Proton-glass state in $K_{0.60}(NH_4)_{0.40}H_2AsO_4$ detected by dielectric measurements

Zbigniew Trybula,* V. Hugo Schmidt, and John E. Drumheller
Department of Physics, Montana State University, Bozeman, Montana 59717

Robert Blinc
J. Stefan Institute, E. Kardelj University of Ljubljana, Ljubljana, Yugoslavia
(Received 30 May 1990)

Dielectric permittivity measurements of ϵ'_ω and ϵ''_ω in a $K_{0.60}(NH_4)_{0.40}H_2AsO_4$ mixed crystal have been made in the temperature and frequency ranges $3\text{–}300$ K and 1 Hz–30 kHz. We find proton-glass behavior in this material similar to that observed in the $\text{Rb}_{1-x}(NH_4)_xH_2AsO_4$ and $\text{Rb}_{1-x}(NH_4)_xH_2PO_4$ systems. Below T_g the dielectric dispersion characteristics of the freezing of the polarization are well described phenomenologically by the Vogel-Fulcher law. The best fit gives the Vogel-Fulcher temperature $T_0=5.4$ K, the attempt frequency $v_0=2.5 \times 10^{13}$ Hz, and the activation energy $E_a/k=409$ K.

The proton-glass state in mixed crystals of the ferroelectric RbH_2PO_4 or RbH_2AsO_4 and antiferroelectric $\text{NH}_4\text{H}_2\text{PO}_4$ or $\text{NH}_4\text{H}_2\text{AsO}_4$ has received considerable attention, since the first publication in 1982. Proton-glass behavior was detected in the phosphate systems $\text{Rb}_{1-x}(\text{NH}_4)_x\text{H}_2\text{PO}_4$ (Refs. 1 and 2) and $\text{Rb}_{1-x}(\text{ND}_4)_x\text{D}_2\text{PO}_4$ (Refs. 3 and 4) and in the arsenate systems $\text{Rb}_{1-x}(\text{NH}_4)_x\text{H}_2\text{AsO}_4$ (Refs. 5–9) and $\text{Rb}_{1-x}(\text{ND}_4)_x\text{D}_2\text{AsO}_4$ (Ref. 10). Recently, Ono, Hikita, and Ikeda, and Kim and Sherman have reported proton glass behavior in the $K_{1-x}(\text{NH}_4)_x\text{H}_2\text{PO}_4$ system. To contribute to better understanding of proton-glass behavior we present in this paper our dielectric investigation of the new composition $K_{1-x}(\text{NH}_4)_x\text{H}_2\text{AsO}_4$ (KADA). The single crystal $K_{0.60}(\text{NH}_4)_{0.40}H_2AsO_4$ (KADA-40) was obtained by slow evaporation of an aqueous solution of KH_2AsO_4 and $\text{NH}_4\text{H}_2\text{AsO}_4$ crystals. The ammonium concentration x in the crystal was determined from the concentration of potassium ions by the atomic absorption spectroscopy method. A small plate of $1.55\times2.2\times0.78$ mm3 perpendicular to the a tetragonal direction was cut, and after polishing, conducting silver paint electrodes were applied.

The complex dielectric constant $\epsilon'_\omega(\omega,T)$ and $\epsilon''_\omega(\omega,T)$ was measured in the frequency range from 1 Hz to 30 kHz using a bridge that has been described elsewhere.

FIG. 1. Temperature dependence of the dielectric constant ϵ'_ω in KADA-40 at 10 kHz. The solid line shows Curie-Weiss fits.
Experiments were performed using an Oxford Instruments model ESR-900 continuous helium flow cryostat between 3 and 300 K. A calibrated Chromel-Alumel type-K thermocouple was used to determine the sample temperature. Figure 1 shows the temperature dependence of the real part of the dielectric constant ε_r' in the heating part of the temperature cycle for the measuring frequency 10 kHz. The solid line shows the Curie-Weiss fit, which is well obeyed down to the freezing onset temperature $T_f=85$ K defined as an inflection point of ε_r' where the Edwards-Anderson order parameter q starts to increase upon cooling. The reciprocal of ε_r' located the Curie-Weiss temperature $T_\theta=20\,380$ K. The Curie-Weiss constant is equal to 20380 K. In the temperature range from 50 to 60 K we detected a rounded maximum of ε_r' characteristic of proton-glass behavior. The maximum magnitude of ε_r' was 202. Below 50 K, ε_r' starts to decrease upon cooling. Figure 2 shows the dielectric dispersion detected for ε_r' and ε_r''. The temperature T_p at which ε_r'' starts to decrease is a function of frequency and changes from 40 K at 30 kHz to 26 K at 1 Hz. The imaginary part of the dielectric constant [Figure 2(b)] starts to increase below T_g and reaches maximum value near $T_g=10$ K. The low-temperature dispersion in ε_r'' and ε_r', characteristic of the freezing of the local configurations, is well described phenomenologically by the Vogel-Fulcher law:

$$
\nu_c=\nu_0 \exp\left[-\frac{E_c}{T-T_0}\right],
$$

where $\nu_c(T)$ is the cutoff frequency (measurement frequency) for which $\varepsilon_r''(\nu_c)$ is maximum at temperature T. The parameters chosen to give best fit over the whole range of measurement frequency ν_c are attempt frequency ν_0, activation energy E_c, and Vogel-Fulcher temperature T_0. Results of fits with fixed T_0 are shown in Fig. 3. Both E_c and ν_0 are strongly correlated with T_0. The best fit was obtained for $T_0=5.4$ K, $\nu_0=2.5 \times 10^{13}$ Hz and $E_c=409$ K. Figure 4 shows the Vogel-Fulcher plot of ν_c against inverse temperature $100/(T-T_0)$. The straight line corresponds to $T_0=5.4$ K, $\nu_0=2.5 \times 10^{13}$ Hz, and $E_c=409$ K. The results presented here are similar to those for RADA. This implies that the type of metal cation is playing a rather small role in the nature of the appearance of the proton-glass behavior in ferroelectric-

FIG. 2. Dielectric dispersion in the proton-glass regime in KADA-40: (a) $\varepsilon_r'(T)$ and (b) $\varepsilon_r''(T)$.

FIG. 3. Results of fits of ε_r'' data using the Vogel-Fulcher law with fixed T_0: activation energy $E_c(T_0)$ (left scale) and variance of scaling correlation coefficient against T_0 (right scale).

FIG. 4. Vogel-Fulcher plot of the cutoff frequency ν_c against inverse temperature $100/(T-T_0)$.

FIG. 1. Temperature dependence of the real part of the dielectric constant ε_r' in the heating part of the temperature cycle for the measuring frequency 10 kHz.
antiferroelectric mixed crystals in the KH$_2$PO$_4$ family. Additional investigation of the KADA system will give a better understanding of the nature of the competing interactions in proton glass systems. Samples for future experiments are being prepared.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation Grant Nos. DMR-8714487 and DMR-8702933.

*On leave from Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland.

