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Abstract:
An iterative method for solving simultaneous linear equations is considered. Previously, the trial
solution generation routine depended on knowledge of the physical system. A method is introduced to
generate the trial solutions based on the system of equations. The new method is used to solve several
differential equations with various boundary conditions, so as to show that the method is independent
from the physical system. Examples of two steady-state problems and a transient problem, with 1000
unknowns, demonstrate the performance as compared to existing techniques. Results indicate that the
method is superior in cases where the boundary conditions are more complicated, and the method is
comparable in all other cases. 
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ABSTRACT

An iterative method for solving simultaneous linear equations is 
considered. Previously, the trial solution generation routine depended 
on knowledge of the physical system. A method is introduced to 
generate the trial solutions based on the system of equations. The new 
method is used to solve several differential equations with various 
boundary conditions, so as to show that the method is independent from 
the physical system. Examples of two steady-state problems and a 
transient problem, with 1000 unknowns, demonstrate the performance as 
compared to existing techniques. Results indicate that the method is 
superior in cases where the boundary conditions are more complicated, 
and the method is comparable in all other cases.
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CHAPTER I 

INTRODUCTION

Many numerical methods have been developed to accurately solve a 

large system of simultaneous equations. A method is presented here 

that has the possibility of being faster and more accurate than these 

methods.

The Reduced Coordinate Iterative Procedure (RCIP)[1] uses a linear 

combination of trial solutions, with each trial solution having an 

unknown weighting coefficient. Each weighting coefficient is deter­

mined by minimizing an error function. This minimizing process pro­

duces a smaller set of equations which can be solved directly for these 

weighting coefficients. Therefore, in solving a large set of equa­

tions, the RCIP method reduces the number of equations to be solved.

The method of least squares can be related to the RCIP method, 

because of the minimization of the squared residual in the RCIP 

method.[3] The least squares method finds the equation of a curve that 

passes through scattered points. This curve is found so that the sum 

of the square distances from each point to the curve is a minimum. In 

the RCIP method the sum of the squares of the residuals from the 

equation set, the variance, is minimized. The least squares method is 

used for curve fitting and not for the solution of simultaneous 

equations as RCIP is.
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Another method that RCIP is related to is the Conjugate Direction 

Method [4,8]. The RCIP and Conjugate Direction methods both use the 

minimization of an error function in the solution of the problem. The 

Conjugate Direction Method minimizes the error along orthogonal 

directions. The Conjugate Direction Method will converge in less 

iterations than there are unknowns. The methods have been shown to be 

different [I].

To evaluate the performance of the RCIP method, two existing 

techniques were used: The first was a Gauss-Seidel iterative scheme 

using successive over-relaxation (SOR) [5], and the second was the 

Alternating Direction Explicit Procedure (ADEP)[6], Both are excellent 

methods for comparation, because of the Ir speed of convergence and 

their accuracy.

The RCIP method previously has had a systematic procedure for the 

generation of trial solutions. However, the trial solution generation 

was dependent on knowledge of the physical system which the equation 

represented. The trial solution generation should be independent of the 

knowledge of the physical system.

It is the purpose of this paper to present a trial solution 

generation scheme that is independent of the knowledge of the physical 

system while continuing to produce rapid convergence and be competitive 

with existing methods.
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CHAPTER II

DESCRIPTION OF THE METHOD

The RCIP method uses a linear combination of trial solution vec­

tors with each trial solution having an unknown scalar weighting co­

efficient. The weighting coefficients are obtained by solving a re­

duced set of equations which are obtained by minimizing the variance. 

The reduced set is solved using an exact or direct method. The trial 

solutions are different at each iteration and the iterative process 

continues until the desired convergence is reached [2]. The 

formulation of RCIP proceeds as follows:

be a system of n equations in n unknowns. Initially choose m vectors 

(m is the number of trial solutions, G(k,m)Q n in length, the subscript 

0 indicates the first iteration)

Let

AX=F (I)

G(k, I) q ,'G(k, 2)q ,....,G(k,m) q k=l (2)
where m < n, and set

m
X0 = Z  ctj G(k,j)0

J=I
k=l (3)

where the scalars (a^'Qg" om ) are to be determined.

Let

,am ) = <AX0-F,AX0-F> = | IAXq-FI I2 (4)
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be the inner product and the square of the norm of the residual 

(Rq =AX q -F), respectively. Find the solution (<Zq  ^,....,aQ m ) to the 

system

p I ,..., m . (5)

Designate

and let

Then

V0 V(a0,l,,--,<z0,m)

X(l,l)= 2  UQ j G(k,j)0 
j=l

...,am ) = l IAX1-Fl I

solve the system

k - !#•••# He

p !#•••>m

and if Ca1 m ) is the solution, designate

V 1=V1(O1 1 1 --^al m )

and let
m

X(2,l)= ̂  O1 . G(Icj)1 
j=l

At the ith stage.

k=l,...,n

(10)

(11)

X(i,D— 2  ai —i 4 ®'Ck, j ) ̂_i k Ii111 >u
3=1 ’J

Select vectors G(k,2) G(k,m) and let

m
X. = 2  Oj G ( ^ j ) i k=l,11.,n

J=I

(12)

(13)
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Then

Vi U 1, . . . , <zmM  IAXi - F l  I2 .

Again solve the system 

9V.

If this solution is (^i !,•••,^ i m ), then 

V i = V i(ai>1,.,•,ai>m) .

The algorithm continues with

P=I,..,m.

X(i+l,l)= U i j G(k,j)i 
j=l

selection of G(k,2) i+1,...,G(k,m)i+1 ,

k=l,...,n

X i+1™ 2  “j G (k,j)i+1
j=l

and a subsequent minimization of

V i+l(al’---’am )=^ A X i+l_ F ^ 2-

k=l,...,n

The solution of the original system is derived from 

X = Limi_>+eoG(i,l).

To illustrate the theory of the above section an example 

presented in Appendix A.

. (14)

(15)

(16) 

, (17)

, (18)

(19)

(20)
problem is
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CHAPTER III

DESCRIPTION OF NEW TRIAL SOLUTION GENERATION

Previously the trial solution generation process was based on 

knowledge of the physical system represented. The new trial solution 

selection process successfully makes the RCIP method independent of the 

knowledge of the physical system. The new method utilizes only the 

system of equations and information resulting from other trial 

solutions to obtain sets of trial solutions.

At the beginning of the first iteration, an initial trial solution 

set is selected. On successive iterations the trial solution set is 

composed of the last best solution, and a sequence of special Gauss— 

Seidel solutions. Equations to be solved by Gauss-Seidel for trial 

solutions are formed from the same coefficient matrix as the original 

problem and a new right hand side. For the second trial solution the 

new right hand side is the residual from the equation set using the 

last best solution. The initial guess used for the Gauss-Seidel 

solution is zero. Three Gauss-Seidel iterations are performed to 

obtain trial solution two. The third trial solution is similar to 

trial solution two. The difference is that another new' right hand side 

is formed from the residual of the second trial solution. Again a 

Gauss-Seidel solution scheme is used to solve for the solution to this

new set. An initial guess of zero is used, with three iterations
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performed. The rest of the trial solutions are calculated in the same 

fashion until m number of trial solutions are reached. An example, of m 

equal to three trial solutions, is shown below.

Let

A*X=F (21)

be an nxn system of equations. For the first iteration the first trial 

solution is

G(i,I) = initial estimate i=l,...,n. (22)

Now find the residual vector for the first trial solution (or T.S. I)

R^T.S. I) = A*G(i,l) - F i i=l,...,n. (23)

Form the new equation set for trial solution two

A*G(i,2) = RiCT-S. I) i=l,...,n . (24)

Solve using Gauss-Seidel with an initial guess of zero. Perform three 

iterations to obtain G d , 2). Now find the residual vector for the 

second trial solution

R i(T.S. 2)= A*G(i,2) - R ^ T . S .  I) i=l,...,n. (25)

Form the new equation set for trial solution three

A*G(i,3) = Ri(T.S. 2) i=l,...,n. (26)

Solve this set using Gauss-Seidel with an initial guess of zero. 

Perform three iterations to obtain G d , 3). The three trial solutions 

for the first iteration have been found. For the second through the 

nth iterations the only change is that the first trial solution is the

x

last best solution.
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The basis for this trial solution selection process is based on 

the following:

A*G(i,l) - F -  R iCT-S. D = O  (27a)

A*G(i,2) - RiCT-S. I) - RiCT-S- 2) = 0 (27b)

A*G(i,3) - RiCT-S- 2) = 0 (27c)

subtract (27c) from (27b)

A*(G(i,2) - G(i,3)) - RiCT-S- D = O  (28)

subtract (28) from (27a)

A*(G(i,D - G(i,2) + G(i,3)) - F  = 0 .  (29)

Note, if G d , 3) is an exact solution to equation (27c) and

X i = Gd,I) - G d , 2) + G d , 3). (30)

then X i is an exact solution to equation (21). Note that G d , 3) is 

approximate therefore, X i is approximate.

The numerical algorithm for the generation of the trial solutions 

is as follows. The first trial solution for the first iteration is

Gd,I) = initial estimate i=l,...,n. (31)

The first trial solution for the second through the nth iterations is

Gd,!) = X. i=l,...,n. (32)
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The second through the mth trial solution is calculated as follows

i=l,...,n (33)

i=l,...,n kk=2,m p=l,..,3 (34a)

R i(kk) = (A(i,k,)*G(k,kk-l)) - R i(Rk-I) (34b)

G(i,kk) = 0 (34c)

G(i,kk)p = Ri(Rk) / A(i,i)
n (34d)

- Z  A(i,k)*G(k,kk) / A(i,i) . 
k=l

The above algorithms will calculate m number of trial solutions. An 

illustrative problem is solved and included in Appendix B.
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CHAPTER IV

APPLICATIONS AND RESULTS

This chapter is devoted to the solution of problems by the RCIP 

method and a comparison with some of the existing techniques. In 

particular the SOR and ADEP methods are compared with the RCIP method. 

The RCIP method is intended to solve linear systems of algebraic 

equations. Therefore, to solve the following differential equations a 

finite difference technique is used to model each differential equation 

as a system of algebraic equations.

In each problem the convergence limit used is always that the 

variance be less than or equal to some convergence criterion. The 

variance of the equation set is defined as the sum of the residuals 

squared, for all the equations. When an exact solution is known an 

average percent error can be obtained which is defined as the average 

of the differences between the exact solution and the approximate 

solution divided by the exact solution.

PROBLEMS ONE THROUGH FOUR

The following four ordinary differential equations are solved to 

show the generality of the new method. Various boundary conditions are
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A
— - + y = 0 (35)
dx

for the region 0 <= x <= tt/2 with the derivative boundary conditions

y' (0) = 0 , y' (tt/2) = I (35a)

employed to illustrate a spectrum of problems. Problem one follows:

Solve

To illustrate the finite difference technique the above governing 

differential equation and boundary conditions will be modeled in 

algebraic form. The central difference approximation of the second 

order derivative is

d2J yi+1 ~ 2 Ji + Yi-!
---= --------------------- (36a)
dx^ Ax^

equation (35) becomes

?i+l - % ?i + yi-l
Ax2

+ Yi 0 (36b)

The central difference approximation of the first order derivative

iI  - yi+l ~ yi~l
dx 2 Ax

equations (35a) become

is

(36c)

y i+l(0) = y i_1(0) (36d)

yi+l(n/2) - y i_1(n/2) = 2Ax . (36e)

The above finite difference model approximates the differential

equation as a system of linear equations.
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The exact solution for problem one is

Tesact = " C0S x • <36f)

The finite difference model for problem I is used to illustrate 

the SOR algorithm used. The algorithm follows:

Y j+ i(r+1) + Y . *(r+1)
Y. (r+1) = (I-X) *Y.(r) + X * -------------------------- (37)

2 - AX2

the variable r indicates the previous iteration, the value r+1 

indicates the present iteration, and the subscript i indicates the 

nodal point. The variable X is the SOR factor, which is between I and 

2 for over relaxation and between 0 and I for under relaxation. The 

value of X=1.0 is just the Gauss-SeideI routine. The remaining 

problems were modeled in the same manner as problem I. And the SOR 

factor used in the following problems was the same as above. [5]

Problem two follows: Solve 

d2y
--- + y = 0 (38)
dx2

for the region 0 <= x <= rc/2 with the composite boundary conditions

y'(0) + y(0) = I (39)

y' (n/2) - y(jr/2) = -I . (40)

The exact solution for equations (38-40) is ,

Yexact = (SIN x + C0S x)/2 • (41)

Problem three follows: Solve

2 d2y dy o
x --- — 2x —  + 2y = x
. dx2 dx

(42)
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for the region I <= x <= 2 with the mixed boundary conditions

y(I) = 0 , y'(2) = 0. (43)

The exact solution for equations (42-43) is

4 5 ’5 2 1 3
Yexact “ " x " ---x + " x • <44>

3 3 2

Problem four follows: Solve

2 d2y dy
(1—x )   — 6x —  — 4y = 0 (45)

dx2 dx

for the region 0 <= x <= 0.5 with the Dirichlet boundary conditions

y(0) = -4.5 , y(0.5) = 2  . (46)

The exact solution for equations (45-46) is

27 0 2 2 27 2 2
Yexact ~ —  (3x-x /(1-x ) ) - —  (l/(l-x ) ) . (47)

6 6

Standard finite difference techniques are used to algebraically 

approximate the above problems. In each of the first four problems a 

nodal network is chosen so that there is 50 spaces for each region, 

which requires a different number of equations for each problem. The 

different number of equations resulted from the different boundary 

conditions. A uniform initial estimate of 0.5 is chosen to start the 

methods.

In problem one the convergence limit was that the variance in the 

51 equation set be less than or equal to 0.1. The results of the RCIP 

method for various numbers of trial solutions are shown in Table I. 

The SOR method, with over and then under relaxation factors, did not 

obtain the convergence criterion in 10,000 iterations with a user



Table I. Results of I-D Ordinary Differential Equation Problem I , with Derivative
Boundary Conditions, for Various Numbers of Trial Solutions.

NUMBER 
OF TRIAL 
SOLUTIONS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

2,3,4 DID NOT CONVERGE AT 100 ITERATIONS.

5 11 0.3208 12.97

6 11 1.1182 15.59

7 8 1.1586 13.40

8 6 0.7707 11.63

9 5 0.2624 11.13

The SOR Method Did Not Converge at 10,000 Iterations.

(14)
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execution time of 660 seconds. Therefore, the RCIP method is superior 

to SOR in that RCIP obtains a solution and SOR does not. When the 

number of trial solutions was less than 5 the convergence criterion was 

not obtained with the RCIP method, it did not converge at 100 itera­

tions with a user time of 240 seconds. This is because the smaller 

number of trial solutions does not contain enough information to obtain 

rapid convergence.

Problem 2 is very similar to problem I. The results of the 

solution of 51 equations are shown in Table 2. When the number of 

trial solutions is less than 8 the convergence criterion was not 

obtained with the RCIP method , this was because of the smaller number 

of trial solutions not containing enough information to obtain rapid 

convergence. The trial solutions 2—7 did not converge at 100 iterations 

with a time of approximately 240 seconds. The SOR method did not 

obtain the convergence criterion at 10,000 iterations with a time of 

660 seconds. Several relaxation factors were utilized, over and then 

under relaxation, with no convergence being obtained. The RCIP method 

again, produces a solution and SOR does not. The limit of convergence 

for this problem is that the variance be less than or equal to 0.001.

Problem 3 was solved and the results are shown in Table 3 for the 

RCIP method and in Table 4 for the SOR method. A graph of the user 

execution time versus the number of trial solutions for the RCIP 

method, and over relaxation factor for the SOR method is included (Fig. 

I). Clearly, as the graph shows, the convergence to a solution 

requires less time for the RClP method than for the SOR method. The



Table 2. Results of I-D Ordinary Differential Equation Problem 2, with Composite Boundary
Conditions, for Various Numbers of Trial Solutions.

NUMBER 
OF TRIAL 
SOLUTIONS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

2-7 DID NOT CONVERGE AT 100 ITERATIONS.

8 22 .2306 41.29

9 10 .1739 21.69

10 4 .2227 9.93

11 4 .1333 10.95

The SOR Method did not Converge at 10,000 Iterations.

(16)



Table 3. Results of I-D Ordinary Differential Equation Problem 3, with Mixed
Boundary Conditions, for Various Numbers of Trial Solutions.

NUMBER 
OF TRIAL 
SOLUTIONS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

2 DID NOT CONVERGE AT 100 ITERATIONS.

4 20 .0761 17.77

6 8 .0686 10.99

8 6 .0088 11.19

10 5 .0181 11.84

12 4 .0324 11.54

(17)



Table 4. Results of I-D Ordinary Differential Equation Problem 3, with Mixed
Boundary Conditions, for Various SOR Factors.

SOR
FACTORS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

I.0-1.3 DID NOT CONVERGE AT 1000 ITERATIONS.

1.35 837 .1216 52.21

1.4 347 .1594 21.92

1.5 648 .0629 40.50

1.6 680 .0634 42.52

(18)



DS
ER

 E
XE

CU
TI

ON
 T

IM
E 

(S
EC
)

(19)

SOR FACTOR

1.45

□  RCIP METHOD

A  SOR METHOD

4 6 8 10 12

NUMBER OF TRIAL SOLUTIONS

Figure I. Trial Solutions and Different Relaxation Factors Versus User 
Execution Time for I-D Ordinary Differential Equation Problem 
3, with Mixed Boundary Conditions
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graph of the trial solutions versus the execution time for the RCIP 

method is flat indicating about the same execution time for any number 

of trial solutions, where the graph of the SOR factor versus execution 

time for the SOR method has a dip indicating the importance of the 

optimum SOR factor. The solution to problem 3 is for 50 equations and 

a variance less than or equal to 0.001.

Problem 4 was solved and the results are found in Table 5 for the 

RCIP method and Table 6 for the SOR method. A graph of the user 

execution time versus the number of trial solutions for the RCIP 

method, and the over relaxation factors for the SOR method is included 

(Fig. 2). In Figure 2, the SOR and the RCIP method both have approxi­

mately the same results. The RCIP method was faster, by approximately 

10 seconds, in the execution time than the SOR method, until the SOR 

method approaches its optimum relaxation factor where the SOR method 

was faster. For this problem the two methods are comparable. The 

methods solved 49 equations for a variance less than or equal to 0.001. 

PROBLEM FIVE

Laplace's equation was solved in a rectanglar region of length one 

in the y direction and two in the x direction. Each side of the 

rectangle is maintained at a different temperature.

The problem is formally stated as follows: Solve 

d2T d2T
----f ——  = O (48)
9x2 3y2

for the region

0 <= x <= 2 , 0 <= y <= I (49)



Table 5. Results of I-D Ordinary Differential Equations Problem 4, with Dirichlet
Boundary Conditions, for Various Numbers of Trial Solutions.

NUMBER 
OF TRIAL 
SOLUTIONS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

2-3 DID NOT CONVERGE AT 100 ITERATIONS.

4 51 7.5369 42.83

6 20 7.5286 25.89

8 10 7.5297 17.77

10 6 7.5252 13.58

11 5 7.5354 12.58

(21)



Table 6. Results of I-D Ordinary Differential Equation Problem 4, with Dirichlet
Boundary Conditions, for Various SOR Factors.

SOR
FACTORS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

I.0-1.3 DID NOT CONVERGE AT 1000 ITERATIONS •

1.4 925 7.5231 55.71

1.5 709 7.5234 42.78

1.6 517 7.5237 31.25

1.7 342 7.5248 20.84

1.8 181 7.5463 11.22

1.9 148 7.5367 9.23

(22)
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SOR FACTOR

1.4 1.5 1.6 1.7 1.8 1.9

A SOR FACTOR

□  RCIP METHOD

30 -

NUMBER OF TRIAL SOLUTIONS

Figure 2. Trial Solutions and Different Relaxation Factors Versus User 
Execution Time for I-D Ordinary Differential Equation 
Problem 4, with Dirichlet Boundary Conditions
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with the boundary conditions

T(x,0) = 200 (50a)

T(x,2) = 400 (50b)

T(0,y) = 300 (51a)

T(l,y) = 100 (51b)

A standard finite difference technique was used to approximate the 

equation in (48). A nodal network of 7 nodes in the y direction and 15» 

nodes in the x direction, was selected. This results in Ax and Ay being

All solution attempts began with an initial estimate of a uniform 

temperature distribution equal to unity, the results are compared to 

the analytical solution [7]. The convergence limit for the solution of 

the 105 equations was set at the variance being less than or equal to

0.000001. Data from the solutions using different numbers of trial 

solutions is presented in Table 7 for the RCIP method, and data from 

the solutions using different relaxation factors is presented in Table 

8 for the SOR method.

The results for the RCIP method are compared to the results of the 

SOR method. A graph of execution time versus trial solutions for the 

RCIP method, and SOR factor for the SOR method will indicate the effec­

tiveness of the RCIP method in speed and accuracy.(Fig. 3)

Figure 3 indicates that the SOR method has a steady decrease in 

execution time for each successive SOR factor until the optimum value 

of 1.53 is reached. After the optimum is reached an increase is

0.125.



Table 7. 2-D Laplace's Equation Results for Various Numbers of Trial Solutions

NUMBER 
OF TRIAL 
SOLUTIONS

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (MIN)

2 23 7.0529 1.3430

3 9 . 7:0528 .9422

4 6 7.0527 .8967

5 4 7.0528 .7912

6 3 7.0527 .7387

7 3 7.0527 .8490

(25)



Table 8. 2-D Laplace's Equation Results for Various SOR Factors

SOR
FACTOR

NUMBER
OF

ITERATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (MIN)

1.0
(Gauss-Seidel)

129 7.0529 1.6250

1.2 84 7.0529 1.0895

1.4 51 7.0529 .6958

1.5 35 7.0528 .5023

1.6 35 7.0527 .5010

1.7 48 7.0527 .6588

1.8 75 7.0527 .9808

(26)
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Figure 3. Trial Solutions and Different Relaxation Factors Versus User 
Execution Time for 2-D Laplace's Equation
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observed. In the RCIP method there is a large decrease in the 

execution time from 2 trial solutions to 3 trial solutions, but 

thereafter until 7 trial solutions the execution time decreases by only 

9%. The decrease in execution time from 3 to 4 trial solutions is only 

0.046 minutes, where the average decrease from 3 to 6 trial solutions 

is 0.068 minutes per trial solution. This small decrease is due to the 

next to last iterations variance being just above the convergence limit 

this causes the method to perform one more iteration with a 98% 

decrease in the variance, 0.2X10 below the convergence limit.

The SOR methods solution had a smaller execution time at its 

optimum value of 1.53 than any of the solutions of the RCIP method. 

The RCIP method is flat, only 9% difference from 3 to 6 trial 

solutions, in its solutions for different numbers of trial solutions. 

This shows that any choice of trial solutions, with the possible 

exception of 2, is going to take approximately the same amount of time 

to obtain a solution. Where the SOR method has a large difference , 69% 

from Gauss-Seidel to the optimum SOR factor, in its execution time. A 

accurate solution with acceptable execution time is only obtained close 

to the optimum value.

PROBLEM SIX

The elliptical partial differential equation to be solved is

d2T S2T 9 2T

where T, x, y, and z are non-dimensional variables for temperature and 

three spatial coordinates. The geometry is a cube of face length 0.4
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located concentrically in a large cube of face length one. The inner 

cube is maintained at a temperature of unity while the surface of the

outer cube is set at zero temperature. By using the symmetry of the

problem only a sixteenth of the composite cube need be considered.

(Fig. 4)

The problem is formally stated as: Solve

9 2T d 2T B2T

dx2 By2 8z2
0 (53)

for the region

0 <= x <= z , 0 <= y <= I , 0 <= z <= I (54)

with the boundary conditions

T(x,y,l) = 0 (55a)

T(x,l,z) = 0 (55b)

T(x,y,0.4) = I (55c)

T(x,0.4,z) = I (55d)

BT BT
— (z,y,z) = 0  , — (x,0,z) = 0 (55e)
Bx Sy

BT BT

I N N II O — (0,y,z) = 0 (55f)
dz Bx

A standard finite difference technique was used to approximate the

second order derivatives in equation (53) . A central difference

approximation was used for the derivatives in equations (55e) and 

(55f). A nodal network of 10 nodes per side was selected resulting in 

10 nodal spaces, therefore, the number of equations is 475 with Ax = Ay

Az = 0.1.
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Figure 4. Cube-Cube Geometry for 3-D Steady-State Heat Conduction 
Problem
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To determine a measure of the accuracy of the solutions, heat 

fluxes were calculated for the inner cube surfaces, and for the outer 

cube surfaces. Tb non-dimensionalize these quantities, they were 

divided by the heat flux of concentric spheres with the same boundary 

conditions (T^ inner cube, T q outer cube), and radii equal to the face 

lengths of the inner (r%) and outer (r^) cubes. The value T 2  is the 

boundary condition acting over the area A. The value T^ is the inner 

parallel nodal point associated with T 2 , with a distance of Ax between 

them. This non-dimensional heat flux (q') is as follows 

-A(T2-T1)(ro-r.)
q' =

Ax 4jr TiXo(Ti-To)

Ti = I , T0 0 , Ti = 

Ax = .1 , A = .1 X .1

-O1IS(T2-T1)

.4

(56)

(57a)

(57b)

(58)
4 TT

Different numbers of trial solutions, for the RCIP method, were 

used to obtain solutions to this problem. An acceptable solution was 

reached, with a variance less than or equal to 0.0000001, for each 

trial solution set. The solutions using two or three trial solutions 

were slower to converge than the solutions using 4, 5, 6, or 7 trial 

solutions, which all take approximately the same amount of time. The 

average rate increase from 5 to 7 trial solutions is 0.045 seconds per 

trial solution. The increase of 1.51 seconds in execution time from 5 

to 6 trial solutions is higher than the average rate increase. This is 

due to the next to last iterations variance being just above the
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convergence limit. This causes the method to continue with another 

iteration. This continuation to the last iteration gives a variance, 

0.1X10 100% lower than the convergence limit.

The results from the RCIP method (Table 9) were compared to the 

results obtained by solving the same problem using the SOR method. The 

same convergence limit was used as for the RCIP method, variance less 

than or equal to 0.0000001, to obtain comparable results. Over 

relaxation factors ranging from 1.0 (which makes the routine identical 

to Gauss-Seidel) to a value of 1.8 were used in the SOR method to 

obtain solutions. The optimum value of the over relaxation factor was 

found to be 1.6.

A uniform temperature distribution of 0.5 was used as the initial 

estimate in each method. The results from the various SOR runs are 

shown in Table 10. The results are also shown on a graph (Fig. 5) of 

execution time versus the number of trial solutions in the RCIP method, 

and the relaxation factor in the SOR method. The graph of the results 

of various SOR factors and execution time decreases at an approximate 

rate of 1.89 seconds per 0.1 increase in the SOR factor. While the 

graph of the RCIP methods results decreases at an approximate rate of 

2.6 seconds per trial solution from 2 to 4 trial solutions. 

Thereafter., the curve is flat with a 2% increase for trial solutions 

4, 5, 6, and 7.

The two curves cross with the SOR having the smallest execution 

time at the optimum. If the optimum SOR factor is known then the SOR 

method has a significant advantage. The disadvantage of the SOR method



Table 9. Results for the 3-D Steady-State Heat Conduction Problem, Cube-Cube
Geometry, for Various Numbers of Trial Solutions.

NUMBER 
OF TRIAL 
SOLUTIONS

NUMBER
OF

ITERATIONS

HEAT
INNER
CUBE

FLUX
OUTER
CUBE

% DIFFERENCE 
IN HEAT 
BALANCE

USER
EXECUTION 
TIME (SEC)

2 18 .09527 .09530 .03845 12.29

3 7 .09527 .09529 .02601 8.55

4 4 .09527 .09527 .00304 7.09

5 3 .09527 .09529 .01795 7.15

6 3 .09527 .09527 .00110 8.66

7 2 .09527 .09528 .00943 7.24

(33)



Table 10. Results of the 3-D Steady-State Heat Conduction Problem, Cube-Cube
Geometry, for Various SOR Factors.

SOR
FACTOR

NUMBER
OF

ITERATIONS

HEAT
INNER
CUBE

FLUX
OUTER
CUBE

% DIFFERENCE 
IN HEAT 
BALANCE

USER
EXECUTION 
TIME (SEC)

1.0
(Gauss-Seidel)

104 .09526 .09531 .05595 16.55

1.2 69 .09526 .09531 .05081 11.44

1.4 44 .09526 .09530 .03516 7.86

1.5 33 .09527 .09529 .02392 6.18

1.6
(optimum)

26 .09527 .09527 .00129 5.23

1.7 33 .09527 .09527 .00141 6.19

I i 8 51 .09527 .09527 .00073 8.82

(34)
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Figure 5. Trial Solutions and Different Relaxation Factors Versus User 
Execution time for 3-d Steady-State Heat Conduction Problem 
Cube-Cube Geometry
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was that a trial and error process must be used to obtain the optimum 

value of the relaxation factor. The RCIP method will be more efficient 

for the trial solutions 4, 5, 6, and 7, because of the small variation 

in the execution times. The choice of 2 or 3 trial solutions was not 

as efficient as 4 to 7 trial solutions, but 2 or 3 still produce 

excellent results.

PROBLEM SEVEN

The parabolic partial differential equation to be solved is 

9T S2T 92T 92T

9r 9x2 9y2 9z2

for the cube region 0 <= x <= I, 0 <= y <= I, and 0 <= z <= I, where T, 

t , x, y, and z are all non-dimensional variables representing 

temperature, time, and three spatial coordinates, respectively. The 

boundary conditions for (59) are:

T = 0 at x=l or y=l or z=l (60a)

9T
—  = 0 at x=0 (60b)
9x

9T
—  = 0 at y=0 (60c)
9y

9T
—  = 0 at z=0 (60d)
9z

and the initial condition is

T = I at T = 0 . (61)

The algebraic approximation of the parabolic equation (59) was 

accomplished by using the Crank Nicolson method [5], and a central
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difference was used to approximate the first order derivative in (60b- 

60d). The cube geometry is approximated by a nodal network of 10X10X10 

nodes which gives 1000 equations and 1000 unknowns. This results in 10 

spaces on each face of the cube, with a mesh size of Ax = Ay = Az = 

0.1. Results were determined for three elapsed times, t =0.1, .0.5, and 

1.0. The effect of using different values of the time increment was 

also studied.

The ADEP method was compared to the RCIP method for this problem. 

A uniform temperature distribution, equal to unity, was used as the 

initial estimate to start the solution process for both the RCIP and 

ADEP methods. Tables 11 and 12, and Figures 6, 7, and 8 illustrate the 

relation between the execution time and accuracy of each method.

A value of 4 trial solutions was used to obtain the results shown 

in Table 11 for the RCIP method. The number of trial solutions was 

chosen from the results of the previous 3-D steady-state problem, in 

which 4 trial solutions produced the smallest execution time (7.09 

seconds).

For the elapsed time of T=0.1 Table 12 and Fig. 6 shows that ADEP 

produces an average percent error of more than .26% for all the time 

steps except for At=O.01, which proved too large to maintain accuracy. 

The average percent error increases from .26% to .2% as the time step 

gets smaller. This increasing error is due to the large number of 

iterations and the error in the algebraic approximation.



Table 11. Results of 3-D Transient Heat Conduction Problem, Cube Geometry, 
Using RCIP.

TIME STEP 
At

NUMBER OF 
TIME STEPS

ELAPSED 
TIME, -c

AVERAGE % 
ERROR VARIANCE

USER EXECUTION 
TIME (MIN)

0.02 5 0.1 6.2355 . .1739E-07 .4635

0.0125 8 0.1 .6703 .197 8E-10 .6825

0.01 10 0.1 .4398 .87 91E-06 .7838

0.005 20 0.1 .2852 .6876E-09 .8332

0.004 25 0.1 .2811 .4648E-10 1.0180

0.0025 40 0.1 .2808 .8269E-13 1.5627

0.002 50 0.1 .2814 .3033E-14 1.9273

0.025 20 0.5 2.4292 ,9586E-10 1.6240

0.02 25 0.5 .5827 . 6116E-06 1.8158

0.0125 . 40 0.5 .1233 .1627E-07 2.1403

0.01 50 0.5 .0303 .2478E-08 2.2113

0.005 100 0.5 .1010 .2145E-11 3.7417

0.004 125 0.5 .1164 .1476E-12 4.6422

0.002 250 0.5 .1368 . 9767E-17 9.2708

(38)



Table 11 (continued)

0.05 20 1.0 1540.0572 .1800E-08 1.9290

0.04 25 1.0 237.1156 . 1974E-06 2.0658

0.025 40 1.0 1.7589 .1723E-08 2.4108

0.02 50 1.0 .4782 .3728E-09 2.6940

0.0125 80 1.0 .3681 .1043E-10 3.5928

0.01 100 1.0 .5620 .1529E-11 4.0158

0.005 200 1.0 .8218 . 1343E-14 7.3598

VO



Table 12. Results of 3-D 
Using ADEP.

Transient Heat Conduction Problem, Cube Geometry,

TIME STEP 
At

NUMBER OF 
TIME STEPS

ELAPSED 
TIME, T

AVERAGE % 
ERROR

USER EXECUTION 
TIME (MIN)

0.01 10 0.1 24.2707 .1210

0.001 100 0.1 .2672 .3162

0.0005 200 0.1 .2605 .5322

0.0002 500 0.1 .2784 1.1833

0.0001 1000 0.1 .2818 2.2705

0.001 500 0.5 1.2731 1.1302

0.0005 1000 0.5 .4254 2.2125

0.00025 2000 0.5 .2140 4.3562

0.0002 2500 0.5 .1887 5.4307

0.000125 4000 0.5 .1612 8.6435

0.0001 5000 0.5 .1549 10.7778

0.002 500 1.0 11.1638 1.1108

(40)



Table 12. (Continued)

0.001 1000 1.0 3.4006 2.1768

0.0005 2000 1.0 1.5261 4.3140

0.00025 4000 1.0 1.0616 8.5410

H
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6. User Execution Time Versus Average Percent Error. RCIP Versus ADEP for the
3-D Transient Heat Transfer Problem with an Elapsed Time t =0.I.
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3-D Transient Heat Transfer Problem with an Elapsed Time x=0.5.
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The graph of the execution time versus accuracy for the RCIP 

method (Fig. 6) indicates that when the smallest percent error (0.28%) 

was reached an optimum value of the time step had also been reached. 

Therefore, further refinement of the time step would require a larger 

amount of time to produce the same accuracy. The RCIP method was able 

to reach the accuracy of the ADEP method, but ADEP was superior in 

execution time for a specified accuracy over the RCIP method. This is 

due to the small elapsed time T=0.1. Because of this small time the 

solution process resembles that of the steady-state problem. However, 

noting that as the elapsed time is increased larger time steps can.be 

used. The ability of RCIP to use larger time steps, as compared to the 

smaller time steps that ADEP requires, enables RCIP to obtain the 

required accuracy in less time.

For the elapsed time of T=0.5, Tables 11, 12 and Figure 7, 

indicate that the RCIP method produces more accurate, results in less 

time than the ADEP method. The RCIP method obtained an average percent 

error equal to 0.0303% in 2.1403 minutes of execution time, with a time 

step of 0.0125 and 40 iterations. The ADEP method reached its best 

results (0.1612%) at At=O.000125 and 4000 iterations, with an execution 

time of 8.6435 minutes. The graph. Fig. 7, indicates that when the 

smallest percent error 0^0303% occurs the RCIP method has reached an 

optimum time step. The further refinement of the time step produced 

poorer accuracy (0.1164%) and larger execution times (4.6422 minutes).

For the elapsed time of t =1.0. Table 11, 12, and Fig. 8, the graph 

of the results of the RCIP method is entirely below the graph of ADEP's
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results. At each time step the RCIP method is much faster. The use of 

the larger time steps results in the RCIP method having the advantages 

of less iterations with less error, and a faster execution time. If 

larger elapsed times are used ADEP will perform numerous iterations, 

therefore the ADEP method will be slower than the RCIP method and less 

accurate.

All computer runs were accomplished on the Honeywell CP-6 computer 

in double precision. A flow chart of the computer program is included 

in Appendix C.
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CHAPTER V

DEVELOPMENT OF RCDP WITH APPLICATION AND RESULTS

Many direct methods have been developed to solve sets of linear 

equations. These methods have been restricted to solving small sets of 

equations usually less than 40 [5]. A new method is presented here 

which could prove to be much faster for the solution of large sets of 

tridiagonal equations.

This new method, called the Reduced Coordinate Direct Procedure 

(RCDP), uses two trial solutions to solve for the w e i ghting 

coefficients in the RCIP method. The trial solutions generated consist 

of one trial solution due to the coefficient matrix and one trial 

solution due to the boundary conditions. These two trial solutions 

successfully solve the problem in one iteration. An attempt was made 

to expand this method to a general routine to solve non-tridiagonal 

systems. A problem was discovered with this expansion. For non­

tridiagonal systems more than two trial solutions are necessary to 

solve the problem. In the development of the extra trial solutions and 

the subsequent reduced matrix to solve for the weighting coefficients 

the problem was found. When more than two trial solutions is required 

the reduced matrix becomes closer and closer to being singular as the 

number of trial solutions is increased. Therefore the method would

give erroneous results.
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The algorithms to form the trial solutions for RCDP are as 

follows. Let

A*X = F (62) 

be a system of n equations and n unknowns. To calculate the trial 

solution due to the boundary conditions set

G(i,m) = 0 i=l,...,m-1 (I)

then

G(i+m-l,m) = F(i)/A(i,i+m—I) 
i+m-2

- Z  A(i,j)*G(j,m)/A(i,i+m-1) (2)
J=I

i=l,...,n-m+1

To calculate the coefficient matrix trial solution set

G(i,i) = I i=l,...,m-1 (3)

G(j,i) = 0 j=l,...,m-1 , j /= i , i=l, —  ,m-1 (4)

then

i+m—2
G(i+m-1,k)= - ^  A(i,j)*G(j,k)/A(i,i+m-1) (5)

J=I

i=l,...,n-m+1 , k=l,...,m-l . (6)

The algorithms are written in general form, although for a 

tridiagonal system m is equal to two. A comparision of RCDP with an 

existing technique, Gaussian-Elimination [5], were made to determine 

the validity of the method. An illustrative problem is solved and 

included in Appendix D.

The four one-dimensional problems stated in Chapter IV pages 11 

and 12 are to be solved by each method. A number of different mesh 

sizes were chosen to obtain results for small to large equation sets.
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The results of the ECDP and the Gaussian-Elim!nation methods for 

various numbers of equations are shown in the following eight tables. 

Comparisons are made for each problem on a graph of execution time 

versus average percent error.

The results of the RCDP method and the results of the Gaussian-

Elimination method show that at larger mesh sizes the two methods are

comparable. As the mesh size gets smaller, or larger equation sets,

the RCDP method produces accurate results in less time than the

Gaussian-Elimination method. - This is due to the number of calculations

performed by each method. The Gaussian-Elimination method requires n
2 8calculations to produce a solution, and the RCDP requires n ' 

calculation to produce a solution.

In problem 4 the graph Figure 12 shows that the RCDP method 

produces much more accurate results than the Gaussian-Elimination

method in less time.
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Table 13. Results of RCDP for the Ordinary Differential Equation,
with Derivative Boundary Conditions, for Various Numbers
of Equations.

NUMBER USER
OF AVERAGE % EXECUTION

EQUATIONS ERROR TIME (SEC)

11 .3099 .18

21 .0772 .30

51 .0123 .80

101 .0031 2.20

201 .0008 7.53

Table 14. Results of Gaussian-Elimination for the Ordinary Differential 
Equation, with Derivative Boundary Conditions, for Various 
Numbers of Equations.

NUMBER USER
OF AVERAGE % EXECUTION

EQUATIONS ERROR TIME (SEC)

11 .3099 .16

21 .0772 .30

51 .0123 1.53

101 .0031 8.94

201 .0008 66.02
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Figure 9. User Execution Time Versus Average Percent Error for RCDP Versus Gaussian-
Elimination of I-D Ordinary Differential Equation Problem I, Derivative
Boundary Conditions.
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Table 15. Results of RCDP for the Ordinary Differential Equation,
with Composite Boundary Conditions, for Various Numbers
of Equations.

NUMBER USER
OF AVERAGE % EXECUTION

EQUATIONS ERROR TIME (SEC)

11 .1246 .17

21 .0318 .29

51 .0052 .80

101 .0013 2.19

201 .0003 7.40

Table 16. Results of Gaussian-Elimination for the Ordinary Differential 
Equation, with Composite Boundary Conditions, for Various 
Numbers of Equations.

NUMBER
OF

EQUATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

11 .1246 .16

21 .0318 .30

51 .0052 1.53

101 .0013 8.86

201 .0003 65.39



AV
ER

AG
E 

% 
ER

RO
R

A  Gaussian-Elimination

□  RCDP Method

USER EXECUTION TIME(SEC)

Figure 10. User Execution Time Versus Average Percent Error of RCDP Versus Gaussian-
Elimination for I-D Ordinary Differential Equation Problem 2, Composite
Boundary Conditions.
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Table 17. Results of RCDP for the Ordinary Differential Equation,
with Mixed Boundary Conditions, for Various Numbers of
Equations.

NUMBER
OF

EQUATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

10 .7485 .17

20 .1857 .28

50 .0296 .77

100 .0074 2.18

200 .0018 7.59

Table 18. Results of Gaussian-Elimination for the Ordinary Differential 
Equation, with Mixed Boundary Conditions, for Various Numbers 
of Equations.

NUMBER
OF

EQUATIONS
AVERAGE % 

ERROR

USER
EXECUTION 
TIME (SEC)

10 .7485 .15

20 .1857 .28

50 .0296 1.46

100 .0074 8.77

200 .0018 67.00
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Figure 11. User Execution Time Versus Average Percent Error for RCDP Versus Gaussian-
Elimination of I-D Ordinary Differential Equation Problem I, Mixed
Boundary Conditions.
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Table 19. Results of RCDP for the Ordinary Differential Equation,
with Dirichlet Boundary Conditions, for Various Numbers
of Equations.

NUMBER USER
OF AVERAGE % EXECUTION

EQUATIONS ERROR TIME (SEC)

9 2.6465 .15

19 5.9274 .26

49 7.2303 .74

99 4.4752 2.13

199 .3946 7.28

Table 20. Results of Gaussian-Elimination for the Ordinary Differential 
Equation, with Dirichlet Boundary Conditions, for Various 
Numbers of Equations.

NUMBER USER
OF AVERAGE % EXECUTION

EQUATION ERROR TIME (SEC)

9 19.0485 .14

19 94.2719 .26

49 123.7314 1.37

99 62.9538 8.38

199 27.2497 63.46
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Figure 12. User Execution Time Versus Average Percent Error of RCDP Versus Gaussian-
Elimination for I-D Ordinary Differential Equation Problem 4, Dirichlet
Boundary Conditions
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CHAPTER VI 

CONCLUSIONS

The results show that the RCIP method is an excellent solution 

routine for linear equation sets. The RCIP method proved to be most 

useful on problems with complicated boundary conditions. The first two 

I-D problems having mixed and composite boundary conditions were solved 

by the RCIP method. The SOR method however, did not produce a 

solution. Conclusion, try the RCIP method when convergence problems 

are encountered. The RCIP method and SOR method with optimum over­

relaxation factor solution produces comparable results for the 2-D and 

3-D steady-state problems. If the optimum SOR factor is not known then 

a trial and error search must be accomplished to determine the optimum 

relaxation factor. The RCIP method does not require a search for a 

optimum number of trial solutions, choosing any number of trial 

solutions, except one, results in fast accurate solutions. In the 

solution to the transient problem RCIP has some definite advantages 

over ADEP, which has the ablity to operate with larger time steps and 

rapid convergence of the RCIP method. The number of trial solutions to 

pick if a single solution attempt is sought is six trial solutions. 

This number' of trial solutions produced excellent results.

,i
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The RGDP method and Gaussian-Elimination are comparable methods 

for the solution of small equation sets. The RCDP has an advantage of 

producing accurate results much faster than the Gaussian-Elimination 

routine for equation sets larger than 40.
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APPENDIX A

ILLUSTRATIVE EXAMPLE OF RCIP
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Consider the following example.

1 1 0 rH-i C 2I

I 2 0

O

t-
M , L  x3 3 L i .

For an initial estimate select
IT Ol

G(0,I) = O and G (0,2) = I
O

• .IJ

thus n=3 and m=2. Then equation (3) becomes

X1q Gr(Ojl) 4" (%2 G(0,2) —z (&2

and

A X 0 - F

1 1 0  

1 2  0 

0 0 1

Oi + ©2 — 2

Oj + 202 _ 3 

O2 - 1

<AX0-F, AXq -F> = (a1+a2-2)2 + (a1+2a2-3)2 + (O2-I)2 

which is equal to the V 0 (a^,a2) in equation (4). Forming the partial 

derivatives according to equation (5) yields

av0
—  = 2c^ + 3o2 - 5
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and

av0
—  = «2 + ^a2 “ 3 .
9a2

Thus

dV0 9V0
—  = O and —  = O

Sa2

yeilds the system

2a  ̂ + Sa2 = 5 

a^ + 202 = 3

with the solution

a^ = I , a2 = I

That is (a(0,l),a(0,2)) = (1,1) and thus

f
X0 = G(0,1) + G(0,2) = / I

For the second iteration, equation (7) becomes

G(l,I) = Xr

select arbitrarily

G(l,2)

Therefore following equations (8)-(12) we have
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X1 = O1GCL,!) + o2G(l,2)

O1 + o2

O1 + 2o 2 

O1 + 2o2

AX1-F

2o1 + 3o2 — 2 

So1 + So2 _ 3 

O1 + 2o 2 — I

^aI'a2  ̂ ~ ^AX1-FiAX1-F>

(2a1 + 3o2 - 2)^ + (Sa1 + So2 - 3)^ 
+(O1 + 2a2 — I)^ ,

14a1 + 23O2 -  14

23a1 + 3 Sa2 -  23 ,

and the equations to be solved are

with solution

14o1 + 23o2 = 14 

23O1 + 3 Sq2 = 23

O1 = I , o2 = O .

Thus
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the algorithm terminates with the solution

XI
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APPENDIX B

SOLUTION OF A SIMPLE BOUNDARY VALUE PROBLEM USING RGIP
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The problem is as follows

with

d2u
U + X 0 on 0 < x < I ,

u(0) = 0 and u(I) = 0 , (Uexact = x - sinh(x)/sinh(I)) . 

Use a central difference approximation, and a step size of 

obtain the following equation set to be solved,

-201 100 0 . . . .  0 
100 -201 100 . . . .  0

0 0 0 . . .  100 -201

ITERATION I

We have n = 9 and pick m = 3.

For the initial estimate a constant value

r -.088 
/ -.131 
I -.139 
) -.142 
< -.174 
) -.257 
[ -.272 
I -.207 
\-.103

V0 = .849

Avg. % error = 4.763 

Uj = .0695 

»2 = -.0663 

a3 = .0483
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ITERATION 2

G(l,I)

^O 193s /.oo4iSn
Z ^
-.000864

.0326 .00385 -.00127

.0429 .00303 -.00122

.0499 .00209 ) -.000544

.0530 >, G(l,2) =, .00105 \, G d , 3) =S .00079

.0520 \ -.000237 .00218

.0450 -.00361 .00260

.0330 -.00691 .00204
IxOlSSy -.00604 . X. 00102/

V1 = .00612 

Avg. % error = 1.218

Ct1 = 1.04 

a2 = -1.01 
«3 = 1.28

ITERATION 3

At this iteration the

V2 = .0000873

and

Avg. % error = .399 .

ITERATION 5

At this iteration the

V5 = .000000000722

and the

Avg. % error = .0762



(71)

The method has converged to the specified limit that the variance be 

less than or equal to .00000001. The solution to the problem is as 

follows:

X5

^01475N'
.02866
.04085
.05044

= <(.05655 >  . 
.05822 
.05447 
.04426 
^02650y



APPENDIX C

FLOW CHART OF RCIP COMPUTER.PROGRAM
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START

DETERMINE 
EQUATION SET

INPUT
INITIAL ESTIMATE

DETERMINE 
TRIAL SOLUTIONS

DETERMINE 
ERROR MATRIX

TIME STEP 
DETERMINE NEW 

F MATRIXSOLVE FOR WEIGHTING 
COEFFICIENTS

OBTAIN APPROX. 
SOLUTION

DETERMINE 
VARIANCE V

TRANSIENT 
ONLY __

SOLUTIONV A R I A N C E  
S V  <= E / /

E = CONVERGENCE LIMIT
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APPENDIX D

SOLUTION OF A SIMPLE BOUNDARY VALUE PROBLEM USING RCDP
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The same problem solved in Appendix B is solved here using the 

RCDP method. The problem is as follows 

d2u
— - - u + x = 0 on 0 < x < I ,
dx2

with
u(0) = 0 and u(l) = 0 , (Ue2act = x - sinh(x)/sinh(I)).

The coefficient trial solution is

and the boundary condition trial solution is

0.0000’ 
- 0.0010 
-0.0040 

- 0.0101 
-0.0202 
-0.0356 
-0.0573 
-0.0866 
1-0.1247

The weighting coefficients are

U1 = 0.0147

«2 = 1.00 ,

and the variance and average percent error are

Variance = 0.22E—32

Average % Error =0.0756
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The solution is

ui

0.0148X 
0.0287 V 
0.0408j 
0.0505 / 
0.0566\ 
0.OSSlC 
0.0545 \ 
0.0443 J 
0.0265/
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