CROP DIVERSIFICATION AND TECHNOLOGY ADOPTION:
THE ROLE OF MARKET ISOLATION IN ETHIOPIA

by
Alison Kay Bittinger

A thesis submitted in partial fulfillment of the requirements for the degree
of
Master of Science
in
Applied Economics

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 2010
ii

APPROVAL

of a thesis submitted by

Alison Kay Bittinger

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education.

Dr. Vincent Smith

Approved for the Department of Agricultural Economics and Economics

Dr. Wendy Stock

Approved for the Division of Graduate Education

Dr. Carl Fox
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder.

Alison Kay Bittinger

April 2010
ACKNOWLEDGEMENTS

I would like to extend my sincere appreciation to my committee member, Dr. Joe Atwood. I am so grateful for his mentorship and the countless hours of work that he has devoted to helping me through this master’s program. Without a doubt, my work has been strengthened by Dr. Atwood’s passion for learning and commitment to teaching. I would also like to thank my advisor and committee chair, Dr. Vince Smith, for his guidance and encouragement throughout my entire tenure at Montana State University. He has continually motivated me to become a better scholar and his direction on my thesis was invaluable. Additionally, the input and criticism from my other committee members, Dr. Phil Pardey and Dr. Doug Young, was greatly appreciated.

I would like to thank Dr. Phil Pardey and Dr. Jenni James for their work in helping me obtain and understand the rich dataset used in this thesis. This thesis would not have been possible without their generosity. In addition, I would like to extend my gratitude to Donna Kelly for her assistance in formatting this paper.

Finally, heartfelt thanks go out to my friends and family. My accomplishments are due, in large part, to their encouragement, love, and support.
TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. ETHIOPIA'S AGRICULTURAL SECTOR ... 5
 - Institutional Structure .. 6
 - Extension Programs ... 8

3. LITERATURE REVIEW .. 10
 - Agricultural Production Theory ... 10
 - Agricultural Household Model ... 10
 - Uncertainty .. 11
 - Output Decisions .. 12
 - Transaction Costs ... 12
 - Marketed Surplus ... 13
 - Crop Choice .. 15
 - Input Decisions .. 17
 - The Impact of Advanced Technology .. 17
 - The Willingness to Adopt New Technology .. 18
 - The Effects of Market Access on Agricultural Production .. 20
 - Summary .. 22

4. ECONOMIC THEORY ... 23
 - Agricultural Household Model .. 23
 - Model ... 23
 - Marginal Effects .. 26
 - Inter-temporal Decisions ... 27
 - Input Use – Advanced Technology ... 28
 - Adoption and Diffusion .. 28
 - Uncertainty in Innovation ... 30
 - Uncertainty/Risk .. 31
 - Decision Making under Uncertainty ... 31
 - Risk Aversion ... 35
 - Risk Management Techniques ... 36
 - Spatial Specialization .. 36
 - Hypotheses .. 37
TABLE OF CONTENTS - CONTINUED

5. DATA ...39
 Data Sources and Description ...39
 Variables Used and Description ..42

6. CHEMICAL FERTILIZER AND CROP DIVERSIFICATION ..46
 Empirical Models ..46
 Empirical Variable Definitions and Expectations ...48
 Empirical Methodology ..50
 Chemical Fertilizer Regression ...50
 Crop Diversification Regression ..56
 Simultaneous Equation Regression ..58
 Results ..61
 Regional Characteristics ..61
 Farm Characteristics ..65
 Household Characteristics ..66
 Problems with Estimation ...66
 Summary ..68

7. CROP CHOICE ...69
 Empirical Model ..69
 Empirical Variable Definitions and Expectations ...70
 Empirical Methodology ..71
 Spatial Correlation ...73
 Results ..74
 Regional Characteristics ..74
 Farm Characteristics ..77
 Farmer Characteristics ..77
 Problems with Estimation ...78
 Summary ..78

8. CONCLUSION ..80

REFERENCES CITED ..82
TABLE OF CONTENTS- CONTINUED

APPENDICES...91

APPENDIX A: Tables and Figures...92
APPENDIX B: Simultaneous Equation Simulation...109
APPENDIX C: Code...115
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Average Share of Input Use by Travel Time (by cultivated hectares).</td>
<td>43</td>
</tr>
<tr>
<td>2. Top Cultivated Crops (in terms of hectares) by Crop Categories.</td>
<td>44</td>
</tr>
<tr>
<td>3. Average Crop Shares by Travel Time (in terms of cultivated hectares)</td>
<td>45</td>
</tr>
<tr>
<td>4. Distribution of Sampled Units.</td>
<td>93</td>
</tr>
<tr>
<td>5. Variable Definitions and Descriptive Statistics.</td>
<td>95</td>
</tr>
<tr>
<td>6. Binary Decision to Adopt Chemical Fertilizer (Basic Models).</td>
<td>97</td>
</tr>
<tr>
<td>7. Intensity of Chemical Fertilizer Adoption and Crop Diversification (Basic Models)</td>
<td>98</td>
</tr>
<tr>
<td>8. Chemical Fertilizer Adoption and Crop Diversification (Simultaneous Equations Model)</td>
<td>99</td>
</tr>
<tr>
<td>9. Crop Share Regressions using an OLS Model.</td>
<td>107</td>
</tr>
<tr>
<td>10. Crop Share Regressions using a Tobit Model.</td>
<td>108</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1. Average Travel Time from a Wereda to a Population Center of 50,000.</td>
<td>41</td>
</tr>
<tr>
<td>2. Histogram of Chemical Fertilizer Intensification (for use greater than zero).</td>
<td>51</td>
</tr>
<tr>
<td>3. Histogram of Diversification Scores</td>
<td>57</td>
</tr>
<tr>
<td>4. Primary Staple Crop (Teff) OLS Residuals by Zone</td>
<td>102</td>
</tr>
<tr>
<td>5. Cereal and Pulse Crop OLS Residuals by Zone</td>
<td>103</td>
</tr>
<tr>
<td>6. Oil and Spice Crop OLS Residuals by Zone</td>
<td>104</td>
</tr>
<tr>
<td>7. Fruit and Vegetable Crop OLS Residuals by Zone</td>
<td>105</td>
</tr>
<tr>
<td>8. Cash Crop OLS Residuals by Zone</td>
<td>106</td>
</tr>
<tr>
<td>9. Plots of Fitted Values against Real Utility Values Using a Logit Model</td>
<td>113</td>
</tr>
<tr>
<td>10. Plots of Fitted Values against Real Utility Values Using a Tobit Model</td>
<td>114</td>
</tr>
</tbody>
</table>
ABSTRACT

The supply of basic necessities, primarily food, in developing countries is an ongoing concern. A crucial component to improving this situation is access to information on the decision environment and behavior of smallholders in these countries. One challenge facing agricultural households is the lack of effective access for input and output markets. The markets that do exist often fail to facilitate efficient trade between buyers and sellers. Smallholders are forced to adjust their production behavior to compensate for this lack of market access. The purpose of this paper is to examine the crop diversification and technology adoption decisions made by households, in relation to their distance and, by implication, lack of access to a market center. This thesis uses a dataset that contains information on the production systems of Ethiopian smallholders in 2000/2001. The focus of the analysis is on the determinants of chemical fertilizer adoption, crop diversification levels, and crop choices. A simultaneous equation model is used to obtain estimates for the decisions to adopt chemical fertilizer and diversify crop mix in which the endogenous variables are truncated. In addition, a system of five OLS equations is used to explain the shares of land devoted to major categories of crops (primary staple crops; cereals/pulses; oils/spices; fruits/vegetables; and cash crops). The empirical results indicate that Ethiopian smallholders do react to changes in the level of market access by altering their production behavior.
CHAPTER 1

INTRODUCTION

Many developing countries have launched remarkable policy reforms leading their economies toward market-oriented economic systems primarily aiming at promoting sustainable economic growth and reducing poverty. The pursuit of such policies, however, is successful only if infrastructure and institutions are in place and developing.

– Franz Heidhues and Joachim von Braun, 2004

Small family farms contribute substantially to the economic growth of developing countries and so it is important to study their decision-making processes. A core goal of organizations such as the World Bank and United Nations is to gain a comprehensive understanding of the situation facing those who live in abject poverty. As such, many projects are funded every year by international aid organizations to assess the economic standing of the least developed countries (LDCs). The situation is frequently the same around the world: populations in many LDCs are growing at such a rate that people cannot afford to satisfy their basic needs. Food is in limited supply, transportation infrastructure is either poorly maintained or does not exist, disease is rampant, and governments are often unreliable and self-serving. As a result, smallholders have to cope with many challenges in their day-to-day activities. One such challenge is isolation from market centers. In areas where market systems are underdeveloped or even non-existent, households rely on inaccurate or incomplete information to make decisions about their production processes and face substantial transportation and other costs in bringing crops to market and buying the food commodities they need. This thesis investigates the
impacts of market isolation on the agricultural production systems of smallholders in Ethiopia, specifically in terms of advanced technology adoption and crop mix choices.

As distance from markets increases, the transaction costs associated with participating in the output and input markets follow suit. These transaction costs can include transportation expenses, loss of income due to inadequate information, and/or costs associated with perishability. Agricultural production in developing countries is characterized by uncertainty; market isolation exacerbates the situation. Smallholders residing closer to market centers are likely to produce crops with higher transaction costs and value. To maximize profit from the sale of high-value crops, smallholders are likely to use inputs such as pesticides, high-yielding seed, and chemical fertilizer. As the distance from a market center increases, it becomes more difficult to obtain information on the supply and prices of technologically advanced inputs, as well as efficient application methods. As a result, smallholders who live further from a market center may be less inclined to adopt newer technologies. Smallholders respond to uncertainty in several ways, but one method is to diversify their crop mix. It is likely that households living further from a market center have to produce a portion of their own food supply. In response to the market uncertainties, these isolated households may attempt to avoid risk through methods such as higher crop diversification.

To investigate the above hypotheses, data from a nationally-representative, agricultural survey conducted by the Central Statistical Agency in Ethiopia during the 2000/2001 (1993 E.C.) is used.¹ A cleaned version of the survey was acquired through

¹ The Ethiopian calendar begins in late August and is seven to eight years behind the Gregorian calendar because of an alternate calculation as to the date of the Annunciation of Christ.
the HarvestChoice organization.\(^2\) The dataset contains information on the farming practices of about 32,500 households during the main growing season in Ethiopia.

Crop choice is modeled using five OLS equations with the percentage of production devoted to the primary staple crop, cereals/pulses, oils/spices, fruits/vegetables, or cash crops as the dependent variable. Since the dependent variables are represented as shares, cross-equation restrictions are imposed to maintain the connection across production choices. The adoption of technologically advanced inputs and crop diversification are modeled with simultaneous equations to account for the endogeneity between the two variables. The analysis on input use focuses on the adoption of chemical fertilizer. Measures of crop choice, input use, and crop diversification are regressed on a vector of variables that includes measures of market access, regional bioclimatic descriptors, farmer demographics, and farm characteristics.

The results from the above analysis provide evidence that the effects of market access on chemical fertilizer use, crop mix, and crop choice are statistically significant. Higher levels of market access are found to increase the probability of chemical fertilizer adoption and decrease the degree of crop diversification. As market access improves, smallholders are predicted to switch from producing primarily cereals, pulses, fruits, and vegetables, to producing oils, spices, cash crops, and teff. Teff is the primary dietary staple of Ethiopians. Another important factor that influences agricultural production decisions is the ability to allocate resources efficiently. Increased education levels have statistically significant effects on the use of chemical fertilizer and production of fruits,

\(^2\) HarvestChoice works to attenuate poverty in sub-Saharan Africa and South Asia by collecting, organizing, and analyzing data to promote the development of more effective and productive farming systems.
vegetables, and cash crops. Education levels do not appear to have a significant effect on the level of diversification.

The findings suggest that if Ethiopians can find ways to attenuate the effects of uncertainty on agricultural production, they may be able to promote sustainable trends of economic growth. Improving infrastructure is a key element in diminishing the effects of market isolation by making it easier for smallholders to sell their output. However, improved infrastructures will not enhance the well-being of Ethiopian smallholders if the institutions in place do not provide incentives for wealth creation.

This thesis is organized into eight chapters. Chapter 2 presents background information on the agricultural sector in Ethiopia. The literature on agricultural production decisions on output and input choices as well as how these decisions are affected by market isolation is reviewed in Chapter 3. Chapter 4 summarizes the economic theory behind this topic, and the data used for the analysis is described in Chapter 5. The empirical methodology and results concerning chemical fertilizer use and crop diversification are presented in Chapter 6, followed by a similar discussion for crop choice in Chapter 7. Chapter 8 provides a conclusion.
CHAPTER 2

ETHIOPIA’S AGRICULTURAL SECTOR

Ethiopia is predominately an agrarian country. Agriculture currently accounts for approximately 40% of the country’s GNP, and close to 85% of all Ethiopians depend on the industry to support their families (Ferenji, 2004; Byerlee et al., 2007). However, Ethiopia’s population is growing at a steady 3% rate, and it has become increasingly apparent in the last few decades that the land cannot support the rising demand for food at current productivity levels. According to a World Bank report, “One in five rural Ethiopian households lives on less than 0.08 hectares per person, which yields on average only slightly more than half the daily cereal caloric needs per person, given current cereal production technologies used in Ethiopia” (World Bank, 2005). For this reason the government has focused its efforts on agriculture policy throughout the last two decades to try and improve food security and also to alleviate poverty and improve the country’s economic performance.

Ethiopia’s area is slightly less than the combined areas of Britain and France and has a wide range of agro-ecological zones and soil conditions that support a large variety of crops. Under its most basic classification structure, Ethiopia can be split into the highlands and the lowlands; this separation occurs at about 1,500 meters above sea level. The land below 500 meters is typically arid and not conducive to agriculture production. The majority of Ethiopian smallholders reside in the highlands where the climate is generally temperate year-round because of Ethiopia’s proximity to the equator. Farming
in Ethiopia is dominated by small-scale ventures that use traditional tools, draft animals, and family labor. Land is owned by the state and its use is distributed based on household size. Ethiopia has a population of about 80 million people with average land holdings below one hectare per household. While technologically advanced inputs, such as chemical fertilizer and hybrid seeds, are used, their diffusion rates are far below African standards (Ferenji, 2004).

Institutional Structure

In 1991, the Ethiopian government was overtaken by a democratic regime. Radical economic changes took place after this regime change. Almost immediately, the new government began to remove agricultural subsidies and liberalize agricultural output and input markets.

The following discussion chronicles the progress of privatization in the chemical fertilizer market, but the effects of liberalization were generally the same across all technologically advanced inputs. Historically, the fertilizer market was controlled entirely by the state. Imports, distribution, and marketing were primarily managed by a government-owned company, Agricultural Input Supply Corporation (AISCO). In addition, the Ethiopian government implicitly subsidized fertilizer prices by absorbing distribution costs through pan-territorial pricing. In 1992, the Government of Ethiopia “liberalized” the fertilizer market by creating a multi-channel distribution system. By appointment of AISCO, a limited number of private companies were allowed to compete with the state-owned company in the marketing and distribution of fertilizer (Demeke et al., 1997). In an effort to continue toward a fully liberalized fertilizer market, the National
Fertilizer Policy of 1994 called for the gradual removal of subsidized fertilizer prices. Retail prices were completely deregulated as of February 1997, and wholesale prices followed in 1998 (Demeke et al., 1998; Stepanek, 1999).

Prior to 1991, farmers were required to sell a quota of their grain to government-owned Agricultural Marketing Corporation (AMC) at fixed prices below the market average. The acquired grain was then resold at a subsidized price to other government agents and urban residents. Grain market liberalization abolished the system of fixed prices, quotas, and subsidies. AMC continued to operate under the new name of Ethiopian Grain Trading Enterprise (EGTE), but its operations were substantially downsized. The role of EGTE is to maintain a stock of grain to help stabilize market prices. However, its influence is limited considering that the EGTE only accounts for about 5% of all grain trade in Ethiopia (Negassa and Jayne, 1997). In general, the process of grain market reform in Ethiopia has been fairly successful and has remained internally-driven, much to the approval of the international community (Jayne et al., 1998).

Although, grain markets run with limited government involvement, markets for agricultural inputs are still under government control. A 2002 report to the World Bank states that “although the Government's recent Agricultural Marketing and Input Strategy indicates an overall commitment to private sector involvement, the particular directives in the Strategy suggest that the public sector will continue to play an active and dominant role in the import, wholesale, and retail of fertilizers” (Sutherland, 2002). In the hybrid seed market, the dominant seller is the publically owned Ethiopian Seed Enterprise (ESE). As with the fertilizer market, ESE contracts private companies to distribute seed;
there are currently eight competing seed companies contracted by the government (Alemu et al., 2008).

Extension Programs

Throughout the early 1980s and 1990s, the government’s main initiative was to create an agricultural extension program that spotlighted increased yield technology for crop production. The extent to which household farmers can increase yields in a confined area is limited. In the past, Ethiopian farmers would fallow their land for long periods of time, sometimes up to 15 years. However, increases in population have significantly constrained the amount of time a field can be left uncultivated. This, coupled with rampant deforestation, has led to a decline in soil fertility. It is estimated that half of all of the useable land in Ethiopia is subject to soil degradation and erosion (Demeke, 1997).

In the 1990s, the Ethiopian government introduced two nationwide extension programs to educate its citizens about the benefits of advanced technological inputs. The first of these two programs was called the Sasakawa-Global 2000 (SG) program. In 1993, SG began a pilot program in conjunction with the Ministry of Agriculture’s Department of Extension and Cooperatives (MOA). The pilot programs familiarized farmers with high-input technologies, such as chemical fertilizer, through half-hectare, farm-managed demonstration plots. President Meles Zenawi praised SG/MOA as the "best entry point for addressing the issue of food security in Ethiopia" (Stepanek, 1999). In 1994 a second initiative, called the Participatory Demonstration and Training Extension System (PADETES), attempted to merge the demonstration techniques of SG/MOA with proven extension management principles (Croppenstedt et al., 2003; Demeke et al., 1998).
Beginning in 1995, the government expanded the SG/MOA program into a National Extension Program (NEP) that included government-administered, guaranteed credit for household farmers, as well as a government-organized input distribution system (Stepanek, 1999). Both of these programs proved to be very successful in the short run, but provided no real incentives for sustainability to the farmer once aid was removed. Ultimately, the programs did not provide the anticipated catalyst needed to change farmers’ basic production habits.
CHAPTER 3
LITERATURE REVIEW

Smallholders contribute substantially to the economic growth of their countries and a large body of research has examined smallholder decision-making processes. This chapter first reviews previous research of agricultural decisions and the inherent uncertainty that influences the households’ choices. This review is followed with an examination of previous studies of marketed surplus, transaction costs, and willingness of subsistence and low-income households to adopt new technology. Finally, the relationship between market access and agricultural production decisions is considered. Although most studies of smallholder production acknowledge the effect of isolation on the decision-making process, only a small collection of literature examines the spatial distribution of economic activity in developing countries.

Agricultural Production Theory

Agricultural Household Model

The agricultural household model synthesizes microeconomic consumer and producer theory and recognizes that households in a developing country often simultaneously act as both a producer and a consumer (Singh et al., 1986; Holden et al., 1998; Taylor and Adelman, 2002). In a pure consumer model, the budget constraint is assumed to be fixed at a given income level. Using a basic indifference curve approach it is easy to see that an increase in own-price for a normal good unambiguously leads to a decrease in the demand for that good. However in an agricultural household model the
budget constraint endogenously depends on the production decisions that affect household income. The negative substitution effect from an increase in the price of an agricultural staple is counteracted by a positive farm-profit effect (Singh et al., 1986; Taylor and Adelman, 2002). If the profit effect outweighs the substitution effect, the household’s demand for food could be positive in light of the price increase. Singh et al. (1986) reviewed seven empirical studies that utilized the agricultural household model in a developing country context; four of these studies reported positive own-price elasticities for food demand.

The household model helps researchers explain the co-existence of autarky and market-based trading within a developing country. There exists a “price-band” between the consumer price and the producer price. If the household’s shadow price for a given crop lies within the price-band, it will remove itself from the market for that crop (Holden et al., 1998; de Janvry et al., 1991; Taylor and Adelman, 2002). This occurs because the household values its crops at a price higher than what it could sell for and lower than what it could buy for on the market. If a household chooses not to participate in the market, their response to own-price changes is perfectly inelastic, unless the change in price is drastic enough to move the household into the market (Key et al., 2000).

Uncertainty

Another defining aspect of agricultural in a developing context is uncertainty. Heady (1952) and Moschini and Hennessy (2001) summarized the production and market uncertainty that challenge agricultural households. Given the nature of agricultural production, the use of a given quantity of input does not guarantee a known quantity
and/or quality of output. The production function is stochastic; outputs from a given production system are determined in part by unpredictable weather patterns and uncontrollable biological processes. The agricultural production process is characterized by long time lags between planting and harvesting. Thus, households do not have an accurate knowledge of the market price for output at the time they make their production decisions. Additionally, in a country with an inadequate communication structure between those who govern and those who are governed, production decisions may be made without sufficient information about policy changes made by the government.

A firm’s behavior when it faces uncertainty has been examined using expected utility theory and the assumption of risk aversion (Aiginger, 1987; Chambers and Quiggin, 2000; Debertin, 2002). The topic of production uncertainty in agriculture has been of particular interest (Heady, 1952; Anderson et al., 1977; Dillon and Scandizzo, 1978; Roe and Graham-Tomasi, 1986; Mochini and Hennessy, 2001).

Output Decisions

Transaction Costs

Goetz (1992) modeled the household trade decision as a two-stage process. The household first decided whether or not to enter into trade and in what role (i.e. as a buyer or a seller) and then secondly, chose a quantity to trade. The first stage decision can be better understood with the help of de Janvry’s et al. (1991) discussion on “price bands”. The second-stage decision will be addressed further below in terms of marketed surplus price elasticity. As mentioned above, transaction costs create a price band between the
producer price and the consumer price. A household will fall into one of three distinct marketing positions depending on where their shadow price for a commodity lies with respect to their price band: seller, buyer, or autarkic household (de Janvry et al., 1991; Goetz, 1992; Omamo, 1998a, 1998b; Key et al., 2000; Renkow et al., 2003; Vakis et al., 2003). The size of the band a household faces is determined by infrastructure quality and the travel time to a market, information availability, the competitive structure of the market, and household-specific behavior, such as risk aversion (de Janvry et al., 1991; Goetz, 1992).

Key et al. (2000) emphasized that there are two types of transaction costs: proportional and fixed. Proportional transaction costs include transportation costs and selling time while fixed transaction costs include search costs associated with finding a buyer or a seller. In the context of a developing country, two studies quantified the transaction costs that affect market participation in less developed countries. Renkow et al. (2003) measured the fixed transaction costs faced by semi-subsistence households in Kenya by expressing the fixed costs as an ad valorem tax which allows fixed costs to be quantitatively compared to output prices. Vakis et al. (2003) used a dataset on Peruvian potato famers to extend the research done by Renkow et al. by estimating measurements of both fixed and proportional transaction costs. Both studies confirmed that transaction costs play a significant role in a household’s decision to participate in a market.

Marketed Surplus

Once a household has made decisions about whether it will participate in a market, it must decide what quantity to trade. Marketed surplus for a commodity is the
difference between the smallholder’s output and consumption (Singh et al., 1986; Renkow, 1990). In all seven studies on agricultural households reviewed by Singh et al. (1986) the response of marketed surplus to a change in the price of the studied agricultural commodity was positive. Thus, even if the profit effect was strong enough to cause a positive own-price elasticity of demand, the total output response to the increased price was larger than the increase in consumption. A positive marketed surplus elasticity implies that net sellers will sell more on the market and net buyers will buy less when market prices increase (Strauss, 1984).

Several other studies have considered marketed surplus. In general, Strauss (1984) found that the magnitude of marketed surplus elasticities differs between low and high income groups. He posited that wealth effects on consumption were the cause of this result and should be considered in the calculation of marketed surplus elasticities. Renkow (1990) extended Strauss’ research on wealth effects by recognizing that households have the option to hold stocks of a crop over time. He reported that household inventories of staple foods do affect demand and marketed surplus own-price elasticities and that studies failing to account for these wealth effects overstated the own-price effects for demand and marketed surplus. Finkelshtain and Chalfant (1991) account for the risk aversion associated with marketed surplus. In Sandmo’s (1971) seminal study on risk aversion, a risk averse firm would produce less output than a risk neutral firm when its income was uncertain. Since an agricultural household often consumes a significant quantity of its output, it faces risks associated with the relative prices of a food crop and real income, both of which depend on stochastic prices. Finkelshtain and Chalfant
modified the Arrow-Pratt risk premium to account for the possibility of multiple random
variables. They found that, depending on the nature of a household’s risk aversion, more
or less output relative to a risk neutral firm may be produced.

Crop Choice

While limited by the physical characteristics of their land, smallholders still have
several options concerning crop choice. In terms of their decision-making processes,
smallholders can be separated into two categories. Subsistence-oriented farmers tend to
make their production decisions based on the feasibility of their operation and their
subsistence needs. Included in this category are farmers who meet their consumption
needs for a particular crop and sell their surplus on the market. The second type of
smallholder is a commercialized-oriented farmer who makes his decisions based on profit
maximization and market signals (von Braun, 1995; Pingali and Rosegrant, 1995)

A market failure exists when the transaction costs associated with market
participation are great enough to create a disutility to the participant. In this case, a
smallholding must be self-sufficient in its crop production (de Janvry et al., 1991). Low
agricultural productivity and high transportation costs lead to rural food markets that are
few and far between. Additionally, smallholders face food prices that are volatile and
correlated with their own output levels (Fafchamps, 1992). For these reasons larger farms
are more likely to produce high-risk cash crops while smaller farms are more food crop
oriented. Fafchamps (1992) posited that since basic staples make up a large portion of
household consumption, smallholders have to protect themselves from price volatility
through self-sufficiency food production. Wealthier farmers spend proportionally less of
their income on food and are in position to take on more risk and, thus to devote more land to cash crops. This relationship between wealth and risk was also supported by Finkelshtain and Chalfant (1991).

When smallholders face the decision to specialize in cash crops they need to take into consideration both the gains from increased yields and income, as well as the increased transaction costs. Omamo (1998a, 1998b) used this conflict to highlight the links between crop diversification, market access, and market failures. Ignoring the gap between farm-gate prices and market prices could result in an inaccurate analysis of producer decision behavior. If a market failure exists, smallholders may react to increased risk by diversifying their production system and consuming their provisions instead of participating in a market structure (de Janvry et al., 1991, Omamo, 1998b). Omamo found that as the distance to market and transaction costs increased households produced more mixed- than pure-stand areas.

Much of the work on crop specialization, in terms of spatial orientation, was based on the research of German economist von Thünen in the 1840s. He was one of the first economists to emphasize that the value of food commodities, relative to their transportation costs, influences where the commodities will be grown (von Thünen, 1966). In terms of crop demand, Alchian and Allen (1964) hypothesized that when the prices of two substitute good were increased by a fixed transportation cost, relative consumption and, by implication, production would switch towards the higher-value commodity.
The Impact of Advanced Technology

High-yield input technologies such as chemical fertilizer, pesticides, and improved seed increase the marginal productivity of said inputs and will ultimately increase the slope of the production function (Hirshleifer et al., 2005; Beattie et al., 2009). In addition, an increase in the marginal productivity of one input may have a complementary effect on another input. For example, the introduction of improved seed raises the marginal product of both seed and chemical fertilizer (Debertin, 2002).

While most economists recognize the productivity gains from the adoption of technologically advanced agricultural inputs, there is considerable debate about the welfare impacts of advancing production technologies. This debate has centered on the unequal income distribution resulting from technological change (Hayami and Herdt, 1977; Scobie and Posada, 1978; Coxhead and Warr, 1991; Thapa et al., 1992; Renkow, 1994). Certain production environments are more conducive to the adoption of an advanced technology, which means that using this technology is not always a realistic option for smallholders. As a result, there is often a lag in terms of adoption and realized production gains by those living in less developed production environments (Renkow, 1994; Rogers, 1995; Sunding and Zilberman, 2002).

Recognizing that these bio-climatic differences will persist, Renkow (1994) developed a list of factors that primarily determine welfare effects among different types of producers in a developing country. These factors include (1) the nature of international trade; (2) the net position of a smallholder in relation to the market; (3) a smallholder’s
input use status; (4) the mobility of labor across regions; and (5) the degree of market
intervention by the government. Since these five factors differ widely across LDCs, it is
difficult to devise a single model on the effects of advanced technology in developing
countries. However, Renkow does argue that one of the most important influences on the
impact of technological change depends on whether prices were determined
endogenously or exogenously.

The Willingness to Adopt New Technology

A household’s willingness to adopt new technologies is affected by several
factors, including farm size, risk and uncertainty, human capital, labor availability, credit
constraints, and supply constraints (Feder et al., 1985). In most developing countries,
agricultural technologies are introduced in a complementary package, but due to the
above constraints farmers may only adopt portions of the technology package (Byerlee and Hesse de Planco, 1986). Most models used to analyze the patterns of technology
adoption behavior are time invariant and study the degree of adoption (Feder et al., 1985;

Several studies have found a positive correlation between farm size and
technology adoption. Kebede et al. (1990) reported that Ethiopian farmers were more
inclined to adopt fertilizer and pesticides as farm size increased. Just and Zilberman
(1983) concluded that the magnitude of the effect of farm size on adoption depended on
the household’s risk behavior as well as the returns per hectare under both traditional and
modern technologies. This conclusion was also supported by Feder (1980). Larger farms
are generally able to overcome the high capital expenditures associated with the adoption
of new technologies. Even the adoption of variable technologies, such as fertilizer and improved seed require an initial learning period that could be thought of as a fixed cost (Feder et al., 1985). However, as Croppenstedt et al. (2003) and Nkonya et al. (1997) point out, one needs to be careful when comparing small versus large farms in developing countries. The authors found that even though there was a positive relationship between farm size and fertilizer demand, there was a narrow range in the size of land allocated to Ethiopians and Tanzanians, respectively.

While the majority of studies examined household adoption behavior among farms, Bellon and Taylor (1993) studied adoption within a farm. Using farm data from a large maize production area in Mexico, they found that partial adoption behavior within a farm could be explained by the locals’ extensive knowledge of soil taxonomy. There were several instances where local seed varieties outperformed modern varieties. In terms of formal education, Weir and Knight (2004) found that higher educated farmers in Ethiopia tend to adopt modern technologies faster than less well educated farmers. However, they also observed that after adoption had proved beneficial there was a social learning process that took place amongst the uneducated. Wozniak (1987) and Kebede et al. (1990) also found that increased levels of education and access to information decreased the uncertainty associated with technology adoption and thus, increased adoption behavior.

Access to credit and supplementary income is also a particularly important influence on a household’s adoption behavior (Feder, 1980; Binswanger and von Braun, 1991; Green and Ng’ong’ola, 1993; Nkonya et al., 1997; Croppenstedt et al., 2003).
Fixed costs associated with advanced technology can often be too great of a hurdle for smallholders to overcome; access to banks and micro-finance institutions helps to rectify this situation.

The Effects of Market Access on Agricultural Production

Most research on smallholder production behavior recognized that market access had a major influence on the decision-making process. However, only a limited number of studies examined the spatial distribution of economic activity in developing countries in detail.

Fafchamps and Shilpi (2003) focused their study on the relationships between the urban and rural populations of Nepal in terms of the geographical patterns of agricultural production, agricultural sales and purchases, and non-farm work. They used a modified von Thünen model to determine what type of economic activities or market participation dominated at various distances from market. The results coincided with von Thünen’s hypothesized concentric circle model of the early 1800s. As distance from market increased, smallholders reverted to producing mainly subsistence-oriented crops to compensate for the increasing transaction costs.

Kamara (2004) recognized that the total effect of market access on agricultural productivity could be separated into a direct effect from crop specialization, or “the market-induced allocation of land to high value crops,” and an indirect effect from the intensification of input use. He used data from the Machakos district in Kenya and concluded that there was a negative relationship between agricultural productivity and market access. Kamara further concluded that an improvement in market access would
have a larger positive effect on the intensification of input use than on crop specialization.

In their study on the production behavior of smallholders in Madagascar, Stifel and Minten (2004) found that isolated households consumed substantially larger amounts of self-produced food when compared to regions closer to a city center, which may suggest weak markets. Their isolation measures included remoteness, travel time to nearest urban center, and transportation costs. In response to transportation-induced transaction costs, Stifel and Minten also found a stark difference between uses of technologically advanced inputs (e.g. fertilizer, pesticides) by households in the least remote quintile and those in the most remote quintile. Farmers were more apt to adopt advanced technologies when they resided closer to a market center.

Several studies showed that access to agricultural markets for both inputs and outputs significantly affected a smallholder’s willingness to adopt new technology. Demeke et al. (1998) found that Ethiopian farmers who lived in areas containing better road infrastructures used more chemical fertilizer. Additionally, the authors reported that weredas that contained more fertilizer distribution centers (i.e. better market access) had higher fertilizer usage on average. Croppenstedt and Demeke (1996) found that one of the strongest effects on the tendency to use chemical fertilizer in Ethiopia was related to whether the farmer had access to an all-weather road. Croppenstedt et al. (2003) had access to a dataset containing information on Ethiopian’s qualification for fertilizer use and found that variables affecting the supply of fertilizer were significant to the decision.
Using data from Malawi, Zeller et al. (1997) found that transaction costs associated with input and output markets inversely affected the shares of land devoted to hybrid corn.

All of the above studies recognized that due to geographical considerations market access cannot accurately be measured in terms of distance. Instead market access is measured in terms of the time it takes to travel to a city center. Some studies created this variable from the influences of geographical and transportation-related variables, such as elevation, slope, road density, and waterways. Other studies have formed their market access variable based on an in-depth knowledge of modes of transportation (e.g. total walking or bicycling time).

Summary

The literature on the production behavior of agricultural smallholders emphasizes the ubiquitous connection between the roles of producer and consumer. Consumption patterns are linked directly to the income from a production system. A household’s decisions about production are influenced by the transaction costs associated with acquiring inputs and selling outputs. Transaction costs increase as smallholders reside in areas that are more isolated from a city center. If these costs become too high, the smallholder may have to cease participation in market structure and resort to pure self-subsistence. Thus, access to a market center plays a major role in the decision-making process of the agricultural smallholder. The economic theory behind this claim is discussed in the next chapter.
CHAPTER 4

ECONOMIC THEORY

Agricultural Household Model

Agricultural smallholders are simultaneously both a producer and consumer. Whereas in traditional consumer theory the decision-maker faces a fixed income constraint, the agricultural smallholder endogenously determines his income. In this situation, an increase in the price of a normal food good could potentially lead to an increase in the consumption of that good. Economists have addressed this counterintuitive result with the agricultural household model. In this model, farm profits are derived from both goods produced and sold on the market as well as goods “purchased” from the household. For the agricultural household, production, labor allocation, and consumption decisions are interrelated. The main objective of the agricultural household is to maximize expected utility from consumption of leisure, self-produced goods, and purchased goods subject to several constraints.

Model

Drawing upon the work of Singh et al. (1986), the fundamental agricultural household model is developed as follows. The following model is static and assumes that the household is risk neutral. Additionally, it is assumed that all prices are exogenous and that household and hired labor are perfect substitutes. The household maximizes utility from the consumption of three commodities: a staple food good \(X_s \), a good purchased on the market \(X_m \), and leisure \(X_l \).
Utility is maximized subject to three constraints:

Cash Income Constraint: \(p_m X_m = p_s (Q - X_s) - w (L - L_h) - g K \),

Production Technology Constraint: \(Q = f(L, K) \),

Time Constraint: \(X_t + L_h = T \).

where \(p_m, p_s, w, \) and \(g \) are the prices of the market good, the staple food, labor and capital, respectively, \(Q \) is the quantity of the staple food produced by the household, \(L \) is the total labor used in production, \(L_h \) is the total household labor used in production, \(K \) is the capital available to the household, and \(T \) is the household time endowment.

The three constraints can be combined into a full income constraint:

\[
(4.2) \quad Y = p_s X_s + p_m X_m + w X_t = w T + p_s Q (L, K) - w L - g K.
\]

Full income is determined by a standard profit function \(\pi = p_s Q - (w L + g K) \) and the value of household’s self-labor. From these equations, the household can choose the levels of \(X_m, X_s, X_t, L, \) and \(K \). The first-order conditions of income with respect to labor and capital are

\[
(4.3) \quad Y_L = p_s \frac{\partial Q}{\partial L} - w = 0,
\]

\[
Y_K = p_s \frac{\partial Q}{\partial K} - g = 0.
\]

According to the first-order conditions, production decisions are made independently of consumption decisions. The choice of total labor and capital are functions of prices \((p_s, w, g) \) and the technology constraints of the production function; they do not depend on

3 This result confirms a proposition discussed by economists Raj Krishna, Dale Jorgenson and Lawrence Lau in the 1960s (Singh et al. 1986).
Given that the production function is locally concave, it is possible to find the factor demand functions for labor \(L = L^*(p_s, w, g) \) and capital \(K = K^*(p_s, w, g) \). Farm-profits will be maximized when the household chooses the optimal level of total labor and capital.

\[(4.3) \quad Y^* = p_sX_s + p_mX_m + wX_l.\]

As a consumer, the household’s problem is to maximize utility subject to a budget constraint. The associated Lagrangian equation with this problem is

\[(4.4) \quad Z = U(X_s, X_m, X_l) + \lambda[Y^* - (p_sX_s + p_mX_m + wX_l)].\]

Therefore, the first-order conditions associated with this utility maximization problem now parallel standard consumer theory:

\[Z_{X_s} = \frac{\partial U}{\partial X_s} - \lambda p_s = 0, \]
\[Z_{X_m} = \frac{\partial U}{\partial X_m} - \lambda p_m = 0, \]
\[Z_{X_l} = \frac{\partial U}{\partial X_l} - \lambda w = 0, \]
\[Z_\lambda = Y^* - (p_mX_m + p_sX_s + wX_l) = 0. \]

The standard demand functions for consumption are

\[(4.5) \quad X_i = X_i^*(p_s, p_m, w, g, Y^*(p_s, p_m, w, g)) \quad (i = s, m, l).\]

As in standard consumer theory, demand depends on prices and income. However, the household’s income is now also influenced by its production decisions, which means that changes in production activities will ultimately influence consumption patterns.
Marginal Effects

As discussed above, the major difference between standard consumer theory and agricultural consumer theory is that income is not a fixed constraint on consumption decisions. This can lead to a counterintuitive, positive own-price elasticity of demand for the agricultural staple crop. Using equation (4.5), the comparative static result for the staple crop with respect to own-price is

$$\frac{dX_x}{dp_s} = \frac{\partial X_x}{\partial p_s} \bigg|_{u=\bar{u}} + (Q - X_s) \frac{\partial X_x}{\partial \bar{y}}.$$

The first partial effect on the right hand side is the pure substitution effect and is unambiguously negative. The second term on the right is the income effect which can be broken into two parts. An increase in the own-price of the staple good will influence the farmer to grow a larger quantity of the good, thus increasing income. This is known as the “profit effect.” In addition, as in standard consumer theory, an increase in the own-price effectively decreases the farmer’s income allocated for consumption, thus decreasing the quantity of the staple good consumed. If the farmer’s production exceeds his consumption ($Q > X_s$), then the net effect of an increase in the price of the staple good is to increase the farmer’s income. If the staple is a normal good and the income effect is large enough, the farmer’s consumption of the staple good will increase when the price increases. In a review of seven applications of the agricultural household model by Singh et al. (1986), four of the seven studies found a positive own-price elasticity of food demand.

Marketed surplus is the quantity of a crop that a household has available to sell on the market, or in terms of the above example, $MS = Q - X_s$. Strauss (1984) showed that
the elasticity of marketed surplus equals the weighted difference between the output elasticity of quantity produced and the total price elasticity of quantity consumed:

\[
\frac{p_s}{|MS|} \frac{\partial MS}{\partial p_s} = \frac{Q}{|MS|} \left(\frac{p_s}{Q} \frac{\partial Q}{\partial p_s} \right) - \frac{X_s}{|MS|} \left(\frac{p_s}{X_s} \frac{\partial X_s}{\partial p_s} \right).
\]

Whereas the output elasticity is positive, the own-price elasticity of demand is ambiguous in sign. Theoretically, a positive own-price elasticity could dampen the positive output elasticity and could possibly even result in a negative marketed surplus elasticity.

Inter-temporal Decisions

Often, it is more realistic to examine agricultural household decisions in a dynamic context. Production decisions lag a period behind output realization and consumption decisions. Thus, the production technology constraint takes the form:

\[
Q_{t+1} = Q(L_t, K_t).
\]

Inter-temporal decisions are also largely affected by the availability of credit. Iqbal (1986) introduced the aspect of credit into the agricultural household model in the form of two income constraints:

\[
(4.9) \quad C_t + I_t = \pi(K_t) + w_t T_t + B_t,
\]

\[
(4.10) \quad C_{t+1} + B_t(1 + r) = \pi(K_t + I_t) + w_{t+2} T_{t+2}.
\]

Expenditures on goods, C, are as follows:

\[
(4.11) \quad C = p_s X_s + p_m X_m + w X_l.
\]

I_t is the value of investment made by the household in period t, K_t is the value of capital in period t, B_t is the amount of borrowing in period t, $B_t(l + r)$ is the repayment of borrowed funds in period $t + l$ at an interest rate r, and $(K_t + I_t)$ is the value of capital in
period \(t + 1 \). In his study, Iqbal found that borrowing was significantly reduced by the interest rate and that this effect diminished as farm size increased.

Input Use – Advanced Technology

Adoption and Diffusion

One aspect of the production function that has been widely analyzed by development economists is the structure of capital use and purchased inputs, particularly technological inputs such as fertilizer and improved seed. After a new input has been introduced, it often takes a considerable time period for the technology to become widely adopted. Rogers (1995) defined diffusion as “the process by which an innovation is communicated through certain channels over time among the members of a social system.” In several studies, rural sociologists found that the process of diffusion could be modeled as an S-shaped function of time. In the beginning there are very few adopters, but as time progresses several more individuals adopt the new technology and the slope of the diffusion curve steepens. Eventually, the marginal rate of diffusion will begin to slow and the curve will approach an asymptote at a point of saturation. In several cases of innovation adoption, the diffusion curve will begin to decline as new innovations replace the old. The slope of the “S” will vary by innovation and region because of factors such as market structure, cultural practices, transaction costs, etc.

Griliches (1957) adopted the S-shaped diffusion curve to study the adoption of hybrid corn in Iowa. To model innovation diffusion in his study, he used a logistical growth curve given by the equation

\[
(4.12) \quad D_t = H \left[1 + e^{-(a+bt)} \right]^{-1},
\]
where D_t is the percentage of diffusion at time t, H is the saturation point, a represents diffusion at the beginning of the estimation period, and b is the rate of growth coefficient. Using the resulting S-shaped function, Griliches found that all three parameters of interest in the function (H, a, and b) were positively affected by profitability gains. His findings have been confirmed by several empirical studies on the rate of diffusion, especially in a development context (Feder et al., 1985).

A synthesis by Sunding and Zilberman (2001), addressed several theoretical modifications to the general S-shaped curve of diffusion. Mansfield (1963) and Lekvall and Wahlbin (1973) theorized that diffusion was driven by the interactions between those who adopted and those who followed their lead. Diffusion rates are low in the early adoption phase of the S-curve because of the high costs associated with the initial learning period. After some adopters have absorbed the risk of innovation and succeeded, others will be able to imitate their lead at a lower cost. In the threshold model of diffusion, economists assume that there is a minimum farm size required for the adoption of various innovations. As the fixed costs of adoption diminish over time, the threshold for adoption follows suit. A large part of the costs associated with adoption can be explained by distance from a market center. Travel and transaction costs associated with learning about and implementing new innovations increase with distance. Diamond (2005) argued that geography plays a major role in adoption practices because of the bioclimatic nature of regions. There is an enormous amount of bioclimatic variability within developing countries, which means that some areas are more conducive to innovation adoption than others.
Uncertainty in Innovation

New innovations are often accompanied by uncertainty in terms of use and performance. The adoption of a high-yielding input such as chemical fertilizer or a high-yield seed variety (HYV) implies that smallholders must be willing to take on more risk. Risk associated with agricultural innovations is increased due to uncontrollable weather patterns. When risk is factored into a decision, agricultural households face a utility maximization problem that requires them to weigh the differences between profits under a traditional technology and under a modern technology. Assuming that smallholders maximize their expected utility from expected income, their problem can be modeled as a discrete decision:

$$\max EU[\bar{Y}_0 + \delta(\pi_0L_0 + \pi_1L_1 - k) + (1 - \delta)(\pi_0L_0)] \quad \text{s.t.} \quad L_0 + L_1 \leq \bar{L}.$$

where the household is allocating \(\bar{L} \) units of land between \(L_0 \), land that uses traditional technology, and \(L_1 \), land that uses modern technology. If \(\delta = 0 \), the household chooses not to adopt the modern technology and if \(\delta = 1 \), the household chooses to adopt the modern technology. The fixed cost associated with adopting the modern technology is \(k \). The profits under the traditional and modern technologies are \(\pi_0 \) and \(\pi_1 \), respectively. Finally, \(\bar{Y}_0 \) is the initial income held by the household. It is assumed that the households are risk averse.

A household’s decision to allocate land between \(L_0 \) and \(L_1 \) depends on the variance of profit under the new technology, the correlation of the profits from the two technologies, and the household’s risk aversion. Feder et al. (1985) presented several

\[^4\] This maximization problem closely follows the work of Sunding and Zilberman (2001).
studies that report that the share of land allocated to a modern technology increased with farm size.

Uncertainty/Risk

Agriculture production in all parts of the world is a stochastic process. It is defined by unpredictable weather patterns and uncertain yields. Agriculture production in a development context only increases the random factors faced by producers. Underdeveloped market structures make it difficult to relay accurate price signals and often result in inefficient supplies of both inputs and outputs. When a household is forced to make a decision that is defined by uncertainty there can be a multitude of different outcomes. Some of these outcomes are less desirable than others which necessitates the inclusion of risk aversion in the decision models.

Decision Making under Uncertainty

Sandmo (1971) established that a risk-averse producer who faces output-price uncertainty will produce less output than under complete certainty. This result was based on the expected utility hypothesis that states that utility depends on only one stochastic factor – final income levels. Due to the agricultural household’s dual role as producer and consumer, output-price risk translates to consumption price risk as well. The introduction of a second random factor into the expected utility model makes it more difficult to model household behavior because of the resulting inseparability between production and consumption decisions. Risk preferences over consumption shape a household’s risk preferences concerning profit (Roe and Graham-Tomasi, 1986).
Uncertainty in a household’s final wealth and consumption behavior necessitates the use of an expected utility model. Expected utility is a function of both stochastic factors and the household’s level of risk aversion. To model the effects of uncertainty on the decision-making process of the household, the basic utility maximization model is modified to include dynamic considerations and a savings aspect. This closely follows the theory outlined by Roe and Graham-Tomasi. The household is still attempting to maximize utility from consumption of an agricultural staple (X_s), a market good (X_m), and leisure (X_l), but it now takes into consideration the utility of saving income to smooth inter-temporal household consumption between time periods. The resulting utility function is additively separable over time and time-invariant:

$$U\{(X_{st}, X_{mt}, X_{lt})_{t=0}^{T}\} = \sum_{t=1}^{T} \alpha^t u(X_{st}, X_{mt}, X_{lt}) + \alpha^{T+1} s_{T+1},$$

where s_t is the value of the household’s savings, α is the discount factor $(1 + e)^{-t}$, and e is the rate of utility discount.

As discussed above, there is a lag between the time a household makes production decisions concerning the level of inputs of capital and labor and the time full income is realized. The following production function accounts for this lag as well as a random variable, (θ_{t+1}), that affects output.

$$Q_{t+1} = Q(L_t, K_t; \theta_{t+1}).$$

Full income in period t can be expressed as a function of initial income (in terms of endowments of labor and capital), profits, and interest on the financial asset:

$$Y_t = g_t \bar{K} + w_t \bar{L} + p_{st} Q(L_{t-1}, K_{t-1}; \theta_t) - g_t K_t - w_t L_t + (1 + r)s_t,$$

$$= \bar{Y}_t + \pi_t + (1 + r)s_t.$$
where \bar{K} and \bar{L} are the value of the household’s endowments of labor and capital, and r is the interest rate. Savings in period $t+1$ are equal to the difference of income in period t and consumption in period t, $s_{t+1} = Y_t - (p_{st}X_{st} + p_{mt}X_{mt} + w_tX_{lt}) = Y_t - C_t$.

The household’s expected utility maximization problem under uncertainty takes the following form:

$$\max \quad EU[\sum_{t=1}^{T} \alpha^t u(X_{st}, X_{mt}, X_{lt}) + \alpha^{T+1} \delta(s_{T+1})],$$

s.t. \quad Q_{t+1} = Q(L_t, K_t; \theta_{t+1}),

$$s_{t+1} = \bar{Y}_t + \pi_t + (1 + r)s_t - C_t.$$

In a situation where random factors affect the production function and market prices, the household’s expected utility depends on its risk preferences. Chambers and Quiggin (2000) and Moschini and Hennessy (2001) both presented a method that allows for a tractable application of decision making under uncertainty to standard choice-theory, which Chambers and Quiggen termed the ‘state-preference approach.’

For the state-preference approach, let A represent the set of all possible actions available to the household, and let S represent the set of all possible states of nature. Assume that the household cannot affect the state of nature that occurs, but, through their choice of action, can affect the outcome realized given that a state of nature occurs. These outcomes are thought of as random variables and are derived from the conjunction of various states and actions: $c: S \times A \rightarrow C$, where C is the set of all possible state-contingent outcomes. In an agricultural context, C is the finite set of all possible crop yields. An objective probability of occurrence is assigned to each state of nature, which results in a probability distribution over the state-contingent outcomes. Define C and
$G \equiv (g_1, g_2, ..., g_N)$ as a gamble over the full set of state-contingent outcome probabilities, where g_i is the probability that outcome $c_i \in C$ will occur in $s_i \in S$.\(^5\) It is assumed that the household can define a complete and transitive preference relation over the entire set of state-contingent gambles. Provided this assumption holds, the household will be able to rank all possible lotteries (i.e. $G \succeq G'$).

To impose structure on the utility function, some basic axioms must be satisfied under the expected utility hypothesis. The household is only concerned with the ultimate state-contingent outcomes and not the states themselves, so the axiom of reduced compound lotteries holds. The axiom of independence of irrelevant alternatives states that the presence of the state-contingent gamble G'' will not affect the household’s preferences between G and G'. The axiom of continuity states that if $G > G' > G''$ then there exists some probability, π, such that G' is preferred to an uncertain prospect consisting of G and G'', where G is realizable with probability π and G'' with probability $1 - \pi$. Once these axioms have been satisfied it is possible to define a utility function over all of the state-contingent outcomes, $U: C \rightarrow \mathbb{R}$, such that

\begin{equation}
G \succeq G' \iff \sum^N_i g_i U(c_i) \geq \sum^N_i g'_i U(c_i).
\end{equation}

Using the independence axiom it is possible to ensure that the utility function over the probability distributions can be defined over the state-contingent outcomes. This, in turn, makes it possible to change the problem of selecting an action that results in the most

\[\text{footnote:}\]

\[^5\] It is assumed that $0 \leq g_i \leq 1$ and $\sum_i g_i = 1$
preferred state-contingent gamble to selecting an action that maximizes the expected utility of outcomes.6

Risk Aversion

The traditional assumption that indifference curves are everywhere convex to the origin is equivalent to the assumption that the von Neumann-Morgenstern utility function is concave. A concave utility function will lead to diminishing marginal utility of income for the household. This means that an individual who is risk averse will not take a fair gamble because the gain in the utility as a result of winning the gamble is less than the utility loss from losing the gamble. Therefore, a sure income prospect is preferred to an uncertain income prospect with equal expected value. The risk premium measures the maximum amount a household would pay to avoid uncertainty in their income level. The degree of risk aversion (as well as the risk premium) increases with the degree of convexity in the utility function.

The above discussion assumes that the randomness faced by the household is only in terms of income. However, as has been discussed, the agricultural smallholder also faces randomness in consumption prices. Finkelshtain and Chalfant (1991) demonstrate that this additional randomness can theoretically lead to higher output production than the level that maximizes expected profits.

6For a more detailed explanation on the state-preference approach see Moschini and Hennessy (2001) and/or Chambers and Quiggin (2000).
Risk Management Techniques

In general, risk management practices try to increase the well-being of the household by shifting profits from more favorable states of nature to less. In countries that have a more stable market system, farmers are able to participate in price hedging and crop insurance programs. These programs are rarely viable options for rural farmers in the LDCs. Instead, farmers attempt to manage income risk through crop diversification and credit acquisition.

Spatial Specialization

The development of spatial specialization theory with respect to agriculture practices can ultimately be attributed to the work of Johann von Thünen in the mid 1800s. Von Thünen theorized that rings of production will ripple outward from a city center; each with a different staple product and production system (von Thünen 1966). Products that are relative expensive to transport, due to bulk or perishability, will be produced in areas that are closer to a city center. Rings of production that exist in relatively remote areas will specialize in products that are cheaper to transport in relation to their value. Households that live closer to a city center will not only produce products that are expensive to transport, but will also produce all of the necessary staples that would otherwise be too costly to buy from more rural areas.

Households will find it profitable to maximize the yields from their land through the use of technologically advanced inputs. The land value in these inner-most rings is so high that a field will never be fallowed. However, as the distance from the city center increases, it becomes less profitable to purchase advanced inputs, and production systems
in relatively rural areas will prefer to use more traditional input technologies. Visser (1980) theorizes that input use intensity decreases at a diminishing rate as production systems become more isolated from the city. Technological progress decreases the costs associated with obtaining and transporting inputs and these savings have a greater net effect on distant farms than those that are closer to a market center. The effects on agricultural intensification will be distorted by agro-ecological conditions.

Fafchamps and Shilpi (2003) additionally recognize that the size of the city will influence the size and shape of the production specialization levels. Larger cities require more food staples than smaller cities and production systems can be affected by overlap of specialization systems around cities in close proximity.

Hypotheses

Isolation from a market center has a large impact on the production decisions of an agricultural household. Isolation not only affects the costs of transporting inputs and outputs, but also influences a smallholder’s access to adequate market information. As the primary result of differences in market access, the production decisions of smallholders in LDCs are likely to be heterogeneous. As distance from market increases, smallholders are likely to move from producing primarily cash crops to producing largely subsistence-based crops. Households that reside further from a city center face higher levels of income and consumption risk because their access to information is incomplete and/or inaccurate. As a means of avoiding risk, more isolated smallholders seem likely to employ higher levels of crop diversification. Finally, for similar reasons, smallholders may be less apt to adopt new technology as distance from market increases.
These three hypotheses will be investigated using data from Ethiopia. The generalized estimation model that synthesizes the theoretical models presented in this chapter is as follows:

\[(4.17) \quad y^z_i = f(d_i) + X_i + \varepsilon_i,\]

where \(y^z_i\) is a vector of endogenously determined variables \(z\) that include the use of high-yielding inputs and indicators of crop choice and crop mix for an individual household \(i\). The variable \(d_i\) is a measure of isolation from a market center and the vector \(X_i\) includes variables that affect the above decisions, for an individual household \(i\). Finally, \(\varepsilon_i\) is the error term associated with each household.
CHAPTER 5

DATA

Data Sources and Description

The primary data for this analysis were obtained from the Annual Agricultural Sample Surveys (AgSS) conducted by the Central Statistical Agency (CSA) of Ethiopia and made available by the HarvestChoice organization. These surveys have been conducted since 1980/1981 (1973 E.C.) and only cover the rural agricultural population. The objective of the survey is to collect yearly statistics on agricultural production in the country. Selected respondents are personally interviewed about their demographics, agricultural practices, and field characteristics. The AgSS is separated into four parts: the crop production forecast survey, the main (‘Meher’) season crop area and production survey, the livestock survey, and the secondary (‘Belg’) season crop area and production survey. The data used for this paper came from the 2000/2001 (1993 E.C.) main season AgSS survey and can be accessed through the CSA’s website (www.csa.gov.et). This particular year was chosen because climatic patterns were relatively stable and the data were accompanied by wereda-level labels needed for spatially identifying the administrative level.

The primary sampling units were enumeration areas (EAs), which each consisted of approximately 100 households. The number of surveyed EAs each year was chosen

7 The Ethiopian Calendar begins at the end of August and differs from the Gregorian calendar by about seven to eight years.
based upon a probability related to the number of households in each zone/special wereda. The secondary sampling unit was at the agricultural household level. Twenty-five households were systematically chosen from each EA and of the 25 households selected, data on crop cutting was only collected from the last fifteen. The distributions of sampling units both selected and covered for this year are presented in Table 4 in Appendix A.\(^8\) The AgSS data are supplemented with shapefiles that accompanied the Ethiopian Development Research Institute’s 2006, *Atlas of the Ethiopian Rural Economy*, which makes it possible to spatially identify a household’s respective wereda.\(^9\) Shapefiles for administrative levels below the wereda do not exist for the year 2000. There are 574 weredas in Ethiopia, of which 367 are represented in this dataset.

Additional data used to form a measure of isolation were extracted from a global map of travel time to major cities developed by the European Commission and the World Bank. This map used data on population, road and railway networks, navigable rivers, major water bodies, shipping lanes, national borders, land cover, urban areas, elevation, and slope to generate a measure of the travel time it would take to get from a given location to a town with a population of 50,000 or more. Shapefiles containing the wereda boundaries were overlaid on the European Commission/World Bank. Each pixel in the European Commission/World Bank map represents the time it takes to travel from that spot to a population center of 50,000 or more. The travel time variable is an average of all the pixels within the wereda area; the resulting map is presented below in Figure 1.

\(^8\) Of the 1,420 Enumeration Areas (EAs) selected for this survey, 8 were closed due to various reasons. There were 35,740 agricultural households selected to participate in the 2000/2001 survey; the response rate was 99.14%.
\(^9\) Administrative levels in Ethiopia are (from largest to smallest) country; region; zone; wereda; farmers association; and enumeration area.
To form approximate measures of household income, crop prices were collected through the consumer price database located on the CSA’s website10. Although prices were given with respect to markets in Ethiopia, the markets could not be spatially located and the market-level crop pricing data had to be aggregated to a regional level. Of the 84 crops represented in the 2000/2001 AgSS, only the crops that represented more than 1\% of total national hectares planted are studied. The number of usable crops was further restricted by available pricing data; ultimately, information on 47 different crops is used. An additional variable needed to calculate household income was a measure of average crop yield. This was obtained from the 2001/2002 Agricultural Sample Enumeration.

10 Consumer pricing data for crops were used because producer pricing data were not available for the year 2000.
performed by the CSA. Price data for chemical fertilizer could not be located with any regional variation and therefore was not included in the study.

Variables Used and Description

Three hypotheses are examined in this paper. Each hypothesis is tested with similar explanatory variables that include demographic characteristics of the farmer, specifics about the farm under cultivation, and characteristics that define the biophysical nature of and services found in the wereda in which the farmer resides. This study is concerned with how production decisions made by Ethiopian smallholders, primarily, crop choice, crop diversification, and input use, are affected as the distance from a market center increases. Thus, the dependent variables used to examine the above hypotheses are shares produced from five crop categories, a Herfindahl index that measures diversification, and a measure of input adoption.

The Herfindahl index \(DIV\) is a measure of a farmer’s level of diversification:

\[
DIV = \sum_{j=1}^{I} s_j^2, \tag{5.1}
\]

where \(s_j\) is equal to the share of each crop \(j\) produced by the farmer. \(DIV\) has a value of 1 when the farmer completely specializes its production and approaches 0 as the number of crops produced by the farmer increases. The analysis of input use is focused on the adoption of chemical fertilizer because the data appears to be more consistent for this variable than for pesticides or irrigation. Data are available on the quantity of chemical fertilizer used, but are unreliable. Table 1 shows the average intensity of input use for a smallholder by the travel time to a market center. Von Thünen and Visser theorized that
the adoption of advanced input use would decrease at a diminishing rate as the distance
from market increased. The adoption rates of all four inputs are decreasing and decrease
at a diminishing rate.

Table 1. Average Share of Input Use by Travel Time (by cultivated hectares).

<table>
<thead>
<tr>
<th>Travel Time (in hours)</th>
<th>Chemical Fertilizer</th>
<th>Pesticides</th>
<th>Improved Seeds</th>
<th>Irrigation</th>
<th>% of Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 7.5</td>
<td>27.65%</td>
<td>3.98%</td>
<td>7.75%</td>
<td>9.61%</td>
<td>62.54%</td>
</tr>
<tr>
<td>7.5 – 15</td>
<td>8.68%</td>
<td>2.23%</td>
<td>2.82%</td>
<td>3.68%</td>
<td>32.05%</td>
</tr>
<tr>
<td>15 – 22.5</td>
<td>1.00%</td>
<td>0.06%</td>
<td>0.34%</td>
<td>0.44%</td>
<td>4.39%</td>
</tr>
<tr>
<td>22.5 – 30</td>
<td>0.03%</td>
<td>0.00%</td>
<td>0.15%</td>
<td>0.02%</td>
<td>0.93%</td>
</tr>
<tr>
<td>30 – 37</td>
<td>0.03%</td>
<td>0.00%</td>
<td>0.03%</td>
<td>0.00%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

A farmer’s crop choice is modeled by separating his production decision into five
categories: (1) primary staple crop, (2) cereals and pulses, (3) oils and spices, (4) fruits
and vegetables, and (5) cash crops. Table 2 lists the sample’s most cultivated crops in
terms of the above output categories. In terms of area cultivated, teff is clearly the
primary crop grown in Ethiopia. According to Ferenji (2005) and Pender and Alemu
(2007), it is also the primary consumption crop. It is closely followed by maize and
sorghum. Niger seeds, linseed, coffee and chat are the country’s main export crops for the
country.
Table 2. Top Cultivated Crops (in terms of hectares) by Crop Categories.

<table>
<thead>
<tr>
<th>Primary Staple Crop</th>
<th>Cereals/Pulses</th>
<th>Oils/Spices</th>
<th>Fruits/Vegetables</th>
<th>Cash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop</td>
<td>Area</td>
<td>Crop</td>
<td>Area</td>
<td>Crop</td>
</tr>
<tr>
<td>Teff</td>
<td>5,772</td>
<td>Maize</td>
<td>4,831</td>
<td>Niger</td>
</tr>
<tr>
<td>Sorghum</td>
<td>4,410</td>
<td>Linseed</td>
<td>312</td>
<td>Potatoes</td>
</tr>
<tr>
<td>Wheat</td>
<td>3,022</td>
<td>Rape Seed</td>
<td>145</td>
<td>Sweet Potatoes</td>
</tr>
<tr>
<td>Barley</td>
<td>2,272</td>
<td>Groundnuts</td>
<td>92</td>
<td>Onion</td>
</tr>
</tbody>
</table>

The 2000/2001 Agricultural Sample Survey accounted for a total of 28,116 cultivated hectares. Table 3 shows the average share of cultivated hectares devoted to each crop category by the travel time to a market center. These are then sub-divided to include the major crops listed in Table 2. After ignoring the last time quintile since it represents a negligible portion of the sample, this table shows that there are slight increases in the percentages of cereals/pulses, oils/spices, and fruits/vegetables as the distance to market increases. The share of teff appears to decrease with distance. The share of cash crops unexpectedly increases with distance to market, and the bulk of this effect occurs in coffee crops.

Variable definitions and descriptive statistics for all variables used are presented in Table 5 in Appendix A. The majority of farmers represented in this sample are illiterate, middle-age men who head an average household of five people. The average time it takes a farmer to travel to a market center of 50,000 people is approximately seven hours. The vast majority of crops produced in 2000/2001 consisted of the subsistence crop teff (15%) and cereals and pulses (70%). On average, the Ethiopian farmer prefers to moderately diversify his crop mix ($DIV = .498$). In terms of fertilizer, 41.6% of farmers
do not use any fertilizer, 20.98% use only natural fertilizer, and 37.4% use chemical fertilizer. The number of useable observations is 29,333.

<table>
<thead>
<tr>
<th></th>
<th>0 – 7.5 hours</th>
<th>7.5 – 15 hours</th>
<th>15 – 22.5 hours</th>
<th>22.5 – 30 hours</th>
<th>30 – 37 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hectares Cultivated in Time Quintile</td>
<td>17,961</td>
<td>8,790</td>
<td>1,169</td>
<td>175</td>
<td>21</td>
</tr>
<tr>
<td>Primary Staple Crop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teff</td>
<td>22.02%</td>
<td>18.81%</td>
<td>13.81%</td>
<td>—</td>
<td>12.68%</td>
</tr>
<tr>
<td>Cereals/Pulses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>16.23%</td>
<td>17.75%</td>
<td>19.24%</td>
<td>69.87%</td>
<td>45.14%</td>
</tr>
<tr>
<td>Sorghum</td>
<td>14.46%</td>
<td>18.52%</td>
<td>14.41%</td>
<td>7.26%</td>
<td>18.76%</td>
</tr>
<tr>
<td>Wheat</td>
<td>11.75%</td>
<td>9.16%</td>
<td>9.12%</td>
<td>0.02%</td>
<td>—</td>
</tr>
<tr>
<td>Barley</td>
<td>8.45%</td>
<td>7.19%</td>
<td>10.44%</td>
<td>0.01%</td>
<td>1.13%</td>
</tr>
<tr>
<td>Oils/Spices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niger</td>
<td>2.69%</td>
<td>3.81%</td>
<td>1.92%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Linseed</td>
<td>1.24%</td>
<td>0.80%</td>
<td>1.69%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Rape Seed</td>
<td>0.23%</td>
<td>0.75%</td>
<td>1.35%</td>
<td>12.23%</td>
<td>—</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>0.50%</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.18%</td>
<td>—</td>
</tr>
<tr>
<td>Fruits/Vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td>0.50%</td>
<td>0.47%</td>
<td>0.57%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sweet Potatoes</td>
<td>0.32%</td>
<td>0.29%</td>
<td>0.36%</td>
<td>0.61%</td>
<td>—</td>
</tr>
<tr>
<td>Bananas</td>
<td>0.14%</td>
<td>0.23%</td>
<td>0.21%</td>
<td>0.12%</td>
<td>0.28%</td>
</tr>
<tr>
<td>Onion</td>
<td>0.09%</td>
<td>0.15%</td>
<td>0.10%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coffee</td>
<td>2.35%</td>
<td>4.10%</td>
<td>9.42%</td>
<td>6.64%</td>
<td>16.44%</td>
</tr>
<tr>
<td>Chat</td>
<td>1.72%</td>
<td>0.86%</td>
<td>0.16%</td>
<td>0.16%</td>
<td>1.11%</td>
</tr>
<tr>
<td>Cotton</td>
<td>0.16%</td>
<td>0.45%</td>
<td>0.01%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sugar Cane</td>
<td>0.11%</td>
<td>0.18%</td>
<td>0.18%</td>
<td>0.16%</td>
<td>—</td>
</tr>
<tr>
<td>% of Households in Time Quintile</td>
<td>62.54%</td>
<td>32.05%</td>
<td>4.39%</td>
<td>0.93%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>
A combination of limited dependent models is used to estimate the effects of market isolation on input use and crop diversification. The analysis of input use is focused on chemical fertilizer adoption; this variable is modeled both as the household’s binary decision to use chemical fertilizer on any field in cultivation and in terms of the intensity of adoption over the cultivated area. Crop diversification is a measurement of the number of different crops under cultivation as indicated by the Herfindahl index. It is possible that the decision to use chemical fertilizer is influenced by a farmer’s decision to diversify and vice versa. This potential endogeneity indicates reason to believe that these two decisions should be modeled simultaneously.

Empirical Models

The decision to use chemical fertilizer is measured both in binary terms and continuously. Thus, depending on the formation of the variable, the decision is estimated by using a logit or a Tobit regression. A Tobit regression is used to explain a farmer’s decision to diversify his crop mix. The basic econometric models are of the following forms:

\[
(6.1) \quad CFERT_i = \alpha_1 DIV_i + \beta_0 + \beta_2 TTIME_i + \beta_3 CROP_{ij} + \beta_4 W_i + \beta_5 X_i + \beta_6 Z_i + \varepsilon_{1i}
\]

\[
(6.2) \quad DIV_i = \alpha_2 CFERT_i + \delta_0 + \delta_2 TTIME_i + \delta_3 CROP_{ij} + \delta_4 W_i + \delta_5 X_i + \delta_6 Z_i + \varepsilon_{2i}
\]

$CFERT_i$ is a measure of chemical fertilizer adoption by farmer i.

DIV_i is equal to the sum of crop shares squared for each crop produced by farmer i.\(^{11}\)

$TTIME_i$ is the average time (in hours) it take to travel to a market center of 50,000 people or greater from the wereda where farmer i resides,

W_i is a vector of the individual farm characteristics held by farmer i,

X_i is a vector of the individual demographic characteristics of farmer i,

Z_i is a vector of wereda-specific characteristics that define the wereda where farmer i resides,

ε_i is the error term.

Vector W includes variables that characterize the production environment of the farm. Included are a binary measure of irrigation use and the total area and number of fields under cultivation by the farmer. The area cultivated and the number of fields are not used in the diversification model because they are correlated with the Herfindahl index that measures diversification. The farmer-specific variables included in vector X are age, sex, education level, and household size.

The variables included in the vector Z represent the bioclimatic and economic nature of the region where the farmer resides. Biophysical variables are average elevation, average slope, tree coverage, all-weather road density (meters per km\(^2\)), and a measure of rainfall in the wereda. Variables that describe a farmer’s ability to access services are population density of the wereda (hundreds of people per km\(^2\)) and number of banks, primary schools, and secondary schools present in the wereda. The area of a

\(^{11}\) The measure of crop diversification has a value of 1 when the farmer is completely specializing and approaches 0 as the number of crops produced by the farmer gets larger.
farmer’s respective wereda is not significantly associated with chemical fertilizer adoption and is only used to identify diversification practices so as to properly identify the simultaneous equation model.

Empirical Variable Definitions and Expectations

Wealth effects are modeled by IRR and $FARM_AREA$, where IRR is a measure of irrigation use and $FARM_AREA$ is the total size of the farm in cultivation. The high fixed costs associated with an irrigation system limit the number of investing households. Larger farm size is also associated with wealth, in terms of production possibilities. Since land in Ethiopia is nationalized, households do not have the ability to adjust the size of their land holdings and as a result of this communal process, the range of farm sizes in Ethiopia is very narrow. Increased wealth gives households more flexibility to bear risk and allocate financial resources to inputs, therefore, it would be expected that IRR and $FARM_AREA$ would positively affect both the rate and intensity of chemical fertilizer adoption. Additionally, wealthier farmers may be more likely to specialize in high value crops.

Variables that model the ability for a household to access information and markets are SEX, ED, $POPDEN$, SEC_SCH, $ROADDEN$, and $TTIME$. Males tend to have greater opportunities to attend school in developing countries, and farmers with higher education are able to allocate resources more efficiently. Areas of higher population density require more complex market institutions to facilitate daily interactions. All-weather roads significantly decrease transaction costs associated with the purchase and transport of inputs. More secondary schools are developed around areas that require higher skilled
workers; areas that would necessitate the need for developed markets. Access to a market center is hindered by road quality, and geographical conditions such as water bodies and mountainous regions. \textit{TTIME}, travel time to a market, takes all of these variables into consideration. Greater access to markets and information concerning inputs and prices would predictably be associated with higher propensities to adopt chemical fertilizer. It is hypothesized that households will choose to grow more specialized and profitable crops when they have better access to a market, so the relationship to diversification is expected to be negative.

The \textit{AGE} of a farmer would capture experience, but the experience of a farmer does not necessarily affect the propensity of chemical fertilizer adoption or crop diversification in one direction or another. The effect of \textit{HHSIZE}, household size, is also indeterminate in sign. Household size could be a proxy for labor, and thus, more labor would allow for more intensive chemical fertilizer use or allow for more crops to be grown at a time (Croppenstedt et al., 2003). Larger households may be using more chemical fertilizer to increase the output necessary to sustain the family (Nkonya et al., 1997). A larger household may also want to diversify its crop structure to satisfy a variety of food preferences. However, it may not be possible for large, poor households to allocate financial resources to advanced technologies over other necessities (Fufa and Hassan, 2006). Additionally, larger households may not have the financial resources to invest in the production of several types of crops.
Chemical Fertilizer Regression

Studies of technology adoption model the diffusion of innovation in two ways: whether or not an individual chooses to use the innovation and/or the intensity of adoption by an individual. For this analysis, the decision will be modeled both in terms of whether households used chemical fertilizer in the 2000/2001 farming season, as well as the degree of fertilizer intensity each household employed as a share of total hectares cultivated. In the studied time period about 37% of Ethiopian farmers used chemical fertilizer, and of that group, farmers chose to apply chemical fertilizer to an average of 57% of their farm. Figure 2 displays the distribution of the intensity of chemical fertilizer use by Ethiopian farmers who have chosen to adopt the input.

As a starting point, OLS was used to examine the variables that affect chemical fertilizer use, however, the estimates are assumed to be biased because of the nature of the dependent variable. The construction of the chemical fertilizer adoption variables limits the values to either a binary decision (yes/no) or a crude measure of fertilizer intensification as a proportion between zero and one. This limited information is not appropriately accounted for by conventional regression methods because distributions of the dependent variable can no longer be assumed to be normal. However, if the decision is analyzed under the framework of a probability model, the problem is more tractable.
The use of chemical fertilizer can be thought of as an indication of an underlying latent variable. This decision is based on the unobservable calculation of the net benefit from the innovation. The household will calculate the difference between revenue that could be made using chemical fertilizer and revenue from using traditional methods. From this difference, the household further subtracts additional costs associated with the new innovation, such as using complementary inputs, increased labor, and transaction costs. The resulting net benefit $CFERT^*$ is modeled such that $CFERT^* = X'\beta + \epsilon$. It is assumed that the latent variable error term has a normal distribution centered at zero, which satisfies linear model assumptions.

Limited dependent variable models will be used to account for this unobservable latent variable. If the farmer has a negative net benefit from chemical fertilizer use the
variable is automatically censored at zero. The first method of adoption measurement answers the question: Did the household use chemical fertilizer on any of its fields? The answer is translated from the latent variable such that,

\[\text{CFERT} = 1 \text{ if } \text{CFERT}^* > 0, \]
\[\text{CFERT} = 0 \text{ if } \text{CFERT}^* \leq 0. \]

The second method of adoption measurement answers the question: On what percentage of its operation (in terms of hectares) did the household use chemical fertilizer? The translation of the latent variable will be continuous and between zero and one,

\[\text{CFERT} = f(\text{CFERT}^*) \text{ if } \text{CFERT}^* > 0, \]
\[\text{CFERT} = 0 \text{ if } \text{CFERT}^* \leq 0. \]

The decision to use chemical fertilizer on any fields under cultivation is expressed as a zero or one variable, such as in equations (6.3), and will be estimated using a binary choice model. This model relates the probability of choosing to use chemical fertilizer to a vector of farmer-, farm-, and regional-explanatory variables through the equations:

\[\text{Prob}(\text{CFERT}_i = 1|x_i) = F(x_i\beta), \]
\[\text{Prob}(\text{CFERT}_i = 0|x_i) = 1 - F(x_i\beta), \]

where \(F(\cdot) \) is the cumulative density function.

The effect of changes in the explanatory variables on the probability of using chemical fertilizer is reflected through the parameter vector, \(\beta \). To maintain estimated probability predictions between 0 and 1 from equations (6.5), a nonlinear model should be used (Greene, 2008). Assumptions about the distribution of the error term determine which binary choice model is appropriate. If it is assumed that the error terms are
distributed logistically, then a logit model should be used. If the error term is assumed to be distributed normally, then it is more appropriate to use a probit model. These distributions have similar bell shapes and are both centered at zero. Empirically, there is little evidence to justify the choice of one model over the other (Maddala, 1983; Greene, 2008). The logistic distribution has larger tails and is therefore more conducive to larger samples (because there are more observations in the tails) (Maddala, 1983). For this reason, a logit regression model is used to estimate the probability of chemical fertilizer adoption by households.

The probability models in (6.5) are used to form the binary choice regression model,

\[E(CFERT_i|x_i) = 0[1 - F(x_i\beta)] + 1[F(x_i\beta)] = F(x_i\beta). \]

(6.6)

The underlying logistic distribution is,

\[\text{Prob}(Y = 1|x_i) = \frac{e^{x_i\beta}}{1 + e^{x_i\beta}} = \Lambda(x_i\beta). \]

(6.7)

The logit model is estimated with maximum likelihood estimation, where the maximum likelihood estimator \(\beta \) maximizes the log-likelihood function through an iterative process (Greene, 2008). The log likelihood function is a transformation of the joint probability density function from equations (6.5),

\[\ln L = \sum_{i=1}^{N}(y_i[F(x_i\beta)] + (1 - y_i)[1 - F(x_i\beta)]). \]

(6.8)

The decision to use chemical fertilizer is complicated by the fact that it can be broken into two parts. The household first chooses whether or not to use any fertilizer. If the household has decided to use fertilizer, it must then choose either to use natural or chemical fertilizer. These three separate options have been condensed into a binary
variable based solely on chemical fertilizer use. Therefore, it may be the case that there is some correlation unaccounted for between the unobserved factors within the decision of what type of fertilizer to use. A nested logit is used to quantify this correlation in the form of a log sum coefficient λ. As λ approaches zero, it indicates that there is perfect correlation between the unobserved factors within a nest (in this case, the decision about fertilizer type). If λ is equal to 1 there is no correlation present and the nested logit is identical to using a standard logit. The OLS, standard logit, and nested logit estimates for the decision to use chemical fertilizer are presented in Table 6 in Appendix A. The log-sum coefficient (λ) is equal to 0.037, which would indicate that there is almost perfect correlation between the unobserved factors affecting the fertilizer type decision. This necessitates the use of a nested logit model for the examination of chemical fertilizer use probabilities.

Decisions to use chemical fertilizer are often made simultaneously with other agricultural innovations, such as pesticides and improved seed (Smale et al., 1994). Therefore, while the decision to use complementary inputs does affect the probability of using chemical fertilizer, there is a good chance that the variables are endogenously determined. A quick comparison of the estimates with and without pesticide and seed use shows that there does appear to be an endogeneity problem. The standard errors in the logit regression without pesticides and improved seed are lower than in the regression with these variables included, and the magnitudes of the estimates are higher. This endogeneity could be formally tested and accounted for in the context of a 2SLS model, but the focus of this analysis is on the effects of market access on production decisions.

\footnote{An in depth discussion of the nested logit model is presented in both Greene (2008) and Train (2009).}
so the complementary inputs have been omitted from the regression on chemical fertilizer adoption.

The intensity of chemical fertilizer use is expressed as a value from zero to one, such as in equations (6.4), and will be estimated using the Tobit censored regression model. All negative net benefit values are observed as zero chemical fertilizer use. The magnitude of a positive net benefit from chemical fertilizer is transformed into a percentage based on the amount of hectares fertilized relative to the farm size. The censored distribution used for the Tobit model is a combination of continuous and discrete distributions because of the mass of observations at zero. Since the latent variable has a normal distribution, strictly positive values of CFERT have a continuous distribution. The probability associated with latent variable values below or equal to the censoring point is summed to a single, discrete value (Greene, 2008; Wooldridge, 2009). Following Greene (2008), the resulting expected intensity of chemical fertilizer adoption derived from the censored distribution is

\[
E[CFERT|x_i] = \Phi \left(\frac{x_i'\beta}{\sigma} \right) + \sigma \phi \left(\frac{x_i'\beta}{\sigma} \right),
\]

where \(\Phi(\cdot) \) is the standard cumulative density function, \(\sigma \) is the standard deviation, and \(\phi(\cdot) \) is the probability density function. The Tobit model works by making the above mean in (6.9) consistent with conventional regression methods.

The marginal effects from a probability model require a little more attention than conventional models. In general, the derivative of the binary choice regression model from equation (6.6) is

\[
\frac{\partial E[CFERT|x_i]}{\partial x_i} = \left[\frac{\partial P(x_i'\beta)}{\partial (x_i'\beta)} \right] \beta = f(x_i'\beta)\beta,
\]
where the traditional derivative is scaled by the probability density function \(f(\cdot) \).

In terms of the logistic distribution,

\[
(6.11) \quad f(x_i\beta) = \frac{\frac{d\Lambda(x_i\beta)}{dx_i\beta}}{\frac{(1 + e^{x_i\beta})^2}{\Lambda(x_i\beta)[1 - \Lambda(x_i\beta)]}}.
\]

Thus, the marginal effects of the logit model are

\[
(6.12) \quad \frac{\partial E[CERT|x_i]}{\partial x_i} = \Lambda(x_i\beta)[1 - \Lambda(x_i\beta)]\beta.
\]

Greene (2008) presents a formal proof of the marginal effects of a censored Tobit model. Again, the estimate is multiplied by a scalar (this time by the cumulative density function):

\[
(6.13) \quad \frac{\partial E[CERT|x_i]}{\partial x_i} = \beta \Phi\left(\frac{x_i\beta}{\sigma}\right).
\]

Crop Diversification Regression

The variable used to measure crop diversification of Ethiopian households is a modification of the Herfindahl index of competition that lies strictly between zero and one. For the same reasons as above, it is not appropriate to use a classical regression model on this limited dependent variable. The distribution of the diversification measure is displayed below in Figure 3.
Figure 3. Histogram of Diversification Scores.

Approximately eight percent of the sampled households produced a single crop and therefore the sample is weighted towards the upper limit of the diversification variable ($DIV = 1$). To account for this skewed distribution it is again necessary to use a Tobit regression model. However, it is difficult to think about a latent variable underlying this regression as it was above. In this case, a household either specializes completely or diversifies its production to varying degrees. A potentially negative DIV^* is not logical. Thus, the underlying distribution structure cannot be assumed to be normal. While a Tobit model is not ideal, it does provide an easier estimation method to address a simultaneity bias than other options.

Potential solutions to the distribution problem associated with the Tobit model would be to use a quantile regression or a hurdle model. Angrist and Pischke (2009)
suggested the use of a quantile regression to examine distribution effects that are not strictly at the mean. While the Tobit model examines the likelihood of observing a value of DIV that is less than or equal to one, a quantile regression model allows for the analysis of several truncation values, $\text{Prob}(DIV|DIV > c)$, where c can be equal to any value between zero and one. A hurdle model assumes that there are two questions being answered: “whether or not to diversify” and “how much, given yes.” If we treated the diversification measure as count data we could estimate using a hurdle model and maximum likelihood. The quantile and hurdle regression models may provide less biased results, but they are intractable in a simultaneous equation model.

A household’s decision to use chemical fertilizer or diversify its crop mix is linked with its decisions about which crops to produce. However, these decisions may be endogenously connected. Empirical models that included a measurement of crop choice were estimated and compared to the above models that only include exogenous regressors; the differences were negligible. The regression results concerning the intensity of chemical fertilizer use and crop diversification are presented in Table 7 in Appendix A.

Simultaneous Equation Regression

Due to the expected returns from specializing in certain cash crops like coffee or chat, the household is generally more inclined to use inputs that produce higher yields. Thus, each decision variable will be used to explain the other. If chemical fertilizer adoption and diversification decisions are endogenously determined when they are used
as explanatory variables they will be correlated with the error terms, leading to a simultaneity bias.

A two-stage least squares (2SLS) regression is used to correct for endogeneity through the application of an instrumental variable. Calculating the necessary two-stage estimates for this analysis requires the use of a simultaneous equation model with two limited dependent variables. Estimation of a simultaneous equation model using limited dependent variables is complicated by censoring and the abnormal distributions of the dependent variables. Nelson and Olsen (1978) proposed a model specification that makes this problem more tractable. For their example, the authors used a two equation model with one continuous and one limited dependent variable. In the first stage, the dependent variables were regressed on all of the exogenous variables using the necessary least squares or maximum likelihood approaches. In a procedure analogous to the 2SLS method, the fitted values from the reduced form regressions were used as instrumental variables in the second stage or the regression as a measurement of the underlying latent variable. Although Nelson and Olsen only demonstrated their methods using one continuous variable and one limited dependent variable, they posited that their method was applicable to a multiple equation simultaneous model with multiple limited dependent variables. A simulation presented in Appendix B provides compelling evidence that the proposed two-stage method does return a monotonic transformation of the underlying latent utility.

Since the dependent variables used in the simultaneous equation model are limited, it is not possible to approximate a truly unbiased estimate of the underlying
utility. However, the simulation suggests that using the fitted values from the first-stage process to estimate the latent utility, or ‘inclination’ to perform the action in question does provide a close approximation when inserted into the second stage of the process. Although this method has asymptotic properties, the estimates of the underlying utility from the two-stage simultaneity process will be biased. The degree of bias depends on the magnitude of censoring. While both measurements of chemical fertilizer are significantly censored, the intensification of technology adoption, as measured between zero and one, will be used to determine if a simultaneity bias exists because it contains more information about the household.

The second stage of the simultaneous system estimation results in a structural equation. The coefficients on the regressors in this equation must be interpreted carefully because each regressor affects the dependent variable through two paths: directly, through the exogenous parameter and indirectly, through the variable’s effect upon the model’s endogenous variables. The fitted values of the endogenous variables only enter the second stage equation once so, holding all else equal, an inference may be made about their effect on the dependent variable. However, to make an inference an assumption must hold. If an omitted variable that affects the fitted values is shocked, it cannot have an effect on any of the exogenous regressors; this is an unrealistic assumption. Therefore, it is necessary to express the two equations in their reduced forms. The results from each stage of the two-stage process and the reduced form calculations are presented in Table 8 in Appendix A. The differences between the estimates from the simple Tobit models and the reduced form two-stage models are
negligible, which suggest that a simultaneity bias does not exist. The reduced form estimates, standard errors, and p-values were calculated using a bootstrap method of 1000 draws with replacement. It is intractable, or extremely difficult to know the underlying distribution of the above limited dependent variables. Bootstrapping is a method that circumvents this problem and gives more tractable results.

Results

The analysis of results has been separated into three categories: regional-related, farm-related, and farmer-related characteristics. The above simulation shows that even though the magnitudes of the estimates are not necessarily an accurate representation of the underlying utility, the coefficient signs are generally still reliable. Therefore, the results will be discussed in terms of a household’s inclination to use chemical fertilizer or diversify as opposed to a specific degree of behavioral change. Indeed, a comparison between the Tobit and two-stage reduced form estimates shows that all of the regressors, except for a couple of variables associated with the insignificant effects of education on diversification, maintain the same signs throughout.

Regional Characteristics

The main explanatory variable of interest in the above regressions is market access as measured by the average distance from a wereda to a population center of 50,000 or more. A lack of access to a market for consumption goods could force smallholders to diversify their crop structure to ensure their dietary needs. Additionally, it is possible that households closer to market choose to specialize because they have
greater access to technologically advanced inputs and are able to purchase subsistence goods with their higher levels of income. As expected, households further from market are significantly less likely to adopt chemical fertilizer or diffuse it through their operation. However, households further from market appear to be less likely to diversify their crop mixes.

The contradictory result could be explained by the functional form of the model used or deficiencies in the proxy measure. Perhaps the diversification behavior of smallholders cannot be modeled in a linear fashion. Households that live close to a relatively large market center have access to the amenities needed to specialize in high-value crops. Households that are completely isolated from a market center are presumably self-sufficient. For environmental and/or financial reasons it may only be feasible to grow a limited number of crops in more secluded regions. Many smallholders fall in between these two groups and are likely to produce a portion of their consumption needs as well as sell their marketed surplus. These households may try to diversify their crop structures to compensate for the higher degrees of uncertainty associated with smaller market centers. Therefore, the relationship between diversification and market access may be more bell-shaped and is difficult to assess using only a single measure of distance from markets (travel time to a large city). Additionally, the Herfindahl measurement of diversification is a function of the number of crops grown by a household, but it does not take into account the value of these crops or the predominance each crop plays in the household’s operation.
All of the wereda-specific explanatory variables for fertilizer adoption and diversification are statistically significant in the reduced form models. While biophysical characteristics of the wereda are likely to affect the feasibility of fertilizer use and crop growth, their effects are generally difficult to influence with policy changes. The following analysis of regional characteristics will focus on elements that are of greater interest to policy makers.

Additional proxies for information and market accessibility are the all-weather road (m per km²) and population (hundreds of people per km²) densities of a wereda, as well as the number of secondary schools in a wereda. Improvements in information and market accessibility are likely to decrease transaction costs associated with transporting and buying chemical fertilizer and marketable crops. An increase in the density of all-weather roads may make it easier to obtain chemical fertilizer, as well as increase the value of outputs (by decreasing the associated transportation costs). More populated regions are generally supported by larger market systems. Surprisingly, all-weather road and population densities are inversely related to chemical fertilizer use. Perhaps the variables are influenced by smaller household operations closer to urban areas whose primary focus is not agriculture. As all-weather road and population densities increase, crop diversification is estimated to decrease; a finding that supports the hypothesis that households tend to specialize their crop production closer to market. The demand for secondary education facilities is positively related to the growth of urban areas where more occupations require higher levels of education. Areas with higher concentrations of secondary schools will contain more venues for information access. This information aids
households as they strive to allocate resources efficiently. As would be expected, both chemical fertilizer use and crop diversification are predicted to increase with higher numbers of secondary schools.

The volatile nature of household farming in a developing country necessitates credit access. Credit allows a household to reduce income risk associated with market and climatic uncertainty. Credit access for households in the 2000/2001 farming season is proxied by the number of banks and micro-finance institutions in 2005. According to a report published by the Ethiopian government in 2002, there were 9 banks with 324 branches in the country (FDRE 2002). The number of branches grew by 16% in 2005 to 378 branches. Since the growth in bank branches mainly took place in urban areas, the difference in the number of bank branches does not discredit its use as a proxy. However, having a bank available to a household certainly does not mean that its services are utilized. It is also more likely that small, low-income production operations will use micro-finance institutions to access credit. In 2002 there were 19 micro-finance institutions available to the Ethiopian public; by 2005 this number was in excess of 1,000 (FDRE 2002). Therefore, this may not be the best proxy for the ability to access micro-finance credit opportunities. According to the data, the probability of chemical fertilizer use is reduced as the number of banks is increased. This counterintuitive result may be attributable to the deficiencies in the proxy discussed above. A simple scatter plot reveals that, all else equal, the number of banks in a wereda is inversely related to the travel time to a population center of 50,000 or greater. It is likely that households choose to specialize their crop production in areas closer to a market because they have better
access to services such as the sale of high-yielding inputs and credit. Not surprisingly, the number of banks present in a wereda is estimated to increase a household’s propensity to specialize. In terms of micro-financial institutions, an increase in the number of institutions is estimated to increase the amount of chemical fertilizer used as well as a household’s level of diversification.

Farm Characteristics

Choice characteristics concerning the operation of individual farms include irrigation, the number of fields, and the area cultivated. The decision to use irrigation on any field in cultivation negatively effects chemical fertilizer use and positively effects crop specialization. Presumably, the decision to use irrigation would be associated with the household’s decisions on crop specialization, because if the infrastructure was already in place, the smallholder could allocate more of its resources to a smaller number of more marketable crops. It is estimated that farmer’s who have the capability to use irrigation are less likely to use chemical fertilizer. Perhaps, chemical fertilizer and irrigation are substitute goods in terms of agricultural productivity. If smallholders are able to exert greater control over their water supplies, they may not feel a need to use as much chemical fertilizer. One problem that arises with these variables concerns loss of information from aggregation. Since the data has been summarized at a household level, it is not possible to know what inputs are generally paired with a particular crop.

An increase in the number of fields and farm size are positively linked to the intensity of chemical fertilizer use. These results are also supported by the work of

Household Characteristics

Higher levels of education, relative to illiteracy, are related to positive probabilities of chemical fertilizer use. Literacy rates and education levels were also found to positively affect chemical fertilizer use by Croppenstedt et al. (2003), Weir and Knight (2004), and Fufa and Hassan (2006) in Ethiopia. Other than in the second two years of primary education and first years of university education, relative to illiteracy, education does not significantly affect a household’s decision to diversify.

Problems with Estimation

The major markets in Ethiopia are located in the capital city of Addis Ababa. The country is designed so that all of the major roadways spoke out from the centrally located capital city. Thus, if smallholders want to trade with areas across the country they are first directed through the capital. The measure used for market isolation is the travel time to a city center of 50,000 people or more. The spoke and axle nature of access in the country validates the use of the travel time variable as a proxy for market access. However, the analysis would be strengthened if measurements of travel time to smaller/larger population centers were accessible. Households that are selling marketed surpluses of staple foods such as grains and common vegetables are able to participate in markets that are of a much smaller magnitude than found in these large city centers.
Having more complete information on the market structures of Ethiopia would make it easier to identify behavioral differences between farmers.

The Ethiopian government has spent many resources on the promotion of high-yielding technology, primarily through the use of extension agencies. In this analysis, information on household access to the services of an extension program was not available, which will result in omitted variable bias. Since an extension office would decrease the effects of incomplete and unreliable information, in essence it would reduce the effects of remoteness. Therefore, the variables on market access are likely to be biased upward. Although, more likely than not, this bias would not have an effect on the signs of the effects. Additionally, it is possible that some of the household observations represent farmers who are participants in an extension program. Their access to fertilizer and the price they face are not the same as other households, which would also upwardly bias the effects of market access.

The measure of diversification used in this analysis is a modified Herfindahl index that is calculated by summing the squares of the different crop shares on the farm, in terms of area cultivated. This method of measurement may not accurately capture the smallholder’s diversification behavior. Squaring the crop shares places more weight on the smaller percentages. As such, the diversification index may be misleading since it does not take the same area of land to grow equitable quantities of different crops (e.g. oranges and wheat). A more accurate assessment of diversification may be to calculate the percentage of value each crop adds to production. Alternatively, smallholders who
base their production decisions on the need to provide basic sustenance for their families, may base their diversification decisions on the relative riskiness of each crop.

Several of the variables included in the regression are measured at the mean of the wereda. However, these variables vary across the district, and therefore, it is possible that households are misrepresented by the data used. This measurement error could lead to an attenuation bias. Further measurement error may have taken place during the data collection process.

Summary

The empirical results imply that crop diversification and chemical fertilizer use are inversely related, but there is not substantial evidence to suggest that these two variables endogenously determine one another. Increases in the travel time to a market center are likely to decrease the intensity of chemical fertilizer adoption and increase the level of crop specialization. Additionally, while education levels have a positive, statistically significantly relationship to chemical fertilizer adoption, there does not appear to be a significant connection between crop diversification and the ability to allocate resources effectively.
CHAPTER 7

CROP CHOICE

To estimate the effects of market isolation on crop choice, the household’s production system has been separated into five different crop categories: (1) primary staple crop, (2) cereals and pulses, (3) oils and spices, (4) fruits and vegetables, and (5) cash crops. These crop categories were chosen based on similarity in crop type, market value, and consumption patterns.

Empirical Model

The effects of market isolation on crop choice are modeled as follows:

\[
CROP\%_{ij} = \beta_0 + \beta_1 TTIME_i + \beta_2 REV_{ij} + \beta_3 IRR + \beta_4 X_i + \beta_5 Z_i + \varepsilon_i,
\]

\(CROP\%_{ij}\) is a vector equal to the share of total cultivated area devoted to crop category \(j\) by farmer \(i\),

\(TTIME_i\) is the average time (in hours) it take to travel to a market center of 50,000 people or more from the wereda where farmer \(i\) resides,

\(REV_{ij}\) is the estimated relative revenue per hectare (by region) for the respective crop category \(j\) faced by farmer \(i\),

\(IRR\) is a binary measure of irrigation use on a farmer \(i\)’s farm,

\(X_i\) is a vector of the individual demographic characteristics of farmer \(i\),

\(Z_i\) is a vector of wereda-specific characteristics that define the wereda where farmer \(i\) resides,

\(\varepsilon_i\) is an error term.
Farmer-specific variables included in vector X include age, sex, education level, and household size. Vector Z variables represent the bioclimatic and economic nature of the region where the farmer resides. Biophysical variables are wereda area, average elevation, average slope, tree coverage, road density, and a measure of rainfall in the wereda. Variables that describe a farmer’s ability to access services are the population density of the wereda and the number of banks, micro-finance institutions, primary schools, and secondary schools present in the wereda.

Empirical Variable Definitions and Expectations

The relative revenue variables (REV) used in the regression system were calculated by dividing a measure of revenue for a single crop category by the average of revenue estimates of all categories. The revenue measures are significantly correlated, so singular value decomposition was used to determine which revenue estimates would be the best to include for empirical reasons. Two revenue estimates located on opposite sides of the continuum of profitability should be included for economic reasons. Under those criteria, the best fitting revenue variables were for cereals/pulses and fruits/vegetables. A measure of revenue was included in the regression system to give a proxy for profitability. While the revenue variable should positively affect own-crop categories, the effect of revenue on other crop categories is indeterminate because it is not known which crop categories are substitutes or complements for each other.

Additional regressors included in the system of OLS equations are included for reasons similar to the chemical fertilizer and crop diversification models. SEX, ED, $POPDEN$, SEC_SCH, $ROADDEN$, and $TTIME$ all measure the ability of a household to
access information and markets. Therefore, more marketable crops would predictably be positively affected by market access and vice versa for subsistence crops. $FARM_AREA$, total cultivated area, is a proxy for the wealth of the household. Higher levels of wealth are associated with more risky behavior. Households that can afford to feed themselves will be able to devote more of their resources to income-related activities, such as the cultivation of cash crops. The effects of input use will vary across crop categories, depending on the nature of the crops and the financial situation of the household. Again, household size will be indeterminate in sign. If $HHSIZE$ is a proxy for labor, perhaps larger households will grow more labor intensive crops. Cash crops may be considered labor intensive, but the opportunity costs of living near a market area may promote hired labor off the farm. It is also possible that larger households in a subsistence situation may be required to grow large amounts of low valued crops, while smaller households have the freedom to vary their diets and raise cash crops.

Empirical Methodology

Since the five dependent variables in the shares equation sum to one, the five equations should be modeled as a system. While the disturbances in the error terms are assumed to uncorrelated across observations, they are inherently correlated across equations. Following Greene (2008),

$$E[\epsilon_{it}\epsilon_{js}|X_1, X_2, \ldots, X_M] = \sigma_{ij}, \quad \text{if } t = s \text{ and } 0 \text{ otherwise.}$$

Therefore, the disturbance formulation is,
To account for the error term correlation, a seemingly unrelated model is estimated using generalized least squares. In terms of efficiency, generalized least squares is preferred to equation by equation ordinary least squares estimation if the equations are truly related ($\sigma_{ij} \neq 0$ for $i \neq j$) and/or the equations do not have identical regressors ($X_i \neq X_j$).

The model in (7.1) contains identical regressors and is thus estimated with equation by equation OLS. However, because the dependent variables are crop shares, cross-equation restrictions need to be included. The issue is illustrated in the following example:

\begin{equation}
(7.4) \quad y_1 = \alpha_0 + \alpha_i X_i, \\
y_2 = \beta_0 + \beta_i X_i, \\
y_3 = \delta_0 + \delta_i X_i.
\end{equation}

Since the dependent variables are shares, it follows that

\begin{equation}
(7.5) \quad y_1 + y_2 + y_3 = \alpha_0 + \alpha_i X_i + \beta_0 + \beta_i X_i + \delta_0 + \delta_i X_i = 1
\end{equation}

and

\[1 - \frac{(\alpha_0 + \beta_0 + \delta_0)}{\alpha_i + \beta_i + \delta_i} = X_i. \]

Therefore, since the three equations are related, the effects of a shock to an explanatory variable must sum to zero across the equations while the intercepts must sum to one, that is,

\[E[\epsilon_{it}\epsilon_{js}|X_1, X_2, ..., X_M] = \Omega = \begin{bmatrix} \sigma_{11}I & \sigma_{12}I & \cdots & \sigma_{1M}I \\ \sigma_{21}I & \sigma_{22}I & \cdots & \sigma_{2M}I \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{M1}I & \sigma_{M2}I & \cdots & \sigma_{MM}I \end{bmatrix} \]
The addition of cross-equation constraints makes it possible to fully identify the five share equations in a seemingly unrelated system. However, since the sample size is so large, it is difficult to invert a matrix of the required magnitude. A solution to this problem would be to break the matrix into manageable subparts, but this will be left for future research. Instead, it is noted that estimating each individual equation with OLS still maintains the necessary cross-equation restrictions. The OLS results are presented in Table 9 in Appendix A.

Although each equation in the system was estimated individually, the marginal effects of each regressor are interconnected by the crop shares. If an average household decides to increase its share of cereal and pulse crops it must decrease its shares of the other four crops simultaneously. Thus, an individual marginal effect can only be considered relative to the sum of marginal effects in the other four categories.

Spatial Correlation

A major concern with using a country-wide representative dataset arises in the form of spatial correlation. Failing to control for regional differences can result in unreliable estimates. To address the issue of spatial correlation, the average OLS residuals by zones were first plotted on the Ethiopia map to see if there was any visual evidence of spatial correlation. Two maps for each of the five crop categories are displayed in Figures 4-8 in Appendix A. The first is a map of the negative versus positive OLS residuals; the second map uses a color continuum to display the degree of variation.
(where lighter shades of the color represent residuals closer to 0). All ten maps show large instances of residual clustering which demonstrates spatial correlation. However, only a limited amount of information is conveyed by mapping the average residuals, especially at such a broad district level.

To account for the differences associated with smaller clusters of individuals, a more accurate assessment can be accomplished using a simulation. Since this is only a cross-sectional sample, 5,000 observations from each zone were randomly selected with replacement to form a base measure of spatial relations. Each zonal base measure was then compared to the other 45 zones through the use of a correlation matrix. The largest correlation in this matrix was 0.04, which indicates that spatial correlation is not a substantial problem. Additionally, the variables appear to be independently and identically distributed when various ranks of the residual matrix were mapped against one another.

Results

Again, the results will be analyzed in terms of regional-, farm-, and farmer-related characteristics. Additionally, the estimates will be discussed in terms of the direction, not magnitude, since the cross-equation correlation of the error term may be accounted for inaccurately.

Regional Characteristics

Variables that measure the effects of market isolation are $TTIME$, $ROADDEN$, $POPDEN$, and SEC_SCHL. It was hypothesized that more marketable crops, such as cash
crops and oils/spices, will be grown closer to market centers while subsistence oriented
crops like grains and pulses are likely to be produced in areas that are more isolated from
a market because of their associated transaction costs.

In terms of all-weather road density, the shares of cash crops, fruits, and
vegetables are positively affected by higher levels of infrastructure. Cash crops are high-
value crops that are not often consumed by Ethiopian smallholders, thus, it is logical for
these crops to be grown close to a market system to access high-yielding inputs and lower
transaction costs. Fruits and vegetables are also high-value crops that need to be
consumed shortly after harvest. Cereals and pulses are low-value crops that are much
easier to store and prevalent in the Ethiopian diet. Oils and spices are negatively affected
by road density. Although valuable for export, these crops are generally easy to store and
are utilized by Ethiopians in their everyday cooking.

Population density is much higher in the highlands of Ethiopia which has cooler,
more temperate areas. The agro-ecological characteristics of these areas are especially
conducive to the production of cash crops, fruits and vegetables, and cereal crops such as
wheat and barley. Teff is primarily grown in the highlands, but is a major crop in the
highly elevated central and northern highlands which are relatively less densely
populated than the eastern and southern highlands. Cash crops, fruits, vegetables, cereals,
and pulses are positively affected by population density, while there is a negative effect
on teff, oils, and spices. Higher numbers of secondary schools are also distributed
amongst the highland areas of the country. An increase in the number of secondary
schools is negatively related to the production share of teff and other cereals and grains, and positively related to the shares of market-oriented crops.

Increases in the travel time to a population center of 50,000 negatively affect the shares of teff, oils, spices, and cash crop production and have positive effects on the shares of cereals, fruits, and vegetables. Although teff is a cereal grain, it is a reliable and low-risk crop that can be grown in a variety of environments and is a major dietary staple (Ketema, 1987). Teff is also more profitable relative to other crops, such as wheat and maize. Its high-value and low risk may explain why production shares of the crop increase with population density. The share of fruits and vegetables is positively affected by travel time. Fruits and vegetables can be grown in the majority of the highland areas of Ethiopia and provide significant nutritional value. Hence, more isolated households may need to allocate land to these crops because they are not reliably available in the market place. In addition, the travel time measure of isolation is based on population centers of 50,000 people or more. Many smaller population centers are based in the Ethiopian highlands. Thus, the travel time variable may not be an accurate measure of market access.

Access to credit is measured by the number of banks and micro-finance institutions in a wereda. Households are more likely to obtain credit for crops with a higher return on investment. Teff is one of the most common cereals sold on the market and has a higher price than comparable grains. The number of banks branches in a wereda is positively related to the production shares of teff, oils, spices, and cash crops. Micro-finance institutions have developed in the rural areas to provide credit to the
subsistence households and promote growth through small loans. The share of cereal crops is positively affected by micro-finance institutions, but the number of micro-finance institutions does not significantly affect the share of teff grown.

Farm Characteristics

Irrigation is a permanent asset that is initially financially intensive. It is an investment that is likely to be associated with high-value crops. Production shares of cash crops, fruits, vegetables, and teff are positively affected by irrigation use.

Farmer Characteristics

The ability to access and process information on farm efficiency and productivity is important to maximize household utility. Sex and education levels are included as proxies for this ability. The regression results indicate that males are less likely to grow cereals/pulses, fruits/vegetables, and cash crops relative to growing teff, oils, and spices. In terms of education, as farmers become more educated, relative to illiteracy, they are more likely to transition from growing cereals and pulses to fruits, vegetables, and cash crops. These effects could also reflect the fact that people with higher education levels generally migrate to more urban areas. Increases in household size have a statistically significant effect on the production shares of teff, cereals/pulses, fruits/vegetables, and cash crops. It is estimated that larger households generally tend to grow teff and cereals/pulses over market-oriented crops, such as fruit/vegetables and cash crops.
Problems with Estimation

Using a least squares regression method allows for negative fitted values which does not parallel the nature of the dependent variables. Several of these crop categories have mass points at zero and/or one. Therefore, it may be more reasonable to use a limited dependent variable model instead of OLS. In this case, the underlying latent variable can be thought of as the net benefit of the entire production system. Each household weighs the costs and benefits of producing various crops before choosing their ultimate crop mix. Zero production levels of a certain crop category are quite common in this dataset. Thus, a Tobit model is used to estimate the five equations and the results are presented in Table 10 in Appendix A. All of the crop category equations are estimated with a double censored (at zero and one) Tobit model except for fruits and vegetables.

There are some changes in parameter signs and significance between the OLS and Tobit estimates; these changes are generally consistent between the two measures of input use. However, one limitation of the Tobit model is the inability to apply cross-equation restrictions. A future research project could include an attempt to use a constrained SUR model with Tobit equations. A comparison of the two types of teff classification shows similar differences to those between the OLS estimates. The classification of teff does not affect the effects of market isolation on crop choice.

Summary

The empirical results suggest that higher levels of market access do increase the allocation of land to high value crops. Additionally, as smallholders become more
educated and experienced they are more likely to shift their production system away from subsistence-oriented crops such as cereals and pulses, and transition into the production of more market-oriented crops.
CHAPTER 8

CONCLUSION

Many resources are directed to improving infrastructures and changing institutions in Ethiopia. Several empirical studies have examined Ethiopia’s agricultural sector; research has generally been focused on a handful of major crops in a particular area. This paper contributes to the literature by utilizing information about smallholders’ entire farming operations. The empirical work allows for the investigation of tradeoffs between producing several different types of crops, and examines how these tradeoffs are affected by market isolation and the smallholder’s ability to allocate resources efficiently.

The empirical results suggest that smallholders do react to changes in the level of market access by altering their production behavior. The intensity of chemical fertilizer adoption decreases and levels of specialization increase as farmers become more isolated from markets. As travel time to a market decreases, smallholders are also more likely to allocate land to higher value crops such as cash crops, teff, oils, and spices. With the exception of the effect of travel time on diversification, these findings are consistent with the findings reported in previous studies.

In this study, smallholder’s ability to allocate resources efficiently is proxied by education levels. Those with some education are likely to use higher levels of chemical fertilizer than illiterate smallholders. The degree of chemical fertilizer use intensifies as farmers obtain more years of education. Additionally, as smallholders acquire more education they tend to allocate their land away from subsistence-oriented crops such as cereals and pulses, and transition into the production of more market-oriented crops.
Travel time to a market center is measured as travel time to a population center of 50,000 or greater. However, effective markets also exist at centers with smaller population levels, and information about travel time to these centers would help to better classify smallholders market access. Another limitation of the data is the absence of information on access to an agricultural extension agency. Much of the government’s policy reforms on agriculture are promoted by extension agencies and they play an integral part in the production decision process. Finally, a household’s willingness to adopt new technologies is likely to depend on their ability to access credit. Rates of micro-finance lending in Ethiopia have increased substantially over the past several years. Micro-finance institutions were almost non-existent in 2002 and by 2005 there were over 1,000 different institutions lending to low-income households in the country (FDRE 2002). An important issue for further research is to examine the effects of micro-finance lending on advanced technology adoption.

In conclusion, the empirical evidence implies that there are statistically significant relationships between market isolation and chemical fertilizer adoption, crop diversification, and crop choice. The results would suggest that economic growth policies targeted to improve infrastructure, education, and market incentives could potentially increase the use of technologically advanced inputs, such as chemical fertilizer, and change the structure of crop diversity towards more market-oriented crop choices.
REFERENCES CITED

APPENDIX A

TABLES AND FIGURES
Table 4. Distribution of Sampled Units.

<table>
<thead>
<tr>
<th>Region</th>
<th>Zone</th>
<th>Enumeration Areas</th>
<th>Households</th>
<th>Number of Parcels</th>
<th>Number of Fields Measured</th>
<th>Number of Crop-Cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selected</td>
<td>Covered</td>
<td>Selected</td>
<td>Covered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Tigray</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>615</td>
<td>1,830</td>
</tr>
<tr>
<td></td>
<td>Central Tigray</td>
<td>25</td>
<td>24</td>
<td>625</td>
<td>590</td>
<td>2,529</td>
</tr>
<tr>
<td></td>
<td>East Tigray</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>2,495</td>
</tr>
<tr>
<td></td>
<td>South Tigray</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>2,576</td>
</tr>
<tr>
<td>Afar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zone 1</td>
<td>20</td>
<td>20</td>
<td>500</td>
<td>497</td>
<td>929</td>
</tr>
<tr>
<td></td>
<td>Zone 3</td>
<td>20</td>
<td>19</td>
<td>500</td>
<td>455</td>
<td>978</td>
</tr>
<tr>
<td>Amhara</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Gonder</td>
<td>30</td>
<td>29</td>
<td>750</td>
<td>725</td>
<td>2,831</td>
</tr>
<tr>
<td></td>
<td>South Gonder</td>
<td>30</td>
<td>29</td>
<td>750</td>
<td>724</td>
<td>3,313</td>
</tr>
<tr>
<td></td>
<td>North Wello</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>749</td>
<td>3,112</td>
</tr>
<tr>
<td></td>
<td>South Wello</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>3,746</td>
</tr>
<tr>
<td></td>
<td>North Shewa</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>4,040</td>
</tr>
<tr>
<td></td>
<td>East Gojjam</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>3,927</td>
</tr>
<tr>
<td></td>
<td>West Gojjam</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>3,501</td>
</tr>
<tr>
<td></td>
<td>Waghamera</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>615</td>
<td>2,551</td>
</tr>
<tr>
<td></td>
<td>Awi</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>2,406</td>
</tr>
<tr>
<td></td>
<td>Oromiya Zone</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>621</td>
<td>1,941</td>
</tr>
<tr>
<td>Oromiya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Wellega</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>3,118</td>
</tr>
<tr>
<td></td>
<td>East Wellega</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,663</td>
</tr>
<tr>
<td></td>
<td>Illubabor</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,137</td>
</tr>
<tr>
<td></td>
<td>Jimma</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,374</td>
</tr>
<tr>
<td></td>
<td>West Shewa</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,747</td>
</tr>
<tr>
<td></td>
<td>North Shewa</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>4,124</td>
</tr>
<tr>
<td></td>
<td>East Shewa</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,557</td>
</tr>
<tr>
<td></td>
<td>Arsi</td>
<td>30</td>
<td>29</td>
<td>750</td>
<td>725</td>
<td>2,665</td>
</tr>
<tr>
<td></td>
<td>West Hararge</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,985</td>
</tr>
<tr>
<td></td>
<td>East Hararge</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,472</td>
</tr>
<tr>
<td></td>
<td>Bale</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>965</td>
</tr>
<tr>
<td></td>
<td>Borena</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,323</td>
</tr>
<tr>
<td>Somalie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shinile</td>
<td>20</td>
<td>18</td>
<td>500</td>
<td>445</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td>Jijiga</td>
<td>20</td>
<td>20</td>
<td>500</td>
<td>500</td>
<td>1,162</td>
</tr>
<tr>
<td></td>
<td>Moyale</td>
<td>20</td>
<td>20</td>
<td>500</td>
<td>461</td>
<td>840</td>
</tr>
<tr>
<td>Benisha-Gumuz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metekel</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>1,965</td>
</tr>
<tr>
<td></td>
<td>Assosa</td>
<td>25</td>
<td>24</td>
<td>625</td>
<td>600</td>
<td>3,179</td>
</tr>
<tr>
<td></td>
<td>Kemashi</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>1,715</td>
</tr>
</tbody>
</table>
Table 4: Distribution of Sampled Units – Continued

<table>
<thead>
<tr>
<th>Region</th>
<th>Enumerated Areas</th>
<th>Households</th>
<th>Number of Parcels</th>
<th>Number of Fields Measured</th>
<th>Number of Crop-Cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gurage</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,713</td>
</tr>
<tr>
<td>Hadiya</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,305</td>
</tr>
<tr>
<td>Kembata_Alabo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timbaro</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,391</td>
</tr>
<tr>
<td>Didama</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,199</td>
</tr>
<tr>
<td>Gedeo</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,384</td>
</tr>
<tr>
<td>North Omo</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,367</td>
</tr>
<tr>
<td>South Omo</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,499</td>
</tr>
<tr>
<td>Kefa-Sheka</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,488</td>
</tr>
<tr>
<td>Benchi-Maji</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>1,315</td>
</tr>
<tr>
<td>Yem Special</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wereda</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>2,122</td>
</tr>
<tr>
<td>Amaro Special</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wereda</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>1,261</td>
</tr>
<tr>
<td>Burji Special</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wereda</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>1,510</td>
</tr>
<tr>
<td>Konso Special</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wereda</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>1,925</td>
</tr>
<tr>
<td>Derashe Special</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wereda</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>624</td>
<td>1,605</td>
</tr>
<tr>
<td>Gambela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harari</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>749</td>
<td>1,559</td>
</tr>
<tr>
<td>Addis Ababa</td>
<td>25</td>
<td>25</td>
<td>625</td>
<td>625</td>
<td>2,560</td>
</tr>
<tr>
<td>Dire Dawa</td>
<td>30</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>2,027</td>
</tr>
<tr>
<td>Total</td>
<td>1,430</td>
<td>1,422</td>
<td>35,750</td>
<td>35,445</td>
<td>110,542</td>
</tr>
</tbody>
</table>

Table 5. Variable Definitions and Descriptive Statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX</td>
<td>1 if Male</td>
<td>0.81</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AGE</td>
<td>Age of Farmer</td>
<td>43.34</td>
<td>15.51</td>
<td>11</td>
<td>99</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>Education of Farmer</td>
<td>1.48</td>
<td>0.94</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>ILLIT</td>
<td>Illiterate</td>
<td>0.73</td>
<td>0.44</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ED_1-3</td>
<td>1st - 3rd Grade</td>
<td>0.14</td>
<td>0.34</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ED_4-6</td>
<td>4th - 6th Grade</td>
<td>0.08</td>
<td>0.28</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ED_7-8</td>
<td>7th - 8th Grade</td>
<td>0.03</td>
<td>0.17</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ED_9-11</td>
<td>9th - 11th Grade</td>
<td>0.01</td>
<td>0.11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ED_12</td>
<td>12th Grade</td>
<td>0.01</td>
<td>0.07</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ED_>12</td>
<td>Beyond 12th Grade</td>
<td>0.00</td>
<td>0.04</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HHSIZE</td>
<td>Household Size</td>
<td>5.27</td>
<td>2.32</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>FARM_AREA</td>
<td>Area Cultivated (in hectares)</td>
<td>0.96</td>
<td>1.26</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>FIELDS</td>
<td>Number of Fields Cultivated</td>
<td>7.22</td>
<td>4.91</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>CFERT</td>
<td>1 if Farmer Adopted Chemical Fertilizer</td>
<td>0.37</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IRR</td>
<td>% of Farm Using with Chemical Fertilizer</td>
<td>0.21</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PEST</td>
<td>1 if Farmer Adopted Pesticides</td>
<td>0.14</td>
<td>0.34</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SEED</td>
<td>% of Farm Using Improved Seeds</td>
<td>0.11</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DIV</td>
<td>Level of Diversification (1 is specialized)</td>
<td>0.49</td>
<td>0.24</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>SUBS%</td>
<td>Share of Subsistence Crops</td>
<td>0.15</td>
<td>0.22</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CER%</td>
<td>Share of Cereals/Pulses</td>
<td>0.69</td>
<td>0.29</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OILS%</td>
<td>Share of Oils/Spices</td>
<td>0.04</td>
<td>0.10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FRUIT%</td>
<td>Share of Fruits/Vegetables</td>
<td>0.03</td>
<td>0.11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CASH%</td>
<td>Share of Cash Crops</td>
<td>0.09</td>
<td>0.21</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SUB</td>
<td>1 if primary crops are subsistence crops</td>
<td>0.11</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TTIME</td>
<td>Avg. Travel Time to a Population of 50,000 (in hours)</td>
<td>7.38</td>
<td>4.26</td>
<td>1.09</td>
<td>36.05</td>
</tr>
<tr>
<td>BANKS</td>
<td>Number of Banks in Wereda</td>
<td>0.84</td>
<td>1.86</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>INST</td>
<td>Number of Micro-finance Institutions in Wereda</td>
<td>2.60</td>
<td>1.40</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>POPDEN</td>
<td>Population Density of Wereda (hundreds of people per km²)</td>
<td>2.45</td>
<td>4.49</td>
<td>3</td>
<td>29.42</td>
</tr>
<tr>
<td>ELEV</td>
<td>Avg. Elevation of Wereda (hundreds of meters above sea level)</td>
<td>18.66</td>
<td>4.42</td>
<td>4.04</td>
<td>3.04</td>
</tr>
<tr>
<td>SLOPE</td>
<td>Avg. Slope of Wereda (percentage rise)</td>
<td>6.60</td>
<td>2.89</td>
<td>0.30</td>
<td>16.50</td>
</tr>
<tr>
<td>TREES</td>
<td>Percentage of Tree Cover in Wereda (in terms of total ground cover)</td>
<td>18.20</td>
<td>14.59</td>
<td>1.07</td>
<td>70.28</td>
</tr>
<tr>
<td>RAIN</td>
<td>Number of Months with Rainfall > 100mm</td>
<td>4.31</td>
<td>1.87</td>
<td>0</td>
<td>8.9</td>
</tr>
<tr>
<td>ROADDEN</td>
<td>All-Weather Road Density in Wereda (meters per km2)</td>
<td>32.66</td>
<td>29.03</td>
<td>0</td>
<td>145.07</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Mean</td>
<td>Std. Dev</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>PRIM_SCH</td>
<td>Number of Primary Schools in Wereda</td>
<td>29.50</td>
<td>13.01</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>SEC_SCH</td>
<td>Number of Secondary Schools in Wereda</td>
<td>1.51</td>
<td>2.79</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>WER_AREA</td>
<td>Area of Wereda (in 10,000s of hectares)</td>
<td>14.02</td>
<td>10.62</td>
<td>2.34</td>
<td>130.67</td>
</tr>
<tr>
<td>SUB_REV</td>
<td>Relative Revenue from Subsistence Crops</td>
<td>0.16</td>
<td>0.04</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>CER_REV</td>
<td>Relative Revenue from Cereals/Pulses</td>
<td>0.20</td>
<td>0.05</td>
<td>0.15</td>
<td>0.29</td>
</tr>
<tr>
<td>OILS_REV</td>
<td>Relative Revenue from Oils/Spices</td>
<td>1.46</td>
<td>0.60</td>
<td>0.21</td>
<td>1.98</td>
</tr>
<tr>
<td>FRUIT_REV</td>
<td>Relative Revenue from Fruits/Vegetables</td>
<td>1.70</td>
<td>0.38</td>
<td>1.22</td>
<td>2.68</td>
</tr>
<tr>
<td>CASH_REV</td>
<td>Relative Revenue from Cash Crops</td>
<td>1.43</td>
<td>0.23</td>
<td>0.80</td>
<td>1.85</td>
</tr>
</tbody>
</table>
Table 6. Binary Decision to Adopt Chemical Fertilizer (Basic Models).

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th></th>
<th>Logit</th>
<th></th>
<th>Nested Logit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>Std. Err</td>
<td>Coeff.</td>
<td>Std. Err</td>
<td>Coeff.</td>
<td>Std. Err</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>0.056</td>
<td>(0.022)</td>
<td>-2.596</td>
<td>(0.133)</td>
<td>-1.739</td>
<td>(0.228)</td>
</tr>
<tr>
<td>DIV</td>
<td>-0.184</td>
<td>(0.013)</td>
<td>***-1.138</td>
<td>(0.081)</td>
<td>***-0.623</td>
<td>(0.073)</td>
</tr>
<tr>
<td>TTIME</td>
<td>-0.009</td>
<td>(0.001)</td>
<td>***-0.076</td>
<td>(0.005)</td>
<td>***-0.064</td>
<td>(0.005)</td>
</tr>
<tr>
<td>SEX</td>
<td>0.000</td>
<td>(0.007)</td>
<td>-0.046</td>
<td>(0.040)</td>
<td>-0.113</td>
<td>(0.037)</td>
</tr>
<tr>
<td>AGE</td>
<td>-0.001</td>
<td>(0.000)</td>
<td>***-0.005</td>
<td>(0.001)</td>
<td>0.001</td>
<td>(0.001)</td>
</tr>
<tr>
<td>ED_1-3</td>
<td>0.055</td>
<td>(0.007)</td>
<td>***0.287</td>
<td>(0.042)</td>
<td>***0.230</td>
<td>(0.042)</td>
</tr>
<tr>
<td>ED_4-6</td>
<td>0.092</td>
<td>(0.009)</td>
<td>***0.529</td>
<td>(0.054)</td>
<td>***0.466</td>
<td>(0.054)</td>
</tr>
<tr>
<td>ED_7-8</td>
<td>0.128</td>
<td>(0.015)</td>
<td>***0.710</td>
<td>(0.085)</td>
<td>***0.522</td>
<td>(0.087)</td>
</tr>
<tr>
<td>ED_9-11</td>
<td>0.157</td>
<td>(0.023)</td>
<td>***0.865</td>
<td>(0.131)</td>
<td>***0.729</td>
<td>(0.138)</td>
</tr>
<tr>
<td>ED_12</td>
<td>0.193</td>
<td>(0.035)</td>
<td>***1.088</td>
<td>(0.202)</td>
<td>***0.916</td>
<td>(0.221)</td>
</tr>
<tr>
<td>ED>12</td>
<td>0.144</td>
<td>(0.063)</td>
<td>**1.011</td>
<td>(0.368)</td>
<td>***0.313</td>
<td>(0.364)</td>
</tr>
<tr>
<td>HHSIZE</td>
<td>0.012</td>
<td>(0.001)</td>
<td>***0.064</td>
<td>(0.007)</td>
<td>***0.071</td>
<td>(0.006)</td>
</tr>
<tr>
<td>ELEV</td>
<td>0.023</td>
<td>(0.001)</td>
<td>***0.127</td>
<td>(0.004)</td>
<td>***0.076</td>
<td>(0.004)</td>
</tr>
<tr>
<td>SLOPE</td>
<td>-0.032</td>
<td>(0.001)</td>
<td>***-0.143</td>
<td>(0.006)</td>
<td>***-0.066</td>
<td>(0.005)</td>
</tr>
<tr>
<td>TREES</td>
<td>-0.009</td>
<td>(0.000)</td>
<td>***-0.060</td>
<td>(0.002)</td>
<td>***-0.057</td>
<td>(0.002)</td>
</tr>
<tr>
<td>RAIN</td>
<td>0.076</td>
<td>(0.002)</td>
<td>***0.500</td>
<td>(0.014)</td>
<td>***0.501</td>
<td>(0.013)</td>
</tr>
<tr>
<td>ROADDEN</td>
<td>-0.001</td>
<td>(0.000)</td>
<td>***-0.005</td>
<td>(0.001)</td>
<td>***-0.002</td>
<td>(0.001)</td>
</tr>
<tr>
<td>PRIMSMCH</td>
<td>-0.003</td>
<td>(0.000)</td>
<td>***-0.015</td>
<td>(0.002)</td>
<td>***-0.030</td>
<td>(0.001)</td>
</tr>
<tr>
<td>SECSCH</td>
<td>0.023</td>
<td>(0.001)</td>
<td>***0.125</td>
<td>(0.007)</td>
<td>***0.151</td>
<td>(0.008)</td>
</tr>
<tr>
<td>POPDEN</td>
<td>-0.003</td>
<td>(0.001)</td>
<td>***-0.034</td>
<td>(0.007)</td>
<td>***0.070</td>
<td>(0.006)</td>
</tr>
<tr>
<td>BANKS</td>
<td>-0.009</td>
<td>(0.003)</td>
<td>***-0.046</td>
<td>(0.016)</td>
<td>***-0.110</td>
<td>(0.016)</td>
</tr>
<tr>
<td>INST</td>
<td>0.002</td>
<td>(0.002)</td>
<td>0.025</td>
<td>(0.011)</td>
<td>**0.098</td>
<td>(0.011)</td>
</tr>
<tr>
<td>IRR</td>
<td>-0.021</td>
<td>(0.010)</td>
<td>**-0.114</td>
<td>(0.063)</td>
<td>*0.379</td>
<td>(0.059)</td>
</tr>
<tr>
<td>CULT_AREA</td>
<td>0.041</td>
<td>(0.002)</td>
<td>***0.435</td>
<td>(0.020)</td>
<td>***0.143</td>
<td>(0.019)</td>
</tr>
<tr>
<td>FIELDS</td>
<td>0.012</td>
<td>(0.001)</td>
<td>***0.048</td>
<td>(0.004)</td>
<td>***0.088</td>
<td>(0.004)</td>
</tr>
</tbody>
</table>

tau stat | 0.037 | (0.432) |
Table 7. Intensity of Chemical Fertilizer Adoption and Crop Diversification (Basic Models).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>Tobit</td>
</tr>
<tr>
<td>Estimate</td>
<td>Std. Error</td>
<td>Estimate</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-0.077</td>
<td>0.016 ***</td>
</tr>
<tr>
<td>DIV</td>
<td>0.045</td>
<td>0.009 ***</td>
</tr>
<tr>
<td>CFERT</td>
<td>-0.004</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>TTIME</td>
<td>-0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>SEX</td>
<td>-0.001</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>AGE</td>
<td>0.035</td>
<td>0.005 ***</td>
</tr>
<tr>
<td>ED_4-6</td>
<td>0.070</td>
<td>0.006 ***</td>
</tr>
<tr>
<td>ED_7-8</td>
<td>0.106</td>
<td>0.010 ***</td>
</tr>
<tr>
<td>ED_9-11</td>
<td>0.116</td>
<td>0.016 ***</td>
</tr>
<tr>
<td>ED_12</td>
<td>0.193</td>
<td>0.024 ***</td>
</tr>
<tr>
<td>ED_>12</td>
<td>0.102</td>
<td>0.043 **</td>
</tr>
<tr>
<td>HHSIZE</td>
<td>0.010</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>ELEV</td>
<td>0.017</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>SLOPE</td>
<td>-0.023</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>TREES</td>
<td>-0.006</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>RAIN</td>
<td>0.050</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>ROADDEN</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>PRIMSCH</td>
<td>-0.002</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>SECSCH</td>
<td>0.022</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>POPDEN</td>
<td>-0.003</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>BANKS</td>
<td>-0.007</td>
<td>0.002 ***</td>
</tr>
<tr>
<td>INST</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>IRR</td>
<td>-0.046</td>
<td>0.015 ***</td>
</tr>
<tr>
<td>CULT_AREA</td>
<td>0.021</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>FIELDS</td>
<td>0.005</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>WER_AREA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Chemical Fertilizer Adoption and Crop Diversification (Simultaneous Equations Model).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Stage</td>
<td>2nd Stage</td>
</tr>
<tr>
<td>Coefficient</td>
<td>Coefficient</td>
<td>Coefficient</td>
</tr>
<tr>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-0.871 ***</td>
<td>11.153 ***</td>
</tr>
<tr>
<td>(0.050)</td>
<td>(1.509)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>DIV</td>
<td>-</td>
<td>-15.079 ***</td>
</tr>
<tr>
<td>(1.876)</td>
<td>(0.013)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>CFERT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TTIME</td>
<td>-0.017 ***</td>
<td>0.035 ***</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.007)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>SEX</td>
<td>-0.004</td>
<td>-0.727 ***</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.091)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>AGE</td>
<td>-0.002 ***</td>
<td>-0.003 ***</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>ED_1-3</td>
<td>0.070 ***</td>
<td>0.290 ***</td>
</tr>
<tr>
<td>(0.017)</td>
<td>(0.032)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>ED_4-6</td>
<td>0.170 ***</td>
<td>0.433 ***</td>
</tr>
<tr>
<td>(0.021)</td>
<td>(0.040)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>ED_7-8</td>
<td>0.195 ***</td>
<td>-0.003</td>
</tr>
<tr>
<td>(0.032)</td>
<td>(0.037)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>ED_9-11</td>
<td>0.328 ***</td>
<td>0.097 *</td>
</tr>
<tr>
<td>(0.048)</td>
<td>(0.051)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>ED_12</td>
<td>0.472 ***</td>
<td>0.432 ***</td>
</tr>
<tr>
<td>(0.071)</td>
<td>(0.064)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>ED_>12</td>
<td>0.104</td>
<td>1.014 ***</td>
</tr>
<tr>
<td>(0.155)</td>
<td>(0.184)</td>
<td>(0.041)</td>
</tr>
<tr>
<td></td>
<td>1st Stage Coefficient (Std. Error)</td>
<td>2nd Stage Coefficient (Std. Error)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>HHSIZE</td>
<td>0.030 *** (0.003)</td>
<td>0.062 *** (0.005)</td>
</tr>
<tr>
<td>ELEV</td>
<td>0.042 *** (0.002)</td>
<td>-0.001 (0.006)</td>
</tr>
<tr>
<td>SLOPE</td>
<td>-0.058 *** (0.002)</td>
<td>-0.135 *** (0.011)</td>
</tr>
<tr>
<td>TREES</td>
<td>-0.022 *** (0.001)</td>
<td>-0.005 *** (0.002)</td>
</tr>
<tr>
<td>RAIN</td>
<td>0.164 *** (0.005)</td>
<td>0.049 *** (0.015)</td>
</tr>
<tr>
<td>ROADDEN</td>
<td>-0.002 *** (0.000)</td>
<td>0.009 *** (0.001)</td>
</tr>
<tr>
<td>PRIMSCH</td>
<td>-0.003 *** (0.001)</td>
<td>-0.023 *** (0.002)</td>
</tr>
<tr>
<td>SECSCH</td>
<td>0.054 *** (0.003)</td>
<td>0.011 ** (0.006)</td>
</tr>
<tr>
<td>POPDEN</td>
<td>-0.029 *** (0.003)</td>
<td>0.105 *** (0.016)</td>
</tr>
<tr>
<td>BANKS</td>
<td>-0.015 ** (0.006)</td>
<td>0.023 *** (0.007)</td>
</tr>
<tr>
<td>INST</td>
<td>0.017 *** (0.005)</td>
<td>-0.023 *** (0.005)</td>
</tr>
</tbody>
</table>
Table 8: Chemical Fertilizer Adoption and Crop Diversification (Simultaneous Equations Model) - Continued

<table>
<thead>
<tr>
<th></th>
<th>1st Stage</th>
<th>2nd Stage</th>
<th>Derived Reduced Form</th>
<th>1st Stage</th>
<th>2nd Stage</th>
<th>Derived Reduced Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Variable: CFERT (intensity of adoption)</td>
<td>Coefficient</td>
<td>Coefficient</td>
<td>Coefficient</td>
<td>Coefficient</td>
<td>Coefficient</td>
<td>Coefficient</td>
</tr>
<tr>
<td></td>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
<td>(Std. Error)</td>
</tr>
<tr>
<td>IRR</td>
<td>-0.004</td>
<td>0.099</td>
<td>***</td>
<td>-0.077</td>
<td>***</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.026)</td>
<td></td>
<td>(0.026)</td>
<td></td>
<td>(0.006)</td>
</tr>
<tr>
<td>CULT_AREA</td>
<td>0.044</td>
<td>***</td>
<td>-0.019</td>
<td>0.005</td>
<td>***</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.008)</td>
<td>(0.005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELDS</td>
<td>0.015</td>
<td>***</td>
<td>-0.394</td>
<td>0.029</td>
<td>***</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
<td>(0.051)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WER_AREA</td>
<td>-0.007</td>
<td>***</td>
<td></td>
<td>-0.008</td>
<td>***</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
<td></td>
<td>(0.001)</td>
<td></td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dep. Variable: DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
</tr>
<tr>
<td>(Std. Error)</td>
</tr>
<tr>
<td>IRR</td>
</tr>
<tr>
<td>(0.006)</td>
</tr>
<tr>
<td>CULT_AREA</td>
</tr>
<tr>
<td>(0.004)</td>
</tr>
<tr>
<td>FIELDS</td>
</tr>
<tr>
<td>(0.001)</td>
</tr>
<tr>
<td>WER_AREA</td>
</tr>
<tr>
<td>(0.000)</td>
</tr>
</tbody>
</table>
Figure 4. Primary Staple Crop (Teff) OLS Residuals by Zone.
Figure 5. Cereal and Pulse Crop OLS Residuals by Zone.
Figure 6. Oil and Spice Crop OLS Residuals by Zone.
Figure 7. Fruit and Vegetable Crop OLS Residuals by Zone.
Figure 8. Cash Crop OLS Residuals by Zone.
Table 9. Crop Share Regressions using an OLS Model.

<table>
<thead>
<tr>
<th></th>
<th>Primary Staple Crop</th>
<th>Cereals/Pulses</th>
<th>Oils/Spices</th>
<th>Fruits/Vegetables</th>
<th>Cash Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.023 (0.014)</td>
<td>0.937 (0.018)</td>
<td>***</td>
<td>-0.044 (0.007)</td>
<td>***</td>
</tr>
<tr>
<td>TTIME</td>
<td>-0.004 (0.000)</td>
<td>0.009 (0.001)</td>
<td>***</td>
<td>-0.001 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>CER_REV</td>
<td>0.400 (0.040)</td>
<td>-0.554 (0.050)</td>
<td>***</td>
<td>0.275 (0.018)</td>
<td>***</td>
</tr>
<tr>
<td>FRUIT_REV</td>
<td>0.022 (0.005)</td>
<td>-0.026 (0.007)</td>
<td>***</td>
<td>0.013 (0.002)</td>
<td>***</td>
</tr>
<tr>
<td>SEX</td>
<td>0.033 (0.004)</td>
<td>-0.018 (0.004)</td>
<td>***</td>
<td>0.006 (0.002)</td>
<td>***</td>
</tr>
<tr>
<td>AGE</td>
<td>-0.001 (0.000)</td>
<td>0.000 (0.000)</td>
<td>***</td>
<td>0.000 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>ED_1-3</td>
<td>-0.007 (0.004)</td>
<td>-0.13 (0.005)</td>
<td>**</td>
<td>0.003 (0.002)</td>
<td>***</td>
</tr>
<tr>
<td>ED_4-6</td>
<td>-0.006 (0.005)</td>
<td>-0.027 (0.006)</td>
<td>***</td>
<td>-0.003 (0.002)</td>
<td>***</td>
</tr>
<tr>
<td>ED_7-8</td>
<td>0.005 (0.008)</td>
<td>-0.056 (0.010)</td>
<td>***</td>
<td>-0.001 (0.004)</td>
<td>***</td>
</tr>
<tr>
<td>ED_9-11</td>
<td>0.006 (0.012)</td>
<td>-0.057 (0.015)</td>
<td>***</td>
<td>0.005 (0.005)</td>
<td>***</td>
</tr>
<tr>
<td>ED_12</td>
<td>-0.016 (0.018)</td>
<td>-0.029 (0.023)</td>
<td>***</td>
<td>-0.013 (0.008)</td>
<td>***</td>
</tr>
<tr>
<td>ED_12>44</td>
<td>-0.044 (0.032)</td>
<td>-0.087 (0.041)</td>
<td>**</td>
<td>0.011 (0.015)</td>
<td>***</td>
</tr>
<tr>
<td>FIELDS</td>
<td>0.003 (0.000)</td>
<td>-0.004 (0.000)</td>
<td>***</td>
<td>0.001 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>IRR</td>
<td>0.006 (0.005)</td>
<td>-0.095 (0.007)</td>
<td>***</td>
<td>-0.003 (0.003)</td>
<td>***</td>
</tr>
<tr>
<td>HHSIZE</td>
<td>0.001 (0.001)</td>
<td>0.001 (0.001)</td>
<td>*</td>
<td>0.000 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>AREA</td>
<td>0.000 (0.000)</td>
<td>-0.003 (0.000)</td>
<td>***</td>
<td>0.001 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>BANKS</td>
<td>0.004 (0.002)</td>
<td>-0.014 (0.002)</td>
<td>***</td>
<td>0.000 (0.001)</td>
<td>***</td>
</tr>
<tr>
<td>INST</td>
<td>0.001 (0.001)</td>
<td>0.008 (0.001)</td>
<td>***</td>
<td>-0.002 (0.001)</td>
<td>***</td>
</tr>
<tr>
<td>POPDEN</td>
<td>-0.008 (0.001)</td>
<td>0.005 (0.001)</td>
<td>***</td>
<td>-0.003 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>ELEV</td>
<td>0.003 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>***</td>
<td>0.001 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>SLOPE</td>
<td>0.001 (0.001)</td>
<td>0.001 (0.001)</td>
<td>*</td>
<td>-0.004 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>TREES</td>
<td>-0.001 (0.000)</td>
<td>-0.004 (0.000)</td>
<td>***</td>
<td>0.000 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>RAIN</td>
<td>0.013 (0.001)</td>
<td>-0.016 (0.001)</td>
<td>***</td>
<td>0.006 (0.001)</td>
<td>***</td>
</tr>
<tr>
<td>ROADDEN</td>
<td>0.000 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>***</td>
<td>0.000 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>PRIM_SCHL</td>
<td>0.000 (0.000)</td>
<td>0.003 (0.000)</td>
<td>***</td>
<td>0.000 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td>SEC_SCHL</td>
<td>-0.008 (0.001)</td>
<td>-0.003 (0.001)</td>
<td>***</td>
<td>0.005 (0.000)</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Primary Staple Crop</td>
<td>Cereals/Pulses</td>
<td>Oils/Spices</td>
<td>Fruits/Vegetables</td>
<td>Cash Crops</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-0.654 (0.031)</td>
<td>1.079 (0.023)</td>
<td>-0.603 (0.024)</td>
<td>-0.101 (0.019)</td>
<td>0.011 (0.028)</td>
</tr>
<tr>
<td>TTIME</td>
<td>-0.014 (0.001)</td>
<td>0.011 (0.001)</td>
<td>-0.004 (0.001)</td>
<td>0.002 (0.001)</td>
<td>-0.009 (0.001)</td>
</tr>
<tr>
<td>CER_REV</td>
<td>0.883 (0.082)</td>
<td>-0.753 (0.064)</td>
<td>1.358 (0.063)</td>
<td>0.666 (0.055)</td>
<td>-0.499 (0.086)</td>
</tr>
<tr>
<td>FRUIT_REV</td>
<td>0.096 (0.011)</td>
<td>-0.030 (0.008)</td>
<td>0.025 (0.008)</td>
<td>-0.170 (0.009)</td>
<td>-0.123 (0.012)</td>
</tr>
<tr>
<td>SEX</td>
<td>0.016 (0.001)</td>
<td>-0.009 (0.000)</td>
<td>0.014 (0.000)</td>
<td>0.009 (0.000)</td>
<td>0.015 (0.001)</td>
</tr>
<tr>
<td>AGE</td>
<td>0.087 (0.008)</td>
<td>-0.031 (0.006)</td>
<td>0.024 (0.006)</td>
<td>-0.017 (0.005)</td>
<td>-0.017 (0.007)</td>
</tr>
<tr>
<td>ED_1-3</td>
<td>-0.001 (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.002 (0.000)</td>
</tr>
<tr>
<td>ED_4-6</td>
<td>-0.016 (0.008)</td>
<td>-0.015 (0.006)</td>
<td>0.005 (0.006)</td>
<td>0.009 (0.005)</td>
<td>0.038 (0.007)</td>
</tr>
<tr>
<td>ED_7-8</td>
<td>-0.009 (0.011)</td>
<td>-0.033 (0.008)</td>
<td>-0.009 (0.008)</td>
<td>0.019 (0.006)</td>
<td>0.053 (0.009)</td>
</tr>
<tr>
<td>ED_9-11</td>
<td>0.024 (0.016)</td>
<td>-0.068 (0.012)</td>
<td>-0.004 (0.013)</td>
<td>0.041 (0.009)</td>
<td>0.065 (0.014)</td>
</tr>
<tr>
<td>ED_12</td>
<td>0.033 (0.025)</td>
<td>-0.063 (0.019)</td>
<td>0.020 (0.019)</td>
<td>0.055 (0.014)</td>
<td>0.034 (0.021)</td>
</tr>
<tr>
<td>ED_12</td>
<td>-0.006 (0.040)</td>
<td>-0.028 (0.029)</td>
<td>-0.059 (0.033)</td>
<td>0.070 (0.021)</td>
<td>0.043 (0.032)</td>
</tr>
<tr>
<td>FIELDS</td>
<td>-0.064 (0.073)</td>
<td>-0.098 (0.052)</td>
<td>-0.016 (0.055)</td>
<td>0.145 (0.035)</td>
<td>0.052 (0.058)</td>
</tr>
<tr>
<td>IRR</td>
<td>-0.002 (0.012)</td>
<td>-0.126 (0.009)</td>
<td>-0.044 (0.009)</td>
<td>0.114 (0.006)</td>
<td>0.211 (0.009)</td>
</tr>
<tr>
<td>HHSIZE</td>
<td>0.006 (0.001)</td>
<td>0.002 (0.001)</td>
<td>0.000 (0.001)</td>
<td>-0.001 (0.001)</td>
<td>-0.004 (0.001)</td>
</tr>
<tr>
<td>AREA</td>
<td>-0.001 (0.000)</td>
<td>-0.003 (0.000)</td>
<td>0.003 (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.002 (0.000)</td>
</tr>
<tr>
<td>BANKS</td>
<td>0.012 (0.004)</td>
<td>-0.018 (0.002)</td>
<td>0.000 (0.003)</td>
<td>0.001 (0.002)</td>
<td>0.014 (0.003)</td>
</tr>
<tr>
<td>INST</td>
<td>0.005 (0.002)</td>
<td>0.011 (0.002)</td>
<td>-0.010 (0.002)</td>
<td>-0.010 (0.001)</td>
<td>-0.005 (0.002)</td>
</tr>
<tr>
<td>POPDEN</td>
<td>-0.124 (0.003)</td>
<td>0.008 (0.001)</td>
<td>-0.016 (0.001)</td>
<td>-0.002 (0.001)</td>
<td>0.011 (0.001)</td>
</tr>
<tr>
<td>ELEV</td>
<td>0.013 (0.001)</td>
<td>-0.002 (0.001)</td>
<td>0.004 (0.001)</td>
<td>0.001 (0.000)</td>
<td>-0.012 (0.001)</td>
</tr>
<tr>
<td>SLOPE</td>
<td>0.005 (0.001)</td>
<td>0.002 (0.001)</td>
<td>-0.017 (0.001)</td>
<td>-0.005 (0.001)</td>
<td>0.008 (0.001)</td>
</tr>
<tr>
<td>TREES</td>
<td>-0.006 (0.000)</td>
<td>-0.005 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>-0.002 (0.000)</td>
<td>0.009 (0.000)</td>
</tr>
<tr>
<td>RAIN</td>
<td>0.072 (0.003)</td>
<td>-0.022 (0.002)</td>
<td>-0.022 (0.002)</td>
<td>0.022 (0.001)</td>
<td>0.004 (0.002)</td>
</tr>
<tr>
<td>ROADDEN</td>
<td>0.001 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>0.001 (0.000)</td>
<td>0.002 (0.000)</td>
</tr>
<tr>
<td>PRIM_SCHL</td>
<td>-0.002 (0.000)</td>
<td>0.004 (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
<td>-0.004 (0.000)</td>
</tr>
<tr>
<td>SEC_SCHL</td>
<td>-0.022 (0.002)</td>
<td>-0.004 (0.001)</td>
<td>0.013 (0.001)</td>
<td>0.004 (0.001)</td>
<td>0.019 (0.001)</td>
</tr>
</tbody>
</table>

Table 10. Crop Share Regressions using a Tobit Model.
APPENDIX B

SIMULTANEOUS EQUATION SIMULATION
Simultaneous Discrete Choice Model:
A Simulation

Following Train (2009), when faced with a decision, each household is assumed to choose alternative j if the utility, U_j, from that alternative exceeds the utility, U_i, from the set of alternatives i:

(A.1) \[U_j > U_i, \forall j \neq i. \]

The researcher does not observe the economic agent’s utility, only their final decision, y_j, which is presented below and depends on parameters unknown to the researcher. The unobserved, or latent, utility is modeled as,

(A.2) \[U_j = R_j + \epsilon_j, \]

where R_j is affected by a set of observable factors and ϵ_j is unobservable.

Assuming that latent utility can be modeled linearly as,

(A.3) \[U = \beta'x_j + \epsilon_j, \]

two types of choice sets may be observed:

(A.4) \[
\begin{align*}
 y_j &= 0 \quad \text{if } U_j \leq k, \\
 y_j &= 1 \quad \text{if } U_j > k,
\end{align*}
\]

Given the observable choice sets, the researcher is concerned with how well their empirical representation approximates the underlying utility.

This section’s simulations compare known values of utility to estimates from a regression model, specifically, a simultaneous equation model using two limited
dependent variables. The simultaneous equation model of the latent utility is constructed as follows:

\[
U_1 = \delta_1 U_2 + \alpha_1 + \alpha_2 x_1 + \alpha_3 x_2 + \varepsilon_1, \\
U_2 = \delta_2 U_1 + \beta_1 + \beta_2 x_1 + \beta_3 x_3 + \varepsilon_2,
\]

where \(U_j\) is the utility from alternative \(j\), \(X_i\) are the independent regressors, and \(\varepsilon_j\) are the error terms. The reduced form equation associated with utility is

\[
\begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} 1 & -\delta_1 \\ -\delta_2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & 0 \\ \beta_1 & \beta_2 & 0 & \beta_3 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & -\delta_1 \\ -\delta_2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix},
\]

or

\[
U = \tilde{R} + \tilde{u}.
\]

The joint effects of the regressors \(X\) on \(U\) are reflected in \(\tilde{R}\). The extra noise in \(U\), caused by unobservables \(\varepsilon\) or \(u\), complicates the identification of the regressors’ effects upon choice. The simulation is used to examine how well the two-stage process can identify the effects of \(X_i\) on the individual’s utility and direct choices. If all the dependent variables are discrete, it is not possible to recover \(U\) due to inherent differences in scale. However, it may be possible to approximate a monotonic transformation of utility, \(\tilde{Z} = f(\tilde{R})\), to predict the effects of the exogenous variables upon choices.

In this simulation, the discrete choice set presented above will first be estimated with a logit model. Following the work of Nelson and Olsen (1978), the first stage requires a reduced form equation of the choice set on all the exogenous regressors to be estimated using a logit model. For the second stage, the fitted values from the reduced form are used to estimate the structural equation with a second logit model. The fitted
values from both stages are functions of the mean component of the reduced form utility from equation (A.7), $\tilde{Z}_j = f(\tilde{\eta}_j)$.

Figure 9 below plots the fitted values from the regression (\tilde{Z}_j) against the true experimental utility values ($\tilde{\eta}_j$). The top two plots are from the first-stage regression for choices 1 and 2, and the bottom two plots are from the second-stage regression for the same choices. The fitted values from the logit model very closely map to a monotonic transformation of the underlying utility, $\tilde{\eta}_j$. Although there is more noise in the second-stage of the simultaneous equation model, the logit regression does an excellent job of recovering a transformation of the mean component of utility. In fact, using a sample of 10,000 observations, the logit model was 98% accurate in predicting what the discrete choices would have been in the absence of noise from ε or u.

Results from a Tobit model are similarly accurate. The Tobit model has more information about the true utility values, and thus a linear relationship between the fitted and real values emerges. These plots are presented below in Figure 10.
Figure 9. Plots of Fitted Values against Real Utility Values Using a Logit Model.
Figure 10. Plots of Fitted Values against Real Utility Values Using a Tobit Model.
APPENDIX C

CODE
The following R code requires the package `joecode`, which can be accessed through the website: http://www.montana.edu/econ/atwood/rdata/index.html.

Step (1): Bring Ethiopian shapefiles into an R object and clean W6ID variable

```r
require(maptools)
require(doBy)
require(joecode)

graphics.off()

setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Shapefiles")

Emaps=readShapePoly('ET_Woreda_EASE.shp')

data=read.csv("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Weredas with Lables.csv", header=T)

Emapdata=data
Emaps@data=Emapdata
writePolyShape(Emaps,'Wereda Map-Cleaned.shp')

save(Emaps,Emapdata,file="C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Ethiopia Map.RData")
```

Step (2): Bring in CSV files containing relevant raw data from the Annual Agricultural Sample Surveys (AgSS) and subset data for the year 2000/2001

```r
require(doBy)
require(joecode)

setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication")

#Read in data from 'crops' dataset
df1=read.csv('crops.csv', header=T)

#Remove unwanted variables
Crops=df1[,c("region","zone","wereda","fa","ea","hhnum","holder","parcfld","crop","seettype","irr","fert","pest","ferttype","chfertgr","year")]

#Combine niger/nueg crops together
Crops$Crop=ifelse(Crops$Crop==26,25,Crops$Crop)

#Read in data from 'fieldareas' dataset
```
df2=read.csv('fieldareas.csv', header=T)

#Remove unwanted variables
areas=df2[,c("region", "zone", "wereda", "fa", "ea", "hhnum", "holder", "parcfld", "crop", "areacalc", "year")]

#Combine niger/nueg crops together
areas$crop=ifelse(areas$crop==26,25,areas$crop)

#Convert m^2 to hectares
areas$areacalc=areas$areacalc/10000

#Read in data from 'holders' dataset
df3=read.csv('holders.csv', header=T)

#Remove unwanted variables
holders=df3[,c("region", "zone", "wereda", "fa", "ea", "hhnum", "holder", "sex", "age", "ed", "hhsize", "year")]

#Read in data from 'cropcodes' dataset
cropcodes=read.csv("Crop Codes.csv", header=T)

memory.limit(3072)

#Merge four datasets together
df4=merge(crops, areas)
df5=merge(holders, df4)
AgSS=merge(cropcodes, df5)

#Create region ID
AgSS$R2ID=AgSS$region
AgSS$R2ID=as.character(AgSS$R2ID)
AgSS$R2ID=as.numeric(AgSS$R2ID)

#Create zone ID
AgSS$Z4ID=AgSS$R2ID*100+AgSS$zone
AgSS$Z4ID=as.character(AgSS$Z4ID)
AgSS$Z4ID=as.numeric(AgSS$Z4ID)

#Create wereda ID
AgSS$W6ID=AgSS$Z4ID*10+AgSS$wereda
AgSS$W6ID=as.character(AgSS$W6ID)
AgSS$W6ID=as.numeric(AgSS$W6ID)

#Create FA ID
AgSS$F9ID=AgSS$W6ID*100+AgSS$fa
AgSS$F9ID=as.character(AgSS$F9ID)
AgSS$F9ID=as.numeric(AgSS$F9ID)

#Create EA ID
AgSS$E11ID=AgSS$F9ID*100+AgSS$ea
AgSS$E11ID=as.character(AgSS$E11ID)
AgSS$E11ID=as.numeric(AgSS$E11ID)

Create holder ID
AgSS$H16ID=AgSS$E11ID*100000+AgSS$hhnum*100+AgSS$holder
AgSS$H16ID=as.character(AgSS$H16ID)
AgSS$H16ID=as.numeric(AgSS$H16ID)

Change binary variables to 0/1
AgSS$sex2=ifelse(AgSS$sex==1,1,0)
AgSS$fert2=ifelse(AgSS$fert==1,1,0)
AgSS$irr2=ifelse(AgSS$irr==1,1,0)
AgSS$pest2=ifelse(AgSS$pest==1,1,0)
AgSS$seedtype2=ifelse(AgSS$seedtype==1,1,0)

AgSS2=AgSS[,c("R2ID","Z4ID","W6ID","F9ID","E11ID","H16ID","year","age","ed","sex2","hhsize","parcfld","crop","cname","class","yield","fert2","ferttype","chfertgr","seedtype2","irr2","pest2","arealc")]

save(AgSS2, file="AgSS.RData")

Subset the data to exclude region 6 (Benishangul Gumuz)
tmp1=subset(AgSS2, R2ID!=6)

Subset the data for the year 2000/2001
AgSS2000=subset(tmp1, tmp1$year==0001)

save(AgSS2000, file="AgSS2000.RData")

Step (3): Create crop category revenue estimates for each region

require(doBy)
require(joecode)

setwd("C:\\Documents and Settings\\alison.bittinger\\Desktop\\Thesis Replication")
load("AgSS2000.RData")

Sum area by crop and R2ID
tmp2=summaryBy(areacalc~crop+R2ID, data=AgSS2000, FUN=sum, na.rm=T)
names(tmp2)[3]="croparea"

Bring in yield data
tmp3=AgSS2000[,c("cname","crop","yield")]
tmp4=unique(tmp3)

Merge yield data with crop areas
tmp5=merge(tmp4,tmp2)

#Create production estimates
tmp5$prod=tmp5$yield*tmp5$croparea

#Read in data from 'Crop Prices' dataset
cropprices=read.csv("Crop Prices.csv", header=T)
names(cropprices)
"R2ID" "crop" "cprice" "class"

#Merge production and prices data to form revenue estimates (birr/m2) by crops
rev=merge(cropprices, tmp5)
names(rev)
#[1] "R2ID" "crop" "cprice" "class" "cname" "yield"
#[7] "croparea" "prod"

#Create income estimates
rev$income=rev$cprice*rev$prod

#Create revenue/area estimates
rev$revest=rev$income/rev$croparea

#Remove missing values
rev1=rev[!is.na(rev$revest),]
dfa1=rev1[,c("R2ID","crop","class","revest")]

#Create relative regional revenue/m2 estimates for crop categories
tmp6=summaryBy(revest~R2ID+class, data=dfa1, FUN=mean, na.rm=T)
names(tmp6)[3]="revclass"

tmp7=summaryBy(revclass~R2ID, data=tmp6, FUN=mean)
names(tmp7)[2]="avgrevclass"

tmp8=merge(tmp7, tmp6)

tmp8$relrev=tmp8$revclass/tmp8$avgrevclass

#Seperate into classification revenue estimation variables
df11=subset(tmp8, class==1)
df11=df11[,c("R2ID","rev1")]
names(df11)=c("R2ID","rev1")

df12=subset(tmp8, class==2)
df12=df12[,c("R2ID","rev2")]
names(df12)=c("R2ID","rev2")
df13 = subset(tmp8, class == 3)
df13 = df13[, c("R2ID", "relrev")]
names(df13) = c("R2ID", "rev3")

df14 = subset(tmp8, class == 4)
df14 = df14[, c("R2ID", "relrev")]
names(df14) = c("R2ID", "rev4")

df15 = subset(tmp8, class == 5)
df15 = df15[, c("R2ID", "relrev")]
names(df15) = c("R2ID", "rev5")

Merge class pct dataframes
df1 = merge(df11, df12, all.x = T, all.y = T)
df2 = merge(df1, df13, all.x = T, all.y = T)
df3 = merge(df2, df14, all.x = T, all.y = T)
df4 = merge(df3, df15, all.x = T, all.y = T)

Convert NA values to 0s
df4$rev1 = ifelse(is.na(df4$rev1), 0, df4$rev1)

Merge revclass estimates with crop revenue estimates
dfa2 = merge(dfa1, df4)

Form overall revenue estimates dataframe

save(RevEst, file="Revenue Estimates.RData")

Step (4): Aggregate 2000/2001 data to a farmer level with teff classified as the primary staple crop; create Herfindahl Index (HHI) and Crop Category Shares

require(joeRcode)
require(doBy)

setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication")
load("AgSS2000.RData")

Remove missing values
AgSS2000.1 = AgSS2000[!is.na(AgSS2000$pest),]
AgSS2000.2 = AgSS2000.1[!is.na(AgSS2000.1$fert2),]
AgSS2000.3 = AgSS2000.2[!is.na(AgSS2000.2$seedtype2),]
AgSS2000.4 = subset(AgSS2000.3, !(fert2 > 0 & is.na(ferttype)))
AgSS2000.4$ferttype = ifelse(is.na(AgSS2000.4$ferttype), 0, AgSS2000.4$ferttype)
AgSS2000.5 = subset(AgSS2000.4, !((fert2 == 0) & ferttype > 0))

Currently, ferttype = 0 (no fert); ferttype = 1 (natural fert); ferttype = 2 (chem fert); ferttype = 3 (both natural and chem fert)
Change ferttype variable into binary so that no fertilizer & natural fertilizer = 0 and chemical fertilizer or both natural and chemical fertilizer = 1
AgSS2000.5$ferttype = ifelse(AgSS2000.5$ferttype > 1, 1, 0)

###
SUMMARIZE INPUT USE BY FARMERS
###

Calculate area cultivated by each farmer
area = summaryBy(areacalc ~ H16ID, data = AgSS2000.5, FUN = sum, na.rm = T)
names(area)[2] = 'areacult'

Separate areas by fertilizer type
f10 = subset(f1, ferttype == 0)
names(f10) = c("H16ID", "nocfert", "area_nocfert")
f10 = f10[, c("H16ID", "area_nocfert")]

f11 = subset(f1, ferttype == 1)
names(f11) = c("H16ID", "cfert", "area_cfert")
f11 = f11[, c("H16ID", "area_cfert")]

Merge fertilizer use data
f2 = merge(f10, f11, all.x = T, all.y = T)
f3 = merge(f2, area)

f3$area_nocfert = ifelse(is.na(f3$area_nocfert), 0, f3$area_nocfert)
f3$area_cfert = ifelse(is.na(f3$area_cfert), 0, f3$area_cfert)

Find shares of area devoted to no chemical fertilizer and/or chemical fertilizer
f3$nocfert = f3$area_nocfert / f3$areacult
f3$cferf = f3$area_cfert / f3$areacult

Summarize chemical fertilizer usage by farmer (calculate length and sum)
f4 = summaryDF(AgSS2000.5, c("H16ID"), c("ferttype", "ferttype"), c("length", "sum"))

Calculate average chemical fertilizer use by farmer (now a continuous variable)
f4$avgcfert = f4$ferttype.1.sum / f4$ferttype.length

Convert to question, Did you use any chemical fertilizer on any of your fields (Y/N)?
f4$Afert = ifelse(f4$avgcfert == 0, 0, 1)

Summarize fertilizer usage by farmer (yes/no)
f5 = summaryDF(AgSS2000.5, c('H16ID'), c('fert2', 'fert2'), c('length', 'sum'))

Calculate average fertilizer use by farmer (now a continuous variable)
f5$avgfert = f5$fert2.1.sum / f5$fert2.length

Convert to question, Did you use fertilizer on any of your fields (Y/N)?
f5$Afert = ifelse(f5$avgfert == 0, 0, 1)

f6 = merge(f3, f4)
f7 = merge(f6, f5)
fert = f7[, c('H16ID', 'cfert', 'Afert', 'ferttype.length', 'Afert')]
names(fert)[4] = 'fieldnum'

Summarize irrigation use by farmer

Calculate total area devoted to irrigation by farmer
i1 = summaryBy(areaalc ~ H16ID + irr2, data = AgSS2000.5, FUN = sum, na.rm = T)

Separate areas by irrigation type
i10 = subset(i1, irr2 == 0)
names(i10) = c('H16ID', 'noirr', 'area_noirr')
i10 = i10[, c('H16ID', 'area_noirr')]

i11 = subset(i1, irr2 == 1)
names(i11) = c('H16ID', 'irr', 'area_irr')
i11 = i11[, c('H16ID', 'area_irr')]

Merge irrigation use data
i2 = merge(i10, i11, all.x = T, all.y = T)
i3 = merge(i2, area)

i3$area_noirr = ifelse(is.na(i3$area_noirr), 0, i3$area_noirr)
i3$area_irr = ifelse(is.na(i3$area_irr), 0, i3$area_irr)

Find shares of area devoted to no irrigation and/or irrigation
i3$noirr = i3$area_noirr / i3$areacult
i3$irr = i3$area_irr / i3$areacult

Summarize irrigation usage by farmer (calculate length and sum)
i4 = summaryDF(AgSS2000.5, c('H16ID'), c('irr2', 'irr2'), c('length', 'sum'))

Calculate average irrigation use by farmer (now a continuous variable)
i4$avgirr = i4$irr2.1.sum / i4$irr2.length

Convert to question, Did you use any irrigation on any of your fields (Y/N)?
i4$Airr = ifelse(i4$avgirr == 0, 0, 1)
i5=merge(i3,i4)
irr=i5[,c("H16ID","irr","Airr")]

Summarize pesticides use by farmer

Calculate total area devoted to pesticides by farmer
p1=summaryBy(area~H16ID+pest2, data=AgSS2000.5, FUN=sum, na.rm=T)

Separate areas by pesticides type
p10=subset(p1, pest2==0)
names(p10) = c("H16ID","nopest","area_nopest")
p10=p10[,c("H16ID","area_nopest")]

p11=subset(p1, pest2==1)
names(p11) = c("H16ID","pest","area_pest")
p11=p11[,c("H16ID","area_pest")]

Merge pesticides use data
p2=merge(p10, p11, all.x=T, all.y=T)
p3=merge(p2, area)

p3$area_nopest=ifelse(is.na(p3$area_nopest),0,p3$area_nopest)
p3$area_pest=ifelse(is.na(p3$area_pest),0,p3$area_pest)

Find shares of area devoted to no pesticides and/or pesticides
p3$nopest=p3$area_nopest/p3$areacult
p3$pest=p3$area_pest/p3$areacult

Summarize pesticides usage by farmer (calculate length and sum)
p4=summaryDF(AgSS2000.5, c('H16ID'),c('pest2', 'pest2'), c('length', 'sum'))

Calculate average pesticides use by farmer (now a continuous variable)
p4$Avgpest=p4$pest2.1.sum/p4$pest2.length

Convert to question, Did you use any pesticides on any of your fields (Y/N)?
p4$Apest=ifelse(p4$Avgpest==0,0,1)
p5=merge(p3,p4)
pest=p5[,c("H16ID","pest","Apest")]

Summarize improved seed use by farmer

Calculate total area devoted to improved seed by farmer
s1=summaryBy(area~H16ID+seedtype2, data=AgSS2000.5, FUN=sum, na.rm=T)

Separate areas by improved seed type
s10=subset(s1, seedtype2==0)
names(s10) = c("H16ID","noseed","area_noseed")
s10=s10[,c("H16ID","area_noseed")]

s11=subset(s1, seedtype2==1)
names(s11) = c("H16ID","seed","area_seed")
s11=s11[,c("H16ID","area_seed")]

Merge improved seed use data
s2=merge(s10, s11, all.x=T, all.y=T)
s3=merge(s2, area)

s3$area_noseed=ifelse(is.na(s3$area_noseed),0,s3$area_noseed)
s3$area_seed=ifelse(is.na(s3$area_seed),0,s3$area_seed)

Find shares of area devoted to no improved seed and/or improved seed
s3$noseed=s3$area_noseed/s3$areacult
s3$seed=s3$area_seed/s3$areacult

Summarize improved seed usage by farmer (calculate length and sum)
s4=summaryDF(AgSS2000.5, c('H16ID'),c('seedtype2', 'seedtype2'), c('length', 'sum'))

Calculate average improved seed use by farmer (now a continuous variable)
s4$avgseed=s4$seedtype2.1.sum/s4$seedtype2.length

Convert to question, Did you use any improved seed on any of your fields (Y/N)?
s4$Aseed=ifelse(s4$avgseed==0,0,1)

s5=merge(s3,s4)
seed=s5[,c("H16ID","seed","Aseed")]

Merge all inputs
inputs1=merge(fert,irr)
inputs2=merge(inputs1,pest)
inputs=merge(inputs2,seed)

Calculating the Herfindahl Index -- Diversification Measure
Sums the area of parcel/fields for each crop by holder and merges both sums
div1=summaryBy(areacalc~H16ID+crop, data=AgSS2000.5, FUN=sum, keep.names=T, na.rm=T)
div2=merge(div1,area, all.x=T)

Calculates the area represented by each crop in a year as a percentage
div2$croppct=div2$areacalc/div2$areacult

div2$croppct2=div2$croppct*div2$croppct

div3=summaryBy(croppct2~H16ID, data=div2, FUN=sum, na.rm=T)
divers=merge(div3,div2)

names(divers)[2]="HHI"
names(divers)[4]="areacalc.crop"

###
#Calculate Crop Shares by Crop Categories
###
#Sum the acreage for each holder by classification
shr1=summaryBy(area~H16ID+class, data=AgSS2000.5, FUN=sum, na.rm=T)
names(shr1)[3]="areaclass"
shr2=merge(shr1, area)

#Calculate the acreage share represented by each crop classification for each holder
shr2$classpct=shr2$areaclass/shr2$areacult

#Only keep necessary variables
shr3=shr2[,c("H16ID","class","classpct")]

#Separate into classification share variables
tmp11=subset(shr3, class==1)
names(tmp11)=c("H16ID","class1","classpct1")
tmp12=subset(shr3, class==2)
names(tmp12)=c("H16ID","class2","classpct2")
tmp13=subset(shr3, class==3)
names(tmp13)=c("H16ID","class3","classpct3")
tmp14=subset(shr3, class==4)
names(tmp14)=c("H16ID","class4","classpct4")
tmp15=subset(shr3, class==5)
names(tmp15)=c("H16ID","class5","classpct5")

#Merge classpct dataframes
tmp1=merge(tmp11, tmp12, all.x=T, all.y=T)
tmp2=merge(tmp1, tmp13, all.x=T, all.y=T)
tmp3=merge(tmp2, tmp14, all.x=T, all.y=T)
tmp4=merge(tmp3, tmp15, all.x=T, all.y=T)

#Convert NA values to 0s

tmp4$classpct1=ifelse(is.na(tmp4$classpct1),0,tmp4$classpct1)
tmp4$classpct2=ifelse(is.na(tmp4$classpct2),0,tmp4$classpct2)
tmp4$classpct3=ifelse(is.na(tmp4$classpct3),0,tmp4$classpct3)
tmp4$classpct4=ifelse(is.na(tmp4$classpct4),0,tmp4$classpct4)
tmp4$classpct5=ifelse(is.na(tmp4$classpct5),0,tmp4$classpct5)

###
#Calculate Major Crop Produced by each Household
cat=NULL
holderlist=sort(unique(AgSS2000.5$H16ID))
id=1
for(id in 1:length(holderlist)){ #start loop on Holder ID
 (holder=holderlist[id])
 cat1=subset(shr3, H16ID==holder)
 cat2=orderBy(~classpct, data=cat1)
 cat2$major=cat2$class[1]
 cat3=unique(cat2[,c("H16ID","major")])
 cat=rbind(cat,cat3)
}
#end loop on Holder ID
cat=data.frame(cat)

#Convert Major Crop Categories into dummy variables
cat$sub=ifelse(cat$major==1,1,0)
cat$cer=ifelse(cat$major==2,1,0)
cat$oil=ifelse(cat$major==3,1,0)
cat$fruit=ifelse(cat$major==4,1,0)
cat$cash=ifelse(cat$major==5,1,0)

#Only keep unique and necessary variables for merger
#Variables related to input use
da1=inputs
da2=unique(da1)

#Variables related to diversification
da3=divers[,c("H16ID","areacult","HHI")]
da4=unique(da3)

#Variables related to classification shares
da5=tmp4[,c("H16ID","classpct1","classpct2","classpct3","classpct4","classpct5")]
da6=unique(da5)

#Variables related to predominant crops
da7=cat[,c("H16ID","sub","cer","oil","fruit","cash")]
da8=unique(da7)

#Merge all aggregate characteristics together
tmp5=merge(da2, da4)
tmp6=merge(da6,tmp5)
tmp7=merge(da8,tmp6)
farms2000=tmp7[,c("H16ID","areacult","fieldnum","HHI","classpct1","classpct2","classpct3","classpct4","classpct5","sub","cer","oil","fruit","cash","cfert","Acfert","irr","Aire","pest","Apest","seed","Aseed")]

save(farms2000, file='Farms 2000.RData')

demo2000=AgSS2000.5[,c("R2ID","Z4ID","W6ID","F9ID","E11ID","H16ID","sex2","age","ed","hhsize")]

#Merge Farm Aggregate Characteristics with Farmer Demographics
dfa9=merge(demo2000,farms2000)

farmer2000=unique(dfa9)

save(farmer2000, file='Farmer 2000.RData')

Step (5): Subset World Bank/European Commission World Map of Travel Time to Horn of Africa

require(joecode)
require(R.matlab)
require(doBy)
require(maps)

setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\World Traveltime")

df1=read.table('acc_50k_200000bak_subset_30_50e_0_20n.dat',header=T)
df1[df1>=100000]=NA
df1=orderBy(~long+lat,data=df1)

summary(df1)

tmp=colorum.gplots(df1$val,scoremax=2000,Lround=0)
df1$color=tmp$datacolors

plot(30:50,0:20,type='n')
x=sort(unique(df1$long))
xlong=30
for(xlong in 30:50){
xm1=xlong-1
df2=df1[df1$long>xm1&df1$long<=xlong,]
points(df2$long,df2$lat,col=df2$color,pch=20,cex=0.25)
}

legend('bottomright',legend=tmp$Ltext,fill=tmp$Lcolors,cex=0.5)

map('world',add=T,lwd=2)
Step (6): Create average travel time variable

require(maptools)
require(joecode)
require(doBy)

#Brin in Ethiopian Shapefiles
load("Ethiopia Map.RData")
plot(Emaps)

#Bring in Travel Time Pixelated Data
load("TTime - Horn of Africa.RData")

memory.limit(3072)

#OVERLAY FUNCTION: Reduce time travel data to Ethiopia

#Convert travel time data into a spatial object
df2=df1
coordinates(df2)=~long+lat

index=overlay(df2,Emaps)
df1$index=index
df1[1:10,]

#Reduce time travel data to only Ethiopia
df3=subset(df1,!is.na(index))
save(df1, df3, Emaps, Emapdata, file="Ethiopia TTime.RData")

#Create distance from market by wereda variable

#Sum areas for weredas on map that are represented by multiple areas
dfa=summaryBy(Area_km2~W6ID, data=Emapdata, FUN=sum, keep.names=T)

#Problem with multiple coding in original map data
Emapdata$Map_W6ID[339]=40121
dfa2=Emapdata[,c("W6ID","W_NAME","Z4ID","Z_NAME","R2ID","R_NAME","index","Map_W6ID")]
dfa3=merge(dfa, dfa2, all.x=T)
#Find a mean isolation measure for each wereda
df4=summaryDF(df3,c("index"),c("val"),c("mean"))
names(df4)[2]="w_dist"

#Merge isolation variable with Emapdata
df5=merge(dfa3, df4, all.x=T)

#Find mean travel time for weredas on map that are represented by multiple areas
df6=summaryBy(w_dist~W6ID, data=df5, FUN=mean, keep.names=T)
df7=df5[,c("W6ID","W_NAME","Z4ID","Z_NAME","R2ID","R_NAME","Area_km2","Map_W6ID","index")]
df8=merge(df6, df7)

#Convert distance to hours
df8$w_dist = df8$w_dist/60

#Convert area to hectares
df8$Area_km2 = df8$Area_km2*100
df9=unique(df8)
save(df9, Emaps, file="Avg Wereda TTime.RData")

Step (7): Create finance variables

require(joecode)
require(doBy)
setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Finance Data")
codes=read.csv("Wereda-Town Codes.csv", header=T)
micro=read.csv("Microfinance Institutions.csv", header=T)
banks=read.csv("Banks.csv", header=T)

#Find microfinance institution counts
tmp=merge(codes, micro, all.x=T)
micro1=summaryBy(MFI_NAME~Map_W6ID, data=tmp, FUN=length)
names(micro1)[2]="w_inst"

#Create complete bank counts
tmp1=merge(codes, banks, all.x=T)
tmp1$w_banks=ifelse(is.na(tmp1$w_banks),0,tmp1$w_banks)
tmp2=tmp1[,c("Map_W6ID","w_banks")]

tmp2=unique(tmp2)

#Merge institutions and banks
fin=merge(micro1, tmp2, all.x=T)

save(fin, file="C:\documents and settings\alison.bittinger\desktop\thesis replication\finance.RData")

#Step (8): Create a dataset with wereda-specific variables

require(doBy)
require(joecode)

setwd("C:\documents and settings\alison.bittinger\desktop\thesis replication")

bio=read.csv("Biophysical.csv", header=T)
pop=read.csv("Population.csv", header=T)
load("Finance.RData")

#Merge finance, population, and biophysical variables

fin=merge(bio, pop)
tmp1=merge(bio, pop)
tmp2=merge(tmp1, fin)
tmp2$Map_W6ID=as.factor(tmp2$Map_W6ID)

names(tmp2)
[1] "Map_W6ID" "avg_elev" "avg_slope" "avg_treecover"
[5] "avg_rainmonths" "roadden" "primschool" "secschool"
[9] "POP_DENS" "w_inst" "w_banks"
	names(tmp2)[2]="w_elev"
	names(tmp2)[3]="w_slope"
	names(tmp2)[4]="w_trees"
	names(tmp2)[5]="w_rainmo"
	names(tmp2)[6]="w_roadden"
	names(tmp2)[7]="w_primsch"
	names(tmp2)[8]="w_secsch"
	names(tmp2)[9]="w_popden"

load("Avg Wereda TTime.RData")

time=df9[,c("W6ID", "w_dist", "W_NAME", "Z4ID", "Z_NAME", "R2ID", "R_NAME", "Area_km2", "Map_W6ID")]

time1=unique(time)

names(time1)[3]="w_name"
Step (9): Create a master dataset that combines farmer, wereda-specific, and revenue data

require(doBy)
require(joecode)
setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication")
load("Revenue Estimates.RData")
load("Farmer 2000.RData")
load("Wereda.RData")
rev=RevEst[,c("R2ID","rev1","rev2","rev3","rev4","rev5")]
rev2=unique(rev)
dfa1=merge(farmer2000, rev2)
dfa2=merge(dfa1, wereda)
dfa3=dfa2[!is.na(dfa2$w_primsch),]
master=dfa3[!is.na(dfa3$w_popden),]

save(master, file="Master.RData")

Step (11): Run chemical fertilizer and crop diversification simultaneous equation regressions

#Chemical Fertilizer and Diversification - Reduced Form Regressions
```r
rmm(list=ls())
set.seed(2010)
#################################################################
require(joecode)
require(doBy)
require(VGAM)
#################################################################
setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Regressions")
#################################################################
load("Master.RData")
#CHEMICAL FERTILIZER AS BINARY ADOPTION
#OLS Estimation
ols.chem1 = lm(Acfert~HHI+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum, data=df1)

#Simple Logit Estimation
logit.chem1 = glm(Acfert~HHI+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum, binomial, data=df1)

#CHEMICAL FERTILIZER AS CONTINUOUS DIFFUSION
#OLS Estimation
ols.chem2 = lm(cfert~HHI+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum, data=df1)
ols.HHI = lm(HHI~cfert+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roaden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+w_area, data=df1)

#Simple Tobit Estimation
tobit.chem2 = vglm(cfert~HHI+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roaden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum,tobit(Lower=0, Upper=1,zero=2), df1, trace=TRUE)
tobit.HHI = vglm(HHI~cfert+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roaden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+w_area,tobit(Upper=1,zero=2), df1, trace=TRUE)

#Simultaneous Equation Estimation
```

#First-Stage Estimation

#Tobit: cfert on exogenous variables (dropped w_area)
ctobit.1 = vglm(cfert~w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum+w_area,tobit(Lower=0, Upper=1,zero=2), df1, trace=TRUE)

#Save fitted values
fit.cfert = fitted(ctobit.1)

#Tobit: HHI on exogenous variables (dropped areacult & fieldnum)
htobit.1 = vglm(HHI~w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum+w_area,tobit(Upper=1,zero=2), df1, trace=TRUE)

#Save fitted values
fit.HHI = fitted(htobit.1)

#Second-Stage Estimation

#Tobit: cfert on fitted HHI values and exogenous variables
cctobit.2 = vglm(cfert~fit.HHI+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+areacult+fieldnum+w_area,tobit(Lower=0,zero=2), df1, trace=TRUE)

#Tobit: HHI on fitted cfert values and exogenous variables
chtobit.2 = vglm(HHI~fit.cfert+w_dist+sex2+age+factor(ed)+hhsize+w_elev+w_slope+w_trees+w_rainmo+w_roadden+w_primsch+w_secsch+w_popden+w_banks+w_inst+Airr+w_area,tobit(Upper=1,zero=2), df1, trace=TRUE)

#Reduced Form Estimation

(b1=coef(ctobit.2))
(b2=coef(htobit.2))

b1=data.frame(t(b1))
b2=data.frame(t(b2))

GAMMA=matrix(1,2,2)
GAMMA[1,2]=-b1$fit.HHI
GAMMA[2,1]=-b2$fit.cfert

B=matrix(0,2,21)
tmp1=b1[,c("w_dist","sex2","age","factor.ed.2","factor.ed.3","factor.ed.4",
"factor.ed.5","factor.ed.6","factor.ed.7","hhsize","w_elev","w_slope","w_trees",
"w_rainmo","w_roadden","w_primsch","w_secsch","w_popden","w_banks","w_inst","Airr")]

tmp2=b2[,c("w_dist","sex2","age","factor.ed.2","factor.ed.3","factor.ed.4",
"factor.ed.5","factor.ed.6","factor.ed.7","hhsize","w_elev","w_slope","w_trees",
"w_rainmo","w_roadden","w_primsch","w_secsch","w_popden","w_banks","w_inst","Airr")]

B=data.frame(rbind(tmp1,tmp2))
B$areacult=c(b1$areacult,0)
B$fieldnum=c(b1$fieldnum,0)
B$w_area=c(0,b2$w_area)

B=as.matrix(B)

C=solve(GAMMA) %*% B

dfa1=C[1,]
dfa2=C[2,]

save (ols.chem1, logit.chem1, ols.chem2, ols.HHI, tobit.chem2, tobit.HHI, ctobit.1, htobit.1, ctobit.2,
htobit.2, dfa1, dfa2, file="CFERT & DIV.RData")

#Simultaneity Estimation with Bootstraps -- WITH Replacement

Jboots=1000
bigblock.F=NULL
bigblock.D=NULL
bigblock.G1=NULL
bigblock.G2=NULL

j=1
debug off
for(j in 1:Jboots){
 # start loop on Jboots
 # build subsample of data
 df2=NULL
 zonelist=sort(unique(df1$Z4ID))
nreg=1
 for(nreg in 1:length(zonelist)){
 # start loop on zones
 (zone=zonelist[nreg])
 df11=df1[df1$Z4ID==zone,]
 df11$index=1:length(df11$Z4ID)
 (nobs=length(df11$index))
 (nobspull=as.integer((2/3)*nobs))
 pull=sample(df11$index,nobspull,replace=T)
df12 = df11[pull,]
df2 = rbind(df2, df12)
}
end loop on zones
df2 = data.frame(df2)

###
#Simultaneous Equation Estimation
###
#First-Stage Estimation
#Tobit: cfert on exogenous variables (dropped w_area)
c Tobit.1 =
vglm(cfert ~ w_dist + sex2 + age + factor(ed) + hhsize + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch + w_popden + w_banks + w_inst + Airr + areacult + fieldnum + w_area, tobit(Lower = 0, Upper = 1, zero = 2), df2, trace = TRUE)

#Save fitted values
fit.cfert = fitted(ctobit.1)

#Tobit: HHI on exogenous variables (dropped areacult & fieldnum)
htobit.1 =
vglm(HHI ~ w_dist + sex2 + age + factor(ed) + hhsize + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch + w_popden + w_banks + w_inst + Airr + areacult + fieldnum + w_area, tobit(Upper = 1, zero = 2), df2, trace = TRUE)

#Save fitted values
fit.HHI = fitted(htobit.1)

#Second-Stage Estimation
#Tobit: cfert on fitted HHI values and exogenous variables
c Tobit.2 =
vglm(cfert ~ fit.HHI + w_dist + sex2 + age + factor(ed) + hhsize + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch + w_popden + w_banks + w_inst + Airr + areacult + fieldnum, tobit(Lower = 0, zero = 2), df2, trace = TRUE)

bpars.F = coef(ctobit.2)
bigblock.F = rbind(bigblock.F, bpars.F)
tmpF = data.frame(bigblock.F)

#Tobit: HHI on fitted cfert values and exogenous variables
htobit.2 =
vglm(HHI ~ fit.cfert + w_dist + sex2 + age + factor(ed) + hhsize + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch + w_popden + w_banks + w_inst + Airr + w_area, tobit(Upper = 1, zero = 2), df2, trace = TRUE)

bpars.D = coef(htobit.2)
bigblock.D = rbind(bigblock.D, bpars.D)
tmpD = data.frame(bigblock.D)
(#Reduced Form Estimation)

(B1=coef(ctobit.2))
(B2=coef(htobit.2))

B1=data.frame(t(B1))
B2=data.frame(t(B2))

DELTA=matrix(1,2,2)
DELTA[1,2]=-B1$fit.HHI
DELTA[2,1]=-B2$fit.cfert

E=matrix(0,2,21)
tmp3=B1[,c("w_dist","sex2","age","factor.ed.2","factor.ed.3","factor.ed.4",
"factor.ed.5","factor.ed.6","factor.ed.7","hhsize","w_elev","w_slope","w_trees",
"w_rainmo","w_roadden","w_primsch","w_secsch","w_popden","w_banks","w_inst","Airr")]
tmp4=B2[,c("w_dist","sex2","age","factor.ed.2","factor.ed.3","factor.ed.4",
"factor.ed.5","factor.ed.6","factor.ed.7","hhsize","w_elev","w_slope","w_trees",
"w_rainmo","w_roadden","w_primsch","w_secsch","w_popden","w_banks","w_inst","Airr")]

E=data.frame(rbind(tmp3,tmp4))
E$areacult=c(B1$areacult,0)
E$fieldnum=c(B1$fieldnum,0)
E$w_area=c(0,B2$w_area)
E=as.matrix(E)

G=solve(DELTA) %*% E

dfa3=G[1,]
dfa4=G[2,]

bigblock.G1=rbind(bigblock.G1,dfa3)
tmpG1=data.frame(bigblock.G1)
bigblock.G2=rbind(bigblock.G2,dfa4)
tmpG2=data.frame(bigblock.G2)

} # end loop on Jboots

#Find P-Values of Bootstrapped Regressions
Pval=function(b){
b0=mean(b)
if(b0<=0){
 tmp=b[b>=0]
}
if(b0>=0){
 tmp=b[b<=0]
 pval=length(tmp)/length(b)
 c(b0,sd(b),pval)
}

dfj1=t(apply(tmpG1,2,Pval))
colnames(dfj1)=c("Estimate","Std. Error","P-val")

dfj2=t(apply(tmpG2,2,Pval))
colnames(dfj2)=c("Estimate","Std. Error","P-val")

Step (12): Run nested logit in Stata

clear
set mem 100000
set more off
aorder

use "C:\Ali\Master's Thesis PC\Reduced Form Regressions\Nested Logit\Master.dta"

log using "C:\Ali\Master's Thesis PC\Reduced Form Regressions\Nested Logit\Nested Logit.log", replace
display "$S_DATA $S_TIME"

gen id = _n
tab ed, gen(eddum)

-gen fertilizer=0 if Afert==0 replace fertilizer=1 if (Afert==1 & Acfert==0) replace fertilizer=2 if (Acfert==1)

gen choices = 3 expand choices sort id by id: gen dfa = _n-1

label define tlab 0 "noferti" 1 "nochem" 2 "chem"
label value dfa tlab tab dfa

nlogitgen type = dfa(nofert: 0, fert: 1 | 2)
nlogittree dfa type

tab dfa, gen(fert)

-gen mode = 0 replace mode = 1 if dfa == 0 & fertiliz == 0 replace mode = 1 if dfa == 1 & fertiliz == 1 replace mode = 1 if dfa == 2 & fertiliz == 2
global df1 HHI w_dist sex2 age eddum2 eddum3 eddum4 eddum5 eddum6 eddum7 hhsize w_elev w_slope w_trees w_rainmo w_roadden ///
 w_primsch w_secsch w_popden w_banks w_inst Airr areacult fieldnum

/*Nested Logit on All Exogenous Variables*/
nl (mode || type: $df1, base(nofert) || dfa; case(id)
log close
##

Step (13): Run crop categories regressions

require(joecode)
require(doBy)
require(VGAM)

setwd("C:\Ali\Master’s Thesis PC\Reduced Form Regressions")

#TEFF IS CATEGORIZED AS THE PRIMARY STAPLE CROP
load("Master.RData")
df1=master
#Singular Value Decomposition
X=as.matrix(df1[,c("rev1", "rev2", "rev3", "rev4", "rev5")])
(d=svd(X)$d)
(solve(t(X) %*% X))
max(d)/min(d)
X=as.matrix(df1[,c("rev2", "rev4")])
(d=svd(X)$d)
(solve(t(X) %*% X))
max(d)/min(d)

#OLS Estimation
ols1 = lm(classpct1 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols2 = lm(classpct2 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols3 = lm(classpct3 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols4 = lm(classpct4 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols5 = lm(classpct5 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)

tobit1 = vglm(classpct1 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df1, trace=TRUE)
tobit2 = vglm(classpct2 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df1, trace=TRUE)
tobit3 = vglm(classpct3 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df1, trace=TRUE)
tobit4 = vglm(classpct4 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df1, trace=TRUE)
tobit5 = vglm(classpct5 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df1, trace=TRUE)

save(ols1, ols2, ols3, ols4, ols5, tobit1, tobit2, tobit3, tobit4, tobit5, file="Crop Categories - Teff (Primary).RData")

#TEFF IS CATEGORIZED AS A CEREAL CROP

data(df2)

#OLS Estimation

#Estimation with technology factors based on adoption
ols2.T = lm(classpct2 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df2)
ols3.T = lm(classpct3 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df2)
ols4.T = lm(classpct4 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df2)
ols5.T = lm(classpct5 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df2)

##
#Tobit Estimation
##
tobit2.T = vglm(classpct2 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df2, trace=TRUE)
tobit3.T = vglm(classpct3 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df2, trace=TRUE)
tobit4.T = vglm(classpct4 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df2, trace=TRUE)
tobit5.T = vglm(classpct5 ~ w_dist + rev2 + rev4 + fieldnum + sex2 + age + factor(ed) + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, tobit(Lower=0, Upper=1, zero=2), df2, trace=TRUE)

Step (14): Visually check spatial correlation

require(joecode)
require(doBy)
require(maptools)
setwd("C:\\Documents and Settings\\alison.bittinger\\Desktop\\Thesis Replication\\Regressions\\Spatial Correlation")
load("Master.RData")
load("Ethiopia Map.RData")
df3=master
Simple OLS regression on Crop Categories, save residuals
ols1 = lm(classpct1 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df3)

ols2 = lm(classpct2 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df3)

ols3 = lm(classpct3 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df3)

ols4 = lm(classpct4 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df3)

ols5 = lm(classpct5 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df3)

Save residuals
df3$ehat1=ols1$resid
df3$ehat2=ols2$resid
df3$ehat3=ols3$resid
df3$ehat4=ols4$resid
df3$ehat5=ols5$resid

Plot OLS1 residuals on Ethiopia Map

Summarize residuals by zone
zres1=summaryBy(ehat1~Z4ID, data=df3, FUN=mean, keep.names=T)
tmp2=merge(Emapdata, zres1, all.x=T)

Plot residuals by zone (blue/red)
tmp2=orderBy(~index, data=tmp2)
Ecolors=ifelse(tmp2$ehat1<0,'blue','red')
x11()
plot(Emaps,col=Ecolors,pch=20,cex=2)
legend('bottomleft','Negative Residual', fill='blue',cex=1)
legend('topleft','Positive Residual', fill='red',cex=1)

Plot residuals by zone (continuum)
abehat1=abs(tmp2$ehat1)
cmax2=quantile(abehat1,0.9,na.rm=T)
temp=colorum.gplots(scores=tmp2$ehat1,Lround=3, scoremin=-cmax2, scoremax=cmax2, coL1=4, coL2=0, coL3=2)
x11()
plot(Emaps,col=temp$datacolors,pch=20,cex=2)
legend('topleft',legend=temp$Ltext,fill=temp$Lcolors,cex=1)
Step (15): Create zone latitude/longitude measurements

```r
require(maptools)
require(doBy)
require(joecode)
graphics.off()
#############################################################################################################
setwd("C:\/Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Regressions\Spatial Correlation")
#############################################################################################################
wmaps=readShapePoly('Wereda Map-Cleaned.shp')
plot(wmaps)
#############################################################################################################
# pull the map attribute data
wdata=wmaps@data
#############################################################################################################
#Make backup objects
wmaps2=wmaps
wdata2=wmaps2@data

#Create zonal lat-long values
tmp=coordinates(wmaps2)
wdata2$long=tmp[,1]
wdata2$lat=tmp[,2]
tmp2=summaryBy(long+lat~Z4ID,data=wdata2,FUN=mean,keep.names=T)
tmp2=round(tmp2,4)
write.csv(tmp2,file='longlat-zones.csv',row.names=F)

#Compute distance between geometric centers of first two zones
distcalc(tmp2$long[1],tmp2$lat[1],tmp2$long[2],tmp2$lat[2])
```

Step (16): Use simulation to check spatial correlation

```r
set.seed(2010)
#############################################################################################################
require(joecode)
require(maptools)
require(doBy)
```

```r
setwd("C:\Documents and Settings\alison.bittinger\Desktop\Thesis Replication\Regressions\Spatial Correlation")

# Load data and read longlat/zones.csv
load("Master.RData")
longlat=read.csv("longlat-zones.csv", header=T)

# Merge longlat and master datasets
df1=merge(master, longlat, all.x=T)

# Simple OLS regression on Crop Categories, save residuals
ols1 = lm(classpct1 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols2 = lm(classpct2 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols3 = lm(classpct3 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols4 = lm(classpct4 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)
ols5 = lm(classpct5 ~ w_dist + rev2 + rev4 + sex2 + age + factor(ed) + fieldnum + Airr + hhsize + w_area + w_banks + w_inst + w_popden + w_elev + w_slope + w_trees + w_rainmo + w_roadden + w_primsch + w_secsch, data=df1)

# Save residuals
df1$ehat1=ols1$resid
df1$ehat2=ols2$resid
df1$ehat3=ols3$resid
df1$ehat4=ols4$resid
df1$ehat5=ols5$resid

# Sort unique Z4ID values
zlist=sort(unique(df1$Z4ID))
znobs=length(zlist)
M=matrix(0,5000,znobs)
ireg=1
for(ireg in 1:znobs){
  zonei=zlist[ireg]
df3=df1[df1$Z4ID==zonei,]
df3$index=1:length(df3$Z4ID)
inobs=length(df3$index)
ipull=sample(df3$ehat1,5000,replace=T)
M[,ireg]=ipull
}
```

Compute covariance between i & j residuals

tmp = cov(M)
tmp2 = cov2cor(tmp)

tmp3 = as.vector(tmp2)
tmp3 = tmp3[tmp3 < 1]
summary(tmp3)

Test covariance between zones at 95% confidence level
myfun = function(x) {
 quantile(x, 0.95)
}
apply(tmp2, 2, myfun)

Test covariance between zones at 99% confidence level
myfun = function(x) {
 quantile(x, ((1 - (1 / znobs)) - .01))
}
apply(tmp2, 2, myfun)

plot(M)
x11()
plot(rank(M[,1]), rank(M[,2]))
x11()
plot(rank(M[,1]), rank(M[,3]))

##
###############
##