
<td>-189</td>
<td>-1439</td>
</tr>
<tr>
<td>2MI</td>
<td>-25</td>
<td>-725</td>
</tr>
<tr>
<td>1MI</td>
<td>-681</td>
<td>-1331</td>
</tr>
<tr>
<td>4FI</td>
<td>+495</td>
<td>-915</td>
</tr>
</tbody>
</table>

a All values are obtained by subtracting indoles values
b Positive value is energy increase and negative values are energy decrease

Table 6. The frequencies of modes 28, 27, and 26.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>v_{28} (cm$^{-1}$)</th>
<th>v_{27} (cm$^{-1}$)</th>
<th>v_{26} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole</td>
<td>536.0</td>
<td>601.0</td>
<td>760.0</td>
</tr>
<tr>
<td>3MI</td>
<td>471.0</td>
<td>568.0</td>
<td>758.0</td>
</tr>
<tr>
<td>2MI</td>
<td>493.2</td>
<td>612.2</td>
<td>659.7</td>
</tr>
<tr>
<td>1MI</td>
<td>470.0</td>
<td>573.0</td>
<td>765.0</td>
</tr>
<tr>
<td>4FI</td>
<td>470.0</td>
<td>575.6</td>
<td>767.0</td>
</tr>
</tbody>
</table>
Table 7. Site energies for the S_1, S_2, and T_1 states of indoles in argon at 20K.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Vacuum (cm$^{-1}$)</th>
<th>Site</th>
<th>S_1 nm(cm$^{-1})^a$</th>
<th>S_2 nm (cm$^{-1})^b$</th>
<th>T_1 nm (cm$^{-1})^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole</td>
<td>35,294d</td>
<td>1</td>
<td>285.5(34,981)</td>
<td>277.2(36,081)</td>
<td>403.4(24,789)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>286.6(34,858)</td>
<td></td>
<td>403.8(24,764)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>286.4(34,916)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>285.95(34,971)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>285.05(35,081)</td>
<td></td>
<td>401.1(24,933)</td>
</tr>
<tr>
<td>3MI</td>
<td>34,882d</td>
<td>1</td>
<td>288.78(34,628)</td>
<td>286.6(34,888)</td>
<td>416.5(24,009)</td>
</tr>
<tr>
<td>5MI</td>
<td>34,353d</td>
<td>1</td>
<td>291.75(34,276)</td>
<td>277.2(36,076)</td>
<td>406.0(24,630)</td>
</tr>
<tr>
<td>23DMI</td>
<td>34,843d</td>
<td>1</td>
<td>288.6(34,642)</td>
<td>1L_a 287.4(34,792)</td>
<td>1L_b 411.2(24,319)</td>
</tr>
<tr>
<td>2MI</td>
<td>35,170d</td>
<td>1</td>
<td>285.6(35,014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>285.72(34,999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>285.91(34,976)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>286.07(34,956)</td>
<td>282.3(35,356)</td>
<td>398.5(25,095)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>286.32(34,925)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1MI</td>
<td>34,546d</td>
<td>1</td>
<td>291.55(34,300)</td>
<td>287.7(34,750)</td>
<td>407.4(24,546)</td>
</tr>
<tr>
<td>4FI</td>
<td>35,644e</td>
<td>1</td>
<td>281.9(35,476)</td>
<td>270.3(36,996)</td>
<td>395.5(25,285)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>282.0(35,461)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>282.1(35,448)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>282.4(35,411)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>282.6(35,386)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a S$_1$ is the 1L_a origin unless marked otherwise.

*b S$_2$ is the 1L_a origin unless marked otherwise.

*c T$_1$ is the 3L_a origin.

*d Hager et al.13

*e Bartis et al.73
Figure 46. Energies of the \(^1L_a\) and \(^1L_b\) states.
Nitrogen

Nitrogen (N$_2$) is noted to be another good matrix material62. It was found by trial and error that 30K is the best operational temperature for N$_2$, giving the highest quality matrices needed for polarization measurements. The bulk polarizability of N$_2$ is (1.74 *1024 cm3)74, which is 1.06 times greater than argon. Ab initio calculations, however, predict an anisotropic distribution of polarizability for N$_2$, with nearly twice the polarizability along the bond axis compared with the other axes of the molecule76. This result could greatly affect the local environment indole senses inside the rigid matrix. At temperatures below 35 K, N$_2$ assumes a cubic close-packing structure, which is isotropic, and above that temperature N$_2$ assumes a hexagonal structure75.

Indole in N$_2$ at 30K

The fluorescence excitation spectrum of indole in N$_2$ at 30K and the accompanying anisotropy is shown in Figure 47. The spectrum is taken with the monochromator set at 294 nm and, is zeroed to the 1L$_{b}$ origin 287nm (34,843 cm$^{-1}$), and has linewidths of 200 cm$^{-1}$. The N$_2$ matrix has stabilized the 1L$_{b}$ origin by 150 cm$^{-1}$ and the 1L$_{a}$ origin by 700 cm$^{-1}$ over argon, with the 1L$_{a}$ origin centered at 400 cm$^{-1}$ above the 1L$_{b}$ origin (r=−0.075). This intensity is the 1L$_{a}$ origin rather than the vibronically active 281_0 line (470 cm$^{-1}$) because it sits too far to the red and the anisotropy remains low after this point, reflecting the
overlap of the excited states. There is also a discrepancy in the anisotropy ratio, which possibly stems from an experimental artifact of polarizer alignment.

The 26^1_0 line is centered at 720 cm$^{-1}$ with the anisotropy rising from $r = -0.075$ to $r = 0.0$ over the peak. Little can be determined from this spectrum due to its broadness.

The emission spectra are shown in Figures 48a and 48b with excitation at 280 nm. The emission spectrum in Figure 48a is taken of indole and N$_2$ layered at 30K with the temperature kept constant during the experiment. The emission spectrum in Figure 48b is taken of indole and N$_2$ layered at 30K and allowed to cool to 15K before data collection. Both spectra are 1L_b fluorescence with peaks centered at 760 and 1330 cm$^{-1}$ and linewidths of 200 cm$^{-1}$. The spectrum in Figure 48b has structure built off the line shape and reveals that at 15K the line shape is made up of closely spaced lines. This difference could come from two sources: the difference in kT or a phase change in the N$_2$. The latter is a more likely source because N$_2$ does go through a phase change at 35K at 30K both structures may be present75. The phosphorescence spectrum of indole in N$_2$ at 30K is shown in Figure 49 with excitation at the 1L_b origin, 287.5 nm. The origin of the 3L_a triplet state is 403.2 nm (24,801 cm$^{-1}$), and the spectrum has a linewidth of 200 cm$^{-1}$. The phosphorescence has the usual L$_a$ appearance.
Figure 47. The fluorescence excitation spectrum of indole in N₂ at 30K, (a), and the fluorescence anisotropy, (b).
Figure 48 Fluorescence spectra of indole in N₂ at 30K, (a), and N₂ at 15K, (b).
Figure 49. The phosphorescence spectrum of indole in N$_2$ at 30K.
3-Methylindole In N₂ At 30K

3MI has been found to have one of the smallest \(^1L_a-^1L_b \) energy gaps of any indole studied (260 cm\(^{-1}\) in argon). The incorporation of 3MI into N\(_2\) at 30K causes a substantial loss of fluorescence intensity. Because of this loss, the fluorescence excitation and the fluorescence spectra could not be obtained with sufficient accuracy to be reported.

The transmittance spectra (first 1000 cm\(^{-1}\)) of 3MI in argon at 20K and 3MI in N\(_2\) at 30K are shown in Figure 50a and 50b respectively. The two spectra are on an absolute wavelength scale for comparison purposes. The argon spectrum in Figure 50a displays two discernable origins, the \(^1L_a \) origin centered at 286.6 nm and the \(^1L_b \) origin centered at 288.8 nm. However, the N\(_2\) spectrum in Figure 50b displays only one broad origin centered at 286.9 nm. The data suggests that the \(^1L_a \) and \(^1L_b \) origins have converged and lie on top of one another. This convergence requires the N\(_2\) to stabilize the \(^1L_a \) origin 30 cm\(^{-1}\) and destabilize the \(^1L_b \) origin 190 cm\(^{-1}\), as compared with argon. Contrast this result with the indole case, where both \(^1L_a \) and \(^1L_b \) were more stabilized by N\(_2\). The transmittance of 0.2 ±0.1 for the \(^1L_b \) origin, proves that a good absorption of photons occurs. However, a strong non-radiative process is present and quenches the emission energy.

To make sure that the experimental setup was not causing the problem, the matrix gas was switched to argon and the system purged. During this time,
Figure 50. Transmittance spectra of 3MI in argon at 20K, (a), and N₂ at 30K, (b).
no adjustments were made to the experimental setup. The experiment was then run with argon at 20K, and the spectral data matched perfectly 3MI/argon data taken earlier. Several times, the matrix gas was switched back and forth, and the same respective data was obtained. Thus, the experimental setup was ruled out, but the non-radiative process is still a mystery. This non-radiative process must be intrinsic to 3MI in N₂ at 30K, possibly caused by the origin overlap.

3-Methylindole In Ethanol At 15K

There has been some discussion in the literature about the emission of tryptophan in ethanol at 2 K. Scott et al.⁷⁸ found sharper emission with red-edge excitation on the excitation manifold of tryptophan in ethanol at 2K. Friedman concluded that the sharp emission was coming from the ¹Lₐ state, where certain molecules on the red-edge had environments that preferentially lowered the ¹Lₐ over the ¹Lₐ state⁷⁸. This prediction came as some surprise to us, due to our own understanding and recent literature on similar systems. On similar systems, Eftink and Callis⁷⁹ (working on 3MI in propylene glycol at -50⁰C) and Pierce et al.⁸⁰ (working on N-acetyl-L-tryptophanamide (NATA) in ethanol at 77K), found the fluorescence of both systems to be ¹Lₐ by anisotropy measurements.

Friedman's interpretation seems inconsistent, so similar experiments on 3MI in ethanol (8X10⁻⁵ M) at 15K were carried out to end the debate. The room temperature fluorescence spectrum of 3MI in ethanol, shown in Figure 51a, is broad (60 nm) and structureless. The strong interaction between the molecular
dipole and the polar solvent field causes the large Stokes shift. The fluorescence spectrum of 3MI in ethanol at 15K, with excitation at 290 nm (which is 2000 cm\(^{-1}\) into the excited-state manifold), is shown in Figure 51b. The fluorescence spectrum blue-shifts and has much more structure than the room temperature spectrum. As the excitation wavelength moves to the red-edge of the excited-state manifold, the fluorescence spectrum red-shifts and displays more structure. Figure 51c displays the fluorescence spectra exciting at 303.5 and 307 nm. Excitation at 303.5 nm produces a fluorescence spectrum with an origin at 308.5 nm and a strong peak centered at 322.3 nm; excitation at 307 nm produces identical features at 310.6 nm and 325.1 nm. Moving the excitation wavelength from 303.5 to 307 nm produces a fluorescence red-shift of 4.0 nm, similar to shifts seen by Azumi\(^{85,71}\) but no more observable sharpening of the spectra.

Distinguished by its main feature centered at 1500 cm\(^{-1}\), the unresolved Franck-Condon active \(^{8,9,10,0,1}\) modes, the fluorescence is \(^{1}L_{a}\) and can be distinguished from its \(^{1}L_{b}\) counterpart that would be at 1350 cm\(^{-1}\).

One interesting point to mention, is that the fluorescence spectra taken on the red-edge are not sharper than the fluorescence spectrum taken at 290 nm. This makes sense only if the fluorescence spectrum taken at 290 nm is composed of a superposition of \(^{1}L_{a}\) and \(^{1}L_{b}\) fluorescence, with the \(^{1}L_{b}\) adding a narrow component to the spectrum. This would require the frozen solvent to have certain sites that destabilized the \(^{1}L_{a}\) state so that the \(^{1}L_{b}\) state emits, which
is possible in frozen ethanol. Also, the fluorescence spectra taken on the red-edge must exclusively emit from the 1L_a state. Lastly, some of the broadness in Figure 51c could be coming from impurities, which become more influential on red-edge excitation.

The sharpening of the emission of 3MI is due to the red-edge excitation and is not due to the 1L_b state. Excitation high upon the excited state manifold produces emission from origin excited molecules that are in blue sites (molecules not stabilized much by their environment) and electronic+ vibrational excited molecules that are in red sites (molecules more stabilized by their environment). Therefore, the fluorescence is broad because there are at least two different types of molecules emitting simultaneously. Red-edge excitation selectively excites molecules to their S_1 origin that are in red sites. The emission is sharpened because only one type of molecule emits. We can conclude that the sharp emission that Scott et al. reported as 1L_b is really just red-edge sharpened 1L_a emission.
Figure 51. Fluorescence spectra of 3MI in ethanol at 300K, (a), 15K, (b), and red-edge excitation (307 and 303.5 nm) at 15K, (c).
3-Methylindole complexes in a supersonic jet

Water Complex

This experiment repeats work done by Sammeth and Siewart\(^9\), to verify their results and to extend the work. In the jet, high H$_2$O complex signals (spectral lines) are difficult to achieve without also getting a high background signal caused by clustering. This low signal (intensity) may result from the split origin (2.8 cm\(^{-1}\)), giving an appearance of lower intensity since the intensity is distributed over two lines.

The 1L_a origin for 3MI under jet conditions is within 500 cm\(^{-1}\) (from jet data\(^9\) and argon data\(^8\)) of the 1L_b origin, and the 1L_a origin is split into several lines. The 1L_b origin is also affected. Its Ω value shifts from $\Omega = 1.4$ for indole to $\Omega = 1.14$ for 3MI. The fluorescence excitation spectrum of the 3MI(H$_2$O), complex, zeroed to the non-complexed 3MI origin, is shown in Figure 52. The lines all come from the 3MI(H$_2$O), complex, as verified by Huang and Sulkes\(^17\) with mass selection through two-photon ionization. The spectrum inexplicably appears to consist of only one type of complex (either σ or π), which contrasts indole(H$_2$O), where both were present\(^21\).

It is proposed that the complexity of the spectrum comes from a combination of intermolecular modes with the possible 1L_a origin being in this vicinity. The complex origin is split into a doublet at -234.8 and -232.0 cm\(^{-1}\). This doublet suggests a double well potential, possibly caused by torsion of the
water molecule. The lines at -213.7, -204.3, and -181.4 cm\(^{-1}\) are definitely intermolecular modes built off the complex origin (0) with frequencies of 21.8, 30.5, and 53.4 cm\(^{-1}\) respectively. The line at -118.4 cm\(^{-1}\) is another intermolecular mode (I) with a frequency of 116.4 cm\(^{-1}\) and with the same series of intermolecular modes built off the origin at -103.2, -90.0, -86.6, and -83.3 cm\(^{-1}\). It is proposed that the line at -23.6 cm\(^{-1}\) is the second quanta of mode (I) and is red-shifted by the close proximity of the \(^1\)La origin.

The above scenario is a valid argument; however, some of these lines may be from the \(^1\)La origin, which could be in the vicinity. For a listing of the relative line frequencies, intensities, and the \(\Omega\) values, see Table 8.

Two-photon data was taken to verify measurements made by Sammeth.\(^9\) The two-photon spectrum of \(3\text{M} \text{I}(\text{H}_2\text{O})_1\) is shown in Figures 53. The non-complexed origin is found to have an \(\Omega=1.08\) and the complex origin doublet is found to have an \(\Omega=0.80\). These values match Sammeth's data to within experimental error. The complex origin is known to be \(^1\)L\(_b\) by inspection of the emission.\(^67\)
Figure 52. The fluorescence excitation spectrum of 3MI (H$_2$O)$_1$ in a supersonic jet (with Ω values).
Figure 53. Two-Photon spectrum of $3\text{MI(H}_2\text{O)}_1$ complex origin (with Ω values).
Table 8. Indole + H$_2$O

<table>
<thead>
<tr>
<th>Spectral shift (cm$^{-1}$)</th>
<th>Intensitya</th>
<th>Ω^b</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-234.8</td>
<td>1.00</td>
<td>0.80</td>
<td>0</td>
</tr>
<tr>
<td>-232.0</td>
<td>0.84</td>
<td>0.80</td>
<td>0</td>
</tr>
<tr>
<td>-213.7</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-204.3</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-181.4</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-124.8</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-118.4</td>
<td>0.89</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>-103.2</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-90.9</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-86.6</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-83.3</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-23.6</td>
<td>1.85</td>
<td></td>
<td>2I</td>
</tr>
<tr>
<td>-10.0</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2.95</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

a Relative to the origin of complex I
b Omega value uncertainty ± 1

Methanol Complex

Because Sammeth and Siewart6 never experimented with this complex, and to obtain a more complete picture, the work was extended to methanol. Care had to be taken to limit the amount of methanol in the jet to achieve good complex formation, and residual water contamination in the system was observed and subtracted out.

The 3MI(methanol)$_1$ fluorescence excitation spectrum, zeroed to the non-complexed 3MI origin, is shown in Figure 54. Through mass resolved jet data17,
the spectral lines are from the 3MI(methanol), complex and the intermolecular progressions can be seen built off all 3MI molecular normal modes. The spectrum is also apparently made up of only one type of complex (either σ or π), which is contrasted with indole(methanol), where both types were present21. The small lines sitting at -331.0 cm-1 and -312.9 cm-1 are most likely from contamination. The strong complex origin (0) lying at -289.6 cm-1 is nearly 40\% of the non-complexed origin with a three-quanta progression of v_1 (21 cm-1) at -268.3, -247.2, and -226.3 cm-1. Intermolecular mode (I) is at -153.5 cm-1 with a frequency of 136.1 cm-1 and a two quanta of v_1 (21 cm-1) progression at -132.1 and -111.3 cm-1. Intermolecular mode (II) is at -87 cm-1 with frequency of 202.6 cm-1, and a two quanta v_1 progression at -65 and -41.6 cm-1. Intermolecular mode (III) is at -82.2 cm-1 with a frequency of 207.4 cm-1 and a two quanta of v_2 (23 cm-1) progression at -59.2 and -36.3 cm-1. There may be some complications here in assignment because of the close proximity of the 1L_a origin. The relative line frequencies, intensities, and the Ω values are found in Table 9.

The two-photon excitation spectra are shown in Figures 55 and 56. The complex origin at -289.6 cm-1 has an Ω=0.80, and the first 2 quanta at -268.3 and 247.2 cm-1 also have an identical Ω=0.80. The complex origin is believed to be 1L_b by inspection of the fluorescence67.

The data from the strong 3MI-methanol Franck-Condon progression at -289.6 cm-1 can be used to deduce the equilibrium geometry difference between the ground and excited states. The one assumption is that the vibration is
strictly an intermolecular vibration between the methanol and 3MI. The following
derivation will follow the method used by Muino21. The Franck-Condon intensity
distribution is given by the following equation:

\[I = \frac{\lambda^n}{n!} e^{-\lambda} = f_{0-m} , \]

where \(\lambda \) is the spring energy induced by excitation (in units of \(h\omega \)) and is related
to the intensity ratio between the origin and the first quanta of the progression:

\[\frac{f_{0-1}}{f_{0-0}} = \frac{\lambda e^{-\lambda}}{e^{-\lambda}} = \lambda . \]

From the data in Table 9, \(\lambda \) is measured to be 0.667. From \(\lambda \), the dimensionless
displacement, \(s \), is calculated (\(s=2\lambda^2 \)) to be 1.15. From \(s \), the equilibrium
graphy difference, \(\Delta Q \), can be calculated:

\[\Delta Q = S \sqrt{\frac{h}{\omega \mu}} = 1.15 \sqrt{\frac{33.715 Å^2 amu cm^{-1}}{21 cm^{-1} 25.75 amu}} = 0.29 \pm 0.02 Å \]

where \(\mu \), 25.75 amu, is the reduced mass of the 3MI-methanol system. The
uncertainty in the displacement in Equation 20 comes from uncertainty in the
measured frequencies and the relative intensities. The calculated displacement
of 0.29 ± 0.02 Å for 3MI(methanol), complex is between the displacements values
Muino calculated for the \(\pi \)-complex \((0.42 \pm 0.04 Å)\) and the \(\sigma \)-complex \((0.15 \pm \)}
0.02 Å) of indole(H₂O)₁ complex²¹.

Table 9. Indole + Methanol

<table>
<thead>
<tr>
<th>Spectral shift (cm⁻¹)</th>
<th>Intensityᵃ</th>
<th>Ωᵇ</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-289.6</td>
<td>1.00</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>-268.3</td>
<td>0.73</td>
<td>0.8</td>
<td>0.1v₁ (21 cm⁻¹)</td>
</tr>
<tr>
<td>-247.2</td>
<td>0.31</td>
<td>0.8</td>
<td>0.2v₁</td>
</tr>
<tr>
<td>-226.3</td>
<td>0.14</td>
<td></td>
<td>0.3v₁</td>
</tr>
<tr>
<td>-153.5</td>
<td>0.40</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>-132.1</td>
<td>0.31</td>
<td></td>
<td>I, 1v₁</td>
</tr>
<tr>
<td>-111.3</td>
<td>0.14</td>
<td></td>
<td>I, 2v₁</td>
</tr>
<tr>
<td>-87.0</td>
<td>0.22</td>
<td></td>
<td>II</td>
</tr>
<tr>
<td>-82.2</td>
<td>0.37</td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>-65.0</td>
<td>0.23</td>
<td></td>
<td>II, 1v₂ (23 cm⁻¹)</td>
</tr>
<tr>
<td>-59.2</td>
<td>0.43</td>
<td></td>
<td>III, 1v₂</td>
</tr>
<tr>
<td>-41.6</td>
<td>0.15</td>
<td></td>
<td>II, 2v₂</td>
</tr>
<tr>
<td>-36.3</td>
<td>0.24</td>
<td></td>
<td>III, 2v₂</td>
</tr>
<tr>
<td>0.0</td>
<td>3.41</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

ᵃ relative to the origin of complex II
ᵇ Omega value uncertainty ± 1
Figure 54. The fluorescence excitation spectrum of 3MI(methanol), in a supersonic jet (with Ω values).
Figure 55. Two-photon spectra of the bare 3MI origin, (a) and 3MI(methanol)\textsubscript{1} complex origin, (b), (with Ω values).
Figure 56. Two-photon spectra of the first quanta at -268.3 cm\(^{-1}\), (a), and the second quanta at -247.2 cm\(^{-1}\), (b), (with \(\Omega\) values).
Chapter 5

SUMMARY

The purpose of this work was to identify the locations of the true 1L_a origins. The 1L_a origin of indole is 1100-1300 cm$^{-1}$ above the 1L_b origin in solid argon and is distinguished from the false origin at 455 and 480 cm$^{-1}$ (jet) by differential solvent shifts in the matrix. The jet's false origin at 455 and 480 cm$^{-1}$, "the red herring", is a Fermi doublet and Herzberg-Teller vibronically coupled to the 1L_a manifold. Incorporation into the argon also caused sharp phosphorescence giving the Franck-Condon factors for L_a emission, which helps complete the indole picture.

For 3-methylindole, which best represents tryptophan, the 1L_a origin is 260 cm$^{-1}$ above the 1L_b origin and is not split. This energy separation is extremely small, and even changing the matrix environment from argon to N$_2$ causes the origins to converge. Therefore, in most proteins, tryptophan would emit exclusively from the 1L_a state. However, if 1L_b fluorescence is observed, then it could be deduced that a local electric field exists across the indole that blue-shifts the 1L_a state.

For 2,3DMI, the combination of the methyl groups causes an inversion of the states, with the 1L_a state being lowest in energy. This molecule is the only
indole studied here that gives 1L_a fluorescence. The 1L_a origin lies above the 1L_b origin for the rest of the substituted indoles: 5MI (1800 cm$^{-1}$), 2MI (400-600 cm$^{-1}$), 1MI (430-600 cm$^{-1}$), and 4FI (1520 cm$^{-1}$).

This research included seven different substituted indoles forming a large data base on the electronic and vibrational energies (Tables 7, 8, and 9). There are a few outstanding examples: methylation in the 5-position stabilizes the 1L_b state only, with an 1L_b red-shift of 705 cm$^{-1}$ and an 1L_a shift of only 5 cm$^{-1}$. On the other hand, methylation in the 2-position almost exclusively stabilizes the 1L_a state, with an 1L_a red-shift of 725 cm$^{-1}$ and an 1L_b red-shift of 25 cm$^{-1}$: for 3MI, the 1L_a is stabilized by 1193 cm$^{-1}$, three times greater than the 1L_b stabilization; 1MI stabilizes the 1L_a state by 1331 cm$^{-1}$, twice as great as the 1L_b; and, 2,3DMI stabilizes the 1L_a state by 1439 cm$^{-1}$, seven times greater than that of the 1L_b.

The addition of a fluorine to the 4-position causes the 1L_b state to blue-shift by 495 cm$^{-1}$ and the 1L_a state by 915 cm$^{-1}$.
REFERENCES

67. K. Short and P. R. Callis, unpublished results.

76. B. J. Fender and P. R. Callis, unpublished results.

