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ABSTRACT

An iterative method for solving simultaneous linear equations is
considered. Previously, the trial solution generation routine depended
on knowledge of the physical system. A method is introduced to
generate the trial solutions based on the system of equations. The new
method is used to solve several differential equations with various
boundary conditions, so as to show that the method is independent from
the physical system. Examples of two steady—state problems and a
transient problem, with 1000 unknowns, demonstrate the performance as
compared to existing techniques. Results indicate that the method is
superior in cases where the boundary conditions are more complicated,
and the method is comparable in all other cases.
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CHAPTER I
INTRODUCTION

Many numerical methods have been developed to accurately solve a
large system of simultaneous equations. A method is presented here
that has the possibility of being faster and more accurate than these
methods.

The Reduced Coordinate Iterative Procedure (RCIP)[1] uses a linear
combination of trial solutions, with each trial solution having‘an
unknown weighting coefficient. Each weighfing coefficient is deter-
mined by minimizing an error function. This minimizing process pro-—
duces a smaller set of equations which can be solved directly for these
weighting coefficients. Therefore, in solving a large set of equa-
tions, the RCIP method reduces the number of equations to be solved;

The method of least squares can be related'to the RCIP method,
because of the minimization of the squared résidual in the RCIP
method.[3] The least squares method fihds the equation of a curve that
passes through scattered points. This curve is found so that the sum
of the square distances from each point to the curve is a minimum. In
the RCIP method the sum of the squares of the resid#éls from the
equation set, the variance, is minimized. The least squares meth;d is
used for curve fitting and not for the solution of simultaneous

equations as RCIP is.
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Another method that RCIP is related to is the Conjugate Direction
Method [4,8]. The RCIP and Conjugate Direction methods both use the
minimization of an error function in the solution of the'problem, The
Conjugate Direction Method minimizes the error along ortﬁogonal
difections. The Conjugate Direction Method will converge in less
iterations than there are unknowns. The methods have been shoﬁn to be
different [1].

To evaluate the performance of the RCIP method, two existing
techniques were used: The first was a Gauss—Seidel iterative scheme
using successive over—relaxation (SOR) [5], and the second was the
Alternating Direction Explicit Procedure (ADEP)[6]. Both are excellent
methods for comparation, because of their speed of convergence and
their accuracy.

The RCIP method previously has had a systematic procedure for the
generation of trial solutions. However, the trial solution generation
was dependent on knowledge of the physical system which the equation
represented. The trial solution generation should be independent of the
knowledge of the physical system.

It is the purpose of this paper to present a trial solution
generation scheme that is independent of the knowledge of the physical
system while continuing to produce rapid convergence and be competitive

with existing methods.




(3)

CHAPTER I
DESCRIPTION OF THE METHOD

The RCIP method uses a linear combination of trial solution vec—
tors with each trial solution having an unknown scalar weighting co-—
efficient. Thke weighfing coefficients are obtained by solving a re-—
duced set of equations which are obtained by minimizing the variance.
The reduced set is solved using an exact or direct method. The trial
solutions are different at each iteration and the iterative process
continues u#til the desired convergence is reached [2]. The
formulation of RCIP proceeds as follows:

Let
AX=F ' (1)
be a system  of n equations in n unknowns. Initially choose m vectors
(m is the number of trial solutioms, G(k,m)y n in length, the subscript
0 indicates the first iteration)
. G(k,1)0rG(k,2)0,.".,G(k,m) 0’ - k=1,...,n (2)
where m { n, and set V
m .
Xo = Z oy G(k,j)g | k=1,...,n - (3)
i=1 ‘
where fhe scalars (al,az,.".,am) are to be determined.
Let

. 5 _ 112 ’
Volags...oa )=<AX(~F,AX(~F>=| A% -F1]°, | @




- (4)
be the inner product and the square of the norm of’the residual

(Ry=AXy~F), respectively. Find the solution (ao’lh.“,ao’m) to the

system
BVO . A
—_— = 0 p=1,...,m. (5)
aap
Designate
VO=V(GO,1,...,GO,m) (6)
and let
m ,
X(1,1)=;E ag, j G(k,j)g k=1,...,n. (7
j=1 ' ‘
Then
Vl(al,...,am)=“AX1"F“2 . (8)
solve the system
avl ’
- = 0 ' P=1:---,m 2 . (9)
aap

and if (al,l’”"al,m) is the solution, designate

V1=V1(a1g1,...,a1,m) ' . : (10)
and let :
m
1:(2,1)=_z1 ag; 6(k,3)y “1,....n . (11)
J= .

At the ith stage,

m
X(i:1)= Zai-l;j G(k,j)i_l k=1,....,,n . (12)
j=1 = "

Select vectors G(k,Z)i,.”,G(k,m)i, and let

m ’ -
X, = 2 a; 6(k,j); k=1,...,n . (13)
j=




(5)
" Then

Vi(al, Y -,am)":‘l IAXi_F' IZ -
Again solve the system

—T =90 =1,..,m.

If this solution is (ai,l""’ai,m)’ thep

Vi = Yi(ai’lr. . .,ai,m)

The algorithm continues with

B

X(i+1,1)=  a; 5 6(k,j); k=1,...,n
j=1 )

a selection of G(k;z)i+1,.",G(k,m)i+1 )
n | ,
Xi+1=.21 aj G(k’j)i+1 ' k=1,...,n
J= )

and a subsequent minimization of

‘ _ 2
Vi_l_l(al}...,am):llAXi_l_l FII .

The solution of the original system is derived from

X = Limg_y,6(i,1).

2

. (14)

(15)

(16)

17

(18)

(19)

(20)

To illustrate the theory of the above section an example problem is

presented in Appendix A.
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CHAPTER III
DESCRIPTION OF NEW TRIAL SOLUTION GENERATION

Previously the trial solution generation process was based on
knowledge of the physical sys£em represented. The new trial solution
selection process successfully makes'the RCIP method independent of the
knowledge of the physical system. The new method utilizes onIf the
system of equations and information resulting from othgx trial
solutions to obtain sets of triai solutiong.

At the beginning of the first iteration, an initial trial solution
set is selected. On successive iterations the trial solution set is
composed of the last best solution, and a sequence of special Gauss—
Seidel solutions. Equations to be solved by Gauss-Seidél for trial
solutions are formed from the same coefficient matrix as the original
problem and a new right hand side. For the second trial solution the
new right hand side is the residual from the equation set using the
last best solution. The initial guess used for the Gauss-Seidel
solution is zero. Three Gauss—Seidel iterations are performed to
obtain trial solution two. The third trial solution is similar to
trial solution two. The difference is that another new\right hand side
is formed from the fesidual of the second trial solution. Again a
Gauss—Seidel solution scheme is used to solve for the solution to this

new set. An initial guess of zero is used, with three iterations
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N
performed. The rest of the trial solutions. are calculated in the same
fashion until m number of trial solutions are reached. An example, of m
equal to three trial solutions, is shown below.
Let

A*X=E _ (él)
be an nxn-system of equations. For the first ite;afion the first trial
solution is

G(i,1) = initial estimate ~i=1,...,n. (22)
Now find the residual vector for the first trial solution (or T.S. 1)

Ri(T.S. 1) = A*G(i,1) - F, | i=1l,...,n. (23)
Form the new equation set for trial solution two

A*G(i,2) = Ri(T.S. 1) . i=1,...,n. (24)

Solve using Gauss—Seidel with an initial guess of zero. Perform tﬁree
iterations to obtain G(i,2). Now.find the residual vector for the
second trial solution

R, (T.S. 2)= A%*G(i,2) - R,(T.S. 1) i=1,...,n.  (25)
Form the new equation set for trial solution three

A*G(4,3) = Ri(T.S. 2) i=i,...,n. (26)
Solve this set using Gauss—Seidel with an initial guess of zero.
Perform three iterations to obtain G(i,3). The three trial solutions
for the first iteration have been found. For the second through the
nth iterations the only change is that the first trial solution is the

last best solution.
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The basis for this trial solution selection process is based on

the following:

A*6(i,1) ~ F - R;(T.S5. 1) = 0 (27a)
A*6(i,2) - R;(T.S. 1) - R,(T.8. 2) =0 . (27b)
A*6(i,3) - R;(T.S. 2) =0 (27¢)

subtract (27¢) from (27b)

A*(6(i,2) - 6(i,3)) - R;(T.8. 1) =0 (28)
subtract (28) from (27a)

A*(G(i,1) ;'G(i,Z) + G(i;3)) -F=20. : | (29)
Noté, if G(i,3) is an exact solution to equation (27¢) and

X, = G(i,l) - G(i,2) + G(i,3). i (30)

then Xi is an exact solution to equation (21). Note that G(i,3) is

approximate therefore, X. is approximate.

1

The numerical algorithm for the generation of the trial solutions

is as follows. The first trial solution for the first iteration is
G(i,1) = initial estimate i=l,...,n. (31)
The first trial solution for the second through the nth iterations is

G(i,1) = X, i=1,...,n. (32)




(9)

The second through the mth trial solution is calculated as follows

R; = F, i=1,...,n (33)
i=1,...,n  kk=2,m p=1,..,3" | (34a)
R, (kk) = (A(i,k)*G(k,kk~1)) - R;(kk-1) : (34p)
G(i,kk) = 0 (34c)

6(i,kk)? = R, (kk) / A(4,1)
n (34d)
k=1

The above algorithms will calculate m number of trial solutions. An

illustrative problem is solved and included in A_ppendix B.
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CHAPTER IV
APPLICATIONS AND RESULTS

This chapter is devoted to the solution of problems by the RCIP
method and a comparison with some of the existing techniques. In
particular the SOR and ADEP methods are compared with the RCIP method.
The RCIP method is intended to solve linear systems of algebraic
equations. Therefore, to solve the following differential equations a
finite difference technique is used to model each differential equation
as a system of algebraic equatiomns.

In each problem the convergence limit ﬁsed is always that the
variance be less than or equal to some convergence criterion. The
variance of the equation set is defined as the sum of the residuals
squared, for all the equations. When an_exapt solution is‘Enown an
average percent error can be obtained which is defined as the average
of the differences between the exact solution and the approximate

solution divided by the exact solution.

PROBLEMS ONE THROUGH FOUR

The following four ordinary differential equations are solved to

show the generality of the new method. Various boundary conditions are
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employed to illustrate a spectrum of problems. Problem one follows:
Solve
d2y
dx

for the region 0 <= x <= /2 with the derivative boundary conditions

yf(O) =0 , y'(n/2) =1 . § (35a)

To illustrate the finite difference technique the above governing -

differential equation and boundary conditions will be modeléd in
algebraic form. The central difference approximation of the second
order derivative is

2
4y Via1 7273 Y Vi

—_ = (36a)
dx? Ax?
equation (35) becomes
Vi1 =293 ¥ V51
+ -yi = O . (36b)

sz
The central difference approximation of the first order derivative is

dy  Vi41 " Vi1

= e : (36¢c)
dx 2Ax

equations (35a) become
¥i41¢0) = y;4(0) : (364)
Via1(W/2) = y;_1(n/2) = 2Ax . ' (36¢)

The above finite difference model approximates the differential

equation as a system of linear equations.
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The exact solution for problem one is
Yexact ~ — €08 x . (36£)
The finite difference model for problem 1 is used to illustrate

the SOR algorithm used. The algorithm follows:

Yi+1(r+1) + Yi_l(r+1)
: (37)

Yi(r+1) = (1—&)*Yi(r) + A % >
2 - AX

the variable r indicates the previous iteration, the value r+i1
igdicates the present iteration, and the subscript i indicates the
nodal point. The variable A is the SOR factor, which is between 1 and
2 for over relaxation aﬁd between O and 1 fqr under relaxation. The
value of A=1.0 is just the Gauss—Seidel routine. The remaining
problems were modeled in the same manner as problem 1. And the SOR
factor used in the following problems was the same as above. [5]
Problem two follows: Solve |
dzy ‘
— 4+ y=0 (38)
dx2
for the region 0 <= x <= n/2 with the composite boundary conditions
y'(0) + y(0) = 1 | - (39)
y'(n/2) - y(n/2) = -1 . ' (40)
The exact solution for equations (38-40) is ,
Yeraor = (SIN x + COS x)/2 . | | 41)

Problem three follows: Solve

9 d2y dy 3
X7 —— - 2x —— + 2y = x
dxz dx

(42)
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for the region 1 (= x {= 2 with the mixed boundary conditions
y(1) =0 , y'(2) =0. (43)
The exact solution for equations (42-43) is

4 5.5 1 .
=-x - — x> + -x° . , (44)

3 2

Yexact

Problem four follows: Solve

dzy dy
——— - 6x — -4y =0 (45)

2
dx2 , dx

(1-x
for the region‘O ¢= x <= 0.5 with the Dirichlet boundary conditions
y(0) = -4.5 , y(0.5) =2 . _ (46)
- The exact solution for equations (45-46) is
27 27

= — (3x-x2/(1-x2)2) — (1/(1-x
6 6

2,2,
Yexzact ) . (47)

Standard finite difference techniques are used to algebraically
approximate the above problems. In ea;h of the first four'probleﬁs a
nodal network is chosen so that fhere is 50 spaces for each region,
which requires a d;fferent number of equations for each problem. The
different number of equations resulted from the different boundary
conditions. A'uniform initial estimate of 0.5 is chosen to start the
methods.

In problem one the cénvergence limit was that the variance in the
51 equation set be less than or equal to 0.1. The results of the RCIP
method for various numbers of trial solutions are shown in Table 1.
The SOR method, with over and then under relaxation factors, did not

obtain the convergence criterion in 10,000 iterations with a user




Table 1. Results of 1-D Ordinary Differential Equation Problem 1, with Derivative
Boundary Conditions, for Various Numbers of Trial Solutions.

NUMBER NUMBER USER
OF TRIAL OF AVERAGE % EXECUTION
SOLUTIONS ITERATIONS ERROR TIME (SEC)
2,3,4 DID NOT CONVERGE AT 100 ITERATIONS.
> 11 0.3208 12:97
6 11 1.1182 15.59
7 8 1.1586 13.40 o
=
8 6 0.7707 11.63
9 5 0.2624 11.13

The SOR Method Did Not Converge at 10,000 Iterations.
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execution time of 660 seconds. Therefore, the RCIP method is superior
to SOR in that RCIP obtains a solution and SOR does not. When the
number of trial solutions was less than 5 the convergence criterion was
not obtained with the RCIP method, it did not converge at 100 itera—
tions with a user time of 240 seconds. This is because the smaller
number of trial solutions does not contain enough information to obtain
rapid convergence.

Problem 2 is very similar to problem 1. The results of the
solution of 51 equations are shown in Table 2. VWhen  the number of
trial solutions is. less than 8 the convergence criterion was not
obtained with the RCIP method , this was because of the smaller number
of trial solutions not containing enough information to obtain rapid
convergence. The trial solutions 2-7 did not converge at 100 iterations
with a time of approximately 240 seconds. The SOR method did not
obtain the convergence criterion at 10,000 iterations with a time of
660 seconds. Several relagation factors were utiliied,.over and then.
under relaxation, with no convergence being obtained. The RCIP method
again, produces a solution ;nd‘SOR does not. The 1limit éf convergence
for this problem is that the variance be lesg than or equal tq 0.001.

Problem 3 was solved and the results are shown in Table 3 for the
RCIP method and in Table 4 for the SOR method. A graph of the user
execution time versus the number of trial solutions for the RCIP
method, and ovex relagation factor for the SOR method is included (Fig.
1). Clearly, as the graph shows, the convergence to a solutiomn

requires less time for the RCIP method than for the SOR method. The




Table 2. Results of 1-D Ordinary Differential Equation Problem 2, with Composite Boundary
Conditions, for Various Numbers of Trial Solutions.

NUMBER NUMBER USER
OF TRIAL OF AVERAGE % EXECUTION
SOLUTIONS ITERATIONS ERROR TIME (SEC)
2-7 DID NOT CONVERGE AT 100 ITERATIONS.
8 22 .2306 41.29
9 10 : .1739 21.69
10 4 .2227 9.93

11 4 .1333 10.95

The SOR Method did not Converge at 10,000 Iterations.

(9T)




Table 3. Results of 1-D Ordinary Differential Equation Problem 3, with Mixed
Boundary Conditions, for Various Numbers of Trial Solutions.

NUMBER NUMBER ) USER
OF TRIAL OF AVERAGE % EXECUTION
SOLUTIONS ITERATIONS ERROR " TIME (SEC)
2 DID NOT CONVERGE AT 100 ITERATIONS.
4 20 .0761 17.71
6 8 .06.86 10.99
8 6 .0088 11.19
10 5 .0181 11.84 -

12 4 .0324 11.54

(LT)




Table 4. Results of 1-D Ordinary Differential Equation Problem 3, with Mixed

Boundary Conditions, for Various SOR Factors.

NUMBER USER

SOR OF AVERAGE % EXECUTION

~ FACTORS ITERATIONS ERROR TIME (SEC)
1.0-1.3 DID NOT CONVERGE AT 1000 ITERATIONS.

1.35 837 L1216 52.21

1.4 347 .1594 21.92

1.5 648 .0629 40.50

1.6 680 0634 42.52

(8T)
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SOR FACTOR

.35 1.4 1.45 2 ks 1595 1.6
60 T T T T T

2 ,

= \

g \

>

- 30 [0 RCIP METHOD
(=]

= A SOR METHOD
%

&
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=

0 | 1 1 ; ¢ i

NUMBER OF TRIAL SOLUTIONS

Figure 1. Trial Solutions and Different Relaxation Factors Versus User

Execution Time for 1-D Ordinary Differential Equation Problem
3, with Mixed Boundary Conditions
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graph of the trial solutions versus the execution time for the RCIP
method is flat indicating about the same exe?ution time‘for:any number
of trial solutions, where the gfaph of fhe SOR factor versus exe;ution
time for the SOR method has a dip indicating the importancg of the
optimum SOR factor. The solution to problem 3 is for 50 equations and
a variance less .than or equal to 0.001.

Pfoblem 4 was solved and the results are found in Table 5 for the
RCIP method and Table 6 fof the SOR method. A graph of the user
execution time versus the nﬁmber of trial solutions for the RCIP
method, and the over relaxation factors for the SOR method is included
(Fig. 2). In Figure 2, the SOR and the RCIP method both have approxi-
mately the same results. The RCIP method was faster, by approximately
10 seconds, in the execution time than the SOR method, until the SOR
method approaches its optimum relaxation factor where the SOR method
was faster. For this problem the two methods are comparable. The
methods solved 49 equations for a variénce less than or equal to 0.001.
PROBLEM FIVE

Laplace’s equation was solved in a rectanglar Fegion of length omne
in the y direction and two in the x direction. Each side of the
rectangle is maintained at a different.temperature.

The problem is formally stated as follows: Solve

—_— G ——— = 0 (48)

for the region

0¢=x<=2,0<=y<=1 (49)




Table 5. Results of 1-D Ordinary Differential Equations Problem 4, with D1r1ch1et
Boundary Conditions, for Various Numbers of Trial Solutions.

NUMBER NUMBER - ~° USER
OF TRIAL OF AVERAGE % . - EXECUTION
SOLUTIONS ITERATIONS ERROR TIME (SEC)
2-3 DID NOT CONVERGE AT 100 ITERATIONS.
4 51 7.5369 42.83
6 20 7.5286 25.89
8 10 7.5297 17.77
10 6 7.5252 13.58

11 5 7.5354 12.58

(12)




Table 6 Results of 1-D Ordinary. D1fferent1a1 Equation Problem 4, with Dirichlet
Boundary Conditions, for Various SOR Factors.

NUMBER USER

SOR OF AVERAGE % EXECUTION
FACTORS ITERATIONS ERROR TIME (SEC)
1.0-1.3 DID NOT CONVERGE AT 1000 ITERATIONS.

1.4 925 7.5231 55.71

i.5 709 7.5234 42.78

1.6 517 7.5237 31.25

1.7 342 7.5248 20.84

1.8 181 7.5463 11.22

1.9 148 7.5367 9.23

(22)
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with the boundary conditions

T(x,0) = 200 (50a)
T(x,2) = 400 (50b)
T(0,y) = 300 | : (51a)
T(1,y) = 100 . (51b)

A standard finite difference technique was used to approximate the
equation in (48). A nodal netﬁork of 7 nodes in the y direction and 15
nodes in the x di#ection, was selected. This results in Ax and Ay being
0.125.

All solution attempts began with an initial estimate of a uniform
temperature distribution;equal to unity, the results are compared to
the analytical solution [7]. The con;ergénce limit for the solution of
the 105 equations was set at the variance being less than or equal to
0.000001.  Data from the solutions using different numbers of trial
solutions is presented in Table 7 for the RCIP method, and data from
the solutions using different relaxation factors is presented in Table
8 for the SOR method.

The results for the RCIP method are compared to the results of the
SOR1hethod.A graph of execution time versus trial solutions for the
RCIP method, and SOR factor for the SOR method will indicate fhe effec—
tiveness of the RCIP method in speed and accuracy.(Fig. 3)

Figure 3 indicates that the SOR method has a stea@y decrease iﬂ
execution time for each successive SOR factor until the.optimum value

of 1.53 is reached. After the optimum is reached an increase is




Table 7. 2-B Laplace’s Equation Results for Various Numbers of Trial Solutions

NUMBER NUMBER . USER
OF TRIAL OF AVERAGE % EXECUTION
SOLUTIONS ITERATTONS ERROR TIME (MIN)

2 23 7.0529 1.3430
3 9 . 7:0528 .9422
4 : 6 7.0527 .8967
5 4 - 7.0528 .7912
6 3 7.0527 .1387

7 3 -~ 7.0527 .8490

(¢2)




Table 8. 2-D Laplace’'s Equation Results for Various SOR Factors

NUMBER USER
SOR OF AVERAGE % . EXECUTION
FACTOR ITERATIONS ERROR TIME (MIN)
1.0 129 7.0529 1.6250
(Gauss—Seidel) :
1.2 84 7.0529 1.0895
1.4 51 7.0529 .6958
1.5 35 7.0528 .5023
1.6 35 7.0527 .5010
1.7 48 7.0527 .6588
1.8 75 7.0527 .9808

(97)
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observed. In the RCIP method there is a large decrease in the
execution time from Z‘trial solutions to‘3 trial solutions, but
tﬁereafter until 7 trial solutions the execution time decreases by only
9%. Tﬁe decrease in execution time from 3 to 4 trial solutiomns is only
0.046 minutes, where the average decrease from 3 to 6 trial solutions
is 0.068 minutes per trial solution. This smail decrease is due to the
next to last iterations varianée being just above the convergence limit
this causes the method to perform one more iteration with a 98%
decrease in the variance, 0.2X10—9, below the convergence limit.

The SOR methods solution had a smaller execution time at its

optimum value of 1.53 than any of the solutions of the RCIP method.

 The RCIP method is flat, only 9% difference from 3 to 6 trial

solutions, in its solutions for different numbers of trial solutions.
This shows that any choice of trial solufions, with the possible
exception of 2, is going to.take approximately the same amount of time
to obtain a solution. Where the SOR method has a large difference , 69%
from Gauss—Seidei to the optimum SOR factor, in its execution time. A
accurate solution with acceptable execution time is only obtained close
to the optimum value.

PROBLEM SIX

The elliptical partial differential equation éo be solved is

a2t a%r 83T

——— e ——— = ' (52)
6x2 8y2 E)z'2 '

where T, x, y, and z are non—~dimensional variables for temperature and

three spatial coordinates. The geometry is a cube of face length 0.4
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located concent;ically in a large cube of face length one. The inner

cube is maintained at a temperature of unity while the surface of the

‘outer cube is set at zero temperature. By using the symmetry of the

problem only a sixteenth of the composite cube need be considered.
(Fig. 4)

The problem is formally stated as: Solve

a?r  o’r o’
ax2  ay®  az?
for the region

0<=x<¢<=2z , 0<K=y<K=1 , 0<K=12z<(K=1 , (54)
with the boundary conditions

0 ' (55a)

T(x,y,1) =

T(x,1,z) =0 N (55b)
T(x,y,0.4) =1 (55¢)
T(x,0.4,z) =1 (554d)
aT oT

-—(z,y,2z) =0 , -—(x,0,z) =0 (55e)
ox oy

aT AT

—(z,y,z) =0 , —(0,y,z) =0 . (55f)
0z . 0x

A standard finite difference technigque waé used to approximate the
second order derivatives in equation (53). A central difference
approximation was used for the derivatives in equatioﬁs (55e) and
(55f). A nodal network of 10 nodes per side was selected resulting in
10 nodal spaces, therefore, the number of equations is 475 with Ax = Ay

= Az = 0.1.
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Figure 4. Cube-Cube Geometry for 3-D Steady-State Heat Conduction
Problem
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To determine a measure of the accuracy of the solutions, heat
fluxes were calculated for the inner cube surfgces, and for the outer
cube surfaces. To non—dimensionglize these Quantities, they were
divided by the heat flux of concentric spheres with the same boundary
conditions (Ti inner cube, ‘T  outer cube), and radii equal to the face
lengths of the inner (ri) and outer (ro) cubes. The value TZ is the
boundary condition actiﬁg over the area A. The value Tl is the inner
parallel nodal point associated witﬁ T2, with a distance of Ax between
them. This non—dimensional heat flux (g') is as follows

—A(TZ_T].) (ro—ri)

q' = ~= (56)
Ax 4n riro(Ti—To) -

T, =1,T,=0, z; = 4, I°,= 1 (57a)

Ax = .1 , A= .1X.1 (57v)

q’ = . : (58)
) 4 .

Different numbers of trial solutionms, for the RCIP method, were
used to obtain solutions to this problem: An acceptable solution was
reached, with a variance legs than or equal to 0.0000001, for each
trial solution set. The solutions u;ing two or three trial solutioms
wer? slowei to converge than the solutions'using 4, 5, 6, or 7 trial
solutions, which all take approximately thé same aﬁount of time. The
average rate increase from 5 to 7 trial solutioms is 07045 seconds per
trial solution. The increase of 1.51 seconds in execution time from §
to 6 trial solutions is higher than the average rate increase. This is

due to the next to last iterations variance being just above the
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convergence limit. This causes the method to continue with another
iteration. This continuation to the last iteration gives a variance,

10, 100% lower than the convergence limit.

0.1X10~

The results from the RéIP method (Table 9) were compared to the
results obtained by solving the same problem using the SOR method. The
same convergence limit was used as for the RCIP method, variance less
than or equal to 0.0000001, to obtaiﬁ comparable results. Over
relaxation factors ranginé frdm 1.0 (which makes the routine identical
to Gauss—Seidel) to é valﬁe of 1.8 were used‘in the SOR method to
_obtain solutions. The optimum value of the over relaxation factor was
found to be 1.6.

A uniform temperature distribution of 0.5 was used as the initial
estimate in each method. The results from the various SOR runs are
shown in Table 10. The results are also shown on a graph.(Fig.S) of
execution time versus the number of trial solutions in the RCIP method,
and the relaiation factor in.the SOR method. The graph of the results
of various SOR factors anq execution time decreases at am approximate
rate of 1.89 seconds fer 0.1 increase in the SOR facto;. While the
graph of the RCIP methods results decreases at an approximate ?ate of
2.6 seconds per trial solution from 2 to 4 trial solutionms.
Thereafter, the curve is flat with a 2% increase for trial solutioms
4, 5, 6, and‘%.

The two curves cross with the SOR.héving'the smallest execution

time at the optimum. If the optimum SOR factor is known then the SOR

method has a significant advantage. The disadvantage of the SOR method




Table 9. Results for the 3-D Steady—State Heat Conduction Problem, Cube-Cube
Geometry, for Various Numbers of Trial Solutioms.
NUMBER NUMBER HEAT FLUX % DIFFERENCE USER
OF TRIAL OF INNER OUTER IN HEAT EXECUTION
SOLUTIONS ITERATIONS CUBE CUBE BALANCE TIME (SEC)
2 18 .09527 .09530 .03845 12.29
3 7 .09527 .09529 .02601 8.55
4 4 .09527 .09527 .00304 7.09
5 3 .09527 .09529 .01795 7.15
6 3 .095217 .09527 .00110 8.66
7 2 .09527  .09528 .00943 7.24

(gg)




Table 10. Results of the 3-D Steady—State Heat Conduction Problem, Cube-Cube
Geometry, for Various SOR Factors.

NUMBER EEAT FLUX % DIFFERENCE USER

SOR OF INNER  OUTER IN HEAT EXECUTION
FACTOR ITERATIONS CUBE CUBE BALANCE TIME (SEC)

1.0 " 104 .09526  .09531 .05595 16.55

(Gauss—Seidel) '

1.2 69 .09526  .09531 .05081 - 11.44

1.4 44 : .09526  .09530 .03516 7.86

1.5 33 .09527  .09529 .02392 . 6.18

1.6 26 09527  .09527 ©.00129 5.23

(optimum) ' '
1.7 ' 33 . .09527  .09527 .00141 6.19

1.8 51 .09527 .09527 .00073 8.82

(ve)




(35)

SOR FACTOR
0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
| | § 1 i 1 | | 3 )
[0 RCIP METHOD
/A SOR METHOD

1S 15 -
Q
=
75 ]
&
laml
=
3
: 10
3
=
=
[~
=
v
=]

5 =

1 1 I I L 1 L
1 2 3 4 5 6 7 8

NUMBER OF TRIAL SOLUTIONS

Figure 5. Trial Solutions and Different Relaxation Factors Versus User
Execution time for 3-d Steady-State Heat Conduction Problem
Cube-Cube Geometry




(36)

was that a trial and error process must be used to obtain the optimum
value of the relaxation factor. The RCIP method will be more efficient
for the trial solutions 4, 5, 6, and 7, because of the small variation
in the execution times. The choice of 2 or 3 trial solutions was not
as efficient as 4 to 7 trial solutions, but 2 or 3 still producq
excellént results.

PROBLEM SEVEN

The parapolic partial differential equation to ﬁe solved is

aT 82T  a’T  or

e e | (59)
ot 6x2 ayz 6z2
for the cube region 0 {(=x <=1, 0 {(=y <=1, and 0 <= z (=1, where T,
©, X, y, and z are all non-dimensional variables representing

temperature, time, and three spatial coordinates, respectively. The

boundary conditions for (59) are:

T =0 at x=1 or y=1 or z=1 (60a)
oT
— =0 at x=0 (60b)
0x
oT ’
— = 0 at y=0 (60c)
oy
oT
-~ =0 at z=0 (604)
0z

and the initial condition is
T=1att=0 . (61)
The algebraic approximation of the parabolic equation (59) was

accomplished by using the Crank Nicolson method [5], and a central
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difference was used to approximate the first order derivative in (60b-—
60d). The cube geometry is approximated by a nodal network of 10X10X10
nodes which gives 1000 equations and 1000 unknowns. This results in 10
spaces on each face of the cube, with a mesh size of Ax = Ay = Az =
0.1. Results were determined for three elapséd times, t=0.1,.Q.5,‘and
1.0. The effect of using different values of the time increment was
also studied.

The ADEP method was compared to the RCIP method for this préblem.
A uniform temperature distribution, equai to unity, was used as the
initial estimate to start the solution process for both the RCIP and
ADEP methods. Tables 11 and 12, and Figures 6, 7, and 8 illustrate the
relation between the execution time and accurhcy‘of each method.:

A‘value of 4 trial solutions was used to obtain the results shown
in Table 11 for the RCIP method. The number of trial solutions was
chosen from the results of the previous 3-D steady—state problem, in
which 4 trial solutions produced the smallest execution time (7.09
seconds) .

For‘th; elapsed time of t=0;1'rab1e.12 and Fig.6,shows that ADEP
produces an average percent error of more than .26% for’all‘the time
steps except for At=0.01, which proved too large to maintain accuracy.
The average percent er?or increases from .26% to..Zﬂ% as the time step
gets smaller. This increasing error is due to the_la;ge number of

iterations and the error in the algebraic approximation.




Table 11. Results of 3-D Transient Heat Conduction Problem, Cube Geometry,

Using RCIP.
TIME STEP - NUMéER OF ELAPSED AVERAGE % USER EXECUTION

At TIME STEPS  TIME, < ERROR VARTANCE TIME (MIN)
0.02 5 0.1 6.2355 . .1739E-07 .4635
0.0125 8 0.1 .6703 .1978E-10 .6825
0.01 10 0.1 .4398 .8791E-06 .7838
0.005 20 0.1 .2852 .687T6E-09 .8332
0.004 25 0.1 .2811 .4648E~10 1.0180
0.0025 40 0.1 .2808 .8269E-13 1.5627
0.002 50 0.1 .2814 .3033E-14 1.9273
0.025 20 0.5 2.4292 .9586E-10 '1.6240
0.02 25 0.5 .5827 .6116E-06 1.8158
0.0125 .40 0.5 .1233 .1627E-07 2.1403
0.01 50 0.5 .0303 .2478E-08 2.2113
0.005 100 0.5 .1010 .2145E~-11 3.7417
0.004 125 0.5 .1164 =.1476E—12 4.6422
0.002 250 0.5 .1368 .9767E-17 9.2708 -

(8¢)
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1.0

1540.0572

237.1156
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Table 12. Results of 3-D Transient Heat Conduction Problem, Cube Geometry,

Using ADEP.
TIME STEP NUMBER OF ELAPSED AVERAGE % USER EXECUTION
At TIME STEPS TIME, < ERROR TIME (MIN)
0.01 10 0.1 24.2707 1210
0.001 100 0.1 .2672 .3162
0.0005 200 0.1 .2605 .5322
0.0002 500 0.1 .2784 1.1833
0.0001 1000 0.1 .2818 2.2705
0.001 500 0.5 1.2731 1.1302
0.0005 1000 0.5 .4254 2.2125
0.00025 2000 ° 0.5 .2140 4.3562
0.0002 2500 0.5 .1887 5.4307
0.000125 4000 0.5 .1612 8.6435
0.0001 5000 0.5 .1549 10.7778
0.002 500 1.0 . 11.1638 1.1108

(ov)




0.001

0.0005

'0.00025 -

1000
2000

4000

Table 12.

1.0

1.0

1.0

(Continued)

3.4006

1.5261

1.0616

2.1768

4.3140

8.5410

(I¥)




1| A ADEP METHOD
[0 RCIP METHOD
g8 .15F
&
=
B
=
=
~gar
B
O —/X {1 £ gAY
25 L L
0 ! :

1 2
USER EXECUTION TIME(MIN)

Figure 6. User Execution Time Versus Average Percent Error. RCIP Versus ADEP for the
3-D Transient Heat Transfer Problem with an Elapsed Time t=0.1.

(z¥)




1k /A ADEP METHOD
[ RCIP METHOD
e =
(=]
)
=
®
=
=
= S5 - ~
. 2
25 =
—— ] -\
0 1 |
5 10

USER EXECUTION TIME (MIN)

Figure 7. User Execution Time Versus Average Percent Error. RCIP Versus ADEP for the
3-D Transient Heat Transfer Problem with an Elapsed Time t=0.5.




4 - /A ADEP METHOD
O RCIP METHOD
BN o
&
25
®R
3
:
2_'
=
T =
| |
0

> 10
USER EXECUTION TIME(MIN)

Figure 8. User Execution Time Versus Average Percent Error. RCIP Versus ADEP for the
3-D Transient Heat Transfer Problem with an Elapsed Time t=1.0.

(¥¥)




(45)

The graph of the execution time versus accuracy for the RCIP
method (Fig. 6) indicates that when the smallest percent error (0.28%)
was reached an optimum value of the time step had also been reached.
Therefore, further refinement of the time step\wbulq require a 1arge¥
amount of time to produce the same accuracy. The RCIP method was able
to reach the accuracy of the ADEP method, but ADEP was superior in
execution time for a specified accﬁracy over the RCIP method. This is
due to the small elapsed time v=0.1. Because of this small time the
solution process resembles that of the steady—state problem. However,
noting that as the elapsed time is increased larger‘time steps can. be
used. The ability of RCIP to use larger time steps, as compared to the
smaller time steps that ADEP requjres, enables RCIP to obtain the
required accuracy.in less time.

For the elapsed time of ©=0.5, Tables 11, 12 and Figure 7,
indicate that the RCIP method produces more aqéurate_rgsults in 1less
time than the ADEP method. The RCIP method obtained an average percent
error equal to 0.0303% in 2.1403 minutes of execution time, with a time
step of 0.0125 and 40 iterations. The ADEP method reached its best
results (0.1612%) at At=0.000125 and 4000 iteratioms, with an execution
‘time of 8.6435 minutes. The graph, Fig. 7, indicates thaf when the
smallest percent error 0:.0303% occurs the‘RCIP.method,has reached an
optimum time step. The further refinement of the time step produced
poorer accuracy (0.1164%) and larger execution’times (4.6422 minutes).

For the elapsed time of t=1.0, Table 11, 12, and Fig. 8, the graph

of the results of the RCIP method is entirely below the grapﬁ of ADEP's
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results. At each time step the RCIP method is much faster. The use of
the larger time steps results in the RCIP method having the advantages
of less iterations with less erroi, and a faster execution time. If
larger elapsed times are used ADEP will perform numerous iterations,
therefore the ADEP method will be slower than the RCIP method and less
accurate.

All cbmputer runs were}accomplished on the Honeywell CP—6“computer
in double precision. A flow chart of the computér program is inclhded

in Appendix C.
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CHAPTER V
DEVELOPMENT OF RCDP WITH APPLICATION AND RESULTS

Many direct methods have been developed to solve sets of linear
equations. These methods have been restricted to solving small sets of
equations usually leés than 40 [5]. A new method is p;esented here
which could prove to be much faster for the solution of large sets of
tridiagonal equationsf

This new method, called the Reduced Coordinate Direct frocedure
(RCDP), uses two trial solutioms to solve for the wéighting
coefficients in the RCIP method. The trial solutions generated consist
of one trial solution due to the coefficient matrix and omne trial
solution due to the boundary conditions. These two trial solutions
successfully solve the problem in one iteration. An attempt was made
to expand this method to a general routine to solve non-tridiagonal
systems. A problem was discovered with this expansion, For‘non—
tridiagonal syst;ms more than two trial solutions are necessary to
solve the problem. In the development of the extra trial solutions and
the subsequent reduced matrix to solve for the weighting coefficients
the problem was found. When more than two trial solutions is required
the reduced matrix becomes closer and closer to being singular as the
number of trial solutions is increased. Therefore the method would

give erroneous results.
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The algorithms to form the trial solutions for RCDP are as
follows. Let
A*X = F : (62)
be a system of n equations and n unknowns. To calculate the trial-
solution due to the boundary conditions set
6(i,m) =0 i=1,...,m-1 (1)
then
G(i+m~1,m) = F(i)/A(i,i+m-1)
: - itm-2
- 2 A(i,§)*6(j,m)/A(i, i+n—1) (2) .
i=1 \ ,
i=1,...,nm+l

To calculate the coefficient matrix trial solution set

G(i;i) =1 ’ i=1’o-oym_.1 (3)
G(j,i) = 0 j=l,...,m-1, j /=i, i=1,...,m1 (4)
then
: i+m=2 ,
G(itm-1,k)= - > A(i,j)*6(j,k)/A(i,i+m1) (5)
=1
i=1l,...,n~m+1 , k=1,...,m1 . (6)

The algorithms are written in general form, although for a
tridiagénal system m is equal to two. A comparision of RCDP with an
existing technique, Gaussian-Elimination [5], were made to determine
the validity of the me?hod. An illustrative proglem is solvéd and
included in Appendix D. |

The four one~dimensional problems syated in Chaﬁter IV pages 11
and 12 are to be solved by each method. A number of &if%erent mesh

sizes were chosen to obtain results for small to large equation sets.
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The results of the RCDP and the Gaussian~Elimination methods for
various numbers of equations are shown in the follpwing eight tables.
Comparisons are made for eéch problem on a graph of execution time
versus average percent error. |

The results of the RCDP method and the results of the Gaussiaﬁ;
Elimination method show that at larger mesh sizes the two methods are
comparable: As the mesh size gets smaller, or lérger equation sets,
the RCDP method prpduoes accurate results in less time than the
Gaussian—Elimination method. - This is due to the number of calcuiatioﬁs
_performed by each method. The Gaussian—-Elimination metﬁod iequires n3
calculations to ﬁroducé a solution, and the RCDP requires nz'8
calculation to produce a solution.

In problem 4 the graph Figure 12 shows that the RCDP method

produces much more accurate results than the Gaussian—-Elimination

method in less time.
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Table 13. Results of RCDP for the Ordinary Differential Equation,
with Derivative Boundary Conditions, for Various Numbers

of Equations.

NUMBER USER
OF AVERAGE % EXECUTION
EQUATIONS ERROR TIME (SEC)
11 .3099 .18
21 L0772 .30
51 .0123 .80
101 .0031 2.20
201 .0008 7.53

Table 14. Results of Gaussian—-Elimination for the Ordinary Differential
Equation, with Derivative Boundary Conditions, for Various

Numbers of Equations.

NUMBER USER
OF AVERAGE % EXECUTION

EQUATTONS - ERROR TIME (SEC)
11 .3099 .16
21 0772 .30
51 0123 1.53
101 .0031 8.94
201 .0008 66.02
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Table 15. Results of RCDP for the Ordinary Differential Equation,
with Composite Boundary Conditions, for Various Numbers

of Equations.

NUMBER USER
OF AVERAGE % EXECUTION
EQUATIONS ERROR TIME (SEC)
11 .1246 «17
21 .0318 .29
51 .0052 .80
101 .0013 2.19
201 .0003 7.40

Table 16. Results of Gaussian—-Elimination for the Ordinary Differential
Equation, with Composite Boundary Conditions, for Various

Numbers of Equations.

NUMBER USER
OF AVERAGE % EXECUTION
EQUATIONS ERROR TIME (SEC)
11 .1246 16
21 .0318 .30
ol .0052 1583
101 .0013 8.86
201 .0003 65.39
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(54)

Table 17. Results of RCDP for the Ordinary Differential Equation,
with Mixed Boundary Conditions, for Various Numbers of

Equations.
NUMBER USER
OF AVERAGE % EXECUTION
EQUATIONS ERROR TIME (SEC)
10 .7485 +17
20 .1857 .28
50 .0296 o
100 .0074 2.18
200 .0018 759

Table 18. Results of Gaussian—Elimination for the Ordinary Differential
Equation, with Mixed Boundary Conditions, for Various Numbers

of Equations.

NUMBER USER
OF AVERAGE % EXECUTION
EQUATIONS ERROR TIME (SEC)
10 .7485 s 1D
20 .1857 .28
50 .0296 1.46
100 .0074 8.77
200 .0018 67.00
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Figure 11. User Execution Time Versus Average Percent Error for RCDP Versus Gaussian-
Elimination of 1-D Ordinary Differential Equation Problem 1, Mixed

Boundary Conditions.
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Table 19. Results of RCDP for the Ordinary Differential Equation,
with Dirichlet Boundary Conditions, for Various Numbers
of Equations.

NUMBER USER

OF AVERAGE % EXECUTION
EQUATIONS ERROR TIME (SEC)

9 2.6465 + 15

19 5.9274 .26

49 7.2303 .74

99 4.4752 2.13

199 .3946 7.28

Table 20. Results of Gaussian—-Elimination for the Ordinary Differential
Equation, with Dirichlet Boundary Conditions, for Various
Numbers of Equations.

NUMBER USER
OF AVERAGE % EXECUTION
EQUATION ERROR TIME (SEC)

o 19.0485 .14

19 94.2719 .26

49 123.7314 .37

99 62.9538 8.38

199 27.2497 63.46
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Figure 12. User Execution Time Versus Average Percent Error of RCDP Versus Gaussian-—
Elimination for 1-D Ordinary Differential Equation Problem 4, Dirichlet

Boundary Conditions
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CHAPTER VI

~ CONCLUSIONS

The results show that the RCIP method is an excellént solution
routine for 1iﬁear.equation sets. The RCIP method proved to be most
useful on problems with complicated boundary coﬁaitions. The first two
1-D problems having mixed and compo;ite boundary conditions were solved
by the RCIP method. The SOR method however, did not produce a
solution. COnclusion, try tﬁe'RCIP method when convergence problems
are encountered. The RCIP methoﬁ and SOR method with optimum over-—
relaxation factor solution produces comparable results for £hé 2-D and
3-D steady-state problems. If the optimum SOR factor is not known then
a trial and error search must be accoﬁplished to determine the optimum
relaxation factor. The RCiP method does not require a search for a
optimum number of trial solutioné, choosing any number of trial
solutions, except one, resﬁit; in fast‘accurate solutions. In the
solution to the transient problém RCIP has some definite advantages
over ADEP, which has the ablity to operate with larger time steps and
rapid convergence of the RCIP method. The number of trial solutions to
pick if a single:solﬁtion attempt‘is sought ié six trial solutions.

This number' of trial solutions produced excellent résults.
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The RCDP method and Gaussian—Elimination are comparable methods

for the solution of small equation sets.

The RCDP has an advantage of

producing accurate results much faster than the Gaus$Sian—Elimination

routine for equation sets larger than 40.
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APPENDIX A

TLLUSTRATIVE EXAMPLE OF RCIP
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Consider the following example.

11 0 X4 2
1 2 0 XZ = {3
0 0 ;7 X3 1

For an initial estimate select

1 0
G(0,1) = «0 and G6(0,2) = {1
(o _ 1

thus n=3 and m=2. Then equation (3) becomes

. 01
XO = al G(O’l) + a2 G(O,Z) = az

)
and
1 1 0 oq 2
A XO ~-F=(1 2 0 ay - 3
0 0 1 @y 1

(AX,-F, AX,-F> = (m1+a2—2)2 + (a1+2a2—3)2 + (az-—l)2
which is equal to the Vo(al,az) in equation (4). Forming the partial
derivatives according to equation (5) yields
OVO

i = 2(11+3(12_5
0oy
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and
vy . .
. h— = al 2@2 3
6a2
Thus
av, vy
— =0 and — =0
aal 80.2 .

yeilds the system

2aq + 30y = 5

|
w

aq + 2a2 =
with the solution
e =1 , ay = 1
That is («(0,1),a(0,2)) = (1,1) and thus
| 1
Xy = 6(0,1) + G(0,2) = ( 1

1

For the second iteration, equation (7) beécomes

1
G(1,1) = X, = ’1 .
1
select arbitrarily
1
G(1,2) = {2
L2

Therefore following equations (8)-(12) we have
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X; = @;6(1,1) + ay6(1,2) =

AX].—F = 3(11 + 5(12

(11 + 2(12

Vl(al,az) = (AXl—F,Axl—F>
= (2(11 + 3(12 - 2)2

- : 2
+(og + 2ay) - 1)

21 + ¢y

al + 2(12 s

|21 + 2a,
2
-3 ,
-1

+ (3a; + Say - 3)2

Ed

- 23 ,

8V1

- = 140.1 + 23@2 - 14
aal

8V1

_—= 23&1 + 38a2

aaz

and the equations to be solved are
14a1 + 23a2 =
.23%1 + 38a,
with solution

a1=1',a2=

Thus

Xl = G(l,l) = XO

14

= 23
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the algorithm terminates with the solution
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APPENDIX B

SOLUTION OF A SIMPLE BOUNDARY VALUE PROBLEM USING RCIP
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The problem is as follows
d2n
——5 - u+x=0 on.i0 < 'xii<
dx
with

u(0) = 0 and u(l) =0 , ( = x — sinh(x)/sinh(1))

Bexact

Use a central difference approximation, and a step size of .1, to

obtain the following equation set to be solved,

o1 A 7T T 0] uy -.1

100 =801 100, 1 b b e 0 uy -.2

R e ug -.9
ITERATION 1

We have n = 9 and pick m = 3.

For the initial estimate a constant value of one is chosen.

1. .692 -.088

2% .461 =131

L. .299 =139

1149 s191 -.142

G(0,1) =< 1. , G(0,2) =< .121 s 9(0;3) =< ~.174
1 .076 =237

i L bt -.272

1 +399 ~%207

.697 =.103

Vo = -849

Avg. % error = 4.763

a; = .0695

@, = -.0663

0.3 ¥ .0483
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ITERATION 2
70193\ /00413 C.ooossh
.0326 .00385 -.00127
.0429 .00303 -.00122
.0499 .00209 <-u000544

6(1,1) =<.0530 >, 6(1,2) i{ .00105 >. G(1,3) =\ .00079

.0520 ~.000237 .00218
.0450 ~.00361 .00260
.0330 ~.00691 .00204
(0183 <:00601/ \“00102//

V, = .00612

Avg. % error = 1.218

al = 1.04
(12 =N Lol
ag = 1.28
ITERATION 3

At this iteration the

V, = .0000873

and
Avg. % error = .399 .

ITERATION 5
At this iteration the
V5 = .000000000722

and the

Avg. % error = .0762




CTL)
The method has converged to the specified 1imit that the variance be

less than or equal to .00000001. The solution to the problem is as

follows:

(01475
.02866
.04085
.05044
xg =< .05655
.05822

.05447
04426

{02650/
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APPENDIX C

FLOW CHART OF RCIP COMPUTER PROGRAM
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START

DETERMINE
EQUATION SET

1

INPUT
INITIAL ESTIMATE

DETERMINE
> TRIAL SOLUTIONS [

DETERMINE
ERROR MATRIX
TIME STEP
DETERMINE NEW
SOLVE FOR WEIGHTING F MATRIX

COEFFICIENTS

}

OBTAIN APPROX. |
SOLUTION
|

DETERMINE |
VARIANCE V

TRANSIENT.}
{ ONLY |

-3 SOLUTION
YES

E = CONVERGENCE LIMIT

VARIANCE
V<=E
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APPENDIX D

SOLUTION OF A SIMPLE BOUNDARY VALUE PROBLEM USING RCDP
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The same problem solved in Appendix B is solved here using the

RCDP method. The problem is as follows

dZu

dx2

-u+x 0 on 0<x <1 ,

with

= x ~ sinh(x)/sinh(1)).

u(0) =0 and u(l) =0, (uexact

The coefficient trial solution is

.00
.01
.04
.10
.20
.36
.57
.87
.25

QNN WD WM

et

and the boundary condition trial solution is

.0000

The weighting coefficients are-
aq 0.0
0, = 1.0

and the variance and average percent e

Variance 0

Average % Error

.0010
.0040
.0101
.0202
.0356
.0573
.0866
.1247

147

0

’

rror are

.22E-32

0.0756
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The solution is

[5]
1
(=N~ NN NN
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