Electric Field- and Temperature-Induced Phase Transitions in High-Strain Relaxor-Based Ferroelectric Pb(Mg1/3Nb2/3)1 - xTixO3 Single Crystals

Authors: R. R. Chien, V. Hugo Schmidt, C.-S. Tu, F.-T. Wang, I.-C. Shih, L.-W. Hung & H. Luo

This is an Accepted Manuscript of an article published in Ferroelectrics on December 7, 2007, available online: http://www.tandfonline.com/10.1080/00150190701515055.

Made available through Montana State University's ScholarWorks scholarworks.montana.edu
Electric Field- and Temperature-Induced Phase Transitions in High-Strain Relaxor-Based Ferroelectric Pb(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{1-x}\)Ti\(_x\)O\(_3\) Single Crystals

R. R. CHIEN,1,* V. HUGO SCHMIDT,1 C.-S. TU,2 F.-T. WANG,2 I.-C. SHIH,3 L.-W. HUNG,3 AND H. LUO4

1Department of Physics, Montana State University, Bozeman, MT 59717, USA
2Graduate Institute of Applied Science and Engineering, Catholic Univ., Taipei 242, Taiwan, R.O.C.
3Department of Physics, Fu Jen Catholic Univ., Taipei 242, Taiwan, R.O.C.
4Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China

As a review, we compare results in electric-field- and temperature-induced phase transitions for four Pb(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{1-x}\)Ti\(_x\)O\(_3\) (PMNT-x) single crystals, namely (001)-cut PMNT-x (x = 24%, 33%, and 40%) and (111)-cut PMNT-33%. Dielectric properties and domain states were measured as functions of temperature and electric field. The hysteresis loops of polarization versus electric field at room temperature were also measured. The intermediate monoclinic phases are essential in bridging higher symmetries while the electric-field- or temperature-induced transitions are taking place. Whether or not a monodomain state can be induced by a dc electric field strongly depends on crystallographic orientation, PbTiO\(_3\) content, and temperature.

Keywords PMNT single crystal; dielectric permittivity; domain structure; phase transition

Introduction

Relaxor-based ferroelectric single crystals Pb(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{1-x}\)Ti\(_x\)O\(_3\) (PMNT-x) and Pb(Zn\(_{1/3}\)Nb\(_{2/3}\))\(_{1-x}\)Ti\(_x\)O\(_3\) (PZNT-x) have attracted much attention due to their high performance in piezoelectric related applications. These crystals with compounds near a morphotropic phase boundary (MPB) between rhombohedral (R) and tetragonal (T) phases exhibit piezoelectric properties about ten times better than the ceramics that are generally used, such as extremely large electromechanical coupling factor \(k_{33} (>94\%)\), ultrahigh piezoelectric coefficients (>2500 pC/N), a large strain level (up to \(\sim 1.7\%\)), and low hysteresis [1–4].

The relaxor ferroelectric PMNT-x is a solid solution between a complex perovskite Pb(Mg\(_{1/3}\)Nb\(_{2/3}\))O\(_3\) (PMN), namely relaxor, and a simple perovskite PbTiO\(_3\) (PT), namely
ferroelectric. Relaxors are characterized by a diffuse phase transition with frequency dispersion of the temperature giving maximum permittivity. Relaxors have disordered polarization, with small ordered polar nanoregions (PNRs) that begin to develop locally below Burns temperature (∼ 620 K in PMN). In PMN, the volume fraction of the PNRs increases as the temperature decreases and reaches the three-dimensional percolation threshold below T ≈ 200 K [5]. The PT crystal exhibits a normal ferroelectric phase transition at 490°C. Ferroelectrics have a net spontaneous polarization due to the average off-centered displacements of the atoms. The polarization can be switched in direction by an external electric (E) field, which is displayed in a hysteresis loop measurement of polarization versus E.

The piezoelectric performance of ferroelectrics arises from the interaction of the polarization and E field, i.e. the coupling of the polarization and strain. Therefore, an E field poling is usually performed on these materials to enhance piezoelectric performance before application. The very large electromechanical coupling is attributed to polarization rotation effect induced by an external dc E field between T and R phases through intermediate monoclinic (M) or orthorhombic (O) symmetries [6]. This has generated a great interest in investigating phase (structural) transitions near the MPB under the application of thermal, E field, and stress for understanding the underlying mechanism of the piezoelectric properties [7, 8].

Physical properties of PMNT-x depend strongly on titanium content, crystallographic orientation, strength of external poling E field, and temperature [7–9]. In order to understand the physical origin of the E field- and temperature-induced phase transitions, here we compare results for four PMNT-x single crystals with various titanium content and crystallographic orientation, i.e. (001)-cut PMNT-x (x = 24%, 33%, 40%) and (111)-cut PMNT-33% crystals. Hereafter, (001) PMNT-x stands for (001)-cut PMNT-x. The E field- and temperature-induced phase transitions in the single crystals are investigated by dielectric permittivity, domain observations with polarizing light microscopy, and the hysteresis loops of polarization vs. E field at room temperature (RT). By using relations of crystallographic symmetry and optical extinction, polarizing light microscopy provides a real-time direct observation of the polarization orientations in ferroelectric domains and their corresponding crystal phases.

Experimental Procedure

The four lead magnesium niobate-lead titanate crystals PMNT-x were grown using a modified Bridgman method and are cut perpendicular to a <001> direction for the three (001)-cut crystals, and a ⟨111⟩ direction for the (111)PMNT-33% crystal after aligning by x-ray diffraction. The samples were cut in rectangular shape as shown in Figure 1a. The Ti concentration (x%) was determined by x = [T_m(°C) + 10]/5, where T_m is the dielectric maximum temperature obtained upon heating at measuring frequency f = 10 kHz without E field poling. Before any measurement described below, the samples were annealed in the cubic (C) phase. For dielectric measurements, a Wayne-Kerr Precision Analyzer PMA3260A with four-lead connections was used to obtain real (ε') and imaginary (ε'') parts of dielectric permittivity. A Janis CCS-450 cold-head was used with a Lakeshore 340 temperature controller. Gold film electrodes were deposited by dc sputtering on sample surfaces as shown in Figure 1a. Several different processes were used in the dielectric measurements. The first is called “zero-field-heated” (ZFH) and “zero-field-cooled” (ZFC), in which the data are taken upon heating and cooling respectively without any E field poling. The second process is
called “field-cooled-zero-field-heated” (FC-ZFH), in which the sample is first cooled from the C phase down to RT with an \(E \) field, then cooled to 100 or 150 K without field before ZFH is performed. In the third process FR-ZFH, the sample is directly poled by an external \(E \) field for at least an hour at RT. Then the \(E \) field is removed before ZFH is performed from 100 or 150 K. In this review, we only display dielectric results from ZFH and ZFC processes. The results from other processes can be found in Refs. [7, 10-14]. The hysteresis loops of polarization vs. \(E \) field were taken at RT by using a Sawyer-Tower circuit at \(f = 46 \) Hz.

The domain observations as functions of temperature and \(E \) field were made by using a Linkam THMS600 heating/cooling stage mounted on a Nikon E600POL polarizing microscope with a 0°/90° crossed polarizer/analyzer (P/A) pair. The detailed experimental configuration is shown in Figure 1b. To avoid domain overlapping, the samples were polished to the thickness of about 45, 65, 45, and 50 \(\mu \)m for (001) PMNT-24%, (001) PMNT-33%, (001) PMNT-40%, and (111) PMNT-33%, respectively. Transparent conductive films of indium tin oxide (ITO) were deposited on the polished (001) surfaces of (001) PMNT-x samples and (111) surfaces of (111) PMNT-33% sample by dc sputtering. The edge orientations of the samples were determined by x-ray diffraction. In domain measurement, we aligned one of the sample edges with one of the crossed P/A:0° axes so that the extinction angles shown in all domain micrographs were measured from either \(\langle 110 \rangle \) or \(\langle 100 \rangle \) as indicated in Figures of polarizing light micrographs. In \(E \)-field-dependent measurements, a dc \(E \) field was applied along [001] for the (001) PMNT-x samples and [111] for the (111) PMNT-33% sample, respectively.

Principle of Polarizing Microscopy

Various crystallographic symmetries (or phases) can be determined for most cases by measuring optical extinction angles from polarizing microscopy. For interpreting domain structures obtained from polarizing microscopy, more details of the principles of optical extinction for the (001)-cut and (111)-cut crystals can be found in Refs. [10] and [15], respectively. Figure 2a shows the (001)-cut projection with all four sides folded out. The inner square outlines the front face of the cube. Figure 2b shows the (111)-cut projection, in which any extinctions at angles other than 0°, 30°, 60°, etc. must be from M or possibly triclinic (Tri) domains. Our observation of extinctions at such other angles is interpreted by us as indicating M domains at intermediate temperatures as discussed below.
To determine the crystal phase (symmetry) from measuring the extinction angles with the extinction patterns of Fig. 2, we aligned one of the crossed P/A pair axes at reading 0° with one sample edge, such as [110] or [100]. The extinction angles therefore are measured with respect to the [110] or the [100] directions. The solid crosses within the symbols in Figure 2 represent the orientation of the extinction. For instance, if the (001)-cut sample’s [110] edge is aligned with P/A:0°, R phase domains represented by triangles with solid crosses thus have extinction at 0° (or 90°) as shown in Fig. 2a. T phase domains represented by squares with solid crosses have extinction at 45°. T phase domains with polarization \(P \) along the [001] axis represented by the solid black square in the center have extinction at every orientation of the crossed P/A pair and are written as “T\(_{001}\)” in the following discussion. The O phase domains represented by circles with solid crosses have extinctions at 0° (or 90°) or 45°, whereas R domains only give extinctions at 0°. Thus, the (001)-cut shown in Figure 2a clearly distinguishes R from T phases by the 45° extinction angle difference. Any extinctions at angles other than 0° (or 90°) and 45° must be from the M or Tri phase domains. Note that all the phases except Tri phase have been reported in various PMNT crystals. Our large observed variation in extinction angle with \(E \) field or temperature indicates M domains whose polarization \(P \) can vary with \(E \) field through a large angle, whereas the polarization directions are nearly fixed for R, T, or O domains as \(E \) field or temperature varies.

Results and Discussion

Figure 3 shows the temperature-dependent and frequency-dependent dielectric permittivity measured in the four unpoled crystals. In (001)PMNT-24% (Fig. 3), \(\varepsilon'(T) \) was found to follow the Curie-Weiss behavior only some distance above \(T_m \), which corresponds to the frequency-dependent dielectric maximum. The dashed line is fitting to the Curie-Weiss equation, \(\varepsilon'(T) = C/(T-T_0) \), with \(C = 2.2 \times 10^5 \) K and \(T_0 = 406 \) K. Noticeable deviation from the Curie-Weiss law begins near 445 K. We consider 445 K to be the Burns temperature.
Figure 3. Temperature-dependent and frequency-dependent dielectric permittivity measured in unpoled (a) (001)PMNT-24%, (b) (001)PMNT-33%, (c) (001)PMNT-40%, and (d) (111)PMNT-33% crystal.
(T₈), below which polar nanoclusters start to develop. Their weaker dielectric response causes deviations from the Curie-Weiss behavior and their dynamics is responsible for the broad dielectric relaxation behavior [16].

Figure 3b shows the temperature-dependent real part ε′ and imaginary part ε″ of dielectric permittivity at measuring frequency f = 10 kHz from ZFH for (001) PMNT-33%. Obvious thermal hysteresis is observed near 250–400 K and 415–430 K, respectively. Two steep dips in the reciprocal of ε′ are seen at 340 (320 K) and 425 (420 K) for ZFH (ZFC), as shown in the inset of Fig. 3b. Both steep phenomena and thermal hysteresis imply two first-order-type transitions near 340 K (320 K) and 425 K (420 K) respectively upon heating (cooling) [17]. The temperature (Tₘ), which corresponds to dielectric maximum in ZFH and ZFC occurs at 425 and 420 K, respectively. The Tₘ doesn’t show apparent frequency-dependent behavior. Compared with (001) PMNT-24%, (001) PMNT-33% doesn’t exhibit clear frequency-dependent relaxation behavior even in the low temperature region, indicating that (001) PMNT-33% has a longer range ordered state.

Figure 3c shows temperature-dependent ε′ and ε″ at several frequencies obtained from ZFH for (001) PMNT-40%. Two thermal hysteresises are observed in the temperature regions of ~200–280 K and ~420–460 K, indicating two first-order-type phase transitions. As shown in the reciprocal of ε′, one steep dip near 460 K also confirms a first-order-type transition. The shoulder seen near 450 K most likely is due to phase segregation.

Figure 3d shows temperature-dependent ε′ and ε″ at several frequencies obtained from ZFH for (111) PMNT-33%. Two thermal hysteresises are observed in the temperature regions near 240–360 K and 380–420 K, indicating two first-order-type phase transitions. As shown in the reciprocal of ε′, two steep dips near 360 (340 K) and 420 (415 K) upon heating (cooling) also confirm two first-order-type transitions. Compared with (001) PMNT-24%, both (111) and (001) PMNT-33% do not exhibit apparent frequency-dependent relaxation behavior.

Thermally Induced Phase Transitions

Figure 4 shows domain micrographs taken with various P/A angle from 0° to 90° at three temperatures, i.e. RT (=298 K), 350 K, and 430 K for the unpoled (001) PMNT-33% crystal. The domain micrograph taken at P/A:0° appears the same as that taken at P/A:90°. As shown in Fig. 4a, the domain matrix at RT (298 K) mostly exhibits extinction at P/A = 0° with respect to the ⟨110⟩ direction, indicating an R phase. If O or T phase domains exist, there will be also extinction at P/A: 45°. However, no extinction was observed at P/A: 45°. Near 350 K, the domain matrix shows a change, which is consistent with the dielectric anomalies in Fig. 3b. Some stripe-like domains display total extinction at all P/A angle indicating a [001] tetragonal (T₃01) phase. The M phase domains of the crystal at the corners, as indicated with arrows in Fig. 4b, exhibit extinctions in the ranges of 10–15°
Figure 4. Domain micrographs taken with P/A angles from 0° to 90° at (a) 298 K (RT), (b) 350 K, and (c) 430 K. The graph at the right hand side demonstrates the angle of the crossed analyzer (A) and polarizer (P) pair (i.e. P/A: θ°) measured with regards to the sample’s ⟨110⟩ edge.
and 75–80°. The crystal has coexistence of a dominant R and minor M phase domains, i.e. R(M). As temperature increases further, the domain area and the range of extinction angle for the M phase expand, and the T001 phase domains also expand. Near 430 K, the C phase begins to appear as stripes with a total extinction at every P/A angle besides the T001 phase domains. In addition, a small portion of the domain matrix exhibits extinction angles of 55–75° and 30–50° as circled in Fig. 4c, indicating the M phase. Near 433 K, the whole crystal becomes C phase. In brief, an R → R(M) → R/M/T001 → C phase transition sequence takes place near 343, 350 and 430 K upon heating, respectively. R/M/T001 indicates the coexistence of R, M, and T001 phase domains.

E Field-Induced Phase Transition

Figure 5 shows the E field-dependent domain structures taken at RT for three E field strengths while a dc E field was applied along [001]. At \(E = 0 \) kV/cm, the domain matrix exhibits an R phase with extinction at P/A:0° as shown in Fig. 4a. The domain matrix does not change apparently until 4.1–4.8 kV/cm as shown in Fig. 5a. The domain matrix mostly still retains R phase, but T001 and M/T phases are induced near the cracking area, as indicated by an arrow in Fig. 5a, and exhibit extinctions at every P/A angle and in the range of 15–65°, respectively. M/T represents the coexistence of M and T phases with more M phase than T phase domains. Note that the coercive field \(E_C \) for the (001) PMNT-33% crystal is about 3 kV/cm as given in Fig. 5d. As the field increases to 11 kV/cm (Fig. 5b), the T001 phase domain significantly expands as crossed stripes along [100] and [010] from the cracking area. Some of the R phase domains have also transformed to M and T phase with various nonzero-degree extinction angles, such as 5–15°, 20–50°, and 50–75°. But small portion of the domain matrix circled in Fig. 5b still remains in the R phase. With increasing E field, this E field-induced transition is continuously evidenced by the expansion of the T001 phase domain shown as black area of the domain matrix. At \(E = 34 \) kV/cm, most of the domain matrix becomes macroscopic T001 phase domain except for some small R, T, and M phase domains with extinction angles of 0°, 45°, and ~15–45° as shown in Fig. 5c. In addition, a few domains exhibiting no extinction at any P/A angle are embedded in the T001 domain matrix, perhaps due to crystal defects and local strain caused by underlying M phase distortions with various different orientations. In brief, the E field-induced phase transition sequences at RT in (001) PMNT-33% include R → T001, R → M → T001, R → T → T001, and R → M → T → T001.

As shown in Fig. 6b, the (001) PMNT-33% crystal cannot completely reach a T001 monodomain at \(E = 34 \) kV/cm applied along [001] at RT [14]. However, the (111) PMNT-33% crystal (Fig. 6d) gradually reaches an R111 monodomain at \(E = 12 \) kV/cm applied along [111] at RT [11]. The (001) PMNT-40% crystal shown in Fig. 6c becomes entirely T001 monodomain under \(E = 33 \) kV/cm applied along [001] [13]. But the (001) PMNT-24% crystal (Fig. 6a) cannot reach a T001 monodomain under \(E = 44 \) kV/cm applied along [001] at RT [12]. Therefore, a monodomain with the orientation along the poling field was not always obtained under the maximum E-field strength in every crystal at RT as expected, such as the (001) PMNT-24% and (001) PMNT-33% with E field applied along [001] [12, 14]. The E field-induced monodomain can be achieved in the PMNT crystals if the dc poling field is along the polar axes of the phase favored by the temperature, such as the (111)PMNT-33% and (001)PMNT-40%crystals [11, 13]. As shown in Fig. 6c, T polar directions are favored at RT in the (001) PMNT-40% so that less E-field poling strength is needed to induce the T phase domains with the field applied along [001]. On the other
Figure 5. Domain micrographs taken with P/A angle from 0° to 90° at RT under the E field strengths of (a) 4.8 kV/cm, (b) 11 kV/cm, and (c) 34 kV/cm applied perpendicular to the paper. The boundaries of ITO electrodes are indicated by the dash lines. “S” indicates silver paste. (d) Hysteresis loops of polarization vs. E field measured at RT in (001)PMNT33% crystal.
Figure 6. Domain micrographs taken with P/A: 45° at RT under the maximum E field applied perpendicular to the crystal cut planes, including [001] for (001)-cut (a) PMNT-24%, (b) PMNT-33% and (c) PMNT-40% crystals, and [111] for (d) (111)-cut PMNT-33% crystal. “N” is the domain region without ITO electrode. “C” in (c) and “CE” in (b) are cracks due to E-field poling. “C” in (b) is a crack caused by the polishing process. “T$_{100}$” and “R$_{111}$” indicate [100] tetragonal and [111] rhombohedral domains, respectively. The angles indicated in (a) and (b) are the extinction angles in the corresponding domain regions.

In the (001) PMNT-24% crystal, an $R \rightarrow T_{001}$ phase transition is induced near $E = 4$ kV/cm through M_A phase domains as E field increases along [001] at RT, i.e. $R \rightarrow M_A \rightarrow T_{001}$ [12]. In the (001)PMNT-40% crystal, the T_{001} phase domains are induced near $E = 11$ kV/cm at RT by the process of polarization rotation of $T \rightarrow M \rightarrow T_{001}$, and this T_{001} phase expands through the whole crystal as the E field increases further [13]. Similarly, in the (001) PMNT-33% crystal the T_{001} phase domains are induced near $E = 4.1$ kV/cm at RT and expand significantly at $E = 11$ kV/cm by various phase transition sequences $R \rightarrow T_{001}$, $R \rightarrow M \rightarrow T_{001}$, $R \rightarrow T \rightarrow T_{001}$, and $R \rightarrow M \rightarrow T \rightarrow T_{001}$ [14].

Conclusions

The intermediate M phases play an essential role in bridging higher symmetries while the E-field and/or temperature induced transitions are taking place in the PMNT-x crystals. In addition, whether or not a single domain (or monodomain) can be induced by a dc E field strongly depends on crystallographic orientation, PT content, and temperature.
region where an external dc E field was applied. A monodomain was achieved in the (111) PMNT-33% and (001) PMNT40% while a dc E-field was applied along [001] and [111], respectively. Compared with PMNT-33% and 40%, the (001) PMNT-24% crystal exhibits frequency-dependent relaxation behavior in a wide temperature region and its high-temperature dielectric permittivity shows deviation from the Curie-Weiss law, indicating that dynamics of polar nanoclusters plays an important role in its temperature-dependent phenomena.

Acknowledgments

The authors would like to express sincere thanks to Dr. H. Luo for the crystals. This work was supported by DoD EPSCoR Grant No. N00014-02-1-0657 and NSC Grant No. 94-2112-M-030-004.

References

13. R. R. Chien, V. H. Schmidt, L.-W. Hung, and C.-S. Tu, Temperature- and electric-field-dependent domain structures and phase transformations in (001)-cut tetragonal Pb(Mg$_{1/3}$Nb$_{2/3}$)$_{1-x}$Ti$_x$O$_3$ (x = 0.40) single crystal. *J. Appl. Phys.* **97**, 114112 (2005) (4 pages).
