Water-use efficiency & transpiration across European forests during the Anthropocene

This is a postprint of an article that originally appeared in Nature Climate Change in May 2015.

Made available through Montana State University’s ScholarWorks scholarworks.montana.edu
The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata\(^1\). However, uncertainties in the magnitude\(^2\) and consequences\(^3\) of the physiological responses\(^2\) of plants to elevated CO\(_2\) in natural environments hinders modelling of terrestrial water cycling and carbon storage\(^4\). Here we use annually resolved long-term \(\delta^{13}\)C tree-ring measurements across a European forest network to reconstruct the physically driven response of intercellular CO\(_2\) (C\(_i\)) caused by atmospheric CO\(_2\) (C\(_a\)) trends. When removing meteorological signals from the \(\delta^{13}\)C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO\(_2\) increase, C\(_i\) increased by \(\sim 0.76\) ppmv, most consistent with moderate control towards a constant C\(_a\)/C\(_i\) ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO\(_2\) effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO\(_2\)-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

Annually, \(\sim 40,000\) km\(^2\) or \(\sim 60\%\) of the total evapotranspiration over land enters the atmosphere via transpiration\(^5\). Most of this is from plants with the C\(_3\) carbon assimilation pathway, including economically important crops (for example, wheat and rice) and broadleaf and coniferous trees, totalling \(\sim 95\%\) of the living terrestrial plant biomass\(^6\). Laboratory and free-air CO\(_2\) enrichment (FACE) experiments\(^7\) indicate that increasing atmospheric CO\(_2\) concentrations affect C\(_3\) stomatal conductance and photosynthesis. Modelling assessments incorporating knowledge of these physiological mechanisms suggest substantial impacts on the Earth’s coupled climate–hydrologic–carbon systems. Besides impacts on future carbon sinks\(^8\), possible climatic consequences from physiological responses to increased CO\(_2\) concentrations include changes in transpiration that may well affect regional hydroclimate and flood risks\(^9\).

The IPCC Fifth Assessment Report emphasizes the high uncertainties still surrounding plant physiological responses to increasing CO\(_2\) concentrations\(^1\). For example, a recent analysis of eddy-covariance time series\(^1\) inferred that northern boreal and temperate forests regulate stomatal conductance to maintain constant intercellular CO\(_2\) concentrations, C\(_i\). Maintaining a constant C\(_i\) in the past one to two decades implies a very strong physiological response, contradicting earlier observational and experimental data used to optimize parameterizations of the land components of climate models\(^1\). To reduce such uncertainty, we take advantage of additional measurements that have not traditionally been used to verify terrestrial ecosystem model functioning, namely tree-ring carbon isotope data.

The diffusion of CO\(_2\) through stomata from the external leaf boundary layer to the leaf-internal photosynthesis sites, as well as the enzymatic reactions during carboxylation, causes discrimination of \(\delta^{13}\)C in CO\(_2\) (ref. 18). Knowledge of these fractionation processes allows C\(_i\) to be reconstructed from the stable carbon isotope measurements (\(\delta^{13}\)C) on alpha-cellulose extracted from trees’ annual growth rings\(^1\). In particular, for C\(_3\) plants, C\(_i\) can be reconstructed from ice-core and instrumental measurements of CO\(_2\) concentration (C\(_a\)) and its atmospheric \(\delta^{13}\)C signature, and from the well-established values of isotope discrimination constants from carboxylation and diffusion of CO\(_2\) through leaves (Methods). Yet, this crucial information held in tree-ring measurements has been underused in testing dynamic global vegetation models (DGVMs), despite providing key information on stomatal functioning. Furthermore, knowledge of C\(_a\) and the well-established C\(_i\) time series quantifies intrinsic water-use efficiency from the diffusion equation \([\text{WUE}] = A/g = (C\(_a\) - C\(_i\))/1.6\), linking leaf-level CO\(_2\) assimilation rate (A) to stomatal conductance (g), for the known C\(_a\)-C\(_i\) difference. Although actual water consumption also varies...
with environmental conditions and plant biomass, the iWUE is a key measure of potential water costs to maintain a given rate of carbon assimilation per unit leaf area. Attributing the CO₂ influence on iWUE also should account for impacts of climate variability on isotope discrimination owing to both the lower C₄ at more temperate sites²⁴ (Supplementary Figs 1 and 2) and the strong inter-annual to long-term climate-driven variability evident in tree-ring δ¹³C time series²⁵ (Supplementary Fig. 3).

Our tree-ring data set comprises two of the most important genera (Quercus and Pinus) from the broadleaf (9 stands) and coniferous (14 stands) tree types in Europe. Geographically, data span from northern Scandinavia to Morocco and the United Kingdom to Poland (Fig. 1 and Supplementary Table 1). Annual resolution for all sites throughout the twentieth century permits assessment of inter-annual to long-term climatic impacts, enabling identification of intercellular CO₂ trends driven directly by rising atmospheric CO₂ concentrations (Methods).

Our long-term tree-ring measurements show that simultaneous to the ~70 ppmv twentieth century increase in C₄, the annually resolved tree-ring network yields a 44 ± 10 ppmv C₄ increase (Fig. 2). These trends are consistent with conclusions drawn from meta-analyses of iWUE responses from independent tree-ring data sets²¹, yet incompatible with a recent investigation⁵ of ecosystem-level water-use efficiency concluding C₄ remained constant over the most recent decades. Despite discrepancies previously identified between empirical and model evidence⁴, both the absolute C₄ values and their twentieth century changes are well captured by DGVMM ensemble results (Fig. 2a inset). Furthermore, we find that C₄ depends strongly on climate variability, as evidenced by significant (p < 0.01) correlations with temperature and precipitation fluctuations (R = −0.55 and 0.57, respectively, after detrending data with a spline). Correlation might not reflect causality, but our statistical tests (Methods) suggest stronger control of C₄ variability from precipitation fluctuations towards the Mediterranean regions (probably from rainfall controls on stomatal opening via soil moisture). In contrast, maximum temperature variability was more strongly correlated with C₄ fluctuations towards Scandinavia, possibly due to associations with increased radiation/photosynthesis and enhanced vapour pressure deficit (Supplementary Fig. 3).

We thus estimate changes in C₄ driven purely by C₃ (ppmw per ppmv)—this physiological response to CO₂, defined as τ—by accounting for the influence of climate variation on tree-ring δ¹³C. These ‘climate-corrected’ estimates—that is, climate signal removed—are denoted by the superscript ‘c’ prefix; see methods and Supplementary Figs 5–7. We find that for every ppmv increase in C₃ over the twentieth century, the δ¹³C increased by 0.76 ± 0.28 ppmv (median ± s.d.; Fig. 2c). Broadleaves have higher τ values than conifers (median 0.81 and 0.65, respectively) over the twentieth century. Relative to three leaf-level gas-exchange set-points debated in the literature, namely: plant maintenance of a constant C₃ (ref. 6), constant C₄/C₃ ratio, or constant difference between C₄ and C₃, we find greatest consistency with the constant C₄/C₃ ratio hypothesis. In detail, we cannot statistically distinguish (p = 0.98) the conifer responses from the null hypothesis of a constant C₄/C₃ ratio (that
would be associated with τ values between 0.55 and 0.79). The empirical response at the broadleaf sites (median τ = 0.81) is intermediate to hypothesis for a constant C5/C5 ratio (τ between 0.68–0.79) and C5–C5 set-points (τ = 1). This finding importantly allows us to benchmark the plant responses to CO2, while mitigating the confounding climatic variation.

When our climate-corrected estimates of C5 are used to derive 4WUE, we find that ~66% of the European broadleaf and ~93% of the conifer sites show an increase in 4WUE. Relative to the 1901–1910 reference period, the average increase in 4WUE was 14 ± 10% at the broadleaf sites and 22 ± 6% at the conifer sites during the twentieth century (Fig. 3). These results are consistent with ecophysiologic literature that evergreen plants (and particularly scrophyllyma) may show greater increases in WUE metrics (for example, based on transpiration or alternatively stomatal conductance) due to rigid leaf architecture39 and a greater coupling with atmospheric boundary layer processes42 and associated feedbacks from changes in surface humidity. Without exclusion of climate effects we obtain larger 4WUE trends of approximately 30% for the same period (Supplementary Fig. 4). This empirical evidence supports previous4 and new (see below) model results suggesting contributions to 4WUE due to warming/drying over Europe in addition to the physiological responses to elevated CO2. This affects particularly strongly broadleaf sites in central Europe, where warming is greatest. Warming/drying trends4,19,22 tend to lower the C5 rate of increase, resulting in a larger C5–C5 difference, a higher 4WUE, and estimates closer to a constant C5 (Supplementary Fig. 8).

Our long-term estimates of climate-corrected C5 and 4WUE provide a unique test on the ability of DGVM to reproduce (or not) physiological responses to higher ambient CO2. We accordingly perform factorial experiments with an ensemble of DGVMs that isolate modelled plant responses to contemporary CO2 trends only. Simulated 4WUE responses fall between the δ13C-derived observations for the broadleaf and conifer (Fig. 3a), but the DGVM results are not statistically different between the broadleaf and conifer plant functional types (PFTs), with individual ensemble members showing between a 12 and 22% increase in European 4WUE. Hence, from our values above, results indicate consistency between the modelled and empirical 4WUE response. Although previous investigations25 show coherence between tree-ring and leaf measurements for C5, the extent to which both tree rings and models integrate canopy and other physiological processes requires investigation. This includes post-photosynthetic discrimination, storage and remobilization of carbohydrates, and how model predictions are influenced by simplified representations of canopy processes and vegetation dynamics. Various WUE metrics (Supplementary Figs 8–11), model configuration and structural differences in formulation26 of, for example, photosynthesis, stomatal conductance, transpiration demand or the non-water stressed C5/C5 ratio (Supplementary Table 3) furthermore contribute to some ensemble spread. With climate factors reintroduced to the simulations, we observe additional enhancement of 4WUE. Furthermore, in line with the findings of ref. 6 based on ecosystem-level measurements of productivity and water loss, strongest increases were found when using their definition of WUE, with multiplication by vapour pressure deficit (VPD; Supplementary Figs 9–11).

Land-surface models solve equations for C5, photosynthesis (A) and stomatal conductance (g), to predict the exchange of water between the land and atmosphere. However, plant responses, including stomatal conductance, to changing CO2 remain particularly uncertain for long timescales43. Prescription of C5/C5 in models closes the equations, and thus becomes a diagnostic. Our analysis of C5/C5 using C5 derived from tree-ring measurements, provides strong evidence for the numerical value that this ratio should take, and therefore contributes a much needed constraint on projections by land-surface models. The general agreement between δ13C-derived and process-modelled C5 estimates suggests accurately modelled stomatal control, a major determinant in trends of land evaporotranspiration.

Model simulations incorporating both CO2 and climatic drivers tend to show increased twentieth century transpiration across the European continent (Fig. 3b). Inter-annual transpiration variability over Europe of all PFTs—hence including non-trees—is of the order of a few percent. However, five of the six ensemble members show ~5% increase (~56 km2 yr−1 on average) transpiration in the most recent (2001–2010) decade relative to the beginning of the simulations (1901–1910). When considering just trees, these century-timescale changes fall in a range of 4–9%, with the evergreen conifer and deciduous broadleaf PFTs showing on average 2% (range ~7 to 9%) and 11% (3 to 26%) increases, respectively (see also Supplementary Figs 15 and 16).

Assessed globally, despite indications that recent drought stress has perhaps dampened overall productivity46 and possibly total transpiration42, we find tendencies for stable or increasing transpiration from tree PFTs for 66% of ensemble members (Supplementary Fig. 16). Hence, model results suggest that any CO2-driven (and for some regions, drought-induced) reductions in stomatal conductance simulated for most models and PFTs (Supplementary Figs 12–14) are insufficient to outweigh other factors which both models and observations suggest can increase tree transpiration, such as enhanced leaf-area index47, lengthened growing season, and increased evaporative demand41. Interactions among various climatic and physiological responses to CO2 such as leaf-area increase have been investigated in individual modelling studies46,47, yet a comprehensive meta-analysis48 regarding anthropogenic impacts on the terrestrial water cycle recently noted “…there is disagreement even at the level of the
sign of net change to runoff from twentieth century evolutions of meteorological forcing, induced primarily by human activity, and from combined plant physiological responses to rising CO₂... Furthermore, global-scale assessments may miss important regional variation and processes. Our ensemble of vegetation models contributes to both accurately characterizing and reducing this uncertainty. First, we find a broad consensus in the model responses regarding transpiration trends in Europe (Fig. 3) and globally (Supplementary Fig. 16). This is relevant, given the possible uncertainties represented by the various formulations and parameterizations underlying individual vegetation models (Supplementary Table 3; ref. 24). Furthermore, we note the differences in modelled responses between the broadleaf and coniferous plant functional types (Fig. 3b and Supplementary Figs 9, 14–16). Such plant functional type or even species-specific responses have not received attention in previous large-scale DGVM studies1,22 of plant responses to CO₂, and we hypothesize will have biome-specific consequences on the land–atmosphere water fluxes.

Evidence supporting our conclusions with plausible and observed mechanisms counteracting CO₂-induced reductions in the land–atmosphere water vapour flux already exists. For example, in a changing climate, emergent canopy and ecosystem processes including atmospheric feedbacks may alter transpiration; various CO₂-enrichment experiments have already found smaller than expected reductions in ecosystem transpiration, particularly for coniferous trees7. Furthermore, the increased seasonally averaged LAI in our simulations (Supplementary Figs 12 and 14) is backed by observed growing season trends42 and CO₂-driven increases in leaf area in natural environments40. Although our data from the past century strengthen the credibility of DGVMs, other sources of uncertainty remain for forward projections. Over longer periods, trends in stomatal conductance, WUE and LAI may be confounded by major changes in nutrients and pollutants41, persistent adjustment to water availability42, cavitation, and plant responses to CO₂ concentrations last experienced on geologic timescales43. Some of these factors are only now being implemented in DGVMs, for which knowledge of C3 will also aid further model testing.

Detailed analyses of tree-ring-based measurements provide an accurate determination of how both climate and atmospheric CO₂ concentrations, C3, have influenced intercellular CO₂ concentration, C3, during the past century. On average we find that increases in C3 are 75% the size of increases in C3. For conifers, in particular, the temporal evolution of C3 is such that C3/C3 is nearly constant. This independent knowledge of C3 allows a particularly strong test to be made of DGVMs, and especially as this quantity is usually only calculated implicitly in such models, being dependent on model formulations of both assimilation and stomatal opening. We are encouraged to find that DGVMs perform well for this parameter, and this gives confidence in their projection of transpiration, a flux that is important for future land–surface climate impacts. In fact, our results show that anthropogenic CO₂ emissions have already caused large-scale CO₂-driven physiologically induced changes and that, despite associated stomatal closure (which, occurring in isolation, might be expected to reduce transpiration), this water–vapour flux has generally increased over Europe. These processes are expected to lead to two counteracting effects on climate: on one hand, enhanced evapotranspiration is expected to reduce surface temperature due to increased latent heat loss; on the other hand, greater transpiration could enhance warming due to water vapour and soil hydrology feedbacks, as already evidenced during recent heat waves44, but for which a large dispersion has been reported amongst climate change projections35. Future generations of fully coupled climate models will better predict this balance, but can accurately do so only with robust land-surface descriptions. Our use of novel data to constrain an ensemble of terrestrial ecosystem models helps significantly towards achieving this goal.

Methods

Methods and any associated references are available in the online version of the paper.

Received 14 August 2014; accepted 10 March 2015; published online 11 May 2015

References

Acknowledgements
We thank C. Körner, S. Seneviratne, and A. Gessler for comments, the European Union projects ISONET (EVK2-2001-00037), Carbo-Esper (226701) and Millennium (017008), the Swiss National Science Foundation (STGEO CR133_136295), and N.J.L. the UK NERC (NE/B015104) and CSW for funding.

Author contributions
D.C.F., B.P., M. Saurer, J.E. and G.H.S. designed the study, with input from C.H., G.H. and N.E.Z. D.C.F., B.P. and M. Saurer performed the analyses with input from J.E., C.H. and G.H.S. All authors contributed to discussion, interpretation, and the development of the data set and ISONET program (designed by G.H.S., G.H. and N.J.L.) or the TRENDY model intercomparison project (coordinated by S.S. and P.F.). D.C.F., B.P. and C.H. led the writing of this paper.

Additional information
Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to D.C.F. or B.P.

Competing financial interests
The authors declare no competing financial interests.

1Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland. 2Geocher Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland. 3Institute on Ecosystems and Department of Ecology, Montana State University, Bozeman, Montana 59717, USA. 4Laboratoire des Sciences du Climat et de l’Environnement (CEA-CNRS-UVSQ, UMRA8212), Institut Pierre Simon Laplace, 91191 Gif-sur-Yvette, France. 5Paul Scherrer Institute, 5232 Villigen, Switzerland. 6Department of Geography, Johannes Gutenberg University, 55099 Mainz, Germany. 7Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK. 8Helmholtz-Centre Potsdam. German Centre for Geosciences—GFZ, 14473 Potsdam, Germany. 9Forschungszentrum Jülich GmbH, 52428 Jülich, Germany. 10Department of Physical Geography and Ecosystem Science, Lund University, Lund SE-223 62, Sweden. 11Department of Earth System Science, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305, USA. 12University of Exeter, Exeter EX4 4QF, UK. 13National Center for Atmospheric Research, Boulder, Colorado 80301, USA. 14University of Sheffield, Sheffield S10 2TN, UK. 15Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA. 16Agricultural University, 31-120 Krakow, Poland. 17University of Helsinki, 00101 Helsinki, Finland. 18Department of Catchment Hydrology, UFZ—Helmholtz Centre for Environmental Research, 06120 Halle, Germany. 19University of Basilicata, 85100 Potenza, Italy. 20University of Bern, 3012 Bern, Switzerland. 21University of Natural Resources and Life Science (BOKU), 1180 Vienna, Austria. 22Department of Ecology, Universitat Barcelona, 08028 Barcelona, Spain. 23Finnish Environment Institute, 00251 Helsinki, Finland. 24Forestry Museum, 92123 Lycksele, Sweden. 25AGH—University of Science and Technology, 30-059 Krakow, Poland. 26Department of Geography, Swansea University, Swansea SA2 8PP, UK. 27CENESTEN, 10001 Rabat, Morocco. 28Silesian University of Technology, 44-100 Gliwice, Poland. 29Vytautas Magnus University, 44248 Kaunas, Lithuania. 30University of Naples “Federico II”, 80055 Portici, Italy. 31Anglia Ruskin University, Cambridge CB1 1PT, UK. 32Holzforschung Austria, 1030 Vienna, Austria. 33Deceased. *e-mail: david.frank@wsl.ch; benjamin.poulter@montana.edu
Methods

Tree-ring network and measurements. Annually resolved tree-ring stable carbon isotope ($\delta^{13}C$) measurements (1901–2002) were performed for 23 sites (14 conifer and 9 broadleaf) around the European continent. Increment cores were collected from numerous trees at each site, and the annual radial increments were cross-dated and measured following standard dendrochronological procedures. At least two cores from four or more dominant trees per site were selected for subsequent isotope analyses. Sample preparation and measurement involved carefully segmenting the cores along annual ring boundaries, and for the majority of sites all rings of a given year were pooled together. Homogenization (milling) and alpha-cellulose preparation followed consistent and standard protocols, with $\delta^{13}C$ analysed by mass spectrometry on CO$_2$ obtained from combustion of the alpha-cellulose. Changes in intercellular CO$_2$ concentrations (C_i) and the intrinsic water-use efficiency (iWUE) were reconstructed by employing known relationships among plant–gas exchange, potential water loss, and related isotopic discrimination 19, modified to account for post-photosynthetic discrimination in plant tissues. See Supplementary Methods for a more detailed description of the study sites, measurement procedures, formulae used to compute C_i and iWUE, and associated uncertainties.

Climatic and CO$_2$ controls on water-use efficiency. To isolate the impacts of changes in atmospheric CO$_2$ concentration (C_{a}) on iWUE and C_i, it is first necessary to estimate and then remove the influences of climate variation from the isotope records (Supplementary Tables 1 and 2 and Supplementary Fig. 3). Assessment of the climatic controls on C_i time series was performed using various climatic parameters (for example, maximum and mean monthly temperatures, monthly precipitation, vapour pressure deficit) from the points in gridded data sets closest to the individual sites based on high-frequency agreement. C_i time series were then adjusted by adding a time-varying CO$_2$ component that is a linear function of atmospheric CO$_2$ concentration above a pre-industrial baseline ($C_{a} + \tau \times (C_{a} - 280)$). See Supplementary Fig. 5 for an example of these calculations. The use of the control parameter, τ, allowed us to determine to what extent the trends in C_i were explained by the unfiltered climatic data, and hence determine the residual long-term component indicative of a physiological response to CO$_2$ only (Supplementary Figs 6, 7 and 18). A τ value of zero means that the plants have maintained a constant C_i (after removal of climatic effects, denoted C_{∞}) and a τ value of unity means that, for every ppmv increase in C_a, the C_i increases by the same amount (that is, maintenance of a constant C_{∞}–C_i difference). Thus, τ allows us to assess various hypotheses for the strength of plant physiological responses to CO$_2$ (see main text). See Supplementary Methods for a more detailed description of these methods.

Dynamic global vegetation model simulations. Factorial simulations with an ensemble of DGVMs incorporating or excluding contemporary climatic and CO$_2$ forcing data were performed to quantify water-use efficiency and transpiration responses to CO$_2$ and climate variation for the primary PFTs relevant to the European forested region. Model analysis is an offshoot of the TRENDY Intermode Comparison (“Trends in net land–atmosphere carbon exchange over the period 1990–2009”) that was launched to provide bottom-up estimates of carbon cycle processes for the regional synthesis of the RERegional Carbon Cycle Assessment and Processes (RECCAP). Six modelling teams participated (Supplementary Table 3) in our study by following a strict modelling protocol that outlined simulations for three factorial experiments (denoted S1, S2, S3) using observed climate, CO$_2$, and land-use and land-cover change over the period 1901–2009 to drive the DGVMs. Our analysis uses model data from the S2 storyline that includes time-varying atmospheric CO$_2$ concentrations and climate-and time-invariant land use for 2005. We refer to this set of simulations as the ‘dynamic climate, dynamic CO$_2$’ as both factors followed their historical courses. A fourth experiment (S4) designed especially to evaluate trends in water-use efficiency (Supplementary Figs 8–11 and 13) for this work was performed to isolate the effects of CO$_2$ on plant physiology (Supplementary Figs 12 and 14). Control simulations using historical climate but time-invariant CO$_2$ concentrations fixed at pre-industrial levels (287.14 ppmv 'dynamic climate, fixed CO$_2$'). The standardized difference between the ‘dynamic climate, dynamic CO$_2$’ and ‘dynamic climate, fixed CO$_2$’ simulations (as anomalies relative to the 1901–1910 period) were used to isolate the effect of CO$_2$ on changes in WUE metrics in the model simulations (for example, as plotted in Fig. 3a). Model differences are assumed to provide an estimate for the CO$_2$-only effect. The DGVM simulations were also used to provide assessments for transpiration fluxes for the individual plant functional types over the twentieth century (Supplementary Figs 15–17). See Supplementary Methods for a more detailed description of the individual models, the forcing data sets, and calculation of various WUE metrics from the simulations.