The relationship between a school district's perceived progress in implementing a school technology plan which uses internet access and on-line educational resources and a set of school district characteristics by Kirk J Miller

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Education Montana State University © Copyright by Kirk J Miller (1999)

Abstract:
The problem of this study was to determine the relationship between a school district’s perceived progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics.

The sample consisted of superintendents and technology specialists, employed in school districts of the Northwest region (Montana, Alaska, Oregon, Washington, and Idaho) of the United States. These individuals were surveyed to obtain their perception of progress on implementing their school technology plan and the degree to which eleven independent variables were present in the plan.

Four major questions were answered as a result of this study. (a) To what degree do the characteristics identified contribute to the perceived progress in implementing a technology plan? (b) Is the variance in perception of progress a school district had in the implementation of a technology plan attributable to the degree to which the eleven independent variables are perceived to be present in the district’s technology plan? (c) What are the collective and separate contributions of each characteristic to the perception of progress in implementing the technology plan? (d) Is there a difference between the perceived progress in implementing the technology plan of district superintendents and technology specialists.

Multiple linear regression was used to correlate the degree to which the characteristics were present in the plan with the perceived progress in implementing the plan. The t statistic was used to determine whether the identified characteristics provided a significant and unique contribution to the prediction of progress. And, a paired sample t test was used to test if a difference existed between the perception of progress of the superintendents and technology specialists in a given district.

It was concluded that the presence of the technology plan including a comprehensive professional development component, and the school district financial/budgetary matters related to technology being considered of high importance, were significant in increasing the perceived progress in implementing the technology plan. Further, a statistical, but not practically significant difference was found between the perception of progress of the superintendents and technology specialists in a given district.

By understanding which characteristics included in a technology plan led to perceived progress in implementing a technology plan which uses Internet access and on-line educational resources, educational policy makers should gain valuable insights as they begin to develop plans for their schools.
THE RELATIONSHIP BETWEEN A SCHOOL DISTRICT'S PERCEIVED PROGRESS IN IMPLEMENTING A SCHOOL TECHNOLOGY PLAN WHICH USES INTERNET ACCESS AND ON-LINE EDUCATIONAL RESOURCES AND A SET OF SCHOOL DISTRICT CHARACTERISTICS

by

Kirk J. Miller

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Education

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 1999
 APPROVAL

of a thesis submitted by

Kirk J. Miller

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

April 9, 1999
Date

Chairperson, Graduate Committee

Approved for the Major Department

April 12, 1999
Date

Head, Major Department

Approved for the College of Graduate Studies

4-30-99
Date

Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute copies of the dissertation in and from microform along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.”

Signature  

Date  

4/2/99
ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to diligent effort of Dr. B. Keith Chambers for being a driving force leading to the completion of this research study, and a role model in the pursuit of excellence. The author also expresses gratitude to Dr. Eric Strohmeyer and Dr. David Thomas for their counsel and mentoring through the development and completion of this study. Further, the author expresses gratitude to Dr. Pete Carparelli, Dr. Jana Noel, and Dr. George Tuthill for their recommendations as members of the doctoral committee. Gratitude is also extended to Mr. Gary Graves, Mr. Dennis Parman, Ms. Libby Hinneberry, and Dr. Lynn Churchill for their expert input into the preliminary survey instrument.

A project like this can not be completed without great support from those held closest to the heart. To my wife, Nancy, know that it is only your patience, kindness, sacrifice, and support that this thesis was completed. To my children, Katie, Scott and Daniel, know that your support and understanding made possible the completion of this study. The lesson learned is the importance of setting goals and working to finish something that you start. The author also expresses gratitude to his parents, Howard and Sally Miller, and Twila Clawson who have strongly supported and influenced all of my educational endeavors.

Finally, the author wishes to acknowledge his Cohort colleagues, Gail Gray, Deb Jacobsen, Ramona Stout, Doris Nicholson, Bob Anderson, Doug Reisig, Doug Sullivan and Paul Johnson, and express great gratitude for their counsel, caring, hard work, and support throughout the program.
TABLE OF CONTENTS

Page

LIST OF TABLES..........................................................................................................vii

ABSTRACT.................................................................................................................ix

1. PROBLEM STATEMENT AND REVIEW OF RELATED LITERATURE......... 1
   Introduction........................................................................................................... 1
   Statement of Problem.......................................................................................... 3
   Need for the Study............................................................................................... 3
   Questions to be Answered................................................................................... 8
   Definition of Terms.............................................................................................10
   Review of Related Literature..............................................................................12
      Organization Theory..........................................................................................12
      Change Theory................................................................................................19
      Supervision Theory..........................................................................................22
      Technology.........................................................................................................25
   Summary.............................................................................................................29

2. DESIGN OF THE STUDY.................................................................................. 30
   Conceptual Framework.......................................................................................30
   Population Description and Sampling Procedure..............................................31
   Sources of Evidence and Authority.....................................................................34
   Statistical Hypotheses Tested.............................................................................36
   Investigative Categories.....................................................................................38
   Methods of Data Collection................................................................................41
   Variable Controls...............................................................................................45
   Analytical Techniques and Research Design.....................................................47
   Analysis of Data..................................................................................................51
   Limitations and Delimitations............................................................................51
   Precautions Taken For Accuracy.......................................................................52
TABLE OF CONTENTS -- continued

<table>
<thead>
<tr>
<th>3. DATA ANALYSIS AND FINDINGS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings and Interpretations</td>
<td>53</td>
</tr>
<tr>
<td>Multiple Linear Regression</td>
<td>53</td>
</tr>
<tr>
<td>Multiple Linear Regression for Subsample 1</td>
<td>54</td>
</tr>
<tr>
<td>Forward Selection Stepwise Multiple Linear Regression for Subsample 1</td>
<td>57</td>
</tr>
<tr>
<td>Multiple Linear Regression for Subsample 2</td>
<td>62</td>
</tr>
<tr>
<td>Forward Selection Stepwise Multiple Linear Regression for Subsample 2</td>
<td>65</td>
</tr>
<tr>
<td>Paired Sample t Test</td>
<td>70</td>
</tr>
<tr>
<td>Discussion of Findings</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>80</td>
</tr>
<tr>
<td>Subjects</td>
<td>82</td>
</tr>
<tr>
<td>Instrumentation and Duration</td>
<td>82</td>
</tr>
<tr>
<td>Research Design</td>
<td>83</td>
</tr>
<tr>
<td>Findings</td>
<td>83</td>
</tr>
<tr>
<td>Conclusions and Discussion</td>
<td>85</td>
</tr>
<tr>
<td>Recommendations</td>
<td>89</td>
</tr>
<tr>
<td>Recommendations for Education</td>
<td>89</td>
</tr>
<tr>
<td>Recommendations for Research</td>
<td>93</td>
</tr>
</tbody>
</table>

REFERENCES CITED | 95 |

APPENDICES | 100 |

Appendix A: Technology Questionnaire | 101 |
Appendix B: Preliminary Survey Instrument | 105 |
Appendix C: Stepwise Linear Regression Model | 117 |
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample Return Rate Statistics</td>
<td>33</td>
</tr>
<tr>
<td>2. Reliability Correlation Coefficients of the Eleven Independent</td>
<td>42</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
</tr>
<tr>
<td>3. Descriptive Statistics for the Eleven Independent Variables</td>
<td>44</td>
</tr>
<tr>
<td>For Subsample 1 - Superintendents</td>
<td></td>
</tr>
<tr>
<td>4. Descriptive Statistics for the Eleven Independent Variables</td>
<td>44</td>
</tr>
<tr>
<td>For Subsample 2 - Technology Specialists</td>
<td></td>
</tr>
<tr>
<td>5. Subsample 1 - Superintendents. Full Model Linear Regression.</td>
<td>55</td>
</tr>
<tr>
<td>Hypothesis 1 A</td>
<td></td>
</tr>
<tr>
<td>6. Subsample 1 - Superintendents. Variables in the Full Model</td>
<td>56</td>
</tr>
<tr>
<td>Multiple Linear Regression. Hypothesis 1 B</td>
<td></td>
</tr>
<tr>
<td>7. Subsample 1 - Superintendents. Stepwise Construction of</td>
<td>58</td>
</tr>
<tr>
<td>Linear Regression Model. Hypothesis 1 A and 1 B</td>
<td></td>
</tr>
<tr>
<td>8. Subsample 1 - Superintendents. Stepwise Linear Regression Model.</td>
<td>59</td>
</tr>
<tr>
<td>Hypothesis 1 A and 1 B</td>
<td></td>
</tr>
<tr>
<td>9. Subsample 1 - Superintendents. Variables in the Stepwise</td>
<td>60</td>
</tr>
<tr>
<td>Linear Regression Model. Hypothesis 1 B</td>
<td></td>
</tr>
<tr>
<td>10. Subsample 2 - Technology Specialists. Full Model Linear</td>
<td>63</td>
</tr>
<tr>
<td>Regression. Hypothesis 2 A</td>
<td></td>
</tr>
<tr>
<td>11. Subsample 2 - Technology Specialists. Variables in the Full</td>
<td>64</td>
</tr>
<tr>
<td>Model Multiple Linear Regression. Hypothesis 2 B</td>
<td></td>
</tr>
<tr>
<td>12. Subsample 2 - Technology Specialists. Stepwise Construction</td>
<td>66</td>
</tr>
<tr>
<td>of Linear Regression Model. Hypothesis 2 A and 2 B</td>
<td></td>
</tr>
</tbody>
</table>
### LIST OF TABLES -- continued

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Paired Sample Statistics. District Superintendents and Technology Specialists</td>
<td>71</td>
</tr>
<tr>
<td>17. Results of Testing Null Hypotheses 1 A, 1 B, 2 A, 2 B for the Independent Variables</td>
<td>76</td>
</tr>
<tr>
<td>18. Independent Variables Included in the Full Model Multiple Linear Regression for Subsample 1 and 2. Hypothesis 1 B and 2 B</td>
<td>77</td>
</tr>
<tr>
<td>19. Independent Variables Included in the Stepwise Model Multiple Linear Regression for Subsample 1 and 2. Hypothesis 1 B and 2 B</td>
<td>77</td>
</tr>
</tbody>
</table>
ABSTRACT

The problem of this study was to determine the relationship between a school district’s perceived progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics.

The sample consisted of superintendents and technology specialists, employed in school districts of the Northwest region (Montana, Alaska, Oregon, Washington, and Idaho) of the United States. These individuals were surveyed to obtain their perception of progress on implementing their school technology plan and the degree to which eleven independent variables were present in the plan.

Four major questions were answered as a result of this study. (a) To what degree do the characteristics identified contribute to the perceived progress in implementing a technology plan? (b) Is the variance in perception of progress a school district had in the implementation of a technology plan attributable to the degree to which the eleven independent variables are perceived to be present in the district’s technology plan? (c) What are the collective and separate contributions of each characteristic to the perception of progress in implementing the technology plan? (d) Is there a difference between the perceived progress in implementing the technology plan of district superintendents and technology specialists.

Multiple linear regression was used to correlate the degree to which the characteristics were present in the plan with the perceived progress in implementing the plan. The t statistic was used to determine whether the identified characteristics provided a significant and unique contribution to the prediction of progress. And, a paired sample t test was used to test if a difference existed between the perception of progress of the superintendents and technology specialists in a given district.

It was concluded that the presence of the technology plan including a comprehensive professional development component, and the school district financial/budgetary matters related to technology being considered of high importance, were significant in increasing the perceived progress in implementing the technology plan. Further, a statistical, but not practically significant difference was found between the perception of progress of the superintendents and technology specialists in a given district.

By understanding which characteristics included in a technology plan led to perceived progress in implementing a technology plan which uses Internet access and on-line educational resources, educational policy makers should gain valuable insights as they begin to develop plans for their schools.
CHAPTER 1

PROBLEM STATEMENT AND REVIEW OF RELATED LITERATURE

Introduction

"The president of the United States set as a goal in his 1996 State of the Union Address that 'every classroom in America must be connected to the information highway.'" (Cuban, 1996, p. 37). At an October 1, 1996 event in Washington D.C., designed to recruit teachers, Secretary of Education, Richard R. Riley said, "Today's students still need to know the three R's, the old basics. But they also need to understand how to use the three W's -- the World Wide Web, and take advantage of the unsurpassed learning opportunities available on the Internet." (Belin, p. 1). Speaking at the October satellite town meeting, Secretary Riley outlined a national strategy to... "prepare America's students for the 21st century, which includes provisions that every classroom must be connected to the information superhighway; all teachers and student must have access to modern computers; and all teachers must have the training they need to help students benefit from the technology." (Belin, p.5).

Montana Governor, Marc Racicot, stated, "We've got to invest in Technology!" (Racicot), at a meeting of the Montana joint state Board of Education on October 31, 1996. The importance of technology, its use in the schools across the nation, and connection to online educational services are high priorities in current political and educational discussions.
The National Science Foundation (NSF) has developed the National Infrastructure for Education (NIE) program to build synergy between technology and educational researchers, developers and implementers in the use of network and telecommunications technologies in education. A particular focus of the NIE is the development of flexible, sustainable approaches to systemic educational network infrastructure. (NFS/NIE, 1995). The Network Montana Project (NMP) is a collaborative, systemic research and development project constituting Montana’s response to NSF’s/NIE request for proposal #94-05. The Network Montana Project involves a statewide collaborative effort with industry support to construct a scalable, sustainable network for Montana’s educational needs. (Thomas, 1995).

The partners in NMP include teachers, administrators, and researchers from the state’s educational system, leaders in state government, and individuals from a variety of community, professional and private sector organizations. Commitments of talent and resources from all partners are focused on the development of a lasting infrastructure capable of supporting the development of a variety of educational telecommunications services. (Thomas, 1996).

The ability to make progress in implementing a technology plan in the school environment is a concern for today’s administrator’s as they work to plan for the future. NMP co-directors, Dr. David A. Thomas and Dr. Lynn D. Churchill, have communicated interest in knowing what characteristics are determined to have greatest impact on the progress of implementing a technology plan which uses Internet access and online educational services in K-12 schools. This was the impetus for planning this study.
Statement of the Problem

The problem of this study was to determine the relationship between a school district's perceived progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics. By understanding which characteristics had greatest interaction in perceived progress in implementing a technology plan, educational policy makers should gain valuable insights as they begin to develop plans for their schools.

Need for the Study

The implementation of technology in the school setting has long been a topic of considerable discussion and research. Stanford professor Larry Cuban points out the vulnerability of schools in implementation of technology in the past.

"Over the last century, public schools have modified their governance, programs, curricula, organization, and instruction in varying degrees. Moreover, critics often have pointed out how vulnerable schools have been to shifts in educational fashions. Fads, like changing hemlines and suit lapels, have entered and exited schools, yet these very same schools have been the targets of persistent criticism over their rigidity and resistance to reform. "It is easier to put a man on the moon," Massachusetts Institute of Technology professor Jerold Zacharias said in 1966, "than to reform public schools." (Silberman, 1971, p. 171). Almost two decades later, retired Admiral Hyman Rickover said, "Changing schools is like moving a graveyard." (Rickover, 1983, p.1). In the press
toward improvement that has characterized most studies of public schools, few writers have noted that both constancy and change, entangled together, capture the complexity of schooling far better than the usual either/or dichotomy posed by reformers.

Nowhere is this paradox more apparent than in the interplay between the classroom teacher and technology. Since the mid-nineteenth century the classroom has become home to a succession of technologies (e.g., textbook, chalkboard, radio, film, and television) that have been tailored to the dimensions of classroom practice. Yet the teacher has been singled out as inflexibly resistant to "modern" technology, stubbornly engaging in a closed-door policy toward using new mechanical and automated instructional aids." (Cuban, 1986, pp. 2-3).

Cuban points out the persistent interplay between constancy and change in the nation's classrooms. "In this process, perhaps respect can be restored for the notion that stability in teaching practice and the craft of instruction are positive forces in schools, maintaining a delicate balance amidst swiftly changing public expectations." (1986, p. 7).

Understanding the change process as technology impacts schools -- past, present and future is imperative. This establishes a need for this study and how technology fits into the overall school setting.

As stated in the introduction, the impetus for planning this study was the need, expressed by Dr. David A. Thomas and Dr. Lynn D. Churchill, to identify what characteristics are determined to have greatest impact on the progress of implementing a technology plan which uses Internet access and online educational services in K-12 schools.

The Network Montana Project (NMP) planning grant RED-9454691 provided the financial support and formal recognition needed to motivate, justify, and sustain the development of a state-wide coalition of academic,
government, and private sector partners through many months of intensive discussion, planning, negotiation and writing. In April of 1995, the resulting proposal was submitted to NSF for review and in September of 1995, the NMP was awarded a $2.52 million dollar three year grant, RED-9554251. (Thomas, 1995).

The goals of the Network Montana Project are to:

• Build and maintain a state-wide coalition of partners from academia, government, and the private sector responsible for directing a wide variety of K-14 educational networking activities during the period of NFS/NIE funding in subsequent projects;
• Support and enhance a number of nationally significant systemic mathematics and science education reform projects underway in Montana;
• Develop multimedia network-based materials and delivery systems integrating mathematics, science and technology to enhance access and usability of many scientific resources;
• Investigate adaptations of educational and informational telecommunications required to serve populations with special needs including those that may be visually or hearing impaired; and
• Develop a workable, rural, community networking model that promotes teleliteracy for rural citizens to enhance their involvement with lifelong learning, entrepreneurship and local/state governance. (Thomas, 1996).

The final goal of the project establishes the need to investigate other networking models established by educational institutions that successfully provide online educational resources to students.

Major issues of the NMP fall into four categories:

1. Access
2. Support
3. Training, and

Access refers to working with the State of Montana to build a network capable of handling the increasing demands for multimedia, video
conferencing, and World Wide Web based information and access. Support is partnering with agencies and private industry to develop a comprehensive and systemic approach to network support and professional technical training needs of communities, school districts and libraries. Training refers to designing and assisting in training students, teachers, administrators, and community members in the use of educational networks. Training is a major focus of this project. Defining a Curriculum that can meet the needs of our evolving highly technologically-based information society will require the integration of telecommunications into the classroom in an effective and efficient manner. Nationally known centers and leaders in education are assisting NMP. (Thomas, 1995).

A major emphasis in establishing the survey instrument for the study was to consider how the four major issues affect the progress in implementing a technology plan utilizing online educational resources.

Finally, as stated in the introduction, technology planning and the use of on-line educational services are important at the state and national level. Research conducted by the National Center for Technology Planning (NCTP) revealed that fewer than 30 percent of America’s schools possess a written technology plan that is integrated into the curriculum. Although an increasing number of schools are considering the preparation of technology plans, relatively few educators know how to implement a technology plan that ensures successful progress. Most school board members and district administrators confess to being confused about what strategic planning involves. (Peterson, 1989).

The NCTP, established in late 1992 for the express purpose of assisting schools throughout the United States in their technology planning efforts, has
amassed a large quantity of written technology planning documents. The documents, generally referred to as the “technology plans,” vary widely in size, appearance, and scope of coverage. Certain essential principles exist, however, that serve as benchmarks to success. (Anderson and Perry, 1997).

As educators use acceptable procedures and practices to create and implement technology plans successfully, other professionals will seek advice for their plans. One goal of leaders in the field of planning is to ensure that the highest quality of information attainable is spread among schools. If this recipe for planning is followed, then disseminated throughout the country, students in our nation’s schools will enjoy a richer, more challenging and rewarding educational experience. (Anderson and Perry, 1997).

The findings of this study will assist in further adaptation to the change process as strategies and methodology for use of online educational resources modify the culture of technology development in schools throughout the state of Montana. Fullan (1993) states that connection of the change innovation with the wider environment is critical for success. Hall & Hord (1987), in the assumptions underlying the Concerns Based Adoptions Model (CBAM) for change, state that understanding the point of view of the participants in the change process is critical. Further, the findings will add to the growing body of high quality information that can be used by schools to enhance the educational experience of our nation’s children.

These underlying reasons established the need to determine the relationship between a school district’s progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics.
Questions to be Answered

This study has attempted to answer the following major questions:

1. To what degree do the characteristics identified contribute to the perceived progress in implementing a technology plan?

2. Is the variance in perception of progress a school district had in the implementation of a technology plan attributable to the degree to which the eleven independent variables are perceived to be present in the district’s technology plan?

3. What are the collective and separate contribution of each characteristic to the perception of progress in implementing the technology plan?

4. Is there a difference between the perceived progress in implementing the technology plan of district superintendents and technology specialists in a given district.

Dependent Variable:

Perceived progress a district is having in the implementation of a school technology plan which uses Internet access and on-line educational resources at all levels.

Independent Variables:

1. The technology plan is formalized and integrated into the school district’s operations (Examples: budget, curriculum, and job descriptions).

2. The technology plan is part of a long-range, comprehensive plan addressing the goals, missions, and visions of the district through
organizational activities.

3. The technology plan includes a comprehensive professional development component.

4. The technology plan stresses the integration of technology applications to meet goals across the curriculum.

5. The technology plan includes an assessment of present technology status and future needs.

6. The technology plan indicates the ongoing need for assessment and evaluation of the plan implementation.

7. The technology plan is supported by key school staff (Superintendent, building administrators, teachers).

8. The technology plan is supported by key community members (students, parents, business community).

9. The technology plan is supported by the School District Board of Education (trustees).

10. The school district financial/budgetary matters related to technology are considered to be of high importance.

11. The school district has access to technical experts who can fix machines when they are broken and also provide technical assistance to teaching staff.
Definition of Terms

The following definitions were provided by the researcher or correspond to those used in other sources as indicated by citation and are to be considered operational definitions.

District Superintendent: That individual in a school district, given legal responsibility for the leadership, management and operation of the school system under the direction of an elected board of education.

District Technology Specialist: That individual in a school district delegated the responsibility for the coordination and planning of the use of technology in the district.

E-Rate: Also called the Universal Service Fund. The federal Telecommunications Act of 1996 offered federally funded discounts - termed the E-Rate - to schools, and libraries to purchase certain telecommunications services, internal connections and Internet access. The discounts range from 20 percent to 90 percent, depending on a school's or library's location and level of economic disadvantaged. Schools do not receive the money directly. They received discounted rates on telecommunications services provided to them. The amount available annually for the school and library discounts was scheduled to be about $2.25 billion. Montana libraries and K-12 public and nonpublic schools may apply for the discounts through the National Exchange Carrier Association (NECA), which was designated by the Federal Communications Commission to administer the E-Rate program. (Morton, 1998).

Network Montana Project (NMP): A collaborative, systemic research and development project constituting Montana's response to NSF's/NIE request for
proposal #94-05. The Network Montana Project involves a statewide collaborative effort with industry support to construct a scalable, sustainable network for Montana's educational needs. (Thomas, 1995).

**Progress:** For the purposes of this study, progress in implementing a school technology plan was the perception of the respondent indicating the degree to which they believe the objectives of the outlined plan are being met.

**Subsample 1:** A random sample of school districts in the Northwest region of the United States whose superintendents responded to the Technology Questionnaire.

**Subsample 2:** A random sample of school districts in the Northwest region of the United States (the same as subsample 1) whose technology specialists responded to the Technology Questionnaire.

**Support:** For the purposes of this study, support was defined as upholding, or serving as a foundation for; uphold, advocate, champion. (Webster's Dictionary, 1974).

**Teleliteracy:** To be literate (have understanding of) the use of technology tools (computer, Internet, interactive television, satellite transmission).

**Technologist:** A person on a school district staff considered to be an expert in technology either by training or perceived credibility given by others.

**Technology Plan:** Written document that represents the very best thinking accumulated in a particular environment (school building, district, state, etc.) for the purpose of studying technology infusion, then recommending direction for the future. (Anderson, 1997).

**Technology Questionnaire:** An attitudinal survey used as the instrument of data collection in the study.
Review of Related Literature

A review of the literature revealed that developing a well thought out implementation plan in a school district was multifaceted. This literature investigation included these components: a) a look at the historical development of organizational theory, b) change theory, c) supervision theory, and d) technology implementation in K-12 schools using Internet access and on-line educational resources. The purpose was to develop a conceptual framework and construct, through integration of the theories, to bring more insight into organization structure, the change process, supervision, leadership, and technology.

Organization Theory

Investigation of organization theory in contemporary management has developed through three theories of thought that can be categorized at different historical periods. The three theories are: a) classical, prevalent in the late 1800’s to 1920’s, b) social systems, prevalent from the 1920’s to the 1950’s, and c) open systems from the 1950’s to present. Hanson (1991) presents a view of the theories through description of the behaviors and main emphases of thought during each period. Current theories have synthesized the thought of classical, social systems and open systems and created new descriptors for organization structure. Contingency theory is of major importance in the development of the construct for investigating the problem posed by this study,
so it will be reviewed in detail. Value is found in a brief overview of the classical, social systems, and open systems theories.

The classical theory is described as bureaucratic style using the scientific method to bring about decisions. Other descriptors include division of labor, span of control, hierarchy, goal definition, extrinsic rewards and formal rules. Classical theorists include Max Weber, Henri Fayol, and Frederick Taylor. In his work, *The Theory of Social and Economic Organization*, Max Weber, a German sociologist, described the bureaucratic structure from a sociological point of view (Weber, 1964). He defined ideal type bureaucracy. Ideal type acts help administrators where organizations are inefficient, so problems may be addressed and corrected. Weber's emphasis was focused at the top of the bureaucracy.

Henry Fayol, a French industrialist defined the precepts of the administrative process and the role the precepts should play in management thinking. (Fayol, 1949). Like Weber, Fayol also focused his attention at the top of the bureaucratic ladder and the role of management.

American industrial engineer, Frederick Taylor, contributed to the classical theory by defining the principles and practices of scientific management. (Taylor, 1911). In contrast to Weber and Fayol, Taylor's principles focused on the workers, or bottom structure of the bureaucracy. However, all three views believed in formal rules, span of control and extrinsic reward systems as characterized by the descriptors of the classical theory.

Classical thought was promoted in the public domain by the work of Luther Gulick and Lyndall Urwick, who gave definition to structures for efficiency in administration with the likes of the POSDCoRB (Planning, Organizing, Staffing, Directing, Coordinating, Reporting, Budgeting), delegation of authority,
and departmentalization. (Gulick and Urwick, 1937).

Though the classical theory began to lose its appeal in the 1930’s and gave way to other theories of organization, much of the bureaucratic style of top down management, division of labor, and span of control are still prevalent in many of today’s schools. The classical model drove industry, government and schools for many years and due to the entropy of schools as organizations, change came very slowly. It is only in recent years that schools have adopted views of other theories of organization.

Social systems theory developed in the 1930’s from the work of Elton Mayo and his findings of the Western Electric Company’s Hawthorne Works. (Mayo, 1933). Briefly, the characteristics of the social systems theory are human relations, informal groups, peer pressures, intrinsic rewards, psychological needs. (Hanson, 1991). The Hawthorne Studies discovered that employees (workers) developed their own set of informal groups and rules that were very powerful in directing productivity, even though the formal (classical) structure provided extrinsic rewards (wage incentives) for increased production. The findings of this study provided the impetus for the human relations movement that was prevalent in business and education. Employees of the organization should feel that they are a part of the company and take pride in their work toward company goals. They must also feel that the company’s goals are worth their effort if production is to be high. For education, the concept of formal and informal organizations changed the way management was viewed with control spread throughout the organization, decentralization of decision making, free flow of communication, and mutual support of management and staff. (Hanson, 1991). Once again emphasis on the social systems theory is to build a knowledge base for understanding the different types of structures
observed in today's schools. Understanding the perspective of the theory allows planning for change or problem solving in a school district to be approached with as much knowledge as possible.

The open systems theory focused mainly on how organizations work, not how they should work. The perspective promoted by Richard Scott (1981) helps to solidify the concept of the open system theory in that the open system perspective does more than simply bring the external environment into the picture. It shifts attention from organization to organizing, from structure to process. (adapted from Hanson, 1991). Katz and Kahn have worked extensively with the notion of open systems, and they promote that, rather than a theory, it is a framework or approach, and a conceptual language for understanding and describing many kinds and levels of phenomena. (Katz & Kahn, 1966). Katz and Kahn also promoted the thought of diagnosing an organization's operation by examining input, throughput, and output characteristics rather than organization's formal goals. Hanson (1991) in adapting the input, throughput, and output concept from Katz and Kahn (1966) states, "... formal goals and rational purposes stipulate how an organization should [italics added] function, whereas open system theory concentrates on how an organization actually functions [italics added]." (adapted from Hanson, 1991).

Open systems theory characteristics include input-output, event cycles, environmental exchanges, information theory. (Hanson, 1991). For schools, the concepts of the open system allow leaders to view the school from the multifaceted perspectives, understand that the organization is complex, and possibly promote direction for change.

Contingency theory turns the focus of the open system to a situational
point of view. Hanson (1991) discusses three contingency theory frameworks that relate to education: a) organizational structure and the environment, b) problem solving in organized anarchies, and c) managerial work behavior. (adapted from Hanson, 1991).

Organizational structure and environment are studied so that uncertainty can be dealt with in a manner that reduces risks through intelligent forethought and planning: (p. 170). Hanson has developed a differentiated and integrated subsystem framework that offers a series of stages that deflect problems emerging from the school environment in any number of directions depending on the situation. (Hanson, 1979). This is an example of contingency theory in that it offers a variety of directions in which to proceed to a solution based upon the situation.

Problem solving in organized anarchies is based on the premise of an organized anarchy which contain three properties; ambiguous goals, technology of action is unclear, and fluidity of participation. (Cohen, March & Olsen, 1972). Cohen, March and Olsen promoted the garbage can model of decision making which emphasizes that decision making is the measuring of, 1) a constant flow of problems, 2) a constant flow of solutions, and 3) fluid participation, intermingled with a choice opportunity in the organization. (Adapted from Hanson, 1991, p. 163). Once again, a framework for problem solving is provided based upon situational constructs and choice.

Managerial work behavior research has been done by Henry Mintzberg in which he identified six characteristics of managerial work and ten roles utilized by managers to do their work. (Mintzberg, 1980). Again, the work presented by Mintzberg places the emphasis on the situational character of the management task. Adaptation of the managers role is necessary as conditions
Contingency theory also contained the concept of loosely coupled systems. Karl Weick uses the term ‘loose coupling’ to describe the way schools convey the image of coupled events that are responsive, but each event retains its own identity and separateness. (Weick, 1976). Departments (math, science, art) in schools can collaborate on cross content projects, but each also retains their individual identity when working on specific learner outcomes for their field. Mintzberg (1983) identified five ways organizations bridge gaps in an attempt to tighten the coupling: (1) mutual adjustment, (2) direct supervision, (3) standardization of work, (4) standardization of outputs, and (5) enculturation. (Adapted from Hanson, 1991, p. 157). These principles provide insight into how school organizations work to loosen or tighten the couple between events to promote change or adaptation.

In the perspective of this researcher, contingency theory, allowed for the greatest degree of flexibility in understanding a school in the context of organizational theory.

A final organization framework that helps to establish the construct this researcher will utilize in planning change or solving problems came from the work of Hersey and Blanchard in Management of Organizational Behavior: Utilizing Human Resources. (Hersey & Blanchard, 1988). Hersey and Blanchard have developed a comprehensive theory of leadership style in response to group characteristics known as situational leadership. (Adapted from Glickman, Gordon, & Ross-Gordon, 1995). Glickman, et al., promote the concept that effective leadership is a function of the leader, the follower and the situation; EL = f(L,F,S). They have developed a diagram that is divided into four quadrants and helps to determine the style of leadership based on the
relative emphasis of task and relationship (person) behavior. Leadership suggestions are given for encountering:

a) Style 1: Telling -- High task, low relationship,

b) Style 2: Selling -- High task, high relationship,

c) Style 3: Participating -- High relationship, low task, and

d) Style 4: Delegating -- Low relationship, low task.

(Hersey & Blanchard, 1988). The work of Hersey and Blanchard, once again, provides insight when dealing with changing situations in a changing environment. The leader must understand the relationships between effective styles of leadership and the level of maturity of the followers -- the appropriate matching of leader behavior with the maturity of the group or individual.
Classical theory, social systems theory, open systems theory, contingency theory, and situational leadership are portions of the framework to be used in decision making related to organization theory. The understanding of the theories and ability to identify characteristics related to the theories, provide the strong conceptual background necessary to make informed decisions in situations encountered in the organization. The review of literature continues with change theory, supervision theory, and technology infusion, to show how these areas can be integrated with organization theory to bring even more insight into the problem of this study.

Change Theory

This researcher's framework was established through the work of several authors and models of change. A brief description of some of these works are included so that the reader can understand the basis of this researcher's construct of change.

Michael Fullan (1991) has extensive work with recent change theory. "Change must always be viewed in relation to the particular values, goals and outcomes it serves" (Fullan, 1991). Sources of educational change, meaning of educational change, causes and processes of initiation, causes and processes of implementation and continuation, and planning, doing and coping with change, frame the work that Fullan has brought to the change literature. (Fullan, 1991).

Gene Hall and Shirley Hord have provided the overview that best establishes the views the researcher has adopted for change processes. Their book, Change in Schools: Facilitating the Process, shows the change process
through the viewpoint of Concerns-Based Adoption Model (CBAM). (Hall & Hord, 1987). Concrete discussion of the CBAM model which was a research project for the Research and Development Center for Teacher Education at the University of Texas at Austin, and distributed by the Southwest Educational Development Laboratory in 1986, allowed this researcher to develop a framework to approach the change process.

The assumptions that underlie the CBAM process are: 1) understanding the point of view of the participants in the change process is critical, 2) change is a process, not an event, 3) it is possible to anticipate much that will occur during a change process, 4) innovations come in all sizes and shapes, 5) innovation and implementation are two sides of the change process coin, 6) to change something, someone has to change first, and 7) everyone can be a change facilitator. (Hall & Hord, 1987). The main premises of the CBAM conceptual framework include: a) a change facilitator who can utilize a resource system to provide insight into the innovation, b) change facilitators are responsible for using informal and systematic ways to probe individuals and groups to understand them, c) diagnosis can be accomplished through the use of stages of concern (SoC), levels of use (LoU), and innovation configurations (IC), d) understanding interventions, e) understanding the context in which the change takes place, and, f) the change facilitator should be adaptive and systemic in his/her thinking. (Adapted from Hall & Hord, 1987, pp. 11-16).

Constructivism applies to the change process. The basic tenets of constructivism are: 1) knowledge is constructed from experience, 2) learning is a personal interpretation of the world, not a shared reality with others, 3) learning is an active, rather than passive experience, 4) meaning is negotiated through a collaborative work with others and from differing perspectives,
5) learning should occur in real-world settings, and 6) student assessment should be integrated into the learning process, not seen as as separate activity. “These assumptions provide for the basic premise that *learning is a journey, not a destination* [italics added].” (Merrill, 1991). Change process theory parallels this idea in that the process is constantly changing and a good understanding of change requires that adaptations be made as the process evolves.

The last two areas of research that have provided input into this researcher's framework for the change process are the fidelity perspective and mutual adaptation. Fidelity was the dominant perspective underlying curriculum implementation and was promoted by Fullan and Pomfret in 1977. (Snyder, Bolin, & Zumwalt, 1992). Assumption is that innovations are created, designed, and developed by experts outside of the organization, and through a linear process the implementation is in the hands of those in the organization. An example of this would be some of the teacher proof curriculums that were developed in the 1970's. The fidelity approach allows a very structured game plan to be made for implementation, that must be followed for successful change. This approach is still in use and has merit in various situations.

Mutual adaptation grew out of the final results of the Rand Change Agent Study and suggests that schools change as new practices gain support, are adapted to the local situation, and become integrated into the regular operation of the organization. (Hall & Hord, 1987). Mutual adaptation bases implementation on change in the innovation as it progresses through the process. Negotiation and flexibility on the part of both the designers and practitioners are inputs into the process.

In most situations in education, this researcher believed the mutual adaptation approach to change would bring about better results. Recognizing
Supervision Theory

The work of Carl Glickman in developmental supervision has provided the greatest background and direction for this researcher in developing a construct for supervision over the past eight years. A prime source for review of the supervision literature is Glickman, Gordon, and Ross-Gordon’s book, Supervision of Instruction: A Developmental Approach. (Glickman, et al., 1995). The authors defined supervision as, “... the school function that improves instruction through direct assistance to teachers, curriculum development, staff development, group development, and action research” (Glickman, et al., 1995). The authors went on to state their belief that, “… the key to successful supervision is thoughtful practice based on viewing teachers as developing adults” (Glickman, et al., 1995). Thus the term developmental supervision indicated the work of improving student instruction through assistance to teachers, helping them to move to higher levels of development. As described in the book, supervision for successful schools required the prerequisites of knowledge, interpersonal skills, and technical skills. The supervisor has educational tasks that enable teachers to evaluate and modify instruction. Those tasks are direct assistance, group development, curriculum development, staff development and action research. By understanding how teachers can grow in the environment, the supervisor plans tasks of supervision that unify organizational goals and teacher needs into improved student learning. (Glickman, et al., 1995). This framework was the impetus of developmental
Direct assistance to help teachers improve instruction is a key element of the supervision process. Clinical supervision is a recognized structure for assistance that has been well researched. Edward Pajak, in his book, *Approaches to Clinical Supervision: Alternatives for Improving Instruction*, examines each of the most popular approaches to clinical supervision. (Pajak, 1993). Pajak described four categories of classroom supervision. First, were the original clinical models, occurring from the 1960s to early 1970s, supported by the writings of Goldhammer, Mosher & Purpel and Cogan. The major principles were collegiality and mutual discovery of meaning. Second, were the humanistic/artistic models, from the mid 1970s to early 1980s; Blumberg and Eisner were the main contributors. Major principles are positive and productive interpersonal relations with holistic understanding of classroom events. Third, are the technical/didactic models, occurring from the early to mid 1980s. Acheson & Gall, Hunter, and Joyce and Showers were contributors. Major principles are effective teaching strategies, techniques, and organizational expectations. Fourth, were the developmental/reflective models, occurring during the mid 1980s to early 1990s, supported by the work of Glickman, Costa & Garmston, Schon, and others. Major principles are teacher cognitive development, introspection, and discovery of context-specific principles of practice. (Glickman, et al., 1995). These models give structure to the clinical supervision process as it develops.

Another very important task of the developmental supervision process is staff development. Glickman, et al. (1995) state:

“Staff development must be geared to teacher’s needs and concerns. Research on successful staff development programs has shown an emphasis on involvement, long-term planning, problem-
solving meetings, released time, experimentation, and risk-taking, concrete training, small-group activities, peer feedback, demonstration and trials, coaching, and leader participation in activities.” (Glickman, et al., 1995).

Attention must be paid to staff development if the developmental supervision process is to be successful. Joyce & Showers (1988) have provided research of student achievement through staff development. They believe student achievement can be significantly improved through changes in the instructional behaviors of teachers, classroom environment and effective school improvement programs that include well designed and implemented staff development. (Joyce & Showers, 1988). A major contribution by Joyce & Showers (1988) was the concept of coaching in which the major purpose is the implementation of innovations to the extent that determination of effects on students are possible. The work of Joyce and Showers matched the need that is created by the innovation (regarding staff development) of the problem in this study.

A final comment on supervision theory is to distinguish between the terms evaluation and supervision. Evaluation is the contractual need to judge and rate teacher abilities in the classroom. The process of evaluation does little to improve teaching. Supervision, as stated previously is focused at improving instruction through direct assistance to teachers. Careful thought and communication must be addressed if the administrator is both the evaluator and supervisor.

Developmental supervision literature and supervision theory presented another part of the picture that is necessary to develop a conceptual framework and construct, allowing better insight into organizational structure, change theory, supervision, leadership, and technology.
The final prerequisite in developing the literature review for the problem of this study was the technical skill dimension. Technical supervisory skills are needed when working with teachers to assess, plan, observe, research, and evaluate the instructional program. (Glickman, et al., 1995). This prerequisite is what allows the supervisor to enter the classroom and collect information that will help the teacher to develop and become self directed and autonomous. In the area of technology, the supervisor must have the technical skills, interpersonal skills and knowledge to effectively help teachers to develop and improve student learning.

Technology

Feedback related to the use of technology in the classroom has limited research support. One study by Bailey & Lumley (1991) describes the new roles for school administrators in supervising teachers who are using integrated learning systems (ILS). An ILS is a complex, integrated hardware/software management system that utilizes computer-based instruction. The authors discuss the issues faced by supervising administrators; everything from the integration of ILS’s in school/teacher culture, to research on varied-ability students. However, the authors did not offer suggestions on how to address these important issues. Lack of research conducted to date, indicates that these issues would be strong topics for future research.

Another difficulty lay in developing the building administrator’s ownership for the use of technology concept, and finding time to complete this vital task while still completing all other duties on a daily basis. The
ownership factor affects the daily routine and attitude of principals as they perform their jobs.

Several studies have addressed supervision in relation to technology. For example, Austin, et al. (1993) addresses staff development issues related to technology. The authors suggest that computers in schools have three uses; administrative, instructional, and research. (Austin, et al., 1993). The instructional component views the computer as a tool. A major portion of the description focuses on staff development. The authors say, “If the staff is involved in setting the goals for the inservice, designing the inservice, and (to the extent feasible) actually conducting the inservice, it will have a very good chance of being successful.” (Austin, et al., 1993). They go on to write, “... a good inservice typically has multiple sessions spread out over a period of time, with opportunity to implement the new ideas between the inservice sessions.” (Austin, et al., 1993). Other necessary items included support available to staff members (a responsibility of the administrative team), and continued follow-up support following the inservice consisting of team teaching, coaching, individual help, or further group inservice.

Training is available in a variety of forms, to help schools develop a comprehensive technology plan. George Luginbill and Associates (Luginbill, 1994) provide such training for school districts. The main focus is developing a vision and goals which help establish priorities to be addressed. A portion of the training relates to the change process and supervision process as mentioned above.

Recent research reveals an underlying theme of schools working to use the full potential of technology in the school environment. Many such studies are stressing that policy makers and the public are beginning to
demand evidence that their investments in technology are making a difference.

On February 1, 1999 -- The Gordon S. Black Corporation, who conducts survey research for education, announced "according to survey results, although computers have made their way into the nation's public schools, they are not yet fully-integrated into the learning process." (Black, 1999). Some of the highlights of the study of more than 85,000 students, teachers, and parents include:

- Use of computers is sporadic and varies by district. About half (48%) of high school students report using a computer at school once a week or less.

- More high school students report using the computer to surf the web (64%) than to do homework or research (42%). Further, just 20% of the teachers reported that they require students to use the computer to do research.

- Although there is strong agreement among teachers that computers support and extend the teaching process (85%) as well as the learning process (88%), just 61% of the teachers felt that computers were integrated into the curriculum.

- Teacher training continues to be an important challenge. While most teachers (88%) agree that their district allocates enough funding for technology, and 84% feel that they have access to training, just seventy percent (70%) feel that they are adequately trained on the computer.

- Students are more skeptical about their teacher's computer skills than the teachers are. Just 57% of high school students feel that their teachers are adequately prepared to teach them on the computer.

- Parents agree that computers are an integral part of the learning process. 90% believe that school computers help in the education of their child. (Black, 1999).
The study shows that students, teachers and parents are all in agreement that computers have the power to make substantial improvements in the education of children.

"School districts throughout this country have invested millions in computer technology, and it is only going to be a matter of time before school boards and the public insist that this investment has paid off," said John Geraci, Vice-President of Educational Research. "Integrating technology in the classroom involves a fundamental shift in the way we educate children, and while these data show that a lot of progress is being made, it also shows that it takes a lot more than hardware to support and extend the learning process with computers." (Black, 1999)

In the October 1998 Technology Counts edition of Education Week, author Andrew Trotter states, "Twenty years and billions of dollars since the first personal computers were plugged into the nation's schools, policy makers and the public are finally starting to demand evidence that their investments have been worthwhile." (Trotter, 1998, p. 6). Trotter cites Stanford University education professor . . . "The obligation is for educators, practitioners, educational policy makers to think clear about what they're after. Only with clear goals can educators be intelligent about how much they want to spend for what purpose, and under what conditions." (Trotter, 1998, p.8). These statements once again express the need for school districts to develop and technology plan.

In addition to the accountability for the dollars spent theme emphasized in this study, emphasis on teacher training is a constant theme in current technology literature. Recommendations for state policy makers in the Technology Counts '98 issue of Education Week stress that states
should require incoming teachers to have technology training or expertise to obtain a teaching license. Also, states should create opportunities for teachers to learn how to use technology. (Zehr, 1998, p. 69).

Summary

This literature review established a background in the historical development of organizational theory, change theory, supervision theory and technology that further clarified the need to answer the problem statement of this study. Current technology literature emphasizes development a technology plan, being accountable for the funding used for technology, and providing teacher training (professional development) to effectively use technology. Determining the relationship between a school district’s progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics, will provide critical knowledge for school districts embarking on implementing such programs in their school district.
CHAPTER 2

DESIGN OF THE STUDY

Conceptual Framework

The conceptual framework for this study was to assist in further adaptation to the process of planned change, organizational framework, and supervision of instruction in utilizing technology in the K-12 education environment. The findings of this study will increase the body of knowledge available to K-12 educators, as strategies and methodology for use of online educational resources modify the culture of technology development in schools throughout the nation. Further, the findings will add to the growing body of high quality information that can be used by schools to enhance the educational experience of our nation's children.

Also, the findings of this study, as outlined previously, are important at the state and national level. Political figures, from the President of the United States, to the U.S. Secretary of Education and Governor of the state of Montana, have voiced the need to place technology in the hands of our children in schools to enhance their ability to learn. The co-directors of the NMP, Dr. David A. Thomas and Dr. Lynn D. Churchill, have expressed interest in, and can use the results of, this study to further enhance the NMP.

Chapter 2 begins with a description of the population and sampling procedure used and is followed by the questions to be answered expressed in
hypothesis form. The investigative categories are defined and measures to control contaminating variables are discussed. Next, the methods of data collection are outlined along with measures to ensure accuracy of the data. Then, the research design is discussed with explanation of data analysis techniques to be employed. Chapter 2 concludes with a discussion of the limitations and delimitations on the study.

Population Description and Sampling Procedure

The population of the Investigative Study consisted of district superintendents and district technology specialists, in those districts that had them, employed in Northwestern United States, grade K-12 school districts. The Northwestern United States included those school districts served by the Northwest Regional Education Laboratory, encompassing the states of Montana, Idaho, Oregon, Washington, and Alaska. To be included in the population, the superintendent and/or technology specialist must have been employed in school districts that had implemented technology plans utilizing Internet access and on-line educational services. Internet searches, contact with the Northwest Regional Educational Laboratory (NWREL) in Portland, Oregon, and contact with state departments of education were utilized to identify those school district superintendents and technology specialists that met the criteria established by the population definition. A total of 866 school districts were included in the population for this study.

The sample for the study consisted of randomly selected members of the population in an attempt to receive 220 responses, based on an N of 20 for each of the 11 independent variables under consideration. (Kerlinger, 1992).
Three hundred in the sample would require a return rate of approximately 73% to meet the demands of 220 surveys returned.

Superintendents in each of the 866 school districts were alphabetized by last name and the list was numbered from 1 to 866. A random number generator called Randomizer 5.5 was downloaded from the Internet. Instructions were given to Randomizer 5.5 to provide 300 random numbers from a total of 866. The 300 random numbers generated provided the superintendents and school districts that were included in the sample. The technology specialist in the same districts as selected superintendents generated the list of technology specialists in the sample.

The researcher surveyed the perception of the superintendent and technology specialist, in those school districts that had the position. The sample was split into responding district superintendents, and responding district technology specialists. These subsamples were defined as: (a) Subsample 1, district superintendent responses; (b) Subsample 2, district technology specialist responses. The Technology Questionnaire was utilized to collect data from the superintendents and technology specialists identified in the sample. The Technology Questionnaire is included in Appendix A.

Technology Questionnaires were sent to 300 superintendents and 300 technology specialists. The Total Design Method promoted by Dillman was utilized for the questionnaire distribution and follow-up in an attempt to meet the return rate requirements. (Dillman, 1978). The Total Design Method suggests that a cover letter and survey be sent to members of the sample with a stamped return envelope. A postcard follow-up to all members of the sample followed one week later thanking early respondents and reminding others of the importance of completing the survey. A second follow-up cover letter and copy
of the survey were mailed with another stamped return envelope. The second follow-up was sent three weeks after the original mailing. A third follow-up cover letter and survey with return envelope was sent five weeks after the original mailing to those who had failed to respond.

Test-retest reliability for stability over time of the characteristics in the study required a retest survey to be sent to 75 members of the sample respondents. Members of the retest group were selected randomly, as in the method explained above.

Table 1 shows the sampling return rate information for both the test and retest.

Table 1. Sample Return Rate Statistics - Test and Retest

<table>
<thead>
<tr>
<th></th>
<th>Questionnaires Sent</th>
<th>Questionnaires Returned</th>
<th>Percent Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superintendents</td>
<td>300</td>
<td>214</td>
<td>71.3%</td>
</tr>
<tr>
<td>Technology Specialists</td>
<td>300</td>
<td>148</td>
<td>49.3%</td>
</tr>
<tr>
<td>Total</td>
<td>600</td>
<td>362</td>
<td>60.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Questionnaires Sent</th>
<th>Questionnaires Returned</th>
<th>Percent Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superintendents</td>
<td>60</td>
<td>54</td>
<td>90.0%</td>
</tr>
<tr>
<td>Technology Specialists</td>
<td>15</td>
<td>11</td>
<td>73.3%</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>65</td>
<td>86.7%</td>
</tr>
</tbody>
</table>

As shown in Table 1, superintendents return rate of 71.3% adequately
meets the demands of the return rate required of the sample given the 11 independent variables in the study. The technology specialist return rate of 49.3% was below the originally established level of acceptability. Given the student enrollment of a number of the school districts in the sample, it was evident that many districts did not employ an individual specifically responsible for technology as outlined in the definition of technology specialist. In the judgment of the researcher, this accounts for the lower response rate for technology specialists. The author believes for the reason cited above that the responses received adequately allow for the inclusion of the technology specialist subsample in the findings of the study as outlined in Hypotheses 2 A and 2 B.

Sources of Evidence and Authority

The dependent variable (variable Y) in this study was the perception of the superintendent or technology specialist (in district’s employing a specialist) of the school district’s progress in implementing a school technology plan which uses Internet and on-line educational resources. Progress was defined as the degree to which the respondent believed the district was meeting the objectives outlined in the technology plan.

Perception was established by asking the superintendent or technology specialist to what degree identified characteristics were present in the school district technology plan, or, a part of their school district. For each characteristic, the respondent was asked to choose from six choices; (1) fully developed, fully
implemented, (2) fully developed, partially implemented, (3) fully developed, not
implemented, (4) partially developed, partially implemented, (5) partially
developed, not implemented, (6) not developed, not implemented.

The identified characteristics (variables $X_1 - X_{11}$), are the independent
variables. They are identified below:

**Identified Characteristics (Independent Variables $X_1 - X_{11}$):**

$X_1$ The technology plan is formalized and integrated into the school
district’s operations (Examples: budget, curriculum, and job
descriptions).

$X_2$ The technology plan is part of a long-range, comprehensive plan
addressing the goals, missions, and visions of the district.

$X_3$ The technology plan includes a comprehensive professional
development component.

$X_4$ The technology plan stresses the integration of technology
applications to meet goals across the curriculum.

$X_5$ The technology plan includes an assessment of present
technology status and future needs.

$X_6$ The technology plan indicates the ongoing need for assessment
and evaluation of the plan implementation.

$X_7$ The technology plan is supported by key school staff
(Superintendent, building administrators, teachers).

$X_8$ The technology plan is supported by key community members
(students, parents, business community).

$X_9$ The technology plan is supported by the School District Board of
Education (trustees).

$X_{10}$ The school district financial/budgetary matters related to technology are considered to be of high importance.

$X_{11}$ The school district has access to technical experts who can fix machines when they are broken and also provide technical assistance to teaching staff.

**Statistical Hypotheses Tested**

To determine the relationship between a school district’s perceived progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics, several null hypotheses were tested. Hypotheses 1 A and 2 A were tested using Multiple Linear Regression. Hypotheses 1 B and 2 B used the t-statistic to determine whether the regression coefficients (b) differed significantly from zero.

**Null Hypothesis 1 A:** There is no significant $R^2$ between progress in implementing a technology plan (variable Y) as perceived by the district superintendent, and the set of independent identified characteristics (variables $X_1$-$X_{11}$).

$H_{01}$: $R^2_{y,x_1...x_{11}}=0$.

**Null Hypothesis 1 B:** None of the identified characteristics (variables $X_1$-$X_{11}$) provide a significant and unique contribution to the
prediction of the superintendent's perceived progress in implementing a technology plan (variable Y) when all other independent variables have been taken into account.

Null Hypothesis 2 A: There is no significant $R^2$ between progress in implementing a technology plan (variable Y) as perceived by the district technology specialist, and the set of independent identified characteristics (variables $X_1$-$X_{11}$).

$H_{02}: R^2_{y,x_1...x_{11}} = 0.$

Null Hypothesis 2 B: None of the identified characteristics (variables $X_1$-$X_{11}$) provide a significant and unique contribution to the prediction of the technology specialist's perceived progress in implementing a technology plan (variable Y) when all other independent variables have been taken into account.

Additionally, the data was subjected to a stepwise multiple regression. Variables were added to the model one at a time as long as the increase in $R^2$ from the previous step was significant at the 0.05 level. The inclusion of each of these variables significantly increased (alpha = 0.05) the value of $R^2$, which is the amount (percentage) of variability of Y that is accounted for by the included independent variable.

Hypothesis 3 was tested using a Paired Sample t Test. For purposes of Hypothesis 3, progress in implementing the technology plan was measured by the response of the superintendent or technology specialist when questioned...
about their perception of progress defined as the degree to which they believed the district was meeting the objectives outlined in their plan. Hypothesis 3 sought to answer whether there was a difference between the perceived progress in implementing the technology plan (variable Y) of district superintendents and technology specialists. The superintendent and technology specialist responses were paired by district.

**Null Hypothesis 3:** There is no significant difference between superintendent mean perception of progress and technology specialist mean perception of progress in a given school district.

Respondents included 119 school districts where both the superintendent and technology specialist returned the questionnaire. In 104 school districts, both the superintendent and technology specialist completed Section II of the questionnaire indicating their perception of progress as defined.

**Investigative Categories**

Determining the relationship between a school district’s progress in implementing a school technology plan which uses Internet access and on-line educational resources, and which school district characteristics interact with this implementation was the focus of the study. For this purpose, a survey tool (Technology Questionnaire) was developed and distributed to both district
superintendents and those district's in the sample that had technology specialists; allowing the samples to be divided into two subsamples. These subsamples are defined as: (a) Subsample 1, district superintendent responses; (b) Subsample 2, district technology specialist responses. Each survey received was placed in the appropriate subsample as outlined above.

The variables identified were defined given the following descriptions. The dependent variable \(Y\), the perception (superintendent or technology specialist) of a school district's progress in implementing a school technology plan which uses Internet access and on-line educational resources, was based upon the survey respondent's perception of the degree to which they believed the district was meeting the objectives outlined in the plan. A percentage from 0% to 100% was used for the respondent to rank his/her perception.

The independent variables \(X_1 - X_{11}\) were a measure of the degree to which the respondent believed the characteristics (independent variables \(X_1 - X_{11}\)) were present in their school district technology plan, or, part of their school district. For each characteristic, the respondent was asked to choose from six choices; (1) fully developed, fully implemented, (2) fully developed, partially implemented, (3) fully developed, not implemented, (4) partially developed, partially implemented, (5) partially developed, not implemented, (6) not developed, not implemented.

Further, the respondent was requested to rank the top three characteristics in order of perceived importance, regardless of whether they were part of their school technology plan or not. The respondent was requested to indicate which characteristic they believed was most important, second most important, and third most important in making progress in implementing a technology plan.
The independent variables used in this study were selected through a review of action research and best practices in implementing technology plans. A preliminary survey instrument was developed which identified 80 characteristics predominantly present in the literature. This preliminary survey was administered to a panel of five educational technology experts. The preliminary survey instrument is in Appendix B. The results, established by the panel of technology experts, determined the eleven characteristics (independent variables) used in this study.

The panel of experts who completed the preliminary survey instrument were selected for their known expertise in the area of educational technology and, an effort was made to balance the collection of input between experts with experience at the local school district level, the state and university level, and the regional level. The panel of experts consisted of:

- Dr. Lynn D. Churchill, Co-Director of the Network Montana Project and Professor at the University of Montana in Missoula, Montana.
- Mr. Gary Graves, Senior Technology Associate at the Northwest Regional Educational Technology Consortium in Portland, Oregon.
- Ms. Libby Henneberry, Technology Specialist at Townsend Public Schools in Townsend, Montana.
- Mr. Dennis Parman, Technology Specialist and Assistant Superintendent at Havre Public Schools in Havre, Montana.
- Dr. David A. Thomas, Co-Director of the Network Montana Project and Professor at Montana State University in Bozeman, Montana.
Methods of Data Collection

An attitudinal survey, called a Technology Questionnaire, was the instrument of data collection in this study. The Technology Questionnaire is included in Appendix A. The researcher developed the survey instrument. The validity of the instrument was established using the following criteria: (a) research of literature to discover comparable tools that had questions similar to those required to be asked, for incorporation into the survey instrument; (b) establishment of research based characteristics (variables) using the results of the preliminary survey of educational technology experts to determine the characteristics for the survey instrument; and (c) authoritative based validity was established by the committee of five educational technology experts review of the design of the survey instrument.

The reliability of the instrument was established using item by item test-retest reliability to determine the stability of the items over time. Further, total score reliability of the eleven characteristics was used to determine stability over time reliability for all variables considered in the model.

Initially, the Technology Questionnaire (test) was distributed through the U. S. mail to the sample population. The respondent was requested to complete the questionnaire and return it to the researcher in a return envelope. After a passage of five weeks, the Technology Questionnaire was re-administered (retest) to 60 superintendents and 15 technology specialists randomly chosen.

As outlined above, item by item test-retest was used to determine the stability of the items over time. Pearson correlation coefficients were used as the measure of this reliability. A reliability coefficient less than 0.60 caused a given item to be analyzed for its contribution and possible removal from the
analysis. Further, a test-retest correlation between the totals of characteristics $X_1 - X_{11}$ were used to analyze the stability over time of the total instrument.

Table 2 shows the Pearson correlation coefficients for each of the eleven independent variables.

Table 2. Reliability Coefficients for the Eleven Independent Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Pearson r</th>
<th>Sig. r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1$</td>
<td>65</td>
<td>0.418 *</td>
<td>0.001</td>
</tr>
<tr>
<td>$X_2$</td>
<td>65</td>
<td>0.620</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_3$</td>
<td>64</td>
<td>0.675</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_4$</td>
<td>64</td>
<td>0.583 *</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_5$</td>
<td>65</td>
<td>0.343 *</td>
<td>0.005</td>
</tr>
<tr>
<td>$X_6$</td>
<td>65</td>
<td>0.479 *</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_7$</td>
<td>65</td>
<td>0.730</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_8$</td>
<td>64</td>
<td>0.646</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_9$</td>
<td>65</td>
<td>0.761</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_{10}$</td>
<td>65</td>
<td>0.792</td>
<td>0.000</td>
</tr>
<tr>
<td>$X_{11}$</td>
<td>65</td>
<td>0.760</td>
<td>0.000</td>
</tr>
<tr>
<td>Total Score</td>
<td>63</td>
<td>0.715</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Variables $X_1$, the technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, and job descriptions); $X_4$, the technology plan stresses the integration of technology applications to meet goals across the curriculum; $X_5$, the technology plan includes an assessment of present technology status and future needs; and $X_6$, the technology plan indicates the ongoing need for assessment and evaluation of the plan implementation, marked with an *, are correlation coefficients that
did not meet the 0.60 demand suggested as criteria for item by item test-retest stability over time. The total score reliability indicated that the test-retest correlation between the totals of characteristics $X_1 - X_{11}$ in the test and $X_1 - X_{11}$ in the retest was 0.715. This correlation meets the criteria established for stability over time reliability for all variables considered in the model.

Variability of the data using the 1 to 6 rating scale is limited. Because only six choices are available for rating the independent variable, variability of the responses is restricted. This limiting feature (variability) contributed to the low correlation coefficient for these four variables. The maxmincon principle stresses that the research design maximize variability of the variables under consideration, control the variance of contaminating variables, and minimize the error variance. (Kerlinger, 1992, p. 330). This principle requires the author to consider that the restrictions on variability of responses due to the limited scale may have attributed to four variables not meeting the item by item test-retest stability over time criteria. Caution was taken when drawing conclusions that used any of the four variables.

Tables 3 and 4 show the descriptive statistics for each of the eleven independent variables by subsample.
Table 3. Descriptive Statistics for the Eleven Independent Variables by Subsample 1 - Superintendents

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1$</td>
<td>208</td>
<td>2.3894</td>
<td>1.1947</td>
</tr>
<tr>
<td>$X_2$</td>
<td>208</td>
<td>2.3942</td>
<td>1.2349</td>
</tr>
<tr>
<td>$X_3$</td>
<td>206</td>
<td>2.6699</td>
<td>1.3207</td>
</tr>
<tr>
<td>$X_4$</td>
<td>208</td>
<td>2.6731</td>
<td>1.1667</td>
</tr>
<tr>
<td>$X_5$</td>
<td>208</td>
<td>2.1731</td>
<td>1.2074</td>
</tr>
<tr>
<td>$X_6$</td>
<td>208</td>
<td>2.4471</td>
<td>1.3250</td>
</tr>
<tr>
<td>$X_7$</td>
<td>207</td>
<td>1.5990</td>
<td>0.8915</td>
</tr>
<tr>
<td>$X_8$</td>
<td>206</td>
<td>2.2864</td>
<td>1.3254</td>
</tr>
<tr>
<td>$X_9$</td>
<td>207</td>
<td>1.5942</td>
<td>0.9551</td>
</tr>
<tr>
<td>$X_{10}$</td>
<td>207</td>
<td>1.9903</td>
<td>1.1363</td>
</tr>
<tr>
<td>$X_{11}$</td>
<td>207</td>
<td>1.9855</td>
<td>1.3052</td>
</tr>
</tbody>
</table>

Table 4. Descriptive Statistics for the Eleven Independent Variables by Subsample 2 - Technology Specialists

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1$</td>
<td>144</td>
<td>2.6042</td>
<td>1.1780</td>
</tr>
<tr>
<td>$X_2$</td>
<td>144</td>
<td>2.5000</td>
<td>1.4093</td>
</tr>
<tr>
<td>$X_3$</td>
<td>143</td>
<td>2.9091</td>
<td>1.4187</td>
</tr>
<tr>
<td>$X_4$</td>
<td>143</td>
<td>2.7413</td>
<td>1.3093</td>
</tr>
<tr>
<td>$X_5$</td>
<td>144</td>
<td>2.2569</td>
<td>1.3262</td>
</tr>
<tr>
<td>$X_6$</td>
<td>144</td>
<td>2.4583</td>
<td>1.4718</td>
</tr>
<tr>
<td>$X_7$</td>
<td>144</td>
<td>1.9028</td>
<td>1.2534</td>
</tr>
<tr>
<td>$X_8$</td>
<td>141</td>
<td>2.5461</td>
<td>1.5742</td>
</tr>
<tr>
<td>$X_9$</td>
<td>144</td>
<td>1.7986</td>
<td>1.2548</td>
</tr>
<tr>
<td>$X_{10}$</td>
<td>142</td>
<td>2.2465</td>
<td>1.3272</td>
</tr>
<tr>
<td>$X_{11}$</td>
<td>143</td>
<td>1.8671</td>
<td>1.1882</td>
</tr>
</tbody>
</table>
The means represented in Tables 3 and 4 were based on the six point scale used by the respondent to rate each characteristic as outlined previously. [(1) fully developed, fully implemented, (2) fully developed, partially implemented, (3) fully developed, not implemented, (4) partially developed, partially implemented, (5) partially developed, not implemented, a (6) not developed, not implemented.] For both subsamples, the means tend to indicate that on average, superintendent and technology specialists rated the characteristics fully developed, and at various stages of implementation, from not implemented to fully implemented. However, the indicated standard deviations causes the author to put little emphasis on this analysis, because of the possibility that in the standard deviation range, some of the variables may move out of the fully developed category and into the partially developed category.

**Variable Controls**

Precautions were taken to control irrelevant and/or contaminating variables. Precautions taken to maximize the systematic variance of the independent variables included internal validity of the research design. Regarding the ten potential threats to internal validity outlined by Cook, Campbell and Stanley, the researcher considered history as potentially impacting internal validity. The researcher dealt with this threat as follows.

The history threat was considered because of the E-Rate's influence on the ability of school districts to implement technology plans which use Internet
access. The E-Rate is a federal program subsidizing funding for certain types of wiring, connections and equipment used by schools to connect to the Internet. Receiving funding during the time in which superintendents or technology specialists were completing the Technology Questionnaire may have influenced the internal validity of the design. The history threat was minimized by administering the Technology Questionnaire during a time in which the U.S. Congress had already acted upon the E-Rate, but had not distributed the funding, so no school districts in the sample had received funding.

The questionnaire was distributed on December 14, 1998 with first follow-up postcard occurring one week later. E-Rate funding was allocated in waves during that time period. No schools in the sample had received funding from the E-Rate during the time span of the administration of the questionnaire, minimizing the history threat.

However, in addition to affecting the internal validity of the design, the time span between the administration of the Technology Questionnaire and the re-administration of the questionnaire to the random sample in the reliability group, may have influenced the reliability of the instrument. The followup questionnaire was distributed to the reliability group on January 21, 1999, approximately five weeks after the original administration of the questionnaire. Some schools in the sample may have received notice of funding by that time, potentially affecting their response to the followup questionnaire. Ultimately, this may help explain the previously cited concerns about reliability of some of the items.

The validity of the design was established using the following criteria: (a) research of literature to discover comparable tools that had questions similar to those required to be asked, for incorporation into the survey instrument; (b)
establishment of research based characteristics (variables) using the results of the preliminary survey of educational technology experts to determine the characteristics for the survey instrument; and (c) authoritative based validity was established by using the author's doctoral committee to review the design of the survey instrument. Authoritative based validity was established through the development of a researched based preliminary survey administered to a panel of five educational technology experts for their input. The results established by this panel of experts determined the characteristics (independent variables) that were used in the Technology Questionnaire instrument.

The researcher worked to control the history interaction over time threat to external validity. Technology changes so rapidly, it effects the generalizability of what is found today, to the future. The researcher has minimized this threat by testing a sample that measured school district progress in implementing a technology plan based upon the perception of the superintendent (or technology specialist) in meeting the objectives of the plan. The objectives outlined in the plan by the local district, allow generalizability of progress made today, to drive what is to happen in the future. The researcher worked to complete the results of this study in a time efficient manner, so the results were generalizable based upon the current state of technology.

**Analytical Techniques and Research Design**

This study determined the relationship between a school district's perceived progress in implementing a school technology plan which uses
Internet access and on-line educational resources, and a set of school district characteristics. The data was analyzed using four methods of statistical inference: (a) Multiple Linear Regression, (b) t Test of Significance, (c) Forward Selection Stepwise Multiple Regression, and (d) Paired Sample t Test.

According to Kerlinger (1992, p. 531), multiple linear regression is used to determine the collective and separate contribution of two or more independent variables to the variability of a dependent variable. This study sought to account for the variance in perception of progress a school district had in the implementation of a school technology plan by identifying to the what degree the eleven independent variables were perceived to be present in the district’s technology plan as indicated by the superintendent or technology specialist. The multiple correlation coefficient $R^2$ indicates the amount (percentage) of variability of the dependent variable that is accounted for by knowledge of the independent variables. While the focus of this study was perception of progress, the study attempted to discover the most efficient regression model by employing a stepwise regression analysis.

For each of the two subsamples, superintendents and technology specialists, a linear regression model, was constructed by the stepwise method as outlined in Appendix C.

The value of $R^2$ represented the proportion (percentage) of variability of the dependent variable that was accounted for by knowledge of the independent variables in the regression model. The adjusted $R^2$ value was the expected degree of fit of the regression model to the total population represented by the sample data. Stated differently, the adjusted $R^2$ reflects the expected percentage of variability of the dependent variable $Y$ explained by
knowledge of the independent variables when the model is applied to the full population. Shrinkage, is defined as the difference,

\[ \text{Shrinkage} = R^2 - \text{adjusted } R^2 \]

Shrinkage can be lessened by increasing the ratio of sample size to variables in the regression model (Ferguson, 1981). This is the reason an N of approximately 20 was chosen for each of the eleven independent variables in determining the sample size.

A t Test of Significance was used to test hypotheses’ 1 B and 2 B, where t was used to determine if the regression coefficients (b) differed significantly from zero. (Glass, 1996, p. 299). Since the eleven independent variables, \( X_i \), used a scale that included 6 measures to determine the degree to which the respondent believed the variables were part of the school district technology plan, or, part of the school district, it was difficult to determine the relative importance of each variable on the basis of raw-score (b value) coefficients alone. Since the relative contribution of each variable was of interest, standardized regression coefficients (beta weights, \( \beta_i \)) were calculated. Each beta weight value indicates the incremental contribution of the corresponding independent variable in the presence of the other included variables. That is, \( \beta_i \) indicates the unique contribution of \( X_i \) (or \( Z_i \)) to the variance of the dependent variable Y. Therefore, performing a t Test of Significance on \( \beta_i \) was a means of evaluating whether \( X_i \) (or \( Z_i \)) made a significant contribution with the influence of the other included independent variables controlled. At each step in the process, an F Test tested the significance of \( R^2 \), against the null hypothesis,
At each step in the process, a $t$ Test of Significance for each beta weight in the model tested the null hypothesis,

$$H_0 : \beta_i = 0.$$  

Rejection implied that $X_i$ provided a significant and unique contribution to the prediction of $Y$ after the other included variable(s) were taken into account.

The Technology Questionnaire required the respondent to measure the independent variables using a scale from 1 to 6 (with 1 indicating fully developed and fully implemented, and 6 indicating not developed and not implemented). Therefore, small number rankings indicated more progress than the larger number rankings. As a result of the scale used on the Technology Questionnaire, a negative (-) $\beta$ indicated the significant presence of the independent variable contributed a greater amount to the dependent variable. Vice-versa, a positive (+) $\beta$ indicated the significant presence of the independent variable contributed a lesser amount to the dependent variable.

Hypothesis 3 utilized a Paired Sample $t$ Test. Subsample 1 and subsample 2 were aligned by school district so that a comparison could be made between the superintendent perception and technology specialist perception from the same responding school district. A Paired Sample $t$ Test was utilized to determine if a significant difference existed between the superintendent mean perception of progress and technology specialist mean perception of progress as aligned by school district.
Analysis of Data

The hypotheses were tested using Multiple Linear Regression, t Test of Significance, Forward Selection Stepwise Multiple Linear Regression, and Paired Sample t Test. The analysis of data was completed in an identical manner for each subsample. The consequence of rejecting a true null (Type I error) was the possibility of concluding that there is a greater link between progress in implementing a technology plan and the district characteristics, than actually existed. The consequence of a Type II error (retaining a false null hypothesis) was the possibility of failing to recognize an important link between the district characteristics and progress in implementing the technology plan. A Type II error could cause a district to neglect looking at a district characteristic when the characteristic could benefit the implementation of the technology plan. Since the consequence of Type II error was of greater importance in this study, the level of significance was set to 0.05 rather than 0.01. This increased the likelihood of a Type I error, but reduced the chance of a Type II error. (Ferguson, 1981).

Limitations and Delimitations

Limitations of this study include:
(a) District characteristics were chosen through research of the current literature on technology, completion of a research based preliminary survey by a panel of experts, and discussions with authorities in the field; but the eleven identified characteristics may not be all inclusive
of elements that could have an effect on progress in implementing a
district technology plan.

(b) The number of school districts in the Northwest region of the United
States implementing technology plans which use Internet access and
on-line educational services.

Delimitations of this study include:

(a) Requirement that the superintendent and the technology specialist
were employed by the district during implementation of the
technology plan.

(b) Restricting the study by surveying a sample of only those
superintendents and technology specialists in the Northwest region.

Precautions Taken for Accuracy

All calculations relating to statistical inference were completed using
appropriate computer software (SPSS) to expedite the analysis and eliminate
mathematical errors.
CHAPTER 3

DATA ANALYSIS AND FINDINGS

Findings and Interpretations

The general area of concern of this study was to determine the relationship between a school district’s perceived progress in implementing a school technology plan which uses Internet access and on-line educational resources and a set of school district characteristics. This concern led to the formulation of five hypotheses (1 A, 1 B, 2 A, 2 B, and 3) to be tested by the investigation. These hypotheses were stated in chapter 2 in null hypothesis form. To test these hypotheses, four types of statistical analyses were performed: Multiple Linear Regression, t Test of Significance, Forward Selection Stepwise Multiple Linear Regression, and Paired Sample t Test of Significance.

Statistical analysis for Hypotheses 1 and 2 was performed on two subsamples. Subsample 1 included responding superintendents, subsample 2 included responding technology specialists.
Multiple Linear Regression

This statistical analysis relates to Hypotheses 1 and 2. Null hypotheses 1 A, 1 B, along with Tables 5 - 9, pertain to the Multiple Linear Regression Analysis for Subsample 1, Superintendents. Null hypotheses 2 A, 2 B, along with Tables 10 - 14, pertain to the Multiple Linear Regression Analysis for Subsample 2, Technology Specialists. In both cases, the full model Multiple Linear Regression is reported, followed by a Forward Selection Stepwise Multiple Linear Regression model. A t Test of Significance was utilized in each case to determine whether the raw score regression coefficients (b) differed significantly from zero indicating that a given independent variable provided a significant and unique contribution to the prediction of the dependent variable after other independent variables had been taken into account. Finally, the author concluded with a discussion comparing the full model regression to the forward selection regression model to determine similarities and differences.

Multiple Linear Regression for Subsample 1

Null Hypothesis 1 A: There is no significant $R^2$ between progress in implementing a technology plan (variable Y) as perceived by the district superintendent, and the set of independent identified characteristics (variables $X_1$ - $X_{11}$).

$H_{01}$: $R^2_{y,x_1...x_{11}}=0$.

Null Hypothesis 1 B: None of the identified characteristics (variables $X_1$ - $X_{11}$) provide a significant and unique contribution to the
prediction of the superintendent’s perceived progress in implementing a technology plan (variable Y) when all other independent variables have been taken into account.

The full model analysis, as shown in Table 5, was run to test $H_{01}$: $R^2_{y,x_1\ldots x_{11}}=0$, shows that $R^2 = 0.217$. This means that the eleven variables collectively account for 21.7% of the variability of Y. The F statistic value and its associated P values given in Table 1 indicates that $R^2$ is significant at an alpha of 0.05. The adjusted $R^2$ value given in Table 1, adjusted $R^2 =0.170$, is the expected degree of fit of the regression model to the total population represented by the sample data used. The shrinkage of $R^2$ in Subsample 1 is

$$\text{Shrinkage} = R^2 - \text{adjusted } R^2 = 0.047.$$

Table 5. Subsample 1 - Superintendents. Full Model Multiple Linear Regression. Hypothesis 1 A.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.466</td>
</tr>
<tr>
<td>R Square</td>
<td>0.217</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.170</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>0.047</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>11</td>
<td>2.083</td>
<td>0.189</td>
</tr>
<tr>
<td>Residual</td>
<td>181</td>
<td>7.505</td>
<td>0.04146</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
<td>9.588</td>
<td>0.000</td>
</tr>
<tr>
<td>$F = 4.567$</td>
<td></td>
<td>$P(F) = 0.000$</td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis 1 A is rejected at the 0.05 level of significance indicating that there is a relationship between the identified characteristics (variables $X_1$-$X_{11}$) and the perceived progress in implementing a technology plan (variable $Y$) as perceived by the district superintendent.

Further, a full model analysis was completed with each of the eleven independent variables. The results are shown in Table 6.

Table 6. Subsample 1 - Superintendents. Variables in the Full Model Multiple Linear Regression. Hypothesis 1 B.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>Beta</th>
<th>t</th>
<th>Sig t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1$</td>
<td>-0.01089</td>
<td>0.017</td>
<td>-0.059</td>
<td>-0.640</td>
<td>0.523</td>
</tr>
<tr>
<td>$X_2$</td>
<td>-0.02252</td>
<td>0.017</td>
<td>-0.122</td>
<td>-1.311</td>
<td>0.192</td>
</tr>
<tr>
<td>$X_3$</td>
<td>-0.03219</td>
<td>0.015</td>
<td>-0.183</td>
<td>-2.115</td>
<td>0.036*</td>
</tr>
<tr>
<td>$X_4$</td>
<td>-0.00942</td>
<td>0.015</td>
<td>-0.049</td>
<td>-0.597</td>
<td>0.551</td>
</tr>
<tr>
<td>$X_5$</td>
<td>-0.00005</td>
<td>0.016</td>
<td>0.000</td>
<td>-0.001</td>
<td>0.999</td>
</tr>
<tr>
<td>$X_6$</td>
<td>0.02441</td>
<td>0.015</td>
<td>0.145</td>
<td>1.669</td>
<td>0.097</td>
</tr>
<tr>
<td>$X_7$</td>
<td>-0.03962</td>
<td>0.027</td>
<td>-0.150</td>
<td>-1.447</td>
<td>0.150</td>
</tr>
<tr>
<td>$X_8$</td>
<td>0.00908</td>
<td>0.014</td>
<td>0.055</td>
<td>0.630</td>
<td>0.530</td>
</tr>
<tr>
<td>$X_9$</td>
<td>-0.00350</td>
<td>0.025</td>
<td>-0.015</td>
<td>-0.140</td>
<td>0.889</td>
</tr>
<tr>
<td>$X_{10}$</td>
<td>-0.03788</td>
<td>0.016</td>
<td>-0.194</td>
<td>-2.419</td>
<td>0.017*</td>
</tr>
<tr>
<td>$X_{11}$</td>
<td>0.00154</td>
<td>0.013</td>
<td>0.009</td>
<td>0.116</td>
<td>0.908</td>
</tr>
<tr>
<td>C</td>
<td>0.89600</td>
<td>0.048</td>
<td>18.641</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Variable $X_3$, the technology plan included a comprehensive professional development component, and variable $X_{10}$, the school district financial/budgetary matters related to technology were considered to be of high importance, contributed significantly to variability of the dependent variable $Y$. Therefore, variables $X_3$ and $X_{10}$ provided a significant and unique contribution
to the prediction of Y after other variables are taken into account. Null hypothesis 1 B is rejected at the 0.05 level of significance for variables $X_3$ and $X_{10}$.

For subsample 1 full model regression, both of the beta values for $X_3$ and $X_{10}$ are negative. Reminder that a negative (-) $\beta$ is to be interpreted as outlined in the Analytical Techniques and Research Design section of the study (page 50). This implies that the technology plan inclusion of a comprehensive professional development component, and school district financial/budgetary matters related to technology considered to be of high importance, correlate highly with the perception of progress in implementing the plan.

**Forward Selection Stepwise Multiple Linear Regression for Subsample 1**

The independent variables in subsample 1 were also subjected to a stepwise regression analysis to determine the order in which they were added, and, contribution of the independent variable to the model. The process of including in the model, one by one, the “most important” of the remaining unused variables continued until all the independent variables were part of the model, or until none of the remaining variables would significantly increase (at the .05 level of significance) the $R^2$ from the previous step. The results of the stepwise regression are shown in Table 7. The variables included in the model are $X_3$, technology plan includes a comprehensive development component; $X_{10}$, school district financial/budgetary matters related to technology are considered to be of high importance; and $X_2$, technology plan is part of a long-
range, comprehensive plan addressing the goals, missions, and visions of the
district through organizational activities. The inclusion of each of these
variables significantly increased (alpha = 0.05) the value of $R^2$ from the
previous step.

Table 7. Subsample 1 - Superintendents. Stepwise Construction of Linear
Regression Model. Hypotheses 1 A and 1 B.

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable Added</th>
<th>Model</th>
<th>$R^2$</th>
<th>Increase of $R^2$</th>
<th>$P$(Increase $R^2$) From Previous Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$X_3$</td>
<td>$X_3$</td>
<td>0.105</td>
<td>0.105</td>
<td>0.000</td>
</tr>
<tr>
<td>2.</td>
<td>$X_{10}$</td>
<td>$X_3, X_{10}$</td>
<td>0.169</td>
<td>0.064</td>
<td>0.000</td>
</tr>
<tr>
<td>3.</td>
<td>$X_2$</td>
<td>$X_3, X_{10}, X_2$</td>
<td>0.187</td>
<td>0.018</td>
<td>0.042</td>
</tr>
</tbody>
</table>

The variables not included in the regression model by virtue of not
significantly increasing $R^2$ were: $X_1$, technology plan is formalized and
integrated into the school district's operations (Examples: budget, curriculum,
job descriptions); $X_4$, technology plan stresses the integration of technology
applications to meet goals across the curriculum; $X_5$, technology plan includes
an assessment of present technology status and future needs; $X_6$, technology plan indicates the ongoing need for assessment and evaluation of the plan
implementation; $X_7$, technology plan is supported by key school staff
(Superintendent, building administrators, teachers); $X_8$, technology plan is
supported by key community members (students, parents, business
community); $X_9$, technology plan is supported by the School District Board of
Education (trustees); and $X_{11}$, school district has access to technical experts
who can fix machines when they are broken and also provide technical assistance to teaching staff. The addition of all these remaining variables would have increased $R^2$ from 0.187 to 0.217. Thus inclusion of these eight additional variables would have collectively accounted for only an additional 0.030 (3.0%) of the variability of $Y$. The three variables included in the model collectively account for 18.7% of the variability in $Y$, as indicated by the $R^2$ value in Table 8.

Table 8. Subsample 1 - Superintendents. Stepwise Linear Regression Model. Hypotheses 1A and 1B.

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>1.789</td>
<td>0.596</td>
</tr>
<tr>
<td>Residual</td>
<td>189</td>
<td>7.799</td>
<td>0.04126</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
<td>9.588</td>
<td></td>
</tr>
</tbody>
</table>

$F = 14.454$  
P(F) = 0.000

The $F$ statistic value given in Table 8 indicates the $R^2$ is significant at an alpha level of 0.05. The adjusted $R^2$ value given in Table 8, $adjusted\ R^2 = 0.174$, is the expected degree of fit of the regression model to the total population represented by the sample data used. The shrinkage of $R^2$ in subsample 1 is
shrinkage = R² - adjusted R² = 0.013.

The Multiple Linear Regression for Subsample 1 assumes either of two forms:

\[ Y = B_3 X_3 + B_{10} X_{10} + B_2 X_2 + \text{Constant} \]

or

\[ Z_y = \beta_3 Z_3 + \beta_{10} Z_{10} + \beta_2 Z_2 \]

The variables \( Z_y \) and \( Z_j \) (\( j = 3, 10, 2 \)) are the standard normal distribution equivalents of \( Y \) and \( X_j \) respectively. The raw-score coefficient values \( B_j \) and corresponding beta weights \( \beta_j \) are shown in Table 9.

Table 9. Subsample 1 - Superintendents. Variables in the Stepwise Linear Regression Model. Hypothesis 1 B

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>Beta</th>
<th>t</th>
<th>Sig t</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₃</td>
<td>-0.03470</td>
<td>0.013</td>
<td>-0.198</td>
<td>-2.590</td>
<td>0.010</td>
</tr>
<tr>
<td>X₁₀</td>
<td>-0.04746</td>
<td>0.013</td>
<td>-0.243</td>
<td>-3.609</td>
<td>0.000</td>
</tr>
<tr>
<td>X₂</td>
<td>-0.02877</td>
<td>0.014</td>
<td>-0.156</td>
<td>-2.049</td>
<td>0.042</td>
</tr>
<tr>
<td>C</td>
<td>0.901</td>
<td>0.041</td>
<td>21.758</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

This model accounts for 18.7% of the variability of \( Y \), since

\[ R^2 = 0.187. \]

Since \( R^2 \) differs significantly from zero (\( P(F) = 0.000 \), Null Hypothesis 1 A was
rejected for the variables included in the model, namely, $X_3$, $X_{10}$, and $X_2$. Presumably, since

$$\text{adjusted } R^2 = 0.174,$$

the model would account for 17.4% of the variability of $Y$ if applied to the total population of Superintendents in the Northwest region satisfying the criteria for membership in subsample 1.

$\beta_3$, $\beta_{10}$, and $\beta_2$ differ significantly from zero (alpha = 0.05), as indicated in by the t-statistic given for $\beta_3$, $\beta_{10}$, and $\beta_2$ in Table 9. Therefore, variables $X_3$, $X_{10}$, and $X_2$ provide a significant and unique contribution to the prediction of $Y$ after the other variables in the model have been taken into account. This implies that the technology plan inclusion of a comprehensive professional development component, the school district financial/budgetary matters related to technology considered to be of high importance, and the technology plan being a part of a long-range, comprehensive plan addressing the goals, missions, and visions of the district through organizational activities, correlate highly with the perception of progress in implementing the plan.

Finally, for Subsample 1, the full model Multiple Linear Regression Analysis and the Stepwise Linear Regression model have concurred in two areas. Namely, the significance of variables $X_3$ and $X_{10}$ to the variability of $Y$ are found to be important in both the full model and the stepwise model. Variable $X_2$ was the third (and last) variable added to the stepwise regression model but was not found to be significant in the full model regression. These similarities and differences help explain variability for Subsample 1.
**Multiple Linear Regression for Subsample 2**

**Null Hypothesis 2 A:** There is no significant $R^2$ between progress in implementing a technology plan (variable $Y$) as perceived by the district technology specialist, and the set of independent identified characteristics (variables $X_1$-$X_{11}$).

$H_{02}: R^2_{y,x_1...x_{11}}=0$.

**Null Hypothesis 2 B:** None of the identified characteristics (variables $X_1$-$X_{11}$) provide a significant and unique contribution to the prediction of the technology specialist's perceived progress in implementing a technology plan (variable $Y$) when all other independent variables have been taken into account.

The full model analysis, as shown in Table 10, was run to test $H_{02}: R^2_{y,x_1...x_{11}}=0$, shows that $R^2 = 0.370$. This means that the eleven variables collectively account for 37.0% of the variability of $Y$. The F statistic value and its associated P value given in Table 6 indicates that $R^2$ is significant at an alpha of 0.05. The adjusted $R^2$ value given in Table 6, adjusted $R^2 = 0.312$, is the expected degree of fit of the regression model to the total population represented by the sample data used. The shrinkage of $R^2$ in Subsample 2 is

$$\text{Shrinkage} = R^2 - \text{adjusted } R^2 = 0.058.$$
Table 10. Subsample 2 - Technology Specialists. Full Model Multiple Linear Regression. Hypothesis 2 A.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.608</td>
</tr>
<tr>
<td>R Square</td>
<td>0.370</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.312</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>0.058</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>11</td>
<td>2.914</td>
<td>0.265</td>
</tr>
<tr>
<td>Residual</td>
<td>120</td>
<td>4.970</td>
<td>0.04142</td>
</tr>
<tr>
<td>Total</td>
<td>131</td>
<td>7.884</td>
<td></td>
</tr>
</tbody>
</table>

F = 6.395 P(F) = 0.000

Hypothesis 2 A is rejected at the 0.05 level of significance indicating that there is a relationship between the identified characteristics (variables $X_1$-$X_{11}$) and the perceived progress in implementing a technology plan (variable $Y$) as perceived by the district technology specialist.

Further, a full model analysis was completed with each of the eleven independent variables. The results are shown in Table 11.
Table 11. Subsample 2 - Technology Specialists. Variables in the Full Model Multiple Linear Regression. Hypothesis 2 B.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>Beta</th>
<th>t</th>
<th>Sig t</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>-0.04624</td>
<td>0.022</td>
<td>-0.219</td>
<td>-2.069</td>
<td>0.041*</td>
</tr>
<tr>
<td>X2</td>
<td>-0.00020</td>
<td>0.018</td>
<td>-0.001</td>
<td>-0.011</td>
<td>0.991</td>
</tr>
<tr>
<td>X3</td>
<td>-0.05955</td>
<td>0.019</td>
<td>-0.337</td>
<td>-3.191</td>
<td>0.002*</td>
</tr>
<tr>
<td>X4</td>
<td>-0.02918</td>
<td>0.018</td>
<td>-0.156</td>
<td>-1.605</td>
<td>0.111</td>
</tr>
<tr>
<td>X5</td>
<td>-0.00067</td>
<td>0.019</td>
<td>-0.004</td>
<td>-0.035</td>
<td>0.972</td>
</tr>
<tr>
<td>X6</td>
<td>0.02910</td>
<td>0.020</td>
<td>0.171</td>
<td>1.425</td>
<td>0.157</td>
</tr>
<tr>
<td>X7</td>
<td>-0.00492</td>
<td>0.027</td>
<td>-0.025</td>
<td>-0.185</td>
<td>0.854</td>
</tr>
<tr>
<td>X8</td>
<td>0.02934</td>
<td>0.017</td>
<td>0.187</td>
<td>1.769</td>
<td>0.079</td>
</tr>
<tr>
<td>X9</td>
<td>-0.02713</td>
<td>0.025</td>
<td>-0.133</td>
<td>-1.078</td>
<td>0.283</td>
</tr>
<tr>
<td>X10</td>
<td>-0.02103</td>
<td>0.019</td>
<td>-0.114</td>
<td>-1.119</td>
<td>0.265</td>
</tr>
<tr>
<td>X11</td>
<td>-0.01291</td>
<td>0.019</td>
<td>-0.060</td>
<td>-0.667</td>
<td>0.506</td>
</tr>
<tr>
<td>C</td>
<td>0.98200</td>
<td>0.055</td>
<td></td>
<td>17.908</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Variable \(X_1\), the technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, job descriptions), and variable \(X_3\), the technology plan includes a comprehensive professional development component, contributed significantly to variability of the dependent variable \(Y\). Therefore, variables \(X_1\) and \(X_3\) provide a significant and unique contribution to the prediction of \(Y\) after other variables are taken into account. Null hypothesis 2 B was rejected at the 0.05 level of significance for variables \(X_1\) and \(X_3\). As previously stated, a negative \((-\) \(\beta\) is to be interpreted as outlined in the Analytical Techniques and Research Design section of the study (page 50). This implies that the technology plan formalization and integration into the school district's operations (Examples: budget, curriculum, job descriptions), and the technology plan inclusion of a comprehensive professional development component, contributed significantly to variability of the dependent variable \(Y\). Therefore, variables \(X_1\) and \(X_3\) provide a significant and unique contribution to the prediction of \(Y\) after other variables are taken into account.
development component, correlate highly with the perception of progress in implementing the plan.

Forward Selection Stepwise Multiple Linear Regression for Subsample 2

The independent variables in subsample 2 were also subjected to a stepwise regression analysis to determine the order in which they were added, and, contribution of the independent variable to the model. The process of including in the model, one by one, the "most important" of the remaining unused variables continued until all the independent variables were part of the model, or until none of the remaining variables would significantly increase (at the .05 level of significance) the $R^2$ from the previous step. The results of the stepwise regression are shown in Table 12. The variables included in the model are $X_3$, technology plan includes a comprehensive development component; $X_1$, technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, job descriptions); and $X_{10}$, school district financial/budgetary matters related to technology are considered to be of high importance. The inclusion of each of these variables significantly increased (alpha = 0.05) the value of $R^2$ from the previous step.
Table 12. Subsample 2 - Technology Specialists. Stepwise Construction of Linear Regression Model. Hypotheses 2 A and 2 B.

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable Added</th>
<th>Model</th>
<th>( R^2 )</th>
<th>Increase of ( R^2 )</th>
<th>( P(\text{Increase } R^2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>( X_3 )</td>
<td>( X_3 )</td>
<td>0.231</td>
<td>0.231</td>
<td>0.000</td>
</tr>
<tr>
<td>2.</td>
<td>( X_1 )</td>
<td>( X_3, X_1 )</td>
<td>0.299</td>
<td>0.068</td>
<td>0.001</td>
</tr>
<tr>
<td>3.</td>
<td>( X_{10} )</td>
<td>( X_3, X_1, X_{10} )</td>
<td>0.320</td>
<td>0.021</td>
<td>0.048</td>
</tr>
</tbody>
</table>

The variables not included in the regression model by virtue of not significantly increasing \( R^2 \) were: \( X_2 \), technology plan is part of a long-range, comprehensive plan addressing the goals, missions, and visions of the district through organizational activities; \( X_4 \), technology plan stresses the integration of technology applications to meet goals across the curriculum; \( X_5 \), technology plan includes an assessment of present technology status and future needs; \( X_6 \), technology plan indicates the ongoing need for assessment and evaluation of the plan implementation; \( X_7 \), technology plan is supported by key school staff (Superintendent, building administrators, teachers); \( X_8 \), technology plan is supported by key community members (students, parents, business community); \( X_9 \), technology plan is supported by the School District Board of Education (trustees); and \( X_{11} \), school district has access to technical experts who can fix machines when they are broken and also provide technical assistance to teaching staff. The addition of all these remaining variables would have increased \( R^2 \) from 0.320 to 0.370. Thus inclusion of these eight additional variables would have collectively accounted for only an additional 0.050 (5.0%) of the variability of \( Y \). The three variables included in the model collectively
account for 32.0% of the variability in Y, as indicated by the $R^2$ value in Table 13.

Table 13. Subsample 2 - Technology Specialists. Stepwise Linear Regression Model. Hypotheses 2 A and 2 B.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.566</td>
</tr>
<tr>
<td>R Square</td>
<td>0.320</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.304</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>0.016</td>
</tr>
</tbody>
</table>

**ANALYSIS OF VARIANCE**

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>2.524</td>
<td>0.841</td>
</tr>
<tr>
<td>Residual</td>
<td>128</td>
<td>5.360</td>
<td>0.04188</td>
</tr>
<tr>
<td>Total</td>
<td>131</td>
<td>7.884</td>
<td></td>
</tr>
<tr>
<td>$F = 20.088$</td>
<td></td>
<td>$P(F) = 0.000$</td>
<td></td>
</tr>
</tbody>
</table>

The $F$ statistic value given in Table 9 indicates the $R^2$ is significant at an alpha of 0.05. The adjusted $R^2$ value given in Table 13,

$$\text{adjusted } R^2 = 0.304,$$

is the expected degree of fit of the regression model to the total population represented by the sample data used. The shrinkage of $R^2$ in subsample 2 is

$$\text{shrinkage} = R^2 - \text{adjusted } R^2 = 0.016.$$
forms:

\[ Y = B_3 X_3 + B_1 X_1 + B_{10} X_{10} + \text{Constant} \]

or

\[ Z_y = \beta_3 Z_3 + \beta_1 Z_1 + \beta_{10} Z_{10} \]

The variables \( Z_y \) and \( Z_j (j = 3, 1, 10) \) are the standard normal distribution equivalents of \( Y \) and \( X_j \) respectively. The raw-score coefficient values \( B_j \) and corresponding beta weights \( \beta_j \) are shown in Table 114.

Table 14. Subsample 2 - Technology Specialists. Variables in the Stepwise Linear Regression Model. Hypothesis 2 B.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>Beta</th>
<th>t</th>
<th>Sig t</th>
</tr>
</thead>
<tbody>
<tr>
<td>( X_3 )</td>
<td>-0.05569</td>
<td>0.015</td>
<td>-0.315</td>
<td>-3.747</td>
<td>0.000</td>
</tr>
<tr>
<td>( X_1 )</td>
<td>-0.04698</td>
<td>0.019</td>
<td>-0.222</td>
<td>-2.417</td>
<td>0.017</td>
</tr>
<tr>
<td>( X_{10} )</td>
<td>-0.03138</td>
<td>0.016</td>
<td>-0.170</td>
<td>-1.998</td>
<td>0.048</td>
</tr>
<tr>
<td>C</td>
<td>0.980</td>
<td>0.049</td>
<td></td>
<td>20.065</td>
<td>0.000</td>
</tr>
</tbody>
</table>

This model accounts for 32.0% of the variability of \( Y \), since

\[ R^2 = 0.320. \]

Since \( R^2 \) differs significantly from zero (\( P(F) = 0.000 \), Null Hypothesis 2 A is rejected for the variables included in the model, namely, \( X_3, X_1, \) and \( X_{10} \).

Presumably, since
adjusted $R^2 = 0.304$,

the model would account for 30.4% of the variability of $Y$ if applied to the total population of technology specialists in the Northwest region satisfying the criteria for membership in subsample 2.

$\beta_3$, $\beta_1$, and $\beta_{10}$ differ significantly from zero (alpha = 0.05), as indicated in by the t-statistic given for $\beta_3$, $\beta_1$, and $\beta_{10}$ in Table 10. Therefore, variables $X_3$, $X_1$, and $X_{10}$ provide a significant and unique contribution to the prediction of $Y$ after the other variables in the model have been taken into account. This implies that the technology plan inclusion of a comprehensive professional development component, the technology plan formalization and integration into the school district’s operations (Examples: budget, curriculum, job descriptions), and the school district financial/budgetary matters related to technology considered to be of high importance, correlate highly with the perception of progress in implementing the plan.

Finally, for subsample 2, the full model Multiple Linear Regression Analysis and the Stepwise Linear Regression model have concurred in two areas. Namely, the significance of variables $X_3$ and $X_1$ to the variability of $Y$ are found to be important in both the full model and the stepwise model. Variable $X_{10}$ was the third (and last) variable added to the stepwise regression model but was not found to be significant in the full model regression. These similarities and differences help explain variability for Subsample 2.
Paired Sample t Test

Hypothesis 3 was tested using a Paired Sample t Test. For purposes of Hypothesis 3, progress in implementing the technology plan was measured by the response of the superintendent or technology specialist when questioned about their perception of progress defined as the degree to which they believed the district was meeting the objectives outlined in their plan.

**Null Hypothesis 3:** There is no significant difference between superintendent mean perception of progress and technology specialist mean perception of progress in a given school district.

Hypothesis 3 sought to answer whether there was a difference between the perceived progress in implementing the technology plan (variable $Y$) of district superintendents and technology specialists. The superintendent and technology specialist responses were paired by district.

Respondents included 119 school districts where both the superintendent and technology specialist returned the questionnaire. In 104 school districts, both the superintendent and technology specialist completed Section II of the questionnaire indicating their perception of progress as defined.

Table 15 shows the paired sample statistics indicating the mean perception of progress, $N$, and standard deviation of superintendents and technology specialists.
Table 15. Paired Sample Statistics. District Superintendents and Technology Specialists

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superintendents</td>
<td>0.6575</td>
<td>104</td>
<td>0.2215</td>
</tr>
<tr>
<td>Technology Specialists</td>
<td>0.6160</td>
<td>104</td>
<td>0.2403</td>
</tr>
</tbody>
</table>

Superintendents & Tech Specialists paired correlation = 0.573
Superintendents & Tech Specialists paired correlation significance = 0.000

The mean perception of progress in the 104 paired districts indicated Superintendents believed the districts, on average, were meeting 65.75% of the objectives outlined in the district technology plan. Technology specialists believed the districts, on average, were meeting 61.60% of the objectives outlined in the district technology plan. The difference between paired mean perception of superintendents and technology specialists was,

\[
\text{Difference} = 65.75\% - 61.60\% = 4.15\%,
\]

using a 0 to 100% scale.

The paired sample indicated a 0.573 correlation between mean superintendent perception and mean technology specialist perception, significant at alpha = .05. Further, Table 16 shows the paired sample tests.

<table>
<thead>
<tr>
<th>Paired Sample</th>
<th>Mean</th>
<th>Std. Error</th>
<th>df</th>
<th>t</th>
<th>Sig t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supt. &amp; Tech Spec.</td>
<td>0.04154</td>
<td>0.02098</td>
<td>103</td>
<td>1.979</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Null Hypothesis 3 was rejected at the 0.05 level of significance. This means that there was a statistically significant difference between superintendent mean perception of progress and technology specialist mean perception of progress in a given school district. However, the magnitude of the difference of mean perception was 4.15% (relatively small on a 100% scale), leading the author to emphasize that the practical significance shows little difference in mean perception of progress between superintendents and technology specialists in a given school district.

Discussion of Findings

Chapter 3 contains the tests of hypotheses for the study. This discussion begins with Null Hypotheses 1 A and 1 B, which were tested for subsample 1, superintendents. A full model multiple linear regression and stepwise forward selection multiple linear regression was used for both hypotheses. Null Hypotheses 1 A and 1 B are the following:

**Null Hypothesis 1 A**: There is no significant $R^2$ between progress in implementing a technology plan (variable Y) as perceived by
the district superintendent, and the set of independent identified characteristics (variables $X_1 - X_{11}$).

$H_{01}: R^2_{y,x_1...x_{11}}=0.$

**Null Hypothesis 1 B:** None of the identified characteristics (variables $X_1 - X_{11}$) provide a significant and unique contribution to the prediction of the superintendent's perceived progress in implementing a technology plan (variable $Y$) when all other independent variables have been taken into account.

In the full model analysis, Null Hypothesis 1 A was rejected at the 0.05 level of significance indicating a relationship between the identified characteristics (variables $X_1 - X_{11}$) and the perceived progress in implementing a technology plan (variable $Y$) as perceived by the district superintendent.

Further, in the full model analysis, Null Hypothesis 1 B was rejected at the 0.05 level of significance for variables $X_3$ and $X_{10}$. Variable $X_3$, the technology plan includes a comprehensive professional development component, and variable $X_{10}$, the school district financial/budgetary matters related to technology are considered to be of high importance, contributed significantly to variability of the dependent variable $Y$. Therefore, variables $X_3$ and $X_{10}$ provided a significant and unique contribution to the prediction of $Y$ after other variables are taken into account. Null Hypotheses 1 A and 1 B were retained for all other variables in the full model analysis.

In the stepwise model analysis, Hypothesis 1 A included variables $X_3$, $X_10$, and $X_2$ in the model. In Hypothesis 1 B, $\beta_3$, $\beta_{10}$, and $\beta_2$ differed significantly from zero (alpha = 0.05), as indicated by the t-statistic given for $\beta_3$,
\( \beta_{10} \) and \( \beta_{2} \). Therefore, variables \( X_{3}, X_{10}, \) and \( X_{2} \) provided a significant and unique contribution to the prediction of \( Y \) after the other variables in the model have been taken into account.

This implies that (\( X_{3} \)) the technology plan inclusion of a comprehensive professional development component, \( (X_{10}) \) the school district financial/budgetary matters related to technology considered to be of high importance, and \( (X_{2}) \) the technology plan as part of a long-range, comprehensive plan addressing the goals, missions, and visions of the district through organizational activities, correlate highly with the perception of progress in implementing the plan.

Null Hypotheses 2 A and 2 B, were tested for subsample 2, technology specialists. A full model multiple linear regression and stepwise forward selection multiple linear regression was used for both hypotheses. Null Hypotheses 2 A and 2 B are the following:

**Null Hypothesis 2 A:** There is no significant \( R^2 \) between progress in implementing a technology plan (variable \( Y \)) as perceived by the district technology specialist, and the set of independent identified characteristics (variables \( X_{1} - X_{11} \)).

\[ H_{02}: R^2_{y,x_{1},...,x_{11}} = 0. \]

**Null Hypothesis 2 B:** None of the identified characteristics (variables \( X_{1} - X_{11} \)) provide a significant and unique contribution to the prediction of the technology specialist's perceived progress in implementing a technology plan (variable \( Y \)) when all other independent variables have been taken into account.
In the full model analysis, Null Hypothesis 2 A was rejected at the 0.05 level of significance indicating that a relationship between the identified characteristics (variables $X_1$-$X_{11}$) and the perceived progress in implementing a technology plan (variable $Y$), as perceived by the district technology specialist.

Further, in the full model analysis, Null Hypothesis 2 B was rejected at the 0.05 level of significance for variables $X_3$ and $X_1$. Variable $X_3$, the technology plan includes a comprehensive professional development component, and variable $X_1$, the technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, job descriptions), contributed significantly to variability of the dependent variable $Y$. Therefore, variables $X_3$ and $X_{10}$ provided a significant and unique contribution to the prediction of $Y$ after other variables are taken into account. Null Hypotheses 2 A and 2 B were retained for all other variables in the full model analysis.

In the stepwise model analysis, Hypothesis 2 A included variables $X_3$, $X_1$, and $X_{10}$ in the model. In Hypothesis 2 B, $\beta_3$, $\beta_1$, and $\beta_{10}$ differed significantly from zero (alpha = 0.05), as indicated in by the t-statistic given for $\beta_3$, $\beta_1$, and $\beta_{10}$. Therefore, variables $X_3$, $X_1$, and $X_{10}$ provided a significant and unique contribution to the prediction of $Y$ after the other variables in the model have been taken into account.

This implies that (X_3) the technology plan inclusion of a comprehensive professional development component, (X_1) the technology plan formalization and integration into the school district's operations (Examples: budget, curriculum, job descriptions), and (X_{10}) the school district financial/budgetary
matters related to technology considered to be of high importance, correlate highly with the perception of progress in implementing the plan.

The results of testing Null Hypotheses 1 A, 1 B, 2 A, 2 B for the independent variables are summarized in Table 17.

**Table 17. Results of Testing Null Hypotheses 1 A, 1 B, 2 A, 2 B for the Independent Variables.**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Full Model</th>
<th>Stepwise</th>
<th>Full Model</th>
<th>Stepwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X10</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>X11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Denotes rejected null hypothesis (P = 0.05).

Table 18 shows the independent variables included in the full model multiple linear regression for subsample 1 and 2.
Table 18. Independent Variables Included in the Full Model Multiple Linear Regression for Subsample 1 and 2. Hypothesis 1 B and 2 B.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Independent Variables Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Superintendents</td>
<td>$X_3$ $X_{10}$</td>
</tr>
<tr>
<td>2 - Tech Specialists</td>
<td>$X_1$ $X_3$</td>
</tr>
</tbody>
</table>

Table 19 shows the independent variables included in the stepwise model multiple linear regression for subsample 1 and 2.

Table 19. Independent Variables Included in the Stepwise Model Multiple Linear Regression for Subsample 1 and 2. Hypothesis 1 B and 2 B.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Independent Variables Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Superintendents</td>
<td>$X_2$ $X_3$ $X_{10}$</td>
</tr>
<tr>
<td>2 - Tech Specialists</td>
<td>$X_1$ $X_3$ $X_{10}$</td>
</tr>
</tbody>
</table>

Both subsample 1 and subsample 2 identified variable $X_3$ as significant in the full model regression. No other variables were significant in both subsample 1 and subsample 2 considering the full model regression. Both subsample 1 and subsample 2 identified variables $X_3$ and $X_{10}$ as significant in the stepwise regression model. Variable $X_2$ was identified as significant in the stepwise regression model for subsample 1, and variable $X_1$ was identified as significant in the stepwise regression model for subsample 2. Caution was
used in interpreting variable $X_1$ because, as previously outlined, this variable was suspect in meeting the criteria for reliability in the item by item test - retest stability over time. No other variables were identified as significant in either subsample in the stepwise regression model.

Variable $X_3$, the technology plan includes a comprehensive professional development component, appears to have met the demands for significance in both the full model regression and the stepwise regression in both subsamples. Variable $X_{10}$, the school district financial/budgetary matter related to technology are considered to be of high importance, has met the demands for significance in the stepwise regression model for both subsamples. Both variable $X_3$ and $X_{10}$ met all of the reliability criteria in the survey instrument (Technology Questionnaire).

Null Hypothesis 3 was tested using a Paired Sample $t$ Test of Significance.

**Null Hypothesis 3:** There is no significant difference between superintendent mean perception of progress and technology specialist mean perception of progress in a given school district.

Null Hypothesis 3 was rejected at an alpha of 0.05 indicating a statistically significant difference between superintendent mean perception and technology specialist mean perception of progress. However, the magnitude of the difference of mean perception was 4.15% (relatively small on a 100% scale), leading the author to emphasize that the practical significance shows
little difference in mean perception of progress between superintendents and technology specialists in a given school district.
CHAPTER 4

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The problem of this study was to determine the relationship between a school district's perceived progress in implementing a school technology plan which uses Internet access and on-line educational resources, and a set of school district characteristics. The dependent variable in the study was the perceived progress a district had in the implementation of a school technology plan. The independent variables in the study were:

Identified Characteristics (Independent Variables $X_1$-$X_{11}$):

$X_1$ The technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, and job descriptions).

$X_2$ The technology plan is part of a long-range, comprehensive plan addressing the goals, missions, and visions of the district.

$X_3$ The technology plan includes a comprehensive professional development component.

$X_4$ The technology plan stresses the integration of technology applications to meet goals across the curriculum.

$X_5$ The technology plan includes an assessment of present
technology status and future needs.

X₆ The technology plan indicates the ongoing need for assessment and evaluation of the plan implementation.

X₇ The technology plan is supported by key school staff (Superintendent, building administrators, teachers).

X₈ The technology plan is supported by key community members (students, parents, business community).

X₉ The technology plan is supported by the School District Board of Education (trustees).

X₁₀ The school district financial/budgetary matters related to technology are considered to be of high importance.

X₁₁ The school district has access to technical experts who can fix machines when they are broken and also provide technical assistance to teaching staff.

The general questions underlying the purpose of the study were: (a) To what degree do the characteristics identified contribute to the perceived progress in implementing a technology plan? (b) Is the variance in perception of progress a school district had in the implementation of a technology plan attributable to the degree to which the eleven independent variables are perceived to be present in the district's technology plan? (c) What are the collective and separate contribution of each characteristic to the perception of progress in implementing the technology plan? (d) Is there a difference between the perceived progress in implementing the technology plan of district superintendents and technology specialists in a given district.
Subjects

The sample consisted of 300 randomly drawn superintendents and technology specialists (in those districts that had them), employed in school districts of the Northwest region (Montana, Alaska, Oregon, Washington, and Idaho) of the United States. These individuals were surveyed, using a Technology Questionnaire, to obtain their perception of progress on implementing their school technology plan and the degree to which eleven independent variables were present in the plan.

Instrumentation and Duration

An attitudinal survey, called a Technology Questionnaire, was the instrument of data collection in this study. The researcher developed the survey instrument. Characteristics (independent variables) used on the Technology Questionnaire were developed through the use of a preliminary survey instrument. The preliminary survey instrument had 80 items that were derived from a review of the literature. It was administered to a panel of educational technology experts. The results of the preliminary survey established the eleven characteristics used in the Technology Questionnaire.

The Technology Questionnaire was sent through the U. S. mail in December of 1998. Followup procedures were implemented using the Total Design Method (Dillman, 1978) to attain an adequate response rate assuring validity of the instrument. Another questionnaire was re-administered to 75
respondents in January of 1999 to develop reliability for the instrument. A five week elapse of time between the administration of the questionnaire and re-administration was determined in advance to protect potential threats to validity.

Research Design

Five null hypotheses (1 A, 1 B, 2 A, 2 B, and 3) were formulated to answer the questions in the study. The data was analyzed using four methods of statistical inference: (a) Multiple Linear Regression, (b) t Test of Significance, (c) Forward Selection Stepwise Multiple Linear Regression, and (d) Paired Sample t Test.

All statistical analyses for Hypotheses 1 and 2 were performed on two subsamples. Subsample 1 was the responding superintendents, subsample 2 was the responding technology specialists.

All hypotheses were tested at the 0.05 level of significance. All statistical analyses were executed on a personal computer using SPSS software.

Findings

The following are findings obtained from the analyses of the data collected for this study.

1. In the full model analysis, Null Hypothesis 1 A was rejected at the 0.05 level of significance indicating a significant relationship between the identified characteristics (variables $X_1$-$X_{11}$) and the perceived progress in implementing
a technology plan (variable Y) as perceived by the district superintendent.

2. In the full model analysis, Null Hypothesis 1 B was rejected at the 0.05 level of significance for variables X_3 and X_{10}. Variable X_3, the technology plan includes a comprehensive professional development component, and variable X_{10}, the school district financial/budgetary matters related to technology are considered to be of high importance, contributed significantly to variability of the dependent variable Y. Therefore, variables X_3 and X_{10} provided a significant and unique contribution to the prediction of Y after other variables were taken into account.

3. In the stepwise model analysis of Hypothesis 1 A, variables X_3, X_{10}, and X_2 were included in the model.

4. In the stepwise model analysis of Hypothesis 1 B, \( \beta_3, \beta_{10}, \text{ and } \beta_2 \) differed significantly from zero (\( \alpha = 0.05 \)), as indicated by the t-statistic given for \( \beta_3, \beta_{10}, \text{ and } \beta_2 \). Therefore, variables X_3, X_{10}, and X_2 provided a significant and unique contribution to the prediction of Y after the other variables in the model had been taken into account.

5. In the full model analysis, Null Hypothesis 2 A was rejected at the 0.05 level of significance indicating a significant relationship between the identified characteristics (variables X_{1}, X_{11}) and the perceived progress in implementing a technology plan (variable Y) as perceived by the district technology specialist.

6. In the full model analysis, Null Hypothesis 2 B was rejected at the 0.05 level of significance for variables X_3 and X_{1}. Variable X_3, the technology plan includes a comprehensive professional development component, and variable X_{1}, the technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, job descriptions), contributed
significantly to variability of the dependent variable $Y$. Therefore, variables $X_3$ and $X_{10}$ provided a significant and unique contribution to the prediction of $Y$ after other variables were taken into account.

7. In the stepwise model analysis of Hypothesis 2 A, variables $X_3$, $X_1$, and $X_{10}$ were included in the model.

8. In the stepwise model analysis of Hypothesis 2 B, $X_3$, $X_1$, and $X_{10}$ differed significantly from zero (alpha = 0.05), as indicated by the t-statistic given for $X_3$, $X_1$, and $X_{10}$. Therefore, variables $X_3$, $X_1$, and $X_{10}$ provided a significant and unique contribution to the prediction of $Y$ after the other variables in the model had been taken into account.

9. Null Hypothesis 3 was rejected (alpha = 0.05), indicating that no statistically significant difference exists between superintendents mean perception of progress in implementing a technology plan, and technology specialists mean perception of progress in implementing a technology plan in a given school district. However, the magnitude of the difference of mean perception was 4.15% (relatively small on a 100% scale), leading the author to emphasize that the practical significance shows little difference in mean perception of progress between superintendents and technology specialists in a given school district.

Conclusions and Discussion

Several conclusions are offered from the analyses of the data collected in this study.
1. Both superintendents and technology specialists identified that the presence of a comprehensive professional development component in the school technology plan increased the perceived progress in implementing the plan.

   This result confirms the research of Austin, et al. (1993), Luginbill (1994), Glickman (1995), Belin (1996), Zehr (1998), and Black (1999). All of whom found that comprehensive staff development was important to the success of an organization. This result also confirms a major focus of the Network Montana Project which emphasized that designing and assisting in training students, teachers, administrators, and community members in the uses of educational networks as critical to the success of the project. (Thomas, 1995).

2. Both superintendents and technology specialists identified that placing high importance on school district financial/budgetary matters related to technology increased the perceived progress in implementing the plan.

   This result confirms the 1996 Presidential State of the Union address statements made by President William Clinton (Cuban, 1996), and later confirmed in a satellite town meeting by Education Secretary Richard R. Riley (Belin, 1996). Further, Montana Governor, Marc Racicot stated, "We've got to invest in technology," at a meeting of the Montana joint State Board of Education in October of 1996. These political leaders have demonstrated their commitment to the message in these statements by providing funding to help school districts develop and implement technology. President Clinton and Secretary Riley have implemented the Federal E-Rate program, dedicating $2.25 billion to assist schools and libraries in the purchase of telecommunication services, internal connections, and Internet access. Governor Racicot signed Senate Bill 100 on March 30, 1999, confirming his
commitment to supply adequate funding to schools for to meet the demands of a technological society. The established commitment of high priority of the current political leadership in the United States, implies that budgeting for technology must be considered of high importance.

3. No other characteristics were identified as being significant to both superintendents and technology specialists.

4. Superintendents, but not technology specialists, identified that the presence of a long range, comprehensive plan addressing the goals, missions, and visions of the district through organizational activities in the school technology plan, increased the perceived progress in implementing the plan.

This result confirms the work of Peterson (1989), Fullan (1991), Cuban (1986 and 1996), and Trotter (1998). Fullan's work suggesting that success is determined by connecting change innovation to the wider environment is supported by this result emphasizing that technology planning must be a part of the larger, overall goals, visions and mission of the school district. This result also supports the extensive work Cuban has done in understanding change as technology impacts schools. (Cuban, 1986). Trotter states, "The obligation is for educators, practitioners, educational policy makers to think clear about what they're after. Only with clear goals can educators be intelligent about how much they want to spend for what purpose, and under what conditions." (Trotter quoting Cuban, 1998, p.8). This statement combines result 2 (placing high importance on school district financial/budgetary matters related to technology increased the perceived progress in implementing the plan) with the result outlined in 4.

5. Technology specialists, but not superintendents, identified that the presence of the technology plan being formalized and integrated into the school
district's operations (Examples: budget, curriculum, job descriptions), increased
the perceived progress in implementing the plan.

This result confirms the research of Peterson (1989), Cuban (1986 and
1996), and the Network Montana Project (Thomas, 1995). Another major focus
of the NMP emphasized that defining a curriculum that can meet the needs of
our evolving, highly technology-based society will require the integration of
telecommunications into the classroom in an effective and efficient manner as
critical to the success of the project. (Thomas, 1995). This result confirms this
major focus of NMP.

6. Analyses showed negative (-) β values between the inclusion of a
comprehensive professional development component in the school technology
plan, placing high importance on school district financial/budgetary matters
related to technology, the technology plan as part of a long range,
comprehensive plan addressing the goals, missions, and visions of the district
through organizational activities in the school technology plan, and the
technology plan formalization and integration into the school district's
operations (Examples: budget, curriculum, job descriptions); and the
perception of progress in implementing the plan. As stated throughout this
study, a negative (-) β is to be interpreted as outlined in the Analytical
Techniques and Research Design section of the study (page 50). This implies
that, (X₃) the technology plan inclusion of a comprehensive professional
development component, (X₁₀) the school district financial/budgetary matters
related to technology considered to be of high importance, (X₂) the technology
plan as part of a long-range, comprehensive plan addressing the goals,
missions, and visions of the district through organizational activities, and (X₁)
the technology plan formalization and integration into the school district's operations (Examples: budget, curriculum, job descriptions); correlate highly with the perception of progress in implementing the plan.

7. A statistically significant difference existed between the superintendent perception of progress in implementing the technology plan, and the technology specialist perception of progress in implementing the technology plan in a given district. However, the magnitude of the difference of mean perception was 4.15% (relatively small on a 100% scale), leading the author to emphasize that practical significance shows little difference in mean perception of progress between superintendents and technology specialists in a given school district.

Recommendations

Recommendations for Education

The following recommendations for education are offered based on the analyses of the data collected and conclusions drawn from this study.

1. It is recommended that implementing a school technology plan which uses Internet access and on-line educational resources include, as a minimum, a comprehensive professional development component. The results of this study indicate that a technology plan that includes a comprehensive staff development component is necessary (but not necessarily sufficient) to make progress in implementing the plan. This conclusion significantly impacts supervision theory related to technology.

As outlined in the review of literature, supervision is focused at improving
instruction through direct assistance to teachers. School district leader's knowledge that a professional development component is necessary to make progress in the implementation of their technology plan, requires that the leader establish supervision practices to train the staff in the use of technology as a tool to improve student learning.

2. It is recommended that school districts include, as a minimum, technology related financial needs in the school district budgetary planning process. Progress in implementing a school technology plan which uses Internet access and on-line educational resources requires the school district to place high importance on financial/budgetary matters related to technology. School districts that include technology related financial needs in the school district budgetary planning process increase their ability to make progress in implementing the technology plan. Again, this recommendation implies that the focus on budgetary matters related to technology is necessary (but not necessarily sufficient) to progress in implementing the plan.

3. It is recommended that school districts receive adequate funding in their base budgets as opposed to funding designated for certain technology components. State agencies and elected officials must seriously consider the way public funds are allocated for the implementation of school technology plans. School district budgets and technology funding are topics of great consideration in current state legislatures and local taxing jurisdictions. The current status of school funding in Montana and other states in the Northwest enter into the recommendations of this study. Adequacy of base budget funding vs. one-time-only availability of funding for technology equipment and connectivity, must be seriously considered. Failure to adequately fund the base budget restricts the school district's ability to provide a comprehensive
professional development component in the implementation of the technology plan. It does allow for the purchase of hardware, software, and connectivity. The question is -- 'What good is the equipment if the staff cannot use the tools to do a more effective job of helping students learn?' The findings of this study indicate the need for school districts to place high importance on financial/budgetary matters related to technology; that the technology plan is part of the school district long range comprehensive plans addressing goals, missions and visions; that the technology plan is formalized and integrated into school district operations; and that the technology plan must include a comprehensive professional development component. Therefore, the results of this study indicate that the school district revenue (maybe best generated at the state level) should adequately fund the base budget of schools so that the blend of characteristics necessary to show progress in implementing a technology plan which uses Internet access and on-line educational services, can be attained.

4. It is recommended that school district leaders' understand that the technology plan should be part of a long range, comprehensive plan addressing the goals, missions, and visions of the district. In order for this to occur, knowledge of organizational theory and planned change is necessary. The ability of school district leaders to develop an understanding of organizational theory and planned change theory to increase the school district's progress in implementing a technology plan, is critical. The conclusions of this study will assist in adapting organizational theory and change process in school districts implementing technology plans which use Internet access and on-line educational services. Identification of the characteristics necessary to include in planning for technology should be added
to the quality literature currently available for making progress in implementing technology in schools.

5. It is recommended that educational leaders and policy makers use the conclusions of this study to help them as they develop technology plans for their schools. This study provides the knowledge of which characteristics included in a technology plan lead to perceived progress in implementing a plan which uses Internet access and on-line educational resources. By using this knowledge educational policy makers should gain valuable insights as they develop technology plans for their schools.

6. It is recommended that the results of this study be added to the current research literature regarding technology planning. The results of this study provide a local school district perspective which could and should be added to the state and national perspective provided by the National Center for Technology Planning (NCTP). “As educators use acceptable procedures and practices to create and implement technology plans successfully, other professionals will seek advice for their plans. One goal of leaders in the field of planning is to ensure that the highest quality of information attainable is spread among schools. If this recipe for planning is followed, then disseminated throughout the country, students in our nation’s schools will enjoy a richer, more challenging and rewarding educational experience”. (Anderson and Perry, 1997). This research should provide education leaders with high quality information at the local level as they develop technology implementation plans for their districts.

7. It is recommended that the results of this study be included in research-based data of the Network Montana Project. The results confirm the training and curriculum major focuses of the NMP. Further, the results of this
study provide a regional, local school district perspective which may allow the NMP to expand their focus to the entire Northwest region.

8. It is recommended that the results of this study be included in research-based data of the Northwest Regional Education Laboratory. The results add to researched-based information to help school districts in the Northwest region (Montana, Oregon, Washington, Idaho, and Alaska, the states data was collected from in this study) develop and implement technology plans.

Recommendations for Research

The following recommendations are offered for further research.

1. This study should be replicated in the future to include a national population rather than regional population. Implementing a school technology plan that uses Internet and on-line educational resources is clearly a focus of school districts throughout the United States. The ability of school districts throughout the United States to make progress in planning for the implementation of technology is critical for all school districts.

2. Further study should be conducted to investigate comparative results of school districts who implemented technology plans that contain those characteristics established in the results of this study with others who implemented technology plans using other characteristics. Current technology plans would be analyzed to see if they contain the four characteristics identified in this study as necessary for demonstrating progress in the implementation of the technology plan. A comparison could be made between the school districts that have the characteristics and those that do not, and their perception of progress. The results of a study such as this would serve to state more explicitly
that the existence of a high degree of the given characteristics may cause increased progress in implementing the plan.

3. Further investigation is recommended to measure the longitudinal effects of implementing a technology plan utilizing those characteristics established in the results of this study.

4. Further research may explore possible interaction between the characteristics identified (variables) and attribute variables such as gender of respondent, socioeconomic status of families in the school district, and level of academic achievement of students in the school district; as they affect progress in implementing the technology plan.


Luginbill, G. (1994). Seminar on change, technology use and the world of


National Infrastructure for Education (NIE) program of the National Science Foundation (NSF).


APPENDIX A

TECHNOLOGY QUESTIONNAIRE
TECHNOLOGY QUESTIONNAIRE

Section I - Technology Plan

Please indicate, by circling the appropriate response, whether your district has developed a technology plan.

YES (If yes, please complete all Sections of the questionnaire)

NO (If no, please move on to Section IV of the questionnaire)

Section II - Perception of Progress

Please indicate your perception of the progress your school district is making in implementing a school technology plan which uses Internet access and on-line educational resources, where progress is defined as the degree (percentage) to which you believe the district is meeting the objectives outlined in that plan. Write the percentage on the line below:

_____% OF TECHNOLOGY OBJECTIVES BEING MET BY THE PLAN

Section III - Technology Plan and School District Characteristics

Please indicate to what degree you believe each of the following characteristics is present in your school district technology plan, or, a part of your school district. For each characteristic, write the appropriate number on the line, using the following key:

1 FULLY DEVELOPED, FULLY IMPLEMENTED
2 FULLY DEVELOPED, PARTIALLY IMPLEMENTED
3 FULLY DEVELOPED, NOT IMPLEMENTED
4 PARTIALLY DEVELOPED, PARTIALLY IMPLEMENTED
5 PARTIALLY DEVELOPED, NOT IMPLEMENTED
6 NOT DEVELOPED, NOT IMPLEMENTED

____ a) The technology plan is formalized and integrated into the school district's operations (Examples: budget, curriculum, job descriptions).

____ b) The technology plan is part of a long-range, comprehensive plan addressing the goals, missions, and visions of the district through organizational activities.

____ c) The technology plan includes a comprehensive professional development component.

____ d) The technology plan stresses the integration of technology applications to meet goals across the curriculum.

____ e) The technology plan includes an assessment of present technology status and future needs.

____ f) The technology plan indicates the ongoing need for assessment and evaluation
of the plan implementation.

____ g) The technology plan is supported by key school staff (Superintendent, building administrators, teachers).

____ h) The technology plan is supported by key community members (students, parents, business community).

____ i) The technology plan is supported by the School District Board of Education (trustees).

____ j) The school district financial/budgetary matters related to technology are considered to be of high importance.

____ k) The school district has access to technical experts who can fix machines when they are broken and also provide technical assistance to teaching staff.

******************************************************************************************************************

Section IV - Perception of the Importance of the Characteristics

Please indicate which of the items, a) through k) listed in Section III, you believe are most important regardless of whether they are a part of your technology plan or not. Indicate your three most important characteristics by placing the letter of the item on the appropriate line below.

____ MOST IMPORTANT

____ SECOND MOST IMPORTANT

____ THIRD MOST IMPORTANT

******************************************************************************************************************

Section V - Demographic Information

Name: _________________________________ Position Title: _________________________________

School District Name: ___________________________ Address: _________________________________

Email Address: ________________________________

Including the current year, how many years have you served in your current position? _____

If your district has developed a written technology plan, including the current year, how many years has it been in use? _____

Please indicate, by circling the appropriate response, if you would like to receive a copy of the results of this questionnaire: YES  NO

Thank you for your response and return of this questionnaire!
Please use the Return Envelope to Return To:

Kirk J. Miller
1630 Northern Heights
Havre, MT 59501
Preliminary (Pilot) Survey

Purpose of the Study
The purpose of this study will be to determine the relationship between a school district's success in implementing a school technology plan of Internet access and on-line educational resources at all levels, and a set of school district characteristics. By understanding which characteristics had greatest interaction in successful development of a technology plan, Montana educational policy makers should gain valuable insights as they begin to develop plans for their schools.

Instructions
Attached is a preliminary (pilot) survey that is being sent to a core group of educational technology experts. The purpose of the preliminary (pilot) survey is to establish a set of characteristics that can be agreed upon by experts (local, state, regional and university) as having a great influence in establishing a successful technology plan that uses online educational resources. Results of this survey will be used to establish expert validity and reliability for the completion of a survey instrument that will be distributed to a sample of school districts in the Northwest region of the United States.

Final development of the dissertation survey tool will be established based upon the findings of this preliminary (pilot) survey. Your perceptions and additional comments will be recorded for use in the development of the final survey. Thank you for time in completing this survey.

Six main characteristic areas are most identified in the literature as having an impact on the development of a successful technology plan. The characteristics areas are: 1. Demographic information, 2. Critical framework for the planning process, 3. Human resources, 4. Technical resources, 5. Financial resources, and 6. Information resources.
You are requested to do four things to complete this survey. First, please indicate your perception of the importance of each item by circling the number using this scale:

1 -- Essential for effective technology plan development  
2 -- Extremely Important for effective technology plan development  
3 -- Important for effective technology plan development  
4 -- Slightly Important for effective technology plan development  
5 -- Helpful for effective technology plan development  
6 -- Not Important for effective technology plan development

Second, following the completion of circling for importance, please review the six main topic areas [1. Demographic information, 2. Critical framework for the planning process, 3. Human resources, 4. Technical resources, 5. Financial resources, and 6. Information resources], and rank them in order of importance from 1 (most important) to 6 (least important), by writing the rank on the line next to the main topic.

Third, please rank the 80 characteristics in order of importance from 1 (most important) to 80 (least important) by writing the rank on the line next to the item. If trying to rank 80 items poses a problem, please indicate at least the top 30 items (rank from 1 to 30).

Finally, please include any additional characteristics or comments that you believe are important in the development of an successful technology plan that utilizes online educational resources.
First, tell me a little about yourself

Name: __________________________

Regional Educational Laboratory: __________________________ Position Title: __________________________

Years in Current Position: ______ Years of Experience in Working with Education Technology: ______

Rating Scale for Items

1 -- Essential for effective technology plan development
2 -- Extremely Important for effective technology plan development
3 -- Important for effective technology plan development
4 -- Slightly Important for effective technology plan development
5 -- Helpful for effective technology plan development
6 -- Not Important for effective technology plan development

Characteristics

1. Demographic Information

1.01 Size of the school district.
1.02 Ratio of technology specialists to faculty.
1.03 Socioeconomic status of the school district residents.
1.04 Age of facilities.
1.05 Average age of staff members.
1.06 Executive summary of plan includes specific demographic information of the school system and its community.
2. Critical Framework for the Planning Process

2.07 Setting appropriate time lines for the implementation process.

2.08 Infusion of the technology plan into the organizations budget, curriculum, and job descriptions.

2.09 Assuring the plan is part of an overall strategic long-range plan where the goals, missions, and visions embodied therein will be part of organizational activities.

2.10 Requiring, and building into the plan, regular cycles of evaluation and revision.

2.11 Technology integrated into all areas of the Curriculum.

2.12 Establishing a well defined public relations component.

2.13 Plans for accommodating the unique needs of the non-traditional and handicapped students.

2.14 Delegation of responsibilities for planning.

2.15 Monitoring of all planning activities, including an evaluation program that will help track the success of the activities.

2.16 Outline of how district will provide leadership and guidance for those who will implement and benefit from the plan.
Plan recognizes the basic philosophy that technology could support instruction and motivate students to continually gain knowledge and to acquire skills.

Plan includes an assessment of present technology status and future needs.

Plan indicates the ongoing need for assessment and evaluation of the technology plan.

Plan addresses equal access for all to the technology including access during extended study hours.

Development of the plan focused on applications, not technology -- plan is outcome-based, not input-based.

Technology plans define technology as more than computers.

Plan stresses integration of technology into the curriculum. Help teachers answer the question, "What do I have to stop teaching to teach about the computer?" Not effective to teach about technology in isolation from other subjects. Infuse technology into every part of the curriculum.

The plan is merely the physical manifestation of a major planning effort that focused on improving all segments of instruction, using technology in a natural infusion process.

Plan includes an aggressive thrust that extends beyond the range of "the ordinary" into a level to which the entire
community must strive. The plan will cause all concerned to "reach" for the good stuff.

2.26 Plan establishes progress reports.

2.27 Plan establishes the subdivision of responsibility.

2.28 Plan establishes time frames and sets target dates for completion of key components.

2.29 Build Consensus. When the planning team ensures that all players are represented appropriately in the plan, chances are improved that clientele and participants will "buy in" to ideas contained in the plan. An effective plan will address needs of all segments of organizational life—administration and instruction alike (Fasano, 1987). One element cannot be represented to the exclusion of the other.

2.30 Formulate plan. Elements of a successful technology plan will find their way into the organization's budget, curriculum, and job descriptions.

2.31 Evaluation of the plan as part of the process.

2.32 Established role of teacher education programs.

2.33 Careful thought is given to the ways technology can be used to transform the process of schooling to improve teaching and learning.
3. Human Resources

3.34 Availability of, and access to, qualified vendors.

3.35 Training of personnel.

3.36 Reward structure and incentives for personnel.

3.37 Established plan for comprehensive professional development.

3.38 Administrative participation and support.

3.39 Inclusion of school and community stakeholders.

3.40 Plans were based on input from technology planning committees that were representative of the community, parents, teachers, administrators and industry.

3.41 Plans included provisions for initial and continual professional development and training for all personnel in the educational environment.

3.42 Technology plans are tied to staff development plans.

3.43 Examples of planning are based more on the collective intuition of the planning committee than on so-called hard data.

3.44 Plan embodies the dreams, aspirations, and visions of individuals involved and interested in maximally-effective education for that community.

3.45 Planning involved all stakeholders.
Herman (1988) suggested that committees should be developed to promote ownership and collaborative decision-making.

3.46 Staff access to lead teachers, who may or may not be technically expert but who can demonstrate how technology can be used for instruction in various subjects across grade levels.

3.47 Board members have a "working knowledge" of the steps involved in technology planning while the superintendent and building principals have specific leadership skills to implement the technology planning process. "Working knowledge" means board members understand the process well enough to ask the right questions as the plan unfolds. "Specific leadership skills" means that the superintendent and building principals have the competence to lead others in finding answers to these questions as the plan is unfolding.

3.48 Attitudes and expectations of the administration.

3.49 Attitudes and expectations of the faculty.

3.50 Attitudes and expectations of the students.

3.51 Attitudes and expectation of the parents.

3.52 Actual involvement of faculty in day to day development.

3.53 Actual involvement of administration in day to day development.
3.54 Expertise of teaching staff prior to plan development.

3.55 Access to qualified technology instructional specialists.

3.56 Attitudes and expectations of the Board of Trustees.

3.57 Attitudes and expectations of the community.

4. Technical Resources

4.58 Equipment compatibility.

4.59 Auxiliary services availability — electrical, mechanical, architectural, etc.

4.60 Availability of resource materials — wiring, connectors, etc.

4.61 Building architectural requirements/modifications.

4.62 Networking requirements/modifications.

4.63 Specific plans for data security including virus protection of software.

4.64 Arrangements for equipment security, use, maintenance, and replacement.

4.65 Appearance and clarity of the presentation document (technology plan document) itself.

4.66 Access to technical experts who can fix machines when they are broken and who can provide technical expertise to teachers.
4.67  Support of community business in providing technical expertise to technology development in the schools.

4.68  Availability of technical expertise to provide help to staff.

4.69  Access to qualified technical specialists.

5. Financial Resources

5.70  Financial/budgetary matters related to technology are of high importance.

5.71  Dollars per student spent on technology and training.

5.72  Dollars per teacher spent on technology and training.

5.73  Private enterprise financial support of technology development.

5.74  Federal, state and local grants or dollars available to support technology development.

5.75  District fiscal commitment of support for technology planning.

6. Information Resources

6.76  Access to credible action research on technology planning.

6.77  Alignment of district technology plans to a set of national guidelines and state guidelines for enhancing the further development of technology planning in those schools who are already implementing their plans by allowing for the interchange of specific ideas.
and information.

___ 6.78  1  2  3  4  5  6  
6.78 Resources for planning. Access to resources to make the job of technology planning easier.

___ 6.79  1  2  3  4  5  6  
6.79 Student access to computer and Internet outside of school (mainly at home).

___ 6.80  1  2  3  4  5  6  
6.80 Technological capabilities of parents.

Please list any additional characteristics that you believe are important to consider:

Comments:

_____ Please check this line if you would like to receive a copy of the findings of this survey.

_____ Please indicate how many minutes that it took you to complete this survey.

Thank you for your effort in completing this survey!!
APPENDIX C

STEPWISE LINEAR REGRESSION MODEL
Stepwise Linear Regression Model

For each of the two subsamples, superintendents and technology specialists, a linear regression model,

\[ Y = B_1X_1 + B_2X_2 + \ldots + B_{11}X_{11} + \text{Constant} \]

or

\[ Z_y = \beta_1Z_1 + \beta_2Z_2 + \ldots + \beta_{11}Z_{11} \]

was constructed by the stepwise method, as follows. The independent variable demonstrating the highest (simple) Pearson correlation to \( Y \) was the first variable incorporated into the model:

\[ Y = B_iX_i + \text{Constant}; \text{ for some } i; 1 \leq i \leq 11. \]

Next was entered the variable resulting in the greatest increase in \( R^2 \); that is, the variable giving maximum increase in the variability of \( Y \) that is accounted for collectively by the variables in the model. The model then assumed the form

\[ Y = B_iX_i + B_jX_j + \text{Constant}; \text{ for } i, j; 1 \leq i, j \leq 11. \]

This process of including in the model, one by one, the "most important" of the remaining unused variables continued until all the independent variables were part of the model, or until none of the remaining unused variables would significantly increase (at the 0.05 level of significance) the \( R^2 \) from the previous step.