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Gravitational waves from neutron star binary inspirals contain information about the as yet unknown
equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines
the correct equation of state, a number of diverse models that give the pressure inside a neutron star as
function of its density have been constructed by nuclear physicists. These models differ not only in the
approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the
internal neutron star composition they assume. We study whether gravitational wave observations of
neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations
of state of differing internal composition, thereby providing important information about the properties and
behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that
second generation gravitational wave detectors can heavily constrain equations of state that contain only
quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish
from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses
around 1.4M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-
to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence.
The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed.
For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-
to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with
confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron
stars, a gravitational wave signal with similar signal-to-noise ratio would be able to constrain their existence
with an 11 to 1 confidence for high-mass systems. We, finally, find that combining multiple lower signal-to-
noise ratio detections (stacking) must be handled with caution since it could fail in cases where the prior
information dominates over new information from the data.
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I. INTRODUCTION

The next generation of gravitational wave (GW) detectors
is scheduled to start collecting data in the next months.
Initially consisting of Advanced LIGO (aLIGO) [1] and
Advanced Virgo (AdV) [2], the network of detectors will be
expanded in the next few years to include KAGRA [3] and
possibly LIGO-India [4]. Although the main objective of the
advanced detectors is to provide the first direct detection of
GWs, the scientific community has started shifting focus to
an even more interesting question: Once we have secured the
first GW detections, what can we infer about Nature?
One of the most promising GW sources for extracting

physical information is the inspiral of compact binaries
consisting of neutron stars (NSs). Not only are they
expected to be the most abundant GW source [5], but also
they are well understood. During the ∼103 seconds these
GWs spend in the detectors’ most sensitive frequency
range, they can be accurately tracked with theoretical
templates. Modeling the detectors’ output with these
templates cannot only lift the extremely weak signal out
of the noise (detection), but also provide us with estimates
of the parameters of the GW (parameter estimation).

One set of parameters that affects the templates is linked
to finite-size effects that NSs experience because they are
extended bodies with structure. When objects with a finite
size are subjected to the tidal field of another object their
multipole moments are affected in a way that depends on
the equation of state (EoS)—for barotropic fluids, a relation
between pressure and density—of their matter. The den-
sities encountered in NS interiors are extremely high; in the
inner core they even exceed nuclear densities. In this high
density regime, laboratory experiments and observations
have still to provide a definitive answer on the correct EoS.
We, therefore, study whether GWs can be used to answer
the following question: Given the detection of the NSNS
quasicircular inspiral, can we use finite-size effects to learn
about the EoS of the extremely dense NS interior [6–13]?
To leading order, finite-size effects cause the quadrupole

moment tensor of a star Qij to be affected by the tidal field
tensor of its companion Eij through Qij ¼ −λEij. The
constant of proportionality λ is called the tidal deform-
ability and it is a function of the mass and the EoS. This
tidal interaction causes NSs to be distorted during the
inspiral phase and torn apart before merger [14]. By the
“inspiral phase” we define the evolution of the binary up to

PHYSICAL REVIEW D 92, 104008 (2015)

1550-7998=2015=92(10)=104008(23) 104008-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.104008
http://dx.doi.org/10.1103/PhysRevD.92.104008
http://dx.doi.org/10.1103/PhysRevD.92.104008
http://dx.doi.org/10.1103/PhysRevD.92.104008


an orbital separation of six times the total mass or contact,
whichever comes first. The plunge and final collision after
this orbital separation is called the “merger phase.” Since
this merger is expected to happen at high frequencies of
Oð103Þ Hz, where the detector noise is likely to dominate,
we here focus on the better modeled inspiral part.1 The
relatively small velocities (never exceeding 0.3 times the
speed of light) of this inspiral phase make it ideal for a post-
Newtonian (PN) description2 in most of the frequency
range considered, where all quantities are expanded in
powers of v=c [16]. The PN waveform, in fact, becomes
less accurate near the merger [17–19]. For nonspinning NS
binaries, a more accurate waveform is available using the
effective-one-body (EOB) approach [20]. In this paper, we
consider precessing NS binaries as we will explain in more
detail below. Since the EOB waveform for precessing NS
binaries is currently unavailable, we use the precessing PN
waveform.
In the PN framework, the first finite-size effect enters the

waveform at 2PN order in the GW phase through spin
corrections to the quadrupole moment of the objects Q1;2
[21], and here we also include the 1PN correction to this
[22]. Then, at 5PN order and above, the tidal deformabil-
ities λ1;2 enter the phase directly [11–13,17,18,23]. All
these parameters are EoS-dependent, however, two of the
authors showed that their interrelation is approximately
EoS-independent [24,25]. A lot of work has been put into
understanding and extending this result [26–43], in par-
ticular to include higher-order multipole moments and tidal
deformabilities [30,44–47]. We can therefore use the Love-
Q relation to choose Q1;2 in favor of λ1;2 or vice versa from
the GW phase.
The problem of the detectability of finite size effects with

gravitational waves has gathered a lot of attention in recent
years. Initial studies, based on quantifying the differences
between waveforms with different EoSs or on a Fisher
information matrix analysis [12,13,15,48–52] suggested
that aLIGO has the potential of providing useful informa-
tion on the NS EoS. However, due to the expected low
signal-to-noise ratio (SNR) in aLIGO detections and due to
the strong correlations between the different GW param-
eters, the applicability of a Fisher study, and the conclu-
sions derived from it, is limited [53–56].
For this reason, several Markov-Chain Monte-Carlo

(MCMC) [57,58] studies have recently been carried out
in order to address EoS detectability in a more robust way
in the context of Bayesian inference. The first such study
was performed by Del Pozzo et al. [59], which showed that

a few tens of detections of moderate brightness can be
combined to provide strong constraints on the EoS, though
this result seems to be highly dependent on the mass
distribution of the sources [60]. Wade et al. [19] studied the
effects of systematic and statistical errors in EoS extraction,
while Lackey and Wade [61] employed a more realistic
parametrization of the EoS and agreed that a few bright
sources can determine the EoS of NSs.
With the exception of [59] and [60], all previous work

mentioned above consisted of parameter estimation studies,
where the tidal deformability is treated as a system
parameter and searched over with an MCMC analysis.
Any EoS that predicts a value of the deformability within
the recovered uncertainty is compatible with the results of
the MCMC. Any EoS that does not fall in the deformability
error bars can be ruled out. We choose a more direct
approach here and compare the different EoS models
directly, an approach known as model selection. In the
latter, the EoS itself, instead of the tidal deformability is
treated as an independent parameter of the system and the
analysis allows the data to select which EoS is preferred.
Our study is unique in that we use this tool to perform a
comprehensive study on whether we can extract important
physical information about the composition of NSs, such as
the existence of exotic species.
The different EoS models proposed in the literature differ

not only in the NS composition they assume, but also in the
approximate schemes they employ to solve the many body
Schrödinger equation. These approximate schemes include
approaches such as the variational method [62], Skyrme-
Hartree-Fock (SHF) models [63], Brueckner-Hartree-Fock
(BHF) models [64], and relativistic mean field (RMF)
theory [65,66]. The NS internal composition might be that
the EoS is constructed solely with normal matter (neutrons
n, protons p, electrons e, muons μ), or it may contain kaon
condensates (K), hyperons (H), pion condensates (π), or
quark matter (Q).
Determining that 2 EoSs with the same composition but

different approximations are distinguishable will not result in
any new information about Nature. On the other hand,
determining that 2 EoSs with different compositions and
different approximations are distinguishable must be treated
with caution. Can we claim that the difference between the
EoSs we detected is due to their actual physical differences,
or due to their distinct mathematical approaches? In order to
avoid this obstacle, we compare EoSs that employ the same,
or as similar as possible, approximations and differ only in
their internal composition.
For example, consider an EoS, which contains normal

matter, and is constructed with the variational method,3 and
another EoS, which is also constructed with the variational
method, but includes both normal matter and hyperons.

1A number of studies have examined the possibility of
determining the EoS from the merger phase (see [15] for an
example). However, in the absence of a full and accurate template
bank of merger waveforms, it is not clear how one would perform
a full data analysis study.

2A term of relative order ðv=cÞ2N is said to be a N-PN order
term.

3Refer to Appendix A for a description of all EoSs used here
along with their physical content and approximation schemes.
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When we perform a comparison on these 2 EoSs, we are
essentially comparing a hyperon EoS and a hyperon-less
EoS. The result of this comparison can directly be
translated to physical information. If the hyperon EoS is
preferred, we have detected hyperons in NS cores assuming
one of the 2 EoSs is correct. If the hyperon-less EoS is
preferred, we have constrained hyperons in NS cores.
At this stage one may reasonably object: Could we

confuse a hyperon EoS constructed with one method with a
normal matter EoS constructed with a different method?
This concern can be alleviated by performing a large
number of comparisons. Concluding that a hyperon EoS
constructed with one method is preferred over a normal
matter EoS with the same method is not enough. We need
to find as many pairs of EoSs that have been constructed
with a variety of different methods and compare all of them.
This approach (i) ensures we have not confused the effects
of internal composition and approximation schemes, and
(ii) provides us with insight on how hyperons, or other
particles, affect EoSs in general. Effectively, by comparing
many pairs of EoSs, we “average out” any effect coming
from how each pair of EoSs is constructed and isolate the
effect of the common difference between the 2 EoSs of all
pairs i.e. the exotic matter.
Another aspect in which our analysis generalizes previous

studies is that for the first time we include spin-precession
both in our simulated signal and in the templates. We use the
fully analytic double-precession model of [67], derived
under the assumption that the binary components have small
spins. This turns out to be an excellent approximation for
NSs in the LIGO band, as their dimensionless spin parameter
(the spin angular momentum over the mass squared) is not
expected to exceed ∼0.1 [68]. The model has already been
tested before in a data analysis context [69,70], however, in
those studies we stopped our analysis at 400 Hz to avoid
finite-size effects [71], and focus instead on the measurabil-
ity of the masses and the spins.
The inclusion of spin-precession in the templates is

crucial. Reference [69] showed that allowing for the
systems to precess around the orbital angular momentum
can break degeneracies between the masses and the spins,
improving mass extraction by about an order of magnitude.
This improved mass determination is directly translated to
better λ extraction, making EoSs easier to distinguish. This
is because in the context of model selection, it is the EoS
that is a GW parameter, and not λ, which is determined
through a relation of the form λðm;EoSÞ (see Sec. II B). We
should emphasize an important distinction here: the effect
of better mass extraction due to precession has nothing to
do with the actual spin magnitude of the signal we study.
What is important, however, is allowing for the template to
model precessional effects when recovering a signal.
The main results of our analysis are summarized below.
We find that advanced detectors will be able to place

strong constraints on the existence of quark stars comprised

solely of quark matter. Given the EoSs available today, a
NSNS binary with masses in the ð1.2; 1.5ÞM⊙ range with
SNR ¼ 30 can effectively rule out strange quark stars, or
make a positive detection of them. We, furthermore, argue
that even for the plausible EoSs constructed in the future,
there exists some mass ∈ ð1M⊙; 1.8M⊙Þ where quark stars
are distinguishable from normal matter NSs.
The prospects of detecting or ruling out hybrid NSs

including both normal and quark matter are worse. If the
strong interactions between quarks are close to those
predicted by a perturbative analysis [72] and the transition
between nuclear and quark matter phases happens around
twice the nuclear saturation density, the detection of a
ð1.4; 1.35ÞM⊙ NS binary with SNR 30–40 could provide
significant evidence of whether quarks form in NS interi-
ors. However, if the strong interactions are weaker, aLIGO
will not be able to reach confident conclusions.
It is unlikely that aLIGO will be able to claim a detection

of hyperons or kaons, since that would require high masses
and SNR≳ 60. The detection of hyperon or kaon con-
densates in NS interiors requires high mass stars, since it is
only at these high masses that you encounter densities large
enough for these condensates to form. This poses a
significant problem; the importance of finite size effects
is reduced with increasing mass since λ decreases with
increasing mass. Moreover, most NSs are expected to have
masses around ∼1.4M⊙, rarely reaching the 2M⊙ required
for hyperons and kaons detection. We therefore conclude
that it is unlikely that aLIGO will be able to positively
identify hyperons or kaons in NSs. On the other hand, if
hyperons and kaons are not formed in NS interiors, aLIGO
could place constraints on their existence.
Our analysis suggests that aLIGO can distinguish

between models that differ at low central densities, like
normal matter EoSs and EoSs containing quark matter. In
order to probe the high density regime we need SNRs
higher than what aLIGO is likely to achieve. This is due to
the fact that high mass systems (i) present smaller finite size
effects, and (ii) have masses close to the maximum mass
allowed, which causes some interesting effects related to
the prior boundary (see Sec. II D).
Among the various noise configurations aLIGO can be

tuned to, the optimal for EoS determination is the default
Zero-Detuned, High-Power (Zero-Det., High-P) one [73].
Tuned configurations include the NSNS Optimized (NSNS
Opt.) and the High Frequency (High F.) ones; both perform
in an inferior way when it comes to EoS extraction. In the
case of NSNS Opt. this is due to its low sensitivity at
frequencies above 600 Hz, when it is exactly at these
frequencies that finite size effects are more prominent. As
far as High F. is concerned, its improved sensitivity is
limited to a very narrow frequency range around 103 Hz.
This fact coupled to its worsened sensitivity at low
frequencies makes High F. unsuitable for EoS studies.
We conclude that in the high frequency regime we are
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interested in, the Zero-Det., High-P. noise curve has the
overall higher sensitivity and more accumulated SNR.
Stacking, i.e. combining multiple low SNR sources,

might improve the results obtained here, but it might also
lead us to erroneous conclusions about the true EoS. We
find that when the SNR is low our results can be dominated
by prior information, rather than any new information we
get from the GW data. This could lead to each individual
low SNR binary system providing some confidence, but in
favor of the wrong EoS. Stacking all these systems will
inevitably lead to great confidence in favor of the wrong
EoS. We emphasize that stacking must always be treated
with caution.
As far as the spin of the bodies is concerned, we find that

the magnitude of the injected spin angular momentum has a
negligible effect on our results, provided that the templates
allow for spin precession. This is in agreement with
Ref. [69], where the order-of-magnitude improvement in
mass extraction was achieved over spin-aligned templates
even for nonspinning systems, as long as spin-precessing
templates were used in the recovery of the signal.
The remainder of the paper is organized as follows.

In Sec. II, we describe the techniques and simulations we
use. In Sec. III, we describe in more detail the results of
the EoS comparison. In Sec. IV, we summarize our work.
Throughout the paper we use units where G ¼ c ¼ 1.

II. MODEL SELECTION

Model selection in the Bayesian framework requires an
explicit statement of the models compared. In this section,
we describe in detail the models we use, as well as our
methodology when comparing them. We describe the
Bayes factor (BF), a quantity that assesses which model
is preferred by the data, and give an overview of our
simulated signals. We conclude this section with a brief
discussion of the power of stacking signals versus detecting
a single loud signal.

A. Bayesian inference

In the context of Bayesian inference, the probability that
a hypothesis H1 is correct given some data d is [57,58]

pðH1jdÞ ¼
pðH1ÞpðdjH1Þ

pðdÞ ; ð1Þ

where pðH1jdÞ is the posterior belief in the hypothesis after
the data has been analyzed, pðH1Þ is the prior belief based
on all information we have before analyzing the data, and
pðdÞ is the probability of the data, an unimportant normali-
zation constant in our case. The evidence pðdjH1Þ is given
by an integral over the parameters of the model θ

pðdjH1Þ ¼
Z

dθpðθjH1ÞpðdjθH1Þ; ð2Þ

where pðθjH1Þ is the prior information on the model
parameters, and pðdjθH1Þ is the likelihood, where
lnpðdjθH1Þ ¼ −1=2ðs − hjs − hÞ in Gaussian noise, with
s the signal, h the template model and ð·j·Þ the noise-
weighted inner-product [57,58].
When we have to select between 2 competing hypoth-

eses, we compare their posterior beliefs through the odds
ratio (OR), defined by

O ¼ pðH1jdÞ
pðH2jdÞ

¼ pðH1ÞpðdjH1Þ
pðH2ÞpðdjH2Þ

: ð3Þ

The OR is the “betting odds” of H1 compared to H2 and
includes the both prior belief in each hypothesis and any
new information that is extracted from the data. These two
contributions can be separated by defining the Bayes
factor (BF)

BF ¼ pðdjH1Þ
pðdjH2Þ

; ð4Þ

which includes only the data contribution to the OR. A
BF > 1means thatH1 is supported better by the data, while
a BF < 1 means that H2 is preferred. In the case of
uninformative priors, i.e. pðH1Þ ¼ pðH2Þ, the OR equals
the BF. In this paper, we choose to work with the BF instead
of the OR because we are interested in whether the data
lends more support to some hypothesis over another,
irrespective of our prior beliefs in them. Of course, once
we can confidently quantify our prior belief in a hypothesis,
we can trivially go from the BF to the OR.
Working with the BF, however, has one major problem:

we cannot draw the same conclusions about two different
pairs of hypotheses that have the same BF. For example,
consider the problem of whether a given GW signal is
better described by GR or by a modified gravity theory. In
this case, we have a strong prior belief in favor of GR, given
the many successes of experimental relativity [74,75]. We
would therefore require very large BFs in favor of the
modified gravity hypothesis to claim a detection of a
deviation from GR. On the other hand, if we are interested
in whether the signal is better described by one of two
competing EoSs, we do not have such strong prior beliefs in
favor of any of the models. That means that we would not
need such large BFs to claim that we have identified the
correct EoS of Nature, provided we remain agnostic about
the two EoSs.
For this reason, it is crucial that we explicitly define what

we mean by “a BF that is large enough” on a problem by
problem basis. As we will discuss later in this section, we
work with models for which we do not have strong
experimental prior knowledge. Therefore, we adopt the
Jeffreys scale of interpretation of BFs [76] to define how
significant a BF is. When BF < 1 it is negative, for 1 <
BF < 3 it is barely worth mentioning, for 3 < BF < 10 it is
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strong, for 10 < BF < 100 it is very strong, and finally for
BF > 100 it is decisive. This is in contrast to the analysis of
Refs. [77–80], which dealt with tests of GR, where BFs
around 100 were considered strong and not decisive, given
the strong prior in favor of GR.
In order to calculate the BF between two models, a

number of different techniques can be used: thermody-
namic integration [58,81], nested sampling [81] and reverse
jump, Markov chain-Monte Carlo [57]. Here, we employ
the third technique which requires promoting the model to a
parameter of the Markov chains. Then, the BF is given by

BF ¼ time the chains spend in model 1
time the chains spend in model 2

; ð5Þ

with error bars calculated with the technique suggested
in [82].

B. Models

Our models represent GWs emitted in the late inspiral of
NS binaries assuming GR is correct from the time they
enter the LIGO band until the NSs come into contact, or
their separation becomes six times the total mass, which-
ever comes first (see Sec. II C for details). The difference in
the models will only be in the finite size effects they
include. Comparison between these models can be viewed
as traditional parameter estimation, only now the model
itself is an extra discrete parameter. In parameter estima-
tion, the waveform of a NS binary inspiral with a circular
orbit depends on the following parameters4:

θPE ¼ fm1; m2; θN;ϕN;DL; θL;ϕL; tc;ϕc; S1; S2; λ̄1; λ̄2g;
ð6Þ

while in a model selection study the template depends on
the parameters

θMS ¼ fm1; m2; θN;ϕN;DL; θL;ϕL; tc;ϕc; S1; S2;EoSg;
ð7Þ

where mi are the component masses, ðθN;ϕNÞ give the sky
location of the source, DL is the luminosity distance,
ðθL;ϕLÞ give the direction of the orbital angular momen-
tum, ðtc;ϕcÞ are the time and phase of coalescence
respectively, Si ≡ χim2

i ðsin θi cosϕi; sin θi sinϕi; cos θiÞ
are the spin angular momentum vectors of each binary
component, with χi≔jSij=m2

i the dimensionless spin
parameter, and λ̄i ≡ λi=m5

i are the dimensionless tidal
deformabilities. The two parameter sets are equivalent,

since knowledge of ðm1; m2;EoSÞ from θMS can be used to
construct the quantities λ̄1ðm1;EoSÞ and λ̄2ðm2;EoSÞ
in θPE.
The EoS is what defines a model. For some EoS the

model predicts a GW with θPE and λ̄1;2 as a function of
ðm1;2;EoSÞ for ðm1; m2Þ ≤ MmaxðEoSÞ, and no GW other-
wise. The quantity MmaxðEoSÞ is the maximum NS mass
that can be stably supported, given an EoS. For the GW
template itself, we will use the small-spins, double-
precessing waveform of [67], which is constructed in the
Fourier domain through a stationary-phase approximation
in a post-Newtonian expansion. We use an extended
version of these templates by adding finite-size effects at
2 and 3PN order (due to the quadrupole moment) [21,22]
and at 5 PN order and higher (due to tidal deformability
effects) [11–13,23]. More specifically, we include tidal
terms that depend on the l ¼ 2 electric tidal deformability
λ up to 7.5PN order given in [13]. We also include the
contribution from the l ¼ 2 magnetic tidal deformability
σ2 at 6PN order and the l ¼ 3 electric tidal deformability
λ3 at 7PN order [45]. We further take into account the
leading correction to the adiabatic approximation entering
at 8PN order that depends on the l ¼ 2 f-mode frequency
f2 of a NS [11,12]. σ2, λ3 and f2 can approximately be
expressed in terms of λ thanks to the universal relations
found in [45,83]. In addition, we use the Love-Q relations
[24,25] to rewrite the quadrupole moment in terms of the
tidal deformability.
Which EoS models should we allow the data to select

from? There is a great number of EoSs available in the
literature, varying both in the type of matter they consider
(quarks, hyperons, kaons, muons, pions, neutrons, protons,
electrons), and in the approximation schemes used to
construct the EoS (see Appendix A). We can classify the
EoSs by the type of matter they employ; the subset of EoSs
discussed in this paper are presented in Table I. The EoSs in
each of these categories differ in the approximation
schemes used to solve the many-body Schrödinger equa-
tion (see Appendix A).
Given the great variety of EoSs, how should we carry out

a model selection study? Could we select a characteristic
set of models, perhaps chosen by looking at how the λ̄ −m
relations behave for a set of EoSs? Figure 1 shows these
relations for a few of the EoS listed above. Notice how the
normal matter EoSs (AP4, Shen) form a band in the λ̄ −m
space that contains both SQM3 (consists of pure quark
matter) and H4 (contains hyperons). This lack of clustering
with respect to the internal composition classification in the
λ̄ −m space indicates that comparing arbitrary EoSs will
not produce physically meaningful results. For example,
say we concluded that AP4 (red solid line) is distinguish-
able from H4 (black, dot-dashed line). Can we claim that
hyperons are detectable from GW observations? The
answer is no; there is another normal matter EoS (Shen,
turquoise dotted line) much closer to H4 than AP4. Unless

4In this argument, we encode the EoS dependence through the
dimensionless tidal deformabilities λ̄1;2; the argument goes
through if one uses any other quantity to parametrize tidal
deformations.
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we compare Shen to H4 too, we cannot claim detectability
of hyperons.
Another possibility would be to compare each model

against every other model simultaneously, but (i) the
computational cost would be prohibitive, and (ii) it is
not clear what physical question such a comparison would
address. Comparing models within each category that differ
only in the approximation scheme used to calculate the EoS
is analogous to comparing post-Newtonian models for the
GWs emitted in the inspiral of compact objects. In the end,
all of such models are only approximations to the exact
solution of Nature. Instead, we are interested in specific
physical questions regarding the internal composition of
NSs. To do so, we will choose pairs of EoSs that are as
similar as possible (using the same approximation schemes),
but differ only in the matter degrees of freedom. In this way,

we can directly translate distinguishability between models
into distinguishability between physical scenarios.

C. Signal injections

Whether the data can distinguish a given EoS model over
another depends strongly on the particular signal detected.
The parameters that affect EoS distinguishability the
most are the two masses, the distance to the source, which
effectively controls the SNR, and the EoS itself. We
therefore simulate different signals with various values
for these parameters. For the remaining parameters we
select the following injection values: ðcos θN;ϕNÞ ¼
ð−0.105; 3.705Þ, ðcos θL;ϕLÞ ¼ ð0.801; 3.216Þ, ðtc;ϕcÞ ¼
ð1; 024s; 4.461Þ, ðcosθ1;ϕ1Þ¼ð0.774;2.248Þ, ðcosθ2;ϕ2Þ¼
ð0.968;5.311Þ, and ðχ1; χ2Þ ¼ ð0.04; 0.04Þ. All parameters
have been randomly chosen so that they do not lead to any
“special” orientation of the binary (face on, edge on, etc.).
We have also performed simulations with other dimension-
less spin magnitudes and found that the spin has a very
small effect on EoS distinguishability.
The initial misalignment of the spin and the orbital

angular momenta means that the system will undergo
precession [94]. Indeed, with these choices of parameters,
the angle between the orbital angular momentum and the
total spin angular momentum is ∼30°. Spin precession is
modeled through the small-spins, double-precession
approach of [67], which has been shown to be highly
accurate for modeling NS binaries [70]. This approach is
valid in the inspiral phase only, since it is based on a post-
Newtonian expansion. The signal is thus modeled with the
same approach as the templates that define the EoS models.
The approximations used to describe the orbital motion in

the small-spins, double-precession approach are only valid
up to a given frequency. We thus carry out our analysis up to
minðfISCO; fcðEoSÞÞ, where fISCO is the Keplerian fre-
quency at r ¼ 6ðm1 þm2Þ [95,96] and fc is the contact
frequency, that at which the separation of the two bodies is
equal to the sum of their radii. Although Mandel et al. [97]
showed that terminating the waveforms at a certain fre-
quency can affect the results through the addition of artificial
information, our cutoffs are at such high frequencies that
they are not expected to affect the results.
Even though the particular noise realization in the

detector at the time the GW passes through will have an
effect on parameter extraction, we do not inject noise in our
analysis. Given that it is impossible to predict the noise
instance, the best we can do is average our results over
multiple noise realizations. However, Nissanke et al. [98]
showed that such averaging is equivalent to zero injected
noise in the signal. Sampson et al. [78] showed that a given
noise realization causes the likelihood to shift as a whole,
without significantly changing its shape (Fig. 4 of [78]),
suggesting that the integral of the likelihood (the evidence)
is minimally affected by noise fluctuations. This picture,
however, does not hold for poorly constrained parameters,

TABLE I. Classification of EoSs with respect to internal
composition. The first cluster corresponds to EoSs with normal
matter. The second and third clusters include hyperons and kaon
condensates, respectively. The last two rows list EoSs that include
quark matter.

EoS Composition

AP4 [84], SV [85], SGI [85], SkI4 [86]
n, p, e, μDBHFð2ÞðAÞ [87], MPa [88], G4 [89]

GA-FSU2.1 [90], Shen [65,66]

SGI-YBZ6-SΛΛ3 [91], NlY5KK� [87],
n, p, e, μ, HSkI4-YBZ6-SΛΛ3 [91]

MPaH [88], H4 [89]

SGI178 [85]
n, p, e, μ, KSV222 [85]

GA-FSU2.1-180 [90]

ALF4 [92], ALF5 n, p, e, μ, π, Q

SQM3 [93] Q (u, d, s)
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FIG. 1 (color online). Dimensionless tidal deformability as a
function of mass for a number of EoSs with very different physical
contents. The lack of clustering in the λ̄ −m space shows that we
cannot perform model selection with all EoSs simultaneously.
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like the ones studied here, where the posterior extends over
a large fraction of the prior volume [19,53].
Of course, the noise curve of the detector does play a

very important role in the calculation of BFs, through the
noise-weighted inner product in the likelihood [57]. We
will mostly adopt the zero-detuned, high-power noise
spectral density of the advanced detectors [73], though
we will explore other choices in Sec. III E. The specific
form of the likelihood we use assumes that the noise in the
detectors is stationary and Gaussian [see below Eq. (2)],
neither of which is strictly true. Cornish and Littenberg,
however, have shown how to model the non-Gaussian
features [82], and deal with the nonstationarity of the noise
[99], leaving us with only the modeling of the stationary,
Gaussian noise component.
When recovering the parameters, we use a uniform prior

in ð0.1; 3ÞM⊙ for the masses, a uniform prior on the sphere
for all directions, a uniform prior in (0,1) for the dimen-
sionless spin magnitudes, and a uniform prior in the log of
the distance. All prior ranges are selected such that they are
wide enough to not affect our results.

D. Stacking vs high SNR

In reality aLIGO will probably reach physically inter-
esting conclusions by combining information frommultiple
detections, rather than by waiting for a very loud one.
Along those lines, one would argue it makes more sense to
stack a sufficient number of moderate SNR sources rather
than study the BF as a function of the SNR. Our results,
however, suggest that stacking should be performed with
caution.
For low SNR detections we find 2 rather counterintuitive

effects: (i) it is possible for the wrong model to be preferred
over the correct one, and (ii) it is possible for the correct
model to be preferred less and less as the SNR increases
(see Appendix B). The first effect is not new; it has already
been encountered in the context of comparing models with
different dimensionality [77], where it takes the form of an
Occam Penalty on the more complicated model. The
second effect is perhaps less familiar: why would it be
that, as the signal strength increases, the data fails to
increasingly support the correct model? The answer to this
question and the root cause of these effects can be traced
down to sharp cutoffs of the prior distribution.
When computing BFs, we must compare models with

different maximum masses. In fact, most of the time the
difference is rather large, with one model allowing NSs up
to∼2M⊙, while the competing model going up to∼2.5M⊙.
When the injected mass is close to the maximum allowed
mass and the SNR is sufficiently low, the posterior
distribution is affected by this cutoff. In order to understand
and visualize this effect, we construct a simple 1 − Dmodel
in Appendix C. In the context of this simple model we
explain both the effect on the BFs that favor the wrong
model, and the BFs that decrease with increasing SNR.

These results show that stacking many weak sources is
not necessarily equivalent to a single bright source. When
each new observation is informative, i.e. the likelihood
dominates over the prior, then the data will prefer the correct
model and BF > 1. In that case, adding the extracted
information from this observation will push the analysis
in the right direction, and eventually, we will recover the
same results as from a single loud event. On the other hand,
if the observation is not informative and the result is prior
dominated rather than likelihood dominated, the wrong
model might be preferred and BF < 1. In that case, adding
this observation in the stack will lead the analysis in the
wrong direction: a large number of weak observations that
favor the wrong model will build confidence in the wrong
conclusion.
The above results suggest that stacking must be treated

with caution. For sufficiently high SNR events, the pos-
terior will be narrow enough that it will not be affected by
the maximum mass cutoff. In this case, one recovers the
expected result: the correct model is preferred and it is
preferred more and more as the signal strength increases.
However, if the signals are of lower SNRs, the observations
may not be informative, and then, the final cumulative
result may be largely influenced by the prior and not by the
new information contained in the signals.

III. COMPARING EQUATIONS OF STATE

Our goal is to study whether GW detections of inspiral-
ing NSs can be used to learn about their interior compo-
sition and in particular, whether they contain kaon
condensates (Sec. III A), hyperons (Sec. III B), and quark
matter (Sec. III C). To do so, we need to isolate their
respective effects in the EoSs. We accomplish this by
comparing pairs of EoS models that are as similar as
possible, but differ only in the inclusion of one of these
particles. Appendix A provides a comprehensive classifi-
cation of all the EoSs we use in this section.

A. Kaon condensates

We first address the question of whether NSs with kaon
condensates in their inner cores leave an observable
signature on inspiral GWs. To do so, we choose 3 pairs
of EoSs constructed with (i) the Skyrme-Hartree-Fock
(SHF) scheme, (ii) relativistic mean field (RMF) theory,
and (iii) the SHF scheme including three-nucleon inter-
actions (TNI).5 Each pair consists of one EoS with a kaon
condensate and one without.
Kaon condensates could emerge in stars at high central

densities and, therefore, kaon models differ from kaon-less
ones only for NSs with sufficiently high masses. This
makes the extraction of physical information from these
systems more difficult than that for low-mass systems for

5See Appendix A for a short description of each method.
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3 reasons. From a data analysis point of view, systems with
masses close to the maximum allowed mass will suffer
from the edge effects described in Sec. II D, making it more
difficult to get likelihood-dominated results. From a physi-
cal point of view, NSs with high masses have smaller values
of λ̄, as seen in Fig. 1, making finite-size effects less
relevant in the GW phase. From an astrophysical point of
view, NSs with masses around 2M⊙ are expected be rare.
Table II the values of the masses we select for each EoS
comparison.
As we will show below, we find that if kaon condensates

indeedformintheinnercoreofNSs, theywillbehardtodetect
with the signals expected from aLIGO. On the other hand, if
condensates do not form in NSs, then loud aLIGO signals
may be able to establish this with a high mass detection.

1. Models

The 3 pairs of models we compare are constructed with
different approximations.
(1) SHF models [85]:

(a) kaonless: SV.
(b) with kaons: SV222.

(2) RMF theory [90]:
(a) kaonless: GA-FSU2.1.
(b) with kaons GA-FSU2.1-180.

(3) SHFmodelsþ TNI [85]:
(a) kaonless: SGI.
(b) with kaons: SGI178.

The results of comparison (3) are very similar to the results
of comparison (2), so we will only present pairs (1) and (2).
Figure 2 shows the mass-radius relation for the EoSs we

present. This figure suggests that kaons affect the properties
of only the most massive NSs. The pairs of circles,
triangles, and squares indicate the values of the masses
in the injected signals of our analysis.

2. Bayes factor

Figure 3 shows the BF in favor of the kaon model of each
pair (left panel) and the kaonless model of each pair (right
panel) as a function of the SNR of the signal. The different
lines correspond to the different injected masses indicated
by the blue symbols in Fig. 2. We always plot the BF in
favor of the correct (injected) model. Any BF > 1 in the left
panel means that we correctly detected the presence of
kaons in the interior of the NSs, while any BF > 1 in the
right panel means that we correctly concluded that there are
no kaons in their interiors.
As first suggested by the mass-radius plot, Fig. 3

confirms that in order to detect the presence of kaons on
NS EoS we need a high mass system. The lowest mass
system (m1 ¼ 1.4M⊙, m2 ¼ 1.35M⊙) gives BFs that are
consistent with 1, in agreement with the m − R relation. For
large SNRs, as we increase the injected masses we recover
BFs that correctly favor the kaon model (left panel) and
correctly favor the kaonless models (right panel).
At low SNRs, however, we encounter BFs that incor-

rectly disfavor the kaon models on the left panel of Fig. 3.
This is because the injected masses are very close to the
maximum mass allowed by the correct model. When an
injected parameter is closer to the edge of the prior than the
width of the posterior, the posterior has to be cut off
(see Sec. II D and Appendixes B and C). In our case, the

TABLE II. Simulated masses for the comparison of Sec. III.
The first column gives the particle whose existence the com-
parison constrains, the second column gives the EoSs compared,
while the third and fourth give the masses.

Comparison EoSs m1 (M⊙) m2 (M⊙)

Kaons
SV=SV222 1.4 1.35

1.95 1.9
2.05 2

GA-FSU2.1=GA-FSU2.1-180 1.9 1.8
1.99 1.95

Hyperons

G4=H4 1.4 1.35
1.8 1.7
1.95 1.9

MPa=MPaH 1.95 1.9
2.15 2.1

ALF-GCR=GCR 1.5 1.4

ALF5=AP4 1.4 1.35
Quarks 1.8 1.7

SQM3=AP4 1.2 1.1
1.4 1.35
1.8 1.7
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SV222 (SHF kaon)
GA-FSU2.1 (RMF kaon-less)
GA-FSU2.1-180 (RMF kaon)

FIG. 2 (color online). m-R relation for the EoS pairs that test
kaons: The black lines correspond to SV (solid) and SV222
(dotted), which are constructed through SHF models. The red
lines are for GA-FSU2.1 (solid) and GA-FSU2.1-180 (dotted),
which are constructed through RMF theory. The presence of
kaons causes the kaon model of each pair to differ from the
normal matter model for high masses. The pairs of similar blue
symbols indicate the component masses we use in our analyses.
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injected masses are close enough to the maximum mass of
the kaon models that these models “lose” some chain points
because the models simply cannot produce such high mass
systems. What the kaon models are in fact trying to do
when the mass is above their maximum allowed mass is
match the GW signal with pure Gaussian noise. How this
affects the BF is clear from Eq. (5). Recall that the BF in
favor of SV222, for example, is equal to the number of
times the chains visited this model, divided by the number of
times they visited the competing model SV. When SV222
has an abrupt cutoff close to the injected masses, a lot of the
chain points will be disfavored because the model fails to
produce a signal for these values of the masses. This leads to
the chains visiting the SV222model less, and in the end a BF
that does not favor the correct model.
The discussion of Sec. II D indicates that when we have

BFs favoring the wrong model, we are in a regimewhere it is
mostly the prior that dominates our results. Obviously, the
results in this regime do not offer new physical information
and cannot be used to claim that we constrained the EoS. For
example, imagine we detected a ð1.99; 1.95ÞM⊙ system at
SNR 30 and we want to claim something about the presence
or absence of kaons in the system. If we choose to test
whether GA-FSU2.1 or GA-FSU2.1-180 fit the data better,
we will recover BFs in favor of the kaonless model GA-
FSU2.1 regardless of whether kaons are actually present or
not. The data coming from such a system can clearly not be
trusted to give the correct result.
For the case studied here, the kaon model comparison

starts to become likelihood-dominated (BF > 1) when the
SNR≳ 40 in the SV=SV222 case, and when the SNR is
somewhere above 60 in the GA-FSU2.1= GA-FSU2.1-180

case. A detection of a ð2.05; 2ÞM⊙ system at SNR ¼ 40 and
above will lead to a strong BF in the Jeffreys scale in favor of
the kaonless model for a kaonless injection. On the other
hand, for a kaon injection, the SNR needs to reach 60 and
above in order to obtain strong BFs. For lower mass systems,
the BFs are lower, and barely worth mentioning in the
Jeffreys scale.

B. Hyperons

Moving on to the study of the detectability of hyperons
in the inner cores of NSs, we select 5 EoSs constructed with
(i) RMF theory, (ii) a nonrelativistic Brueckner-Hartree-
Fock (BHF) approach, (iii) a relativistic BHF approach, (iv)
and (v) a SHF approach. Each pair consists of one EoS with
a hyperon in the inner core and one EoS without.
Hyperons, much like kaons, affect the EoS of only the

most massive NSs, since they form at the very highest
central densities. For that reason, the results of this section
are very similar to the previous one on kaons: we find that
aLIGO can constrain the existence of hyperons in NSs, but
detecting them will be much harder (see Table II).

1. Models

The models we use to determine hyperon detectability
are the following.
(1) RMF theory [89]:

(a) hyperonless: G4.
(b) with hyperons: H4.

(2) Nonrelativistic BHF models [88]:
(a) hyperonless: MPa,
(b) with hyperons: MPaH.
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FIG. 3 (color online). BF in favor of the kaon models (left) and the kaonless models (right) as a function of the SNR for different
injected masses given in the brackets. BFs are always quoted in favor of the correct (injected) model. For example, the black dotted-
dashed curve labeled “SV222 (1.4,1.35)” in the left panel means that the injected model is the SV222 EoS with the NS mass
ð1.4; 1.35ÞM⊙, and H1 ¼ SV222 and H2 ¼ SV in Eq. (4). BF > 1 in the left panel means that we correctly detected the presence of
kaons inside the NSs, while that in the right panel means that we correctly ruled out such a presence of kaons. The kaonless models give
higher BFs than the kaon models, making it easier to establish that NSs do not have kaon condensates than the opposite. BF < 1 in the
low SNR regime for high-mass systems in the left panel is due to the fact that the injected masses are close to the maximummass allowed
in each model (see the main text for more detail).
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(3) relativistic BHF models [87]:
(a) hyperonless: DBHFð2ÞðAÞ.
(b) with hyperons: NlY5KK�.

(4) SHF model:
(a) hyperonless: SGI [85],
(b) with hyperons: SGI-YBZ6-SΛΛ3 [91].

(5) SHF models:
(a) hyperonless: SkI4 [86],
(b) with hyperons: SkI4-YBZ6-SΛΛ3 [91].

The results of comparisons (3), (4) and (5) are very similar
to the results of the MPa and MPaH comparison, so we will
not present them here. Figure 4 shows the mass-radius
relation for the EoSs for which we will present compar-
isons. Clearly, hyperons affect the EoS of only the most
massive NSs, exactly like kaons. The pairs of symbols
indicate the masses we inject.

2. Bayes factors

The results of our analysis are presented in Fig. 5, which
shows the BF in favor of the hyperon models (left) and the
hyperonless models (right) as a function of the SNR of the
injected signal. The message of this plot is clear if we take
into account the reasoning presented in the previous
section. In the G4-H4 comparison for the hyperonless
comparison at low SNR (below 40), we encounter the effect
of the wrong model being preferred over the correct one.
On the other hand, in the MPa-MPaH comparison, this
continues to hold until the SNR ¼ 60. This indicates that it
is the prior (and more specifically the maximummass of the
hyperon model) that dominates our results and not the

likelihood. When the SNR exceeds 40, we start extracting
interesting information from the comparison. Assuming
hyperons do not form in NS cores, a ð1.95; 1.9ÞM⊙
detection with SNR ¼ 40 and 60 will give a strong and
very strong indication in the Jeffreys classification of the
nonexistence of hyperons respectively. On the other hand,
if hyperons do form in NS cores, then a signal with SNR ¼
60 would only provide strong evidence, as the BFs do not
exceed 7.

C. Quark matter

Unlike kaon condensates and hyperons that can only
exist in combination with normal matter, quark matter can
form both with and without normal matter. In the first case
we have hybrid NSs with EoSs of the ALF [92] type that
have quarks formed after a certain transition density. The
second case results in quark stars [93] comprised solely of
quark matter.
The EoSs of pure quark stars differ from normal matter

EoSs even at low densities, making it possible for aLIGO to
detect or rule them out. On the other hand, hybrid normal/
quark matter EoSs are constructed by stitching the nuclear
matter EoSs in the low density regime to quark matter ones
in the high density regime, with appropriate phase tran-
sitions in between. Therefore, they reduce to normal matter
EoSs at low densities. The transition density nc and the
strength of the strong interactions c determine how much
the hybrid EoS differs from the normal matter EoS it is
stitched to. The constant c is predicted to be c ∼ 0.37 [72]
by a perturbative calculation. When c is close to this value
and the transition from a nuclear matter to quark matter
happens at around twice the saturation density, we find that
hybrid EoSs might be distinguishable from normal matter
EoSs for signals with SNR ∼ 30 − 40.

1. Hybrid EoSs

In order to study hybrid normal/quark matter stars we
select EoSs of the ALF family [92], the normal matter part
of which are based on AP4 [84]. All EoSs include ordinary
matter, while the ALF EoSs also include pions and quarks
in the inner core.6 The left panel of Fig. 6 shows the mass–
radius relation for ALF5 and AP4. ALF5 has ðnc; cÞ ¼
ð2n0; 0.4Þ, where n0 ¼ 0.16 fm−3 is the nuclear saturation
density.
We also constructed new hybrid star EoSs (GCR-ALF)

by stitching the nuclear matter GCR EoS constructed in
[100] to the same quark matter EoS as the ALF family.
The m-R relation for a GCR-ALF EoS with ðnc; cÞ ¼
ð2n0; 0.35Þ is shown again in Fig. 6, together with the
corresponding nuclear matter GCR EoS with the symmetry
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FIG. 4 (color online). m-R relation for the EoS pairs that test
hyperons: The black lines correspond to G4 (solid) and H4
(dotted), which are constructed through RMF theory. The red
lines are for Mpa (solid) and MPaH (dotted), which are
constructed through the nonrelativistic BHF method. The pres-
ence of hyperons causes the hyperon model of each pair to differ
from the normal matter model for high masses. The pairs of
similar symbols indicate the component masses we use in our
analyses.

6In principle, we should treat pions as a separate particle, like
kaons and hyperons. However, we are not aware of any EoS
model that includes only pion condensates and predicts a
maximum NS mass above 2M⊙.

CHATZIIOANNOU et al. PHYSICAL REVIEW D 92, 104008 (2015)

104008-10



energy of Esym ¼ 33.8 MeV.We have also chosen different
values for n0, c and Esym and found that the difference
between the nuclear matter and hybrid EoSs are typically
even smaller than the one in Fig. 6.
The right panel of Fig. 6 shows the BFs we recover for

the ALF5=AP4 (black) and the ALF-GCR=GCR compari-
son (black) as a function of the SNR for different values of
the masses. The only case we find where the hybrid EoS
could be distinguishable from the normal matter one is for
masses around 1.4M⊙. A SNR ∼ 30 detection with such
masses can provide strong BFs in the Jeffreys scale if
we compare ALF5 to AP4. However, if we compare
ALF-GCR to GCR we recover smaller BFs. We also find
that we recover similar results when comparing hybrid stars
and a normal NS regardless of which one is the correct star
of Nature. This is different from the kaon and hyperon

cases studied before, where we obtain more conclusive BFs
when kaons or hyperons are not present in NSs. Of course,
if the true hybrid EoS of Nature contains weaker strong
interactions between the quarks, the prospects of detecting
a hybrid star reduce even further.

2. Quark stars

Our final study case is SQM3 [93], an EoS that contains
no normal matter at all, but rather it is constructed solely
with quark matter. Comparing it to a normal matter EoS
amounts to comparing normal NSs to strange quark stars.
Although the latter have already been heavily constrained
[101], it is still interesting to study the bounds aLIGO
could place on them. However, it is not clear what EoS we
should compare SQM3 to. Throughout our analysis, we
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FIG. 5 (color online). BF in favor of the hyperon models (Left) and the hyperon-less models (Right) as a function of the SNR for
different injected masses. BFs are always quoted in favor of the correct (injected) model. We conclude that it is easier to constrain
hyperons than detect them. A similar result was reached in the case of kaons as shown in Fig. 3.
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FIG. 6 (color online). (Left) m-R relation for the hybrid EoSs and the nuclear matter EoSs they are based on and compared to: AP4
(solid black), ALF5 (dashed black), GCR (solid red), and ALF-GCR (dashed red). The pairs of similar symbols denote the injected
masses. The larger the value of the strong interactions, the larger the deviation between the normal matter and the hybrid EoS. (Right) BF
for the ALF5=AP4 comparison (black lines) and the ALF-GCR=GCR comparison (red lines) as a function of the SNR for different
injected masses. BFs are given in favor of the correct model denoted in the legend. When the strong interactions between the quarks are
close to the value predicted from perturbative calculations, it is possible to distinguish between normal and hybrid NSs.
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compare EoSs that contain exotic matter to the EoS that
we obtain if we remove the exotic matter, but change
nothing else in how it is constructed; this is precisely how
we defined EoS pairs. In the case of SQM3, if we remove
the quarks there is no matter left, so there is no normal
matter counterpart that can form a pair with a strange
quark star.
For that reason and in order to arrive at conservative

conclusions, we will compare SQM3 to AP4 [84], a reliable
EoS that has both not yet been ruled out by observations
and leads to NSs that are the most similar to SQM3 quark
stars in the set of EoSs we considered. The left panel of
Fig. 7 shows the mass–radius relation for SQM3 and AP4,
along with symbols that indicate injected masses. Being the
softest EoS in the set of nonruled out EoSs we considered,
the AP4 mass-radius relation is the farthest to the left in
Fig. 7 and thus the closest to the SQM3 one. Other normal
matter EoSs are stiffer than AP4, predicting larger radii for
the same mass, which leads to m − R curves even farther
away from SQM3 than AP4. As we show below, AP4 is
already clearly distinguishable from SQM3, and thus,
distinguishing between SQM3 and other stiffer normal-
matter EoSs would be even easier.
Clearly, SQM3 is very different from all other EoSs

studied here; its m − R relation differs qualitatively from
normal matter EoSs, and we thus expect it to be distinguish-
able. Observe that SQM3 fails to produce a 2M⊙ NS,
though it is still consistent with the current observational
bound on the maximum NS mass [102] within a 2-σ
statistical error. Of course, it is possible that the star
observed in [102] is simply a NS, and not a quark star,
without necessarily ruling out the existence of the latter. We
have thus decided to study whether aLIGO can distinguish
between strange quark stars and normal NSs. If all compact
stars that aLIGO sees are NSs or BHs, then this would build
confidence for the nonexistence of quark stars.

The right panel of Fig. 7 shows the BF in favor of AP4
(black) and SQM3 (red) as a function of the SNR of the
signal for different mass combinations. The really high BFs
we recover indicate that aLIGO will be able to both detect
strange quark stars if they exist or provide very strong
evidence for their nonexistence. For example, the detection
of a ð1.4; 1.35ÞM⊙ system with SNR ¼ 20 results in strong
BFs in the Jeffreys scale in favor of the correct model. For
even brighter sources, or less massive systems, we recover
very strong or even decisive evidence in favor of the correct
model of Nature, be it strange quark stars or normal NSs.
We have argued that the results given above represent the

worst case scenario when comparing quarks stars to normal
NSs, given the reliable normal matter EoSs available today
and not yet ruled out by observations. But what if nuclear
physicists construct a viable EoS that is softer than AP4?
Even in this scenario, we can make some claims based on
the unique shape of SQM3. Revisit the left panel of Fig. 7
and notice that between 1.8M⊙ and 1M⊙ the radius SQM3
predicts increases by about 2 km. A normal matter EoS that
is softer than AP4 will, roughly speaking, have a similar
shape to AP4, but it will be shifted to the left in the m − R
plane. Even in this case, there will exist some mass between
1M⊙ and 1.8M⊙ where the difference between the radius
of a quark star and a normal NS is at least 1 km. Our results
indicate that typically a radius difference around 0.5 km is
about enough for distinguishability for this type of study,
provided the mass is not close to the maximum mass
allowed. We can, therefore, claim that even if a softer than
AP4 EoS is constructed, it will still be distinguishable from
SQM3 for some value of the mass between 1 and 1.8M⊙,
given an SNR around 30, depending on its exact shape.

D. Edge effects

So far, we have injected signals with masses for which
both models can produce a NS (or a hybrid star or a quark
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FIG. 7 (color online). Left: m-R relation for SQM3 and AP4. The pairs of similar symbols denote the injected masses. Right: BF in
favor of AP4 (black) and SQM3 (red) as a function of the SNR for different injected masses. BFs are given in favor of the correct model.
aLIGO will be able to place strong constraints on the existence of strange quark stars, both detecting them if present in Nature or strongly
disfavoring their existence if not.
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star). In the case of hyperons and kaons, we saw that the
large value of the masses required to tell EoS models apart
are close to the maximum mass of the exotic matter model.
Low strength signals are greatly affected by this maximum
mass cutoff. Here, we examine the case where one of the
two objects can only be supported by the model that
predicts the higher maximum mass.
We revisit the pair SV-SV222 and fix the SNR to 30 and

the mass of the smaller NS in the binary to 1.9M⊙. We
inject signals constructed with SVand in Fig. 8 we plot BF
in favor of the correct model as a function of the NS mass of
the larger starm1. The maximummass supported by SV222
is ∼2.11M⊙. When both simulated masses can be sup-
ported by the wrong model, then we find BFs that are only
barely worth mentioning in the Jeffreys scale in favor of the
correct model. However, when m1 > 2.11M⊙ the BF in
favor of SV starts increasing and it diverges around
m1 ¼ 2.35M⊙. At this point, the chirp mass of the system
is so large that it cannot be matched by a system with both
masses below 2.11M⊙. Beyond this point, SV222 cannot
produce any systems with the correct chirp mass of the
injected signal.
To illustrate this transition we plot the 2 − D scatter plot

of the chain points in the m1 −m2 plane in Fig. 9 for m1 ¼
1.92M⊙ and m1 ¼ 2.34M⊙. The red boxes mark the
injected masses and the vertical line is the maximum mass
SV222 can support. The scatter plots have support only
along constant chirp mass lines. For m1 ¼ 1.92M⊙ most
points fall on the left of the vertical line, and SV222 can
provide a good match for them. However, as we increase
m1, more and more points move beyond SV222’s maxi-
mummass, resulting in BFs that favor it less and less [recall
that the BF, as given in Eq. (5), is the ratio of the points in
SV222 over the points in SV]. When m1 ¼ 2.34M⊙ only a
small number of points can be supported by SV222, and we
recover very strong BFs in favor of SV. If we increase the

mass even more, no points fall on the left of the vertical
line, and the BF goes to infinity.

E. Noise curves

Apart from the Zero-Det., High-P. noise configuration,
there are a few other tuned noise curves for aLIGO [73].
Among them, the NSNS Optimized configuration gives the
optimal SNR for a NSNS coalescence, while the high
frequency one achieves the best sensitivity around 1000 Hz.
Figure 10 shows these 3 noise curves. The NSNS Opt.
noise curve is tuned to give the highest SNR by reducing
the noise levels around (60–500) Hz, however this comes at
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FIG. 8. BF in favor of SV (a kaon-less EoS) compared to
SV222 (a kaon EoS) as a function of m1 for m2 ¼ 1.9M⊙ with
SNR ¼ 30.
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FIG. 10 (color online). Sensitivity curves of various aLIGO
configurations. The High-Freq. optimized curve (blue dashed
line) is very sensitive in a small window around 1000 Hz, but it
has much higher noise at lower frequencies. The NSNS Opt.
noise curve (red dotted line) has slightly lower noise at frequen-
cies below 600 Hz, but much higher noise above this. EoS effects
become important at frequencies above 400 Hz.
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the expense of higher noise in the kHz region. The finite-
size effects that we are looking for manifest themselves at
frequencies above 400 Hz, suggesting that NSNS Opt. is
suboptimal for EoS determination. On the other hand, the
High F. configuration has the lowest noise in a small
window around 103 Hz, but it is clearly inferior for lower
frequencies. This loss of SNR at low frequencies makes its
suitability for EoS studies questionable.
Figure 11 demonstrates how the standard High-P., Zero-

Det. configuration is the optimal noise curve for measuring
the EoS both for systems of constant SNR (top panel) and
for systems at the same distance (bottom panel). We plot the
BF for a system with the same parameters (apart from the
distance in the top panel) achieved with the 3 noise
configurations. In the constant distance case, NSNS Opt.
achieves the best SNR value while High F. has the worst, as
expected. In both cases, the lower high-frequency noise of
the Zero-Det., High-P. configuration together with its low-
enough noise at lower frequencies outperforms both tuned
configurations in EoS extraction. This is another manifes-
tation of the effect discussed in [80]; when we are looking
for an effect that appears only at certain frequencies, it is
not the total SNR that matters, but the SNR accumulated in
those frequencies.

IV. CONCLUSIONS

We studied whether future GW data from the advanced,
ground-based detectors will allow us to learn about the
internal composition of NSs. We find that aLIGO can
efficiently distinguish between NSs with EoSs that differ at
relatively low to moderate central densities. This is the case,
for example, for EoSs that model just pure quark matter.

If the NS is a hybrid of normal and quark matter, higher
SNR values are required, as well as relatively strong
interactions between the quarks. On the other hand,
aLIGO will not be able to efficiently distinguish between
NSs with EoS that differ only at high central densities. This
is the case, for example, for EoSs that model normal matter
and those that include a hyperon or a kaon condensate in
the inner core. In this case, aLIGO would require a very
loud detection to be able to discern between normal and
exotic matter NSs.
In this paper, we considered kaon, hyperon, and hybrid

EoSs with exotic matter parameters within the range
allowed from experiments and theoretical calculations, that
show relatively large difference from the corresponding
normal matter EoS. However, these exotic matter param-
eters can be varied within their experimental range to
construct exotic matter EoSs that are more similar to their
corresponding normal matter EoS. If one were to margin-
alize the BFs over such exotic matter parameters by
considering as many exotic matter EoSs as possible with
different choices of parameters, calculating the BFs and
taking the average, the main results in this paper would still
hold. In fact, such an analysis would strengthen our
conclusion since one would find that it would be more
difficult for aLIGO to distinguish between normal and exotic
matter EoSs than the results presented in the main text.
Our results could be improved if an accurate description

of the merger, where the finite size effects are more
prominent, is included in the models. For example, the
effect of hyperons and strange quark matter on GWs from
merging NS binaries have been studied e.g. in [103] and
[104] respectively. However, NS mergers always occur at
kHZ frequencies,7 where the detector sensitivity is lower
and it is the inspiral phase that falls in the most sensitive
frequency band. Moreover, to this day, no complete
template bank of NSNS mergers exists. It would be
interesting to study how much information can be extracted
from the merger phase, and how this could aid EoS
determination by carrying a full inspiral-merger analysis.
As a side note, we find that the aLIGO noise con-

figuration that maximizes the gain of relevant physical
information about NS EoS is the standard Zero-Detuned,
High-Power one. This is perhaps contrary to the belief that
a high-frequency tuned noise configuration would do best.
The reason why the Zero-Detuned, High-Power configu-
ration does better is that the finite-size effects that depend
on the interior composition of the stars accumulate from
roughly a few hundred Hz all the way up to merger, and not
in a narrow band in the kHz range. Of course, these effects
are much smaller at hundreds of Hz than at contact,
however, the noise configuration that accumulates the most
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FIG. 11. BF for the same system with the different aLIGO noise
curves. In the top panel we keep the SNR constant, while at the
bottom panel we keep the luminosity distance constant. The SNR
to which this distance corresponds with each noise curve is
indicated in the plot. In both cases, the Zero-Det., High-P.
configuration gives the highest BFs at these distances and SNRs,
making it the optimal noise curve for EoS studies.

7The NS merger frequency cannot be pushed arbitrarily low
since the NS mass cannot exceed roughly 3M⊙ by causality.
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SNR when finite-size effects are non-negligible is the
Zero-Detuned, High-Power one.
The above picture could, again, be altered if the merger

was included. Numerical relativity studies [103–116] have
shown that the EoS leaves an important imprint in the
merger and post-merger phases in the form of resonantlike
features in the Fourier GW amplitude due to oscillations of
hypermassive NSs. For such features that spike in a very
narrow band, it may be that a high-frequency tuned noise
curve would be best. As of today, it is unclear how much
physical information could be extracted from such very
high frequency features.
In our study we attempted to focus on physical questions

of model selection as opposed to analyzing all possible
EoSs constructed. There may exist other interesting physi-
cal features of NS interiors, other than the ones studied
here, that might be worth investigating. To discover what
other features would be interesting to measure, a stronger
synergy between the GW and the nuclear physics com-
munity should be encouraged.
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APPENDIX A: EOS CLASSIFICATION

In this appendix, we classify various EoSs into several
categories depending on their physics/compositions and
methods used to derive them [117,118], and describe each
class briefly. The basic properties of each class are
summarized in Table III.

1. Normal matter EoSs

First, we focus on EoSs with normal matter, namely
neutrons, protons, electrons and muons. The EoS can be
calculated as follows. In the core region, the total energy
density of the npeμ matter is given by

ϵðnn; np; ne; nμÞ ¼ ϵNðnn; npÞ þ nnmnc2 þ npmpc2

þ ϵeðneÞ þ ϵμðnμÞ; ðA1Þ

where ni and mi (i ¼ n, p, e, μ) correspond to the number
density and the mass of the npeμ matter respectively.

ϵNðnn; npÞ represents the total nucleon contribution, calcu-
lated from different methods for treating the many-body
problem with the effective nucleon nucleon interaction
(NNI) model constructed based on existing experimental
data. ϵeðneÞ and ϵμðnμÞ are the energy densities of electrons
and muons respectively, which one treats as free Fermi
gases since Coulomb contributions are negligible compared
to the kinetic energies. Equilibrium conditions on chemical
potentials μi (i ¼ n, p, e, μ) for npeμ matter with respect to
weak interactions are given by μn ¼ μp þ μe and μμ ¼ μe
with μj ¼ ∂ϵ=∂nj. Together with charge neutrality,
np ¼ ne þ nμ, one can express ni with the baryon density
n ¼ nn þ np. This means that one has the total energy
density ϵ only in terms of n. The pressure can be derived
from the first law of thermodynamics given by

pðnÞ ¼ n2
d
dn

�
ϵðnÞ
n

�
: ðA2Þ

a. (Ia) Variational chain summation method: AP4, GCR

To calculate the EoS in the nonrelativistic limit, we need,
in principle, to derive the energy of each component of
nuclear matter by solving the many-body Schrödinger
equation. To minimize complexity, Pandharipande [62]
proposed to estimate the total energy E of the system by
numerically finding the correlation function in the wave
function Ψ that minimizes E ¼ ðΨ; HΨÞ=ðΨ;ΨÞ, where (,)
denotes the inner product and H is the Hamiltonian.
This variational method with certain constraints on the

correlation function reduces to solving a simplified
Schrödinger equation with an interaction potential that
depends on the baryon density n. Solving this equation and
performing a cluster series expansion on the Hamiltonian to
keep up to two-body clusters (namely, neglecting three-
body clusters and higher), one obtains EðnÞ, which is the
sum of the kinetic and potential energies. From this energy,
one can easily derive the pressure using Eq. (A2).
AP4 [84] uses the Argonne v18 (AV18) NNI model [119]

and the Urbana IX (UIX) model of TNI [120]. The former
is obtained by fitting the proton-proton and proton-neutron
scattering data from the Nijmegen group [121] and is
expected to include all leading many-body correlation
effects. AP4 further includes the relativistic 1PN boost
correction to the AV18 model.
GCR [100] uses the quantum Monte Carlo method [122]

to systematically study the effect of TNIs on the EoS by
varying the strength of such interactions and the range of
the short-range TNI force. Due to the complexity of the
method, the EoS is constructed for pure neutron matter. The
authors use the same NNI model as AP4 and effectively
take relativistic effects into account by assuming that such
effects have a similar density dependence to TNIs, as
shown in [84]. Below n < 0.08 fm−3, the EoS is matched to
the crust EoS [123–125].
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b. (Ib) Skyrme-Hartree-Fock (SHF) models:
SV, SGI, SkI4

SHF EoSs are constructed by using a Hartree-Fock
approximation with effective, Skyrme type NNI models
[63]. The ground state energy of nucleon matter is given by
hΨ0jĤN jΨ0i, where Ψ0 is the ground state wave function
that includes nucleon correlations and minimizes the
energy, while ĤN is the bare nuclear Hamiltonian including
NNIs and TNIs. The mean-field scheme approximates this
energy as hΦ0jĤeff

N jΦ0i ¼
R
HðrÞd3r, where Φ0 is the

Hartree-Fock wave function, Ĥeff
N is the effective nuclear

Hamiltonian and H is the Hamiltonian density. The
standard Skyrme type model uses the parametrized
Hamiltonian density [85,126–128] including both local
and nonlocal terms, density-dependent terms and a spin-
orbit interaction. Such a model has up to 10 free parameters
that are determined by fitting to experimental data. Apart
from these ten parameters, H also depends on the neutron
and proton local matter, kinetic and spin densities, which is
given through the Hartree-Fock wave functions.
The SV NNI model [129] uses five out of ten parameters

to fit experimental data of the total binding energies and
charge radii of magic nuclei (forming complete shells
within nuclei), and it does not include three-body inter-
actions. The SGI NNI model [126] improves previous
models so that it predicts reasonable values for the
incompressibility, spin and spin-isospin Landau parameters
and pairing matrix elements. The SkI4 NNI model [86]

includes an additional parameter in the spin-orbit term such
that it can fit the measurement of charge isotope shifts in Sr
and Pb isotopes.

c. (Ic) Brueckner-Hartree-Fock (BHF) models:
DBHFð2ÞðAÞ, MPa

The effective NNI in BHF models is obtained through
the G-matrix Gðn;ωÞ (where ω represents the unperturbed
energy of the interacting nucleons) by solving the Bethe-
Goldstone equation self-consistently [130]. Such an equa-
tion depends on the bare NNI potential and the single
particle energy. The only parameters in the theory are those
that appear in the former while in the nonrelativistic case,
the latter is given by the sum of the kinetic energy and the
single particle potential as eðkÞ ¼ k2=2mþUðk; nÞ withm
representing the bare nucleon mass. The Brueckner-
Hartree-Fock (BHF) approximation for Uðk; nÞ is given by

Uðk; nÞ ¼
X
k0≤kF

hkk0jG½n; eðkÞ þ eðk0Þ�jkk0ia; ðA3Þ

where kF represents the Fermi momentum. The subscript
“a” refers to the antisymmetrization of the matrix element.
In the BHF approximation, the energy per nucleon is given
by [130]

E
A
¼ 3k2F

10m
þ 1

2A

X
k≤kF

Uðk; nÞ; ðA4Þ

with A representing the nucleon number.

TABLE III. Properties of each EoS class. The upper half corresponds to the EoSs with normal matter only, while
the lower half corresponds to those with exotic matter. The first column shows the classification number while the
second column is an example EoSs within each class. The third column describes the method or model that is
adopted to calculate each EoS. The fourth column shows the composition of matter, where H, K, π, Q refer to
hyperon, kaon, pion and quark, respectively. The fifth column presents whether relativistic effects have been taken
into account (GCR effectively takes relativistic effects into account by assuming such effects have a similar density
dependence to the short-range TNIs), while the final column shows whether three nucleon interactions are included.
All the EoSs listed here are valid only at zero temperature.

Class EoS Method/Model Composition Relativistic TNI

Ia AP4 [84] Variational n, p, e, μ 1PN Yes
Ia GCR [100] Variational n (Yes) Yes
Ib SV [85] SHF n, p, e, μ No No
Ib SGI [85], SkI4 [86] SHF n, p, e, μ No Yes
Ic DBHFð2ÞðAÞ [87] BHF n, p, e, μ Yes No
Ic MPa [88] BHF n, p, e, μ No Yes
Id G4 [89], GA-FSU2.1 [90] RMF n, p, e, μ Yes No

IIb SGI-YBZ6-SΛΛ3 [91], SkI4-YBZ6-SΛΛ3 [91], SHF n, p, e, μ, H No Yes
IIc NlY5KK� [87], BHF n, p, e, μ, H No No
IIc MPaH [88], BHF n, p, e, μ, H No Yes
IId H4 [89] RMF n, p, e, μ, H Yes No
IIIb SGI178 [85] SHF n, p, e, μ, K No Yes
IIIb SV222 [85] SHF n, p, e, μ, K No No
IIId GA-FSU2.1-180 [90] RMF n, p, e, μ, K Yes No
IVa ALF4 [92], ALF5 Variational n, p, e, μ, π, Q 1PN Yes
IVa GCR-ALF Variational n, Q (Yes) Yes
V SQM3 [93] MIT bag Q (u, d, s) Yes � � �
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In the relativistic model, one introduces a strongly
attractive scalar component and a repulsive vector compo-
nent in the nucleon self-energy, which can be self-
consistently obtained by solving a modified Thompson
equation [64]. Such components add relativistic corrections
to the nucleon mass and the single particle energy, which
then modifies the G matrix and the energy per nucleon. The
pressure is again obtained from the first law of thermody-
namics, given in Eq. (A2).
DBHFð2ÞðAÞ [87] is constructed by solving the coupled

Bethe-Saltpeter equations in the rest frame of nuclear
matter using the Bonn A potential [131] within the
“reference spectrum” approximation, which assumes that
the values of self-energies are frozen at the Fermi momen-
tum at each total baryon density. Nucleons interact through
exchanges of two scalar (σ, δ), two vector (ω, ρ) and two
pseudoscalar (η, π) mesons.
MPa [88]8 is constructed within the nonrelativistic BHF

model with three-nucleon interactions taken into account.
The NNI is described by the extended soft core model [132]
which explicitly includes two-meson and meson-pair
exchanges. TNIs have two parts, repulsive and attractive.
In particular, the former is important to make the EoS stiffer
so that it can support NSs with a mass larger than 2M⊙. The
three-nucleon repulsive (TNR) part is modeled by the
multi-Pomeron exchange potential including the triple
and quartic Pomeron exchange, where the Pomeron is
related to an even number of gluon exchanges. The strength
of the TNR part is determined from 16Oþ 16O elastic
scattering experiments [133,134]. The three-nucleon attrac-
tive part is added such that it reproduces the nuclear
saturation property [135]. Having such an interaction
model at hand, one can calculate the G-matrix, and in turn
the EoS with chemical equilibrium conditions, charge
neutrality and baryon number conservation.

d. (Id) Relativistic mean field (RMF) theory:
G4, GA-FSU2.1

Reference [89] constructs the G4 EoS, where the authors
model the low-energy strong nuclear interaction as the
leading exchange of mesons and baryons. One starts with
the construction of a relativistically covariant Lagrangian,
which includes free baryons, leptons, σ, ω and ρ mesons,
the tree level meson-baryon interactions and perturbative
self-interactions for the σ meson. The theory is a phenom-
enological low-energy effective field theory. Such a theory
has a small number of parameters, which are determined
from experiments. The fields are replaced by their mean
values, assuming that the bulk matter is static and homo-
geneous. The derivatives of the fields with respect to time
and space also vanish, which simplifies the Euler-Lagrange
equations. Such equations are combined with those of

charge and baryon number conservations and β-equilibrium,
to yield the Fermi momenta and meson fields as functions
of the baryon density. One then uses these solutions to derive
the energy and pressure.
Gupta and Arumugam [90] constructed an EoS using the

effective field theory-motivated RMF (E-RMF) model
[136], which has a few additional couplings on top of
the standard RMF models. The effective Lagrangian in the
E-RMF model is obtained in a power series of fields and
their derivatives to a certain order, and all the nonrenor-
malizable couplings are made to be consistent with the
symmetries of quantum chromodynamics (QCD). The
E-RMF model can simultaneously explain finite nuclei
and infinite matter [137]. In this paper, we use the EoS in
[90] with the FSU2.1 parameters for the nucleon-meson
coupling constants, which we call the GA-FSU2.1 EoS.

2. EoSs with exotic matter

Let us now consider EoSs that also include exotic matter,
like hyperons, kaons and quarks.

a. (IIb) Hyperons with SHF Models:
SGI-YBZ6-SΛΛ3, SkI4-YBZ6-S

Reference [91] included the ΛΛ hyperon interactions into
a few Skyrme-type EoSs, in particular, SGI and SkI4. As in
constructing SHF models with normal matter components,
Ref. [91] parametrized the Hamiltonian density for a Λ
hyperon [138] including the ΛΛ interaction [139], whose
parameters are again determined from experiments. Several
sets for these parameters exist [138,140–142], including the
YBZ6 model [140] for the parameters associated with the
NΛ interaction and the SΛΛ3 model [139] for the ΛΛ
interaction. On top of these Skyrme-type interaction poten-
tials, the authors in [91] introduced a finite-range force
model for the ΛΛ interaction. This is because the binding
energies calculated from the Skyrme-force models are not
fully consistent with experimental data. Parameters in such a
non-Skyrme-type interaction are determined from the mea-
sured binding energy of 6

ΛΛHe [143].
Based on these interaction potentials, the EoSs are

calculated under β-equilibrium conditions, charge neutral-
ity and baryon number conservation. The EoS constructed
with the SGI (SkI4) NNI model, the YBZ6 model for the
NΛ interaction and the SΛΛ3 model for the ΛΛ interaction
is called the SGI-YBZ6-SΛΛ3 (SkI4-YBZ6-SΛΛ3) EoS.

b. (IIc) Hyperons with BHF models: NlY5KK�, MPaH

The NlY5KK� EoS [87] is constructed by extending
DBHFð2ÞðAÞ to include the effect of hyperons (Λ, Σ− and
Ξ−) with the vector K� and pseudoscalar K mesons which
induce the baryon-exchange and baryon-transition proc-
esses. The hyperon-meson coupling constants are deter-
mined from SU(6) symmetry [144].

8In this paper, we refer to the MPa EoS without hyperons as
“MPa” and that with hyperons as “MPaH.”
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The MPaH EoS is an extension of the MPa EoS that
includes hyperons (Λ and Σ−). This EoS is constructed
under the assumption that TNR-like repulsive interactions
among three nucleons work universally for HNN, HHN,
HHH (as well as NNN), where N and H refer to a nucleon
and hyperon, respectively.

c. (IId) Hyperons with RMF theory: H4

Reference [89] constructs EoSs with hyperons using
RMF theory by adding such effects on top of the G4 EoS.
Hyperons are produced at roughly twice nuclear density.
The most relevant hyperons are Λ and Σ− hyperons, which
have the smallest masses. The hyperon-meson couplings
are taken to be the same among all hyperons and are smaller
than those between nucleons and mesons. The H4 EoS is
constructed by setting ð ~K;m�=m; xσÞ ¼ ð300 MeV; 0.70;
0.72Þ, where ~K, m, m� and xσ represent the incompress-
ibility, the bare nucleon mass, the effective nucleon mass
and the ratio between the hyperon-meson and nucleon-
meson couplings for the σ meson, respectively.

d. (IIIb) Kaon condensates with SHF models:
SV222, SGI178

For a given density, all the parameters in the nucleon
and lepton Hamiltonian densities are determined from the
β-equilibrium and charge neutrality conditions, and the
properties of finite nuclei [145]. The kaon Hamiltonian
density consists of the kinetic and mass terms of the kaon
and the kaon-nucleon interactions, adopting a SU(3) non-
linear chiral model first proposed in [146]. One of the
parameters in the kaon Hamiltonian density, which corre-
sponds to the magnitude of the expectation value of the
kaon condensate, is determined by minimizing the total
energy density. The pressure is derived from Eq. (A2). The
three remaining parameters, a1, a2 and a3 in the kaon
Hamiltonian density are chosen as a1ms ¼ −67 MeV,
a2ms ¼ 134 MeV [147] and a3ms ¼ −222 MeV for an
SV EoS (SV222) and a3ms ¼ −178 MeV for an SGI EoS
(SGI178), with ms representing the mass of the strange
quark.

e. (IIId) Kaon condensates with RMF theory:
GA-FSU2.1-180

Reference [90] also constructed an EoS based on the
E-RMF theory with kaon (and antikaon) condensates (K−

and K̄0). On top of the effective Lagrangian for nuclear
matter, the following Lagrangian for kaon condensates are
added: LK ¼ D�

μK�DμK − m̄2
KK

�K, where K ¼ K− or K̄0,
m̄K represents the effective mass of kaons that depends on
the scalar meson fields and Dμ is the differential operator
that depends on the vector and isovector meson fields. The
presence of kaon condensates modifies the expectation
values of the meson fields that are used to replace the fields
themselves in the Lagrangian. The total energy density is

given by ϵ ¼ ϵN þ ϵK with ϵK ¼ m̄KðnK− þ nK̄0Þ, where
ϵN and ϵK represent the energy density of the nucleon phase
[148] and kaon condensates respectively, while nK− and
nK̄0 are the number density of K− and K̄0. On the other
hand, the expression for pressure is unaffected by the
presence of kaon condensates [149]. In this paper, we use
the EoS with the FSU2.1 parameters and the optical potential
of a single kaon in infinite matter as UK ¼ −180 MeV,
which we call the GA-FSU2.1-180 EoS.

f. (IVa) Hybrid nuclear and quark matter with
variational method: ALF4, ALF5, GCR-ALF

Reference [92] constructs the hybrid EoS of the ALF
family for nuclear and quark matter. The former is modeled
using the APR EoS described above. The EoS in the low
density region is modeled by the standard tabulated EoS of
[123,124]. The quark matter EoS is based on a physical
model, which takes into account both phases of normal
unpaired quark matter and color-flavor-locked (CFL) quark
matter. In the latter, quarks form Cooper pairs and one-to-
one correspondence arises between three color pairs and
three flavor pairs. The phase with the lower free energy is
favored.
Neglecting perturbative QCD corrections, the free

energy (or the grand potential) density of unpaired quark
matter ΩunpðμqÞ (with μq representing the chemical poten-
tial for a quark) contains the kinetic contribution from a
degenerate free gas of three colors of relativistic quarks and
the negative vacuum pressure represented by the bag
constant B. Such a constant depends on the transition
density nc at which the quark matter EoS is stitched to the
nuclear matter one. The authors also introduced a QCD
inspired term [72], which is proportional to ð1 − cÞμ4q.
Here, c is the QCD correction parameter where c ¼ 0
corresponds to noninteracting, free quarks. Reference [72]
carried out a perturbative calculation and found c ∼ 0.37,
although higher order corrections in the strong coupling
constant may be important for hybrid stars. c determines
the maximum mass of a star with a hybrid EoS and such a
mass becomes larger as one increases c.
Regarding CFL quark matter, the free energy can be

decomposed into three parts:

ΩCFLðμq; μeÞ ¼ Ωneutral
CFL ðμqÞ þ Ωπ

CFLðμq; μeÞ
þΩleptonsðμeÞ: ðA5Þ

The first term, Ωneutral
CFL ðμqÞ, denotes the contribution from

the neutral CFL phase. The second term represents the
contribution from pion condensates. Such condensates
arise when the electron chemical potential exceeds the
mass of the π− meson, the lightest negatively charged
meson in the CFL phase [150–152]. Finally, the third term
is the contribution from electrons and muons. The quark
matter EoS is then constructed by using the thermodynamic
relations:
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p ¼ −Ω; ϵ ¼ Ω −
dΩ

d ln μq
: ðA6Þ

The matching between the quark and nuclear matter EoS is
carried out by imposing global charge neutrality and
pressure balance conditions between the two matter phases
[153,154], where the latter condition specifies μe in terms
of μq.
Selected ALF EoSs (ALF1–4) were used in [118]. In

particular, ALF4 has ðnc; cÞ ¼ ð4.5n0; 0.3Þ where nc and n0
represent the transition and saturation densities, respectively.
The m-R relation for the ALF4 EoS is based on the EoS data
constructed by the authors in [92] and is slightly different
from that used in [118]. It seems that the latter was
constructed by artificially stitching the AP4 EoS to the data
constructed in [92], but such a procedure changes some part
of the mixed phase into the pure nuclear matter phase, which
is energetically more disfavored than the mixed phase (so
this artificial pure nuclear matter phase is unstable).
Reference [118] claims that ALF2 can support a 2M⊙

NS (and has a typical NS radius of ∼13 km) but we do not
use this EoS due to the following uncertainty. According to
[118], this EoS has parameters ðnc; cÞ ¼ ð3n0; 0.3Þ but
Fig. 6 of [92] shows that the maximum mass with such a
choice of parametrization is below 2M⊙ and a typical
radius is ∼11 km. The ALF2 EoS data used in [118] has a
transition of “AP4 → CFL → mixed phase → CFL” as
one increases the density, although it is not clear if such
a transition is physically reasonable (ALF1, 3 and 4 all have
a transition of “AP4 → mixed phase → CFL”). Instead,
following [92], we constructed a new ALF EoS (ALF5)
with ðnc; cÞ ¼ ð2n0; 0.4Þ that can support a 2M⊙ NS.
We also constructed new hybrid EoSs (GCR-ALF) by

stitching the nuclear matter GCR EoSs [100] with the quark
matter EoSs in [92]. Instead of imposing the global charge
neutrality condition, we impose charge neutrality on each
nuclear matter and quark matter (CFL) phase [92]. The
charge neutrality on the CFL phase leads to the absence of
electrons (and muons and pion condensates), thus μe ¼ 0
and Ωπ

CFL ¼ 0 ¼ Ωleptons in Eq. (A5). The nuclear and
quark matter EoSs are matched at a chemical potential
where the pressure between the two phases becomes
identical and such a construction leads to the absence of
the mixed phase [92]. As an example, Fig. 6 presents the m-
R relation for a GCR-ALF EoS with a symmetry energy of
Esym ¼ 33.8 MeV in the nuclear matter EoS (with the crust
EoS in [125]) and ðnc; cÞ ¼ ð2n0; 0.35Þ in the quark matter
EoS, together with the one for the corresponding GCR EoS.
We have also constructed GCR-ALF EoSs with other
parametrizations, but found that the difference in the
m-R relation between GCR and GCR-ALF EoSs is
typically smaller than that shown in Fig. 6.

g. (V) Strange quark matter: SQM3

SQM EoSs are constructed from the MIT bag model.
When one can neglect the mass of quarks, the free energy

density is given by Ω ¼ Cqμ
4 þ B with Cq representing a

constant. From Eq. (A6), the EoS for quark matter becomes
p ¼ 3ðϵ − 4BÞ. The prefactor “3” changes if one includes
the effect of the strange quark mass ms. SQM3 assumes
ms ¼ 50 MeV and B ¼ 57.39 MeV=fm3, where the latter
corresponds to the minimum bag constant allowed from the
stability of neutrons with respect to a spontaneous fusion
into strangelets [155].

APPENDIX B: BAYES FACTORS AND
PRIOR CUTOFFS

The NSNS Optimized noise curve has higher noise levels
at high frequencies than the Zero-Detuned, High-Power
one. Therefore, as far as EoS determination is concerned,
the likelihood calculated with a NSNS Opt. noise curve
does not contain a lot of information in the high-frequency
part of the waveform where finite-size effects become
important. Calculating BFs in a regime where it is not the
likelihood, but the prior that dominates the results can lead
to an interesting and rather counterintuitive effect: BFs that
initially decrease with increasing SNR. In other words, as
the signal strength increases, the correct model is preferred
less and less.
Figure 12 shows the BF in favor of SV compared to

SV222 for the ð1.95; 1.9ÞM⊙ system calculated with the
Zero-Det., High-P. curve (black) and the NSNS Opt. curve
(red). The black line is the same as the black dashed line
of Fig. 3. The red line presents some rather interesting
behavior. At low SNR, the BF decreases with the SNR,
while after SNR ¼ 40 it starts increasing, like one would
expect. In order to understand this effect, consider Fig. 13,
where we plot the 2 − D scatter plot of the chain points in

10 20 30 40 50 60
SNR

1

1.5

2

2.5

3

3.5

4

B
F

Zero Det, High P.
NSNS Opt.

FIG. 12 (color online). BF in favor of SV compared to SV222
for the system with masses (1.95, 1.9) with the Zero-Detuned,
High-Power sensitivity curve (black) and the NSNS Optimized
curve (red). For high SNR values, where the likelihood domi-
nates, the detuning curve gives higher BFs. For lower SNR values
with the NSNS Opt. curve, we encounter the counterintuitive
effect of decreasing BFs with increasing SNR values.
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the m1 −m2 plane for the system used in Fig. 12, analyzed
with NSNS Opt., and SNR 10 (black dots) and 40 (red
dots). The vertical line indicates the maximum mass the
competing model SV222 can support. This maximum mass
is a hard cutoff on the prior mass of SV222; no system with
masses higher than the maximum mass can be produced by
SV222, and the model reduces to noise. This effectively
means that SV222 has no posterior weight in that region,
and all these points correspond to SV.
As the SNR increases the posterior width decreases. At

SNR ¼ 40 there are very few points above the mass cutoff.
That means that with increasing SNR SV222 suffers less
and less from this cutoff in its mass prior. This explains why
the BF in favor of SV decreases as we increase the SNR. Of
course, at some values of the SNR the differences between
the models will start dominating over the prior cutoff, and
the BF will again start increasing with the SNR. Figure 12
shows that in this case this is true for SNR > 40.

APPENDIX C: TOY MODEL

To demonstrate the rather counterintuitive effect of BFs
that favor the wrong model, or decrease with the SNR, we
construct a simple toy problem, thus obtaining a more
robust explanation of these effects than the 2-D scatter plots
presented in the previous appendix. Imagine we receive N
data points from a very simple signal that obeys dðfÞ ¼ f
and we try to match it with two competing 1 − D models
h1ðfÞ ¼ af and h2ðfÞ ¼ af1.5, where a is the parameter of
the models. The likelihood for model i is

Li ¼
1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
XN ½dðfÞ − hiðfÞ�2

2σ2

�
: ðC1Þ

The parameter σ is the standard deviation of the data; in
GW language, it is 1=SNR. Clearly h1 is the correct model
and L1 is maximized when a ¼ 1. On the other hand, h2
cannot fit the signal perfectly; L2 is maximized for a ¼
1.12 with a residual that depends on σ.
Now imagine that the two models have different prior

ranges for the parameter a. In the case of h1 we have
a ∈ ð0; 2Þ, while h2 allows a ∈ ð0; 2κÞ, where κ is an
arbitrary number. The evidence for each model is propor-
tional to its likelihood integrated over the range of
parameter a, while the BF in favor of h1 (the correct
model) is the ratio of the two evidences. Figure 14 shows
the BF in favor of h1 as a function of the SNR (¼ 1=σ) for
three different values of κ. The case κ ¼ 1 corresponds to 2
models with the same parameter prior range, while κ ¼ 0.7
and κ ¼ 1.4 are similar to comparing EoS models with
different maximum allowed mass. More specifically, κ ¼
0.7 corresponds to the case where the wrong model has the
smaller prior range (the right panels of Figs. 3, 5, and
Fig. 12), while κ ¼ 1.4 corresponds to the case where it is
the correct model that has the smaller prior range (the left
panels of Figs. 3 and 5).
The κ ¼ 1.4 case is easier to understand. The likelihood

of the wrong model h2 is integrated over a larger parameter
region a ∈ ð0; 2.8Þ than the correct model where
a ∈ ð0; 2Þ. When the SNR is low and the models are not
very different from each other, this can lead to a larger
evidence for the wrong model. As the signal strength
increases the differences between the two models will start
dominating the evidence and the correct model will end up
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FIG. 13 (color online). 2D Scatter plot in them1 −m2 plane for
SNR 10 (black) and 40 (red) with the NSNS Opt. sensitivity curve
and with the same system as in Fig. 12. The vertical line denotes
the maximum SV222 mass. Any points on the right of this line
necessarily correspond to the SV model.
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FIG. 14 (color online). BF in favor of h1 as a function of the
SNR for κ ¼ 1 (red), κ ¼ 0.7 (black), and κ ¼ 1.4 (green). The
effect of the BF decreasing with increasing SNR is present in both
κ ¼ 1 and κ ¼ 0.7 cases, but it is more pronounced in the case
where the two models have a different parameter range. As the
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the SNR the limits of integration stop affecting the integral of the
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being preferred. Indeed we find that for SNR≳ 2 the BF
favors the correct model h1.
Both κ ¼ 0.7 and κ ¼ 1 lead to BFs that decrease with

increasing SNR, however, this effect is more pronounced in
the κ ¼ 0.7 case and it extends to higher values of SNR

making it easier to identify. When κ ¼ 1, one might expect
the Laplace approximation to the evidence to be reliable
since the posterior width on a is smaller than the prior
range. However, this is not the case: the likelihood for h2 is
not a Gaussian, and it is this small deviation from
Gaussianity that we see as a decreasing BF. To visualize
this effect, in Fig. 15 we plot the likelihood for h1 and h2
for different values of SNR. For low SNR values the
likelihoods are essentially the same and BF ¼ 1. However,
as the SNR increases the area under the red dotted line is
larger that the area under the red solid line, leading to a
small decrease in the BF in favor of h1. Clearly at
sufficiently high SNR the correct model will prevail and
the BF will start increasing in favor of h1.
When κ ¼ 0.7 the effect of BFs that decrease with SNR

is stronger and persists for higher values of SNR. Revisit
Fig. 15 and keep in mind now that the evidence for the
wrong model is obtained by integrating the likelihood up to
the black vertical line. As the SNR increases, the likelihood
for h2 is more peaked on the left of the vertical line, which
means that the area permissible by the prior cutoff
increases. This leads to an increase of the evidence of
h2 and a BF in favor of h1 that decreases. Clearly at some
point the differences between the models will overcome
this effect, and the correct model will prevail. For our toy
model this happens when SNR≳ 2.
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