Disentangling canid howls across multiple species and subspecies: Structure in a complex communication channel

Authors: Arik Kershenbaum, Holly Root-Gutteridge, Bilal Habib, Janice Koler-Matznick, Brian Mitchell, Vicente Palacios, & Sara Waller

NOTICE: this is the author’s version of a work that was accepted for publication in Behavioural Processes. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Behavioural Processes [VOL#124, (March 2016)] DOI: 10.1016/j.beproc.2016.01.006

Made available through Montana State University’s ScholarWorks scholarworks.montana.edu
Wolves, coyotes, and other canids are members of a diverse genus of top predators of considerable conservation and management interest. Canids show strongly cooperative behaviour, mediated in part by vocal communication. As such, they form an important model for the study of the evolution of human sociality and language. Many species are also the subject of conservation and management challenges, such as the critically endangered red wolf Canis rufus, and the grey wolf C. lupus where it comes into conflict with humans. Canid howls are part of a complex long-range communication channel, used both for territorial defence and group cohesion. Previous studies have shown that howls can encode individual and group identity. However, no comprehensive study has investigated the nature of variation in canid howls across the wide range of species. We analysed a database of over 2,000 howls recorded from 13 different canid species and subspecies. We applied a quantitative similarity measure to compare the modulation pattern in howls from different populations, and then applied an unsupervised clustering algorithm to group the howls into natural units of distinct howl types. We found that different species and subspecies showed markedly different use of howl types, indicating that howl modulation is not arbitrary, but can be used to distinguish one population from another. We give an example of the conservation importance of these findings by comparing the howls of the critically endangered red wolves to those of sympatric coyotes C. latrans, with whom red wolves may hybridise, potentially compromising reintroduced red wolf populations. We believe that quantitative cross-species comparisons such as these can provide important understanding of the nature and use of communication in socially cooperative species, as well as support conservation and management of wolf populations.

Suggested Reviewers: Eloise Deaux
Macquarie University
eloise.deaux@gmail.com

"I completed a Bachelor of Science, majoring in Brain, Behaviour and Evolution (Macquarie University, Sydney). Following, I completed an
Honours Degree, researching dingo acoustic communication. I am currently doing my PhD Degree, focusing on canid (dingoes and dogs) social behaviours. I am particularly interested in questions relating to the evolution of acoustic and visual signals mediating social interactions. My research also has a strong focus in applications to deal with animal conservation and welfare issues."

Simon Townsend
University of Zurich
simon.townsend@ieu.uzh.ch
Research interests
Animal vocal communication; acoustics; language evolution; syntax; phonology; social cognition; comparative psychology; animal behaviour; evolutionary anthropology; hormones; statistics

Robert Lachlan
Queen Mary University of London
r.f.lachlan@qmul.ac.uk
Research interests: The evolution of cultural communication systems in humans, and a disparate few groups of animals, communication systems are culturally transmitted. There is growing evidence that some of these systems, such as human speech and bird song, show deep homologies in their underlying genetics, development and neurobiology. I am interested in exploring why cultural transmission of communication signals evolves, focusing particularly on bird song as a model system. This is an inherently multidisciplinary endeavour, and has involved theoretical evolutionary analyses of the gene-culture coevolution between genes underlying development and cultural song traits; field behavioural experiments investigating why song is learned precisely; bioacoustic analysis of how constraints in song learning evolve; and evolutionary genomic analyses of the genes underlying song learning. Ultimately, I aim to tease apart the different evolutionary processes that have led to the incredibly precise cultural transmission of song that we see in many bird species.

Simon Gadbois
Dalhousie University
sgadbois@dal.ca
ANIMAL BEHAVIOUR ~ APPLIED OLFACTORY PROCESSING ~ MAMMALS (CANIDS) AND REPTILES (COLUMBIDS AND EMMYIDS) ~ SNIFFER DOGS FOR WILDLIFE CONSERVATION (SPECIES-AT-RISK) AND BIOMEDICAL APPLICATIONS

Opposed Reviewers:
Dear editors,

We are pleased to submit our manuscript "Disentangling canid howls across multiple species and subspecies: structure in a complex communication channel" for consideration in Animal Behaviour.

In our research, we performed a unique quantitative comparison of canid howling behaviour across multiple species and subspecies, using a database of recordings from a large number of sources. Rather than relying on subjective assessment of vocal sounds, we used analytical techniques to quantify a distance metric between pairs of howls, and unsupervised clustering to group howls into types.

We showed that different species and subspecies of Canis make use of howl types in very different ways, indicating that howl use is non-arbitrary, and could play an important role in population-level processes, and in subsequent conservation efforts. As an example, we also examined the behaviour of three closely related species, the critically endangered red wolf C. rufus, coyote C. latrans, and eastern timber wolf C. lupus lycaon, and showed that their vocal behaviour may indicate the level of hybridisation between these species.

We believe that such quantitative studies across a wide range of species and taxa can play a vital role in understanding the variation in behaviour, the evolution of distinct behaviours, and the conservation and management techniques that could help preserve biodiversity and reduce human-animal conflict.

We look forward to your response.

Yours,

Arik Kershenbaum
Disentangling canid howls across multiple species and subspecies: structure in a complex communication channel

AUTHORS

Arik Kershenbaum¹, Holly Root-Gutteridge², Bilal Habib³, Jan Koler-Matznick⁴, Brian Mitchell⁵, Vicente Palacios⁶, Sara Waller⁷

¹Department of Zoology, University of Cambridge, UK
²Department of Biology, Syracuse University, USA
³Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
⁴The New Guinea Singing Dog Conservation Society, Central Point, OR, USA
⁵The Rubenstein School of Environment and Natural Resources, University of Vermont, USA
⁶Instituto Cavanilles de Biodiversidad y Biología Evolutiva. University of Valencia, Spain
⁷Montana State University, Bozeman, MT, USA

CORRESPONDING AUTHOR: Arik Kershenbaum, arik.kershenbaum@gmail.com

WORD COUNT: 5376
ABSTRACT

Wolves, coyotes, and other canids are members of a diverse genus of top predators of considerable conservation and management interest. Canids show strongly cooperative behaviour, mediated in part by vocal communication. As such, they form an important model for the study of the evolution of human sociality and language. Many species are also the subject of conservation and management challenges, such as the critically endangered red wolf *Canis rufus*, and the grey wolf *C. lupus* where it comes into conflict with humans. Canid howls are part of a complex long-range communication channel, used both for territorial defence and group cohesion. Previous studies have shown that howls can encode individual and group identity. However, no comprehensive study has investigated the nature of variation in canid howls across the wide range of species. We analysed a database of over 2,000 howls recorded from 13 different canid species and subspecies. We applied a quantitative similarity measure to compare the modulation pattern in howls from different populations, and then applied an unsupervised clustering algorithm to group the howls into natural units of distinct howl types. We found that different species and subspecies showed markedly different use of howl types, indicating that howl modulation is not arbitrary, but can be used to distinguish one population from another. We give an example of the conservation importance of these findings by comparing the howls of the critically endangered red wolves to those of sympatric coyotes *C. latrans*, with whom red wolves may hybridise, potentially compromising reintroduced red wolf populations. We believe that quantitative cross-species comparisons such as these can provide important understanding of the nature and use of communication in socially cooperative species, as well as support conservation and management of wolf populations.

Keywords: Bioacoustics, Coyote, Dog, Howling, Jackal, Social communication, Wolf
The genus *Canis* comprises several species and subspecies that share many ecological and
behavioural similarities (Bekoff et al. 1981). Most are apex predators, and although some hunt in
packs and others alone, all species are strongly social, living in groups ranging in size from a handful
of close family members, e.g. coyotes *Canis latrans* (Bekoff 1977), to large groups of 20 or more
animals, e.g. Ethiopian wolves *C. simensis* (Sillero-Zubiri & Gottelli 1994). For humans, one of the
most familiar canid behaviours is the howl, a long-range communication channel thought to play a
role both in territorial advertising and in group cohesion (Theberge & Falls 1967; Harrington & Mech
1979; Harrington 1987). Howling is most familiar in grey wolves *C. lupus* (Harrington et al. 2003),
but all species in the genus produce howl-like vocalisations in addition to other, shorter range
communication, such as barks, yips, and growls (Cohen & Fox 1976). These diverse short-range
vocalisations are thought to mediate much of canid social behaviour, such as maintaining dominance
relationships, but it has been speculated that howling too plays a role in inter- and intra-group
dynamics (Harrington & Mech 1979; Jaeger et al. 1996; Gese 2001). Support for this hypothesis
includes recent studies showing that wolves recognise the howl vocalisations of familiar individuals,
and show changes in affective behaviour in response to the howls of individuals that have been
removed from the group (Mazzini et al. 2013; Palacios et al. 2015).
Canids of all species pose a number of management and conservation challenges. As apex predators,
canids have a major influence on prey populations, and changes in canid numbers can result in trophic
cascades (Elmhagen & Rushton 2007; Beschta & Ripple 2009). Some species, such as the Ethiopian
wolf (Sillero-Zubiri & Gottelli 1994) and the red wolf *C. rufus* (Paradiso & Nowak 1972) are
critically endangered, whereas the grey wolf *C. lupus* is frequently in conflict with human populations
due to livestock depredation (Sillero-Zubiri & Laurenson 2001), and golden jackals *C. aureus* and
domestic dogs *C. familiaris* are considered to be significant reservoirs of rabies (Seimenis 2008;
Davlin & VonVille 2012). Management of these issues requires an in-depth understanding of the
behavioural ecology of these species and subspecies, which would appear to be incomplete without an
understanding of the role of long-range vocal communication. In addition, phylogenetic relationships
in the genus as a whole are unclear (Bardeleben et al. 2005; Koepfli et al. 2015), with most component species being capable of producing fertile hybrids, and there is considerable lack of agreement over the status of several grey wolf subspecies and populations (Chambers et al. 2012). As a result, the possible role of vocal behaviour as an isolating factor (or otherwise) between populations is important for the conservation of genetic diversity in subspecies that, while genetically compatible, maintain considerable phenotypic adaptation to their local habitats (Chambers et al. 2012). Partly because of the lack of agreement on the taxonomic status of many canid species and subspecies, and partly for reasons of simplicity, in this paper we will use the term "species" as a shorthand for "species and subspecies".

Early studies of canid howling behaviour emphasised qualitative descriptions of howl types (McCarley 1975; Cohen & Fox 1976; Tembrock 1976; Lehner 1978) and overall acoustic characteristics, such as mean fundamental frequency and frequency range, as well as modulation shape measures (Theberge & Falls 1967; Tooze et al. 1990). Multiple variables describing changes in the frequency and amplitude of the howl over time can be used for individual discrimination, among which important discriminative variables are the mean, maximum, and coefficient of variation of the fundamental frequency, and the amplitudes of the various harmonics (Root-Gutteridge et al. 2014a; Root-Gutteridge et al. 2014b). However, there are reasons to consider that information exists in the precise frequency modulation of wolf howls, as well as in simpler acoustic characteristics. Firstly, howls are predominantly narrow-band vocalisations, meaning that most of the acoustic energy is concentrated at a small range of frequencies at any one time. Further, this well-defined frequency varies throughout the course of the howl (Figure 1). This "frequency modulation" is known to be used to encode information in other species with similar vocalisations; particularly bottlenose dolphins *Tursiops truncatus* (Janik & Slater 1998; Quick & Janik 2012), in which individual identity can be reliably extracted from the frequency modulation patterns of whistles (Kershenbaum et al. 2013). In addition, considerations of signal transmission indicate that long-range communication in an absorptive environment (e.g. forest) would tend to favour narrow-band frequency modulation over other encoding modalities (Henry & Lucas 2010). Therefore, we consider it appropriate to analyse the
frequency modulation of canid howls in a similar way to that of dolphin whistles, to test for
information content and characteristic differences between species and populations.

A few studies have examined frequency modulation in canid howls, e.g. in coyotes (Hallberg 2007)
and Iberian wolves (Palacios et al. 2007), by defining stereotyped modulation patterns such as,
"rising", "step down", and "warble to flat". However, these arbitrary categories may not be perceived
as distinct units by the focal animal (Kershenbaum et al. 2014), and are potentially subject to selective
bias by researchers focusing on "interesting" spectral patterns. Therefore, a thorough analysis of
frequency modulation must include (a) a quantitative measure of howl similarity (Deecke & Janik
2006), and (b) an objective method for grouping howls into distinct howl types. The latter requirement
is particularly acute, as a quantitative comparison between the vocal behaviours of different
populations is problematic if both repertoires include vocalisations of different qualitative types. For
example, comparing the howls of one population to the barks of another would be an unproductive
effort. Therefore, an alternative paradigm is required that takes into account the partitioning of a vocal
repertoire into distinct types. We propose that, where multiple distinct vocalisation types are used
with overlapping repertoires between populations, the only meaningful way to compare behaviour is
to compare the vocalisation type histograms, rather than compare the individual vocalisations. This
approach has also been carried out in previous studies of birdsong syntax (Jin & Kozhevnikov 2011).
In essence, we interpret the howl type usage histograms as a "fingerprint" of vocal behaviour.
In this work, we define and implement a howl similarity metric, as well as an automated clustering technique, and analyse a large database of over 6,000 howls from 21 different species of canids. We classify these howls into distinct types, and compare the relative use of this global repertoire by different populations, thereby testing for objective differences that distinguish between different species. Although we do not explicitly test for contextual reference in canid howling, our results show the diversity of use of different howl types, raising the possibility that specific types may be more common in some behavioural contexts than others.

METHODS

We collected a database of canid howling recordings from a wide range of sources. Altogether, we analysed 6,009 howls from 21 distinct species, from 207 sources. Recordings were made both of captive and wild animals. The number of sources for each species varied from one (dingo *C. lupus dingo*, Tibetan wolf *C. l. chanco*, and others) to 23 (eastern timber wolf *C. l. lycaon*). However, we excluded all species with only a single source to avoid confounding individual distinctiveness with species distinctiveness, providing a dataset with 13 distinct species from 131 sources. Of these, 2,005 howls were considered to be of sufficient quality for further analysis (no overlapping howls, sufficient signal strength). A breakdown of the recordings is given in Table 1. For each howl, we traced the frequency modulation using a combination of manual and automatic extraction tools (Kershenbaum & Roch 2013; Root-Gutteridge et al. 2014b). Each analysis was reviewed by both AK and HRG for validation.

<table>
<thead>
<tr>
<th>Canid species</th>
<th>Common name</th>
<th>Reference</th>
<th>Number of howls</th>
<th>Number of sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. aureus</td>
<td>Golden jackal</td>
<td></td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>C. latrans</td>
<td>Coyote</td>
<td></td>
<td>187</td>
<td>4</td>
</tr>
<tr>
<td>C. rufus</td>
<td>Red wolf</td>
<td>(Chambers et al.)</td>
<td>79</td>
<td>4</td>
</tr>
<tr>
<td>Wolf Species</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Year</td>
<td>Annotation</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Eastern wolf</td>
<td>C. lycaon</td>
<td>Eastern wolf</td>
<td>2012</td>
<td>(Chambers et al. 2012)</td>
</tr>
<tr>
<td>Grey wolf</td>
<td>C. l. occidentalis</td>
<td>Mackenzie Valley wolf</td>
<td>2012</td>
<td>(Chambers et al. 2012)</td>
</tr>
<tr>
<td>Mexican wolf</td>
<td>C. l. baileyi</td>
<td>Arctic wolf</td>
<td>2012</td>
<td>(Chambers et al. 2012)</td>
</tr>
<tr>
<td>European wolf</td>
<td>C. l. arctos</td>
<td>European wolf</td>
<td>2012</td>
<td>(Nowak 1995)</td>
</tr>
<tr>
<td>Iberian wolf</td>
<td>C. l. signatus</td>
<td>Iberian wolf</td>
<td>2012</td>
<td>(Vilà et al. 1999)</td>
</tr>
<tr>
<td>Indian wolf</td>
<td>C. l. pallipes</td>
<td>Indian wolf</td>
<td>2012</td>
<td>(Nowak 1995)</td>
</tr>
<tr>
<td>North African wolf</td>
<td>C. l. pallipes</td>
<td>North African wolf</td>
<td>2012</td>
<td>(Rueness et al. 2011)</td>
</tr>
<tr>
<td>Domestic dog</td>
<td>C. familiaris</td>
<td>Domestic dog (as companion animal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Guinea singing dog</td>
<td>C. familiaris</td>
<td>New Guinea singing dog</td>
<td></td>
<td>(Koler-Matznick et al. 2003)</td>
</tr>
</tbody>
</table>

Once the frequency modulation of the howls had been recorded, we compared every howl pairwise to generate a 2,005 x 2,005 matrix of howl similarity/dissimilarity. We used dynamic time warping (DTW) (Kruskal 1983) to deliver a quantitative metric of this distance (or dissimilarity) between every pair of howls. Dynamic time warping has been widely used for comparing frequency data such as these, particularly in the analysis of dolphin vocalisations (Buck & Tyack 1993; Deecke & Janik 2006; Sayigh et al. 2007). The DTW algorithm allows the time points of each sampled frequency measurement to vary freely, until an optimum match between the two curves is achieved. The amount of time-axis distortion necessary to achieve this match is then taken as a measurement of the quantitative difference between the curves. Using the dissimilarity matrix obtained by DTW, we applied the k-means unsupervised clustering algorithm to group the howls into natural clusters based on their similarity. We chose the appropriate number of clusters using a combination of cluster purity, measured as the mean cluster silhouette value (Rousseeuw 1987), and stability using a bootstrap technique; repeatedly applying the clustering to a random subset of 90% of the howls, and measuring similarity of the clustering results using normalised mutual information (Zhong & Ghosh 2005).
We then examined the usage of each of the different howl types by the 13 different species. As multiple recordings were obtained from the same individual, or from individuals within the same pack, potential issues of pseudoreplication arise if howls are directly compared to each other; howls from the same individual are likely to be more similar to each other than howls from separate individuals or from different packs. Therefore, rather than analysing howl difference distributions directly, we examined only differences in the use of different howl types, by calculating the proportion of howls that belong to each howl type, for each species. This provides a "fingerprint" of howl type usage, which can then be compared between species. We calculated the sum of squared differences between the howl type histograms of different sources (packs) within each of the 13 species, and used an exact test (Fisher 1925) to estimate the significance of the similarity within a species, and between species pairs. We randomised the howl type distributions 10^5 times within each species to generate a null distribution of sum of squared differences, and calculated the proportion of randomised differences that were less than the measured inter-species difference. We also identified the most common howl type in each species and examined various exemplar howls of this type. To test the ability of the howl type usage fingerprint to identify canid species, we measured the similarity between each source (pack) and mean histograms of each species (with the target source excluded), and recorded which species was most similar to the target source.

Finally, we examined more closely the similarity in the howling behaviour of two sympatric species, the red wolf and coyote. Red wolves and coyotes hybridise in the wild, which poses a threat to reintroduction programs for the critically endangered red wolf (Hinton et al. 2013; Gese et al. 2015). We tested for significant differences between the howls of these two species, to determine whether howling behaviour may potentially provide a form of behavioural isolation, or alternatively encourage admixing and introgression. We also compared these two species to a subspecies of grey wolf, the eastern timber wolf $C. l. lycaon$, whose taxonomic status is unclear, but is considered to be very closely related to $C. rufus$, if not conspecific (Wilson et al. 2000; Koblmuller et al. 2009; Chambers et al. 2012). We reclastered the DTW data, using only howls from the red wolf, coyote, and eastern wolf. We then repeated the sum of square difference analysis, comparing the red wolf-coyote-eastern
difference to a null distribution generated by randomising the order of the histogram of howl types, as well as comparing the histogram fingerprints between sources, as with the full data set.

RESULTS

Applying multidimensional scaling (Cox & Cox 2000) to the full 2,005 x 2,005 matrix of howl distances found 37 significant dimensions, which were then passed to the k-means clustering algorithm. Analysis of silhouette values in k-means led to 21 distinct clusters (howl types). Figure 2 shows the howl distance matrix reduced to two dimensions (for visualisation), with cluster assignment indicated. The clustering appeared robust; 99.3% of all howls were classified with posterior probability > 0.5. Bootstrapping and re-clustering with 80% of the data produced a normalised mutual information in comparison to the full data set of 0.760 ± 0.033, i.e. 76% of the cluster assignment information was retained even when applying the algorithm to a reduced data set.

Figure 2. Multidimensional scaling of the 2,005 x 2,005 howl distance matrix into two dimensions. Each point is a howl, and points closer together are more similar than those further apart. Colours indicate k-means clustering assignment. The size of each point is for ease of visualisation only.
Within-species comparisons show that for the eastern timber wolf, the domestic dog, the coyote, the red wolf, the North African wolf *C.l. lupaster*, and the Arctic wolf *C. l. arctos*, howl type usage was more similar among sources of that species than would be expected by chance (Table 2). This indicates that in these species, the different sites from which recordings were taken showed a species-specific pattern of howl type usage.

Table 2. Exact test of similarity of howl type use within each species. The p-value represents the proportion of randomised trials where the mean difference between sources within a particular species was less than the actual mean difference within the species. Starred values are significant at 5%.

<table>
<thead>
<tr>
<th>Species</th>
<th>p</th>
<th>Number of sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden jackal</td>
<td>0.718</td>
<td>3</td>
</tr>
<tr>
<td>Coyote</td>
<td>0.019 *</td>
<td>4</td>
</tr>
<tr>
<td>Red wolf</td>
<td>0.007 *</td>
<td>4</td>
</tr>
<tr>
<td>Eastern Timber wolf</td>
<td>0.014 *</td>
<td>20</td>
</tr>
<tr>
<td>Mackenzie Valley wolf</td>
<td>0.955</td>
<td>8</td>
</tr>
<tr>
<td>Mexican wolf</td>
<td>0.891</td>
<td>2</td>
</tr>
<tr>
<td>Arctic wolf</td>
<td>0.006 *</td>
<td>7</td>
</tr>
<tr>
<td>European wolf</td>
<td>0.237</td>
<td>13</td>
</tr>
<tr>
<td>Iberian wolf</td>
<td>0.935</td>
<td>3</td>
</tr>
<tr>
<td>Indian wolf</td>
<td>0.144</td>
<td>7</td>
</tr>
<tr>
<td>North African wolf</td>
<td><0.001 *</td>
<td>5</td>
</tr>
<tr>
<td>Domestic dog</td>
<td>0.003 *</td>
<td>53</td>
</tr>
<tr>
<td>New Guinea singing dog</td>
<td>0.899</td>
<td>2</td>
</tr>
</tbody>
</table>

The use of each howl type, adjusted for overall howl use frequency, for each of the species show species-specific fingerprints (Figure 3). The red wolf and coyote share howl type 3 as the most common; the European *C. l. lupus* and Iberian *C. l. signatus* wolves share type 5; and the Mackenzie Valley *C. l. occidentalis*, Indian *C. l. pallipes*, and Mexican *C. l. baileyi* wolves share type 7. Each other species has a distinct call type that is most commonly used, relative to its overall usage in the sample database. Apart from these distinctive howl types, the different species have different repertoire diversities, with for instance the North African wolf making use of many fewer howl types than the golden jackal, despite being represented by a similar overall number of sources and howls.
(Figure 3). One qualitative trend noticeable from the exemplar howls (chosen as those nearest to the cluster centroid) is that the smaller species (red wolf, coyote, New Guinea singing dog, domestic dog, golden jackal) favoured howls that ended with a sharp drop in frequency, whereas larger species (arctic wolf, eastern timber wolf, European wolf, Mackenzie Valley wolf) used howls with much less frequency modulation, particularly at the end of the howl (Figure 4), although this may be an artefact of the lower fundamental frequency used by larger species.

Figure 3. Howl use histograms for each of the 13 species, showing the relative use of each of the 21 howl types, adjusted for overall howl type frequency. Red bars show the most commonly distinctive howl type for each species, with the index number of that type appearing above each histogram. \(N \) indicates the number of howls, and \(S \) indicates the number of sources.
Figure 4. Three examples of the howls of the particular howl types identified as characteristic of each species, and represented in Figure 2 by the red bars. Note that the howls within a type are similar in a dynamic time warping sense, although they may vary somewhat in length.

The confusion matrix for the identification of species by source, and the results of the species identification assessment (Table 3) shows that the coyote, Arctic wolf, and North African wolf all were well identified by howl usage fingerprint comparison, with identification of the red wolf and Mackenzie Valley wolf also higher than expected. The New Guinea singing dog *C. l. hallstromi*, domestic dog, golden jackal, and North African wolf appeared to form a cluster of similar howl usage types, and the coyote and red wolf seem to form a separate cluster, with heavy use of type 15 howls (which only seem to be used by 3 other species, and at very low frequency).

Table 3a. Classification success by comparing howl type usage histograms as fingerprints. The % correct column indicates how many recording sources (animal packs) were correctly identified as their particular species when compared to all other sources in the database. The Best guess column indicates which species were most frequently identified as the most similar species to the target source.
<table>
<thead>
<tr>
<th>Species</th>
<th>% correct</th>
<th>Best guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden jackal</td>
<td>33.3</td>
<td>Domestic dog</td>
</tr>
<tr>
<td>Coyote</td>
<td>50</td>
<td>Coyote</td>
</tr>
<tr>
<td>Red wolf</td>
<td>25</td>
<td>Red wolf, Coyote, Domestic dog, Arctic</td>
</tr>
<tr>
<td>Eastern Timber</td>
<td>5</td>
<td>Arctic</td>
</tr>
<tr>
<td>Mackenzie Valley</td>
<td>25</td>
<td>Mackenzie Valley, Indian</td>
</tr>
<tr>
<td>Mexican</td>
<td>0</td>
<td>Red wolf</td>
</tr>
<tr>
<td>Arctic</td>
<td>57.1</td>
<td>Arctic</td>
</tr>
<tr>
<td>European</td>
<td>0</td>
<td>Mackenzie Valley</td>
</tr>
<tr>
<td>Iberian</td>
<td>0</td>
<td>Eastern Timber, European, Mackenzie Valley</td>
</tr>
<tr>
<td>Indian</td>
<td>0</td>
<td>Mackenzie Valley</td>
</tr>
<tr>
<td>North African</td>
<td>40</td>
<td>North African</td>
</tr>
<tr>
<td>Domestic dog</td>
<td>13.2</td>
<td>North African</td>
</tr>
<tr>
<td>New Guinea Singing Dog</td>
<td>0</td>
<td>Domestic dog, North African</td>
</tr>
</tbody>
</table>

Table 3b. Confusion matrix showing the number of sources identified as each species type.
In the reduced analysis of just red wolf, coyote, and eastern timber wolf, there were a total of 776 howls, 510 eastern timber wolf, 187 coyote, and 79 red wolf. Applying multidimensional scaling to the full 776 x 776 matrix led to 42 significant dimensions, and 11 k-means clusters. All howls (100%) were classified with posterior probability > 0.5, and bootstrapping followed by reclustering led to a normalised mutual information of 0.706 ± 0.059. With these data (Table 4), the red wolf and coyote also showed significant similarity between the different packs of the same species (p=0.006 and p=0.009 respectively), whereas the eastern timber wolf was only marginally significant (p=0.052).

Comparison of the howl type fingerprints (Table 5) showed that the coyote was well identified from most sources (3 out of 4 sources correctly identified), whereas the red wolf and eastern timber wolf were often misclassified one as the other, with the red wolf identified as eastern timber wolf in 2 out of 4 sources, and eastern timber wolf as red wolf in 6 out of 20 sources. Red wolves and coyotes share their most common howl type – type 3 – which is rarely used by timber wolves. Red wolves will often use howl type 6, which coyotes and timber wolves rarely use, and may be intermediate in characteristics between coyote (type 3) and timber wolf (type 11) howls, by being lower in frequency and flatter (Figure 5).

Table 4. Exact test of similarity of howl type use, reclustered using only data from the three species, red wolf, coyote, and eastern timber wolf. The p-value represents the proportion of randomised trials where the mean difference between sources within a particular species was less than the actual mean difference within the species. Starred values are significant at 5%.

<table>
<thead>
<tr>
<th>Species</th>
<th>p</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Red wolf</td>
<td>0.0060</td>
<td>*</td>
</tr>
<tr>
<td>Coyote</td>
<td>0.0090</td>
<td>*</td>
</tr>
<tr>
<td>Eastern Timber wolf</td>
<td>0.0520</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Confusion matrix showing the number of sources of red wolf, coyote, and eastern timber wolf identified as each of the three species, from comparing howl type histogram similarity.
DISCUSSION

In this study we analysed over 2,000 howls from 13 different species and subspecies belonging to the genus *Canis* around the world. Using dynamic time warping as a quantitative measure of howl dissimilarity, we applied an objective unsupervised clustering algorithm to group the howls into distinct howl types. The k-means algorithm produced 21 clusters that were stable to bootstrapping, and that probably represent genuine howl type categories, which we define without the need for subjective description of howl characteristics.

Each population recorded made different use of these 21 howl types, with many species/subspecies having a particular howl type that was characteristic of that species/subspecies. Within six of the species - the eastern timber wolf, the domestic dog, the coyote, the red wolf, the North African wolf, and the Arctic wolf - a statistically significant similarity existed in their howl type usage. Further, we

Figure 5. Examples of coyote howls of type 3 (left), red wolf howls of type 6 (middle) and eastern timber wolf howls of type 11 (right). Type 6 howls are rarely used by coyotes and eastern timber wolves, but commonly used by red wolves, and may represent an intermediate form.

<table>
<thead>
<tr>
<th>Actual</th>
<th>Red wolf</th>
<th>Coyote</th>
<th>Eastern Timber wolf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red wolf</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Coyote</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Eastern Timber wolf</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>
found that individual populations of five of the species - coyote, red wolf, Arctic wolf, North African wolf, and Mackenzie Valley wolf - could be identified using the howl type histograms of the remaining populations in the data set.

In general, we conclude that canid howling is not an arbitrary signal, but possesses species-specific information, which may reflect adaptive and/or neutral processes of isolation.

We also performed a more detailed analysis of the howls of three American canids - the red wolf, the coyote, and the eastern timber wolf - because of the conservation importance of hybridisation between the critically endangered red wolf and the coyote, as well as continuing disagreement over the phylogenetic relationship between the red wolf and both the coyote and eastern timber wolf. We found that coyote and red wolf howl type usage differs significantly, which could be a useful tool for managing red wolf conservation in the face of competition from sympatric coyotes. Red wolf howling was similar to that of eastern timber wolves, further complicating the challenge of red wolf introduction both at the southern end of its range (coyotes) and at the northern end (eastern). In contrast, red wolves and coyotes share their most common howl type, whereas red wolves will often use howl type 6, which coyotes and timber wolves almost never use. The intermediate nature of howl type 6 may provide potential evidence of hybridization between these species.

We note in passing that the smaller species - the red wolf, domestic dog, New Guinea singing dog, golden jackal - show a greater diversity of howl types than the larger species, and are similar to each other in their howl type usage. We lack sufficient data to examine this further; however, this phenomenon could be due to peculiarity of the habitat or niche of these smaller species, or could be due to a different emphasis on long and short range communication between larger and smaller species, or a different emphasis on the social role of howling.

Given the diverse and non-arbitrary nature of howl differences, it is natural to ask whether variations in howl structure reflect referential or context-specific information. Early studies of wolf communication pointed out that different vocalisation types (e.g. howl vs. growl, yelp, etc.) were associated with different behavioural contexts (Cohen & Fox 1976; Tembrock 1976), but stopped short of suggesting that particular features within howls themselves represented certain arousal states or environmental contexts (Theberge & Falls 1967; Lehner 1978). More recent studies have begun to
address this question in dingoes (Déaux & Clarke 2013), as well as dogs (Faragó et al. 2014), and there is some evidence that vocal communication may be used in *Canis* to coordinate hunting activity (Muntz & Patterson 2004). Experimentally, it has been shown that howl modulation patterns convey individual identity, and that animals attend to this information (Palacios et al. 2015). Thus, individual identity in howl structure is more than just an epiphenomenon, and may be of relevance to conservation and management programs (Llaneza et al. 2005; Terry et al. 2005; Brennan et al. 2013; Hansen et al. 2015). Depredation of livestock by coyotes (Knowlton et al. 1999) and wolves (Sillero-Zubiri & Laurenson 2001), in particular, is a cause for concern, but attempts to use vocalisation playbacks as active deterrents have largely been unsuccessful (Gable 2010).

Our results have shown clear differences in howl structure between populations. Whether populations in geographical proximity represent separate species, subspecies, or otherwise, it seems clear that distinct ecotypes exist. The presence of discrete differences in vocal behaviour suggests that consideration should be given to conservation of populations such as *C. rufus* and *C. lupus lycaon*, even if genetic isolation does not exist. Recent studies have shown multiple examples of dialects not just in birdsong (Kroodsma 2004), but also in multiple mammalian taxa including rodents (Slobodchikoff & Coast 1980; Gannon & Lawlor 1989), primates (de la Torre & Snowdon 2009; Thinh et al. 2011; Meyer et al. 2012), and hyraxes (Kershenbaum et al. 2012). Our study adds to recent work showing dialectic differences between the howls of wolves in Europe and North America (Palacios et al. 2007), and fits into an increasingly important trend of understanding the proximal causes and ultimate significance of dialectic variation (Lameira et al. 2010).

In the case of the critically endangered red wolf, hybridisation with coyotes represents the largest threat to reintroduced populations (Hinton et al. 2013; Gese et al. 2015). Although howling behaviour has long been identified in *Canis* as a mechanism for separating competing populations (Harrington & Mech 1979; Jaeger et al. 1996; Gese 2001), and vocal behaviour as a mechanism for genetic isolation in other mammalian taxa (Braune et al. 2008), to our knowledge no studies have addressed the question whether vocal differences can act to reduce interspecific hybridisation in *Canis*, or may in fact be the result of past hybridisation. Coyotes fail to respond to stimuli of wolf howling (Petroelje et al. 2013); detailed analysis of *C. rufus* recordings have uncovered non-howl vocalisations that have
not been reported in *C. latrans* (Schneider & Anderson 2011); and the behavioural responses of individual wolves vary according to the familiarity of playback howls (Mazzini et al. 2013; Palacios et al. 2015). All these findings raise the possibility that vocal differences between *C. rufus* and *C. latrans* may have conservation significance. Our work adds to this body of evidence, and should encourage further investigation of the possibility of behavioural isolation between these populations.

Our study made use of data sources of widely varying size and quality - something inevitable when integrating recordings from around the world and from species of greatly varying abundance. We have endeavoured to minimise the statistical artefacts arising from this imbalance, and have been careful to use the recording source (essentially, a single pack) as the unit of comparison. Some pseudo-replication may remain, as we cannot ensure that the proportion of howls in each type is constant for a species. However, in most cases there are insufficient howls from specific individuals to look at how the pattern varies by individual within species. Despite these statistical limitations, we believe that such broad comparative studies have great value in understanding behaviour across a wider taxonomic basis than just the species, and we hope that this utility compensates somewhat for the patchy nature of the data sources.

Automatic clustering using unsupervised algorithms is potentially problematic, as the presence of computer-identified clusters does not guarantee that these elements have cognitive significance for the animals involved. Indeed, we have no mechanistic indication that canids perceive and compare howls in a way similar to our dynamic time warping. To date, what we know is that wolves detect changes in the fundamental frequency of howls outside their natural range of variability, and changes in the frequency modulation pattern of howls (Palacios et al. 2015). However we feel confident that DTW provides a useful comparative tool, because consideration of acoustic propagation would indicate that frequency modulation of howls is likely an important signal channel in long-range communication. Also, we took care to evaluate our clustering results using multiple metrics, and assessing their stability in the face of bootstrapping, to maximise confidence that the howl type partitions did, in fact, represent a division of howls into realistic howl types.

This study has involved only correlative analyses, but we believe that this kind of quantitative categorisation of vocalisation types is necessary before carrying out manipulative and playback
experiments. Being armed with an objective set of howl types, or a methodology for arriving at such a
definition, allows researchers to test the cognitive significance of different howl compositions, and
look for potential behavioural correlates, such as territorial advertising and group cohesion. Any
experimental work with critically endangered species such as the red wolf can be problematic, but we
hope that with a firmer understanding of the vocal behaviour of these animals, it will be possible to
design experiments that will benefit the conservation and management of this and other species.

Howling is a social communication process that is likely of major importance in the overall behaviour
of all canid species. A deeper understanding of their social behaviour is not possible without a
framework within which to understand their vocal behaviour. In particular, quantitative and objective
assessment of howling is highly preferable to subjective interpretation by humans, who lack the
auditory and cognitive instruments of the focal animals. We believe that further experiments using
this method may reveal functionally referential elements to the canid howl repertoire, which would be
a highly significant finding for two reasons. Firstly, canid conservation and management can benefit
from acoustic methods for surveying and assessing population size and health/genetic purity (Llaneza
et al. 2005; Brennan et al. 2013), which can be difficult using traditional methods, particularly when
snow is absent (Blanco & Cortés 2011). Active acoustic deterrence has also been suggested as a tool
in the control of animal movements for mitigating wolf conflict with farmers (Gable 2010), but such
techniques cannot be successfully implemented without understanding the message being transmitted.

Secondly, the role of vocal communication in mediating social behaviour in canids may contribute to
understanding the evolution of human language (Seyfarth & Cheney 2014). To our knowledge, no
animal species other than humans possess any form of true language, not even any form of "proto-
language". Therefore, it has been problematic to explain the evolution of human language as a
continual progression from "non-language" to "language", through increasing adaptive advantage at
each step (Tomasello 2008). The presence of complex referential communication in species that must
cooperate to survive was probably a crucial step in the evolution of language (Jackendoff 1999).

Understanding the communication systems of extant social species is essential to understanding the
potential evolutionary trajectories to more complex communication that have occurred in the past,
eventually leading to human linguistic abilities. Although taxonomically distant from early hominids,
wolves and other canids show remarkable parallels with humans in, for example, social behaviour, intelligence, and vocal communication (Miklósi 2014). Further understanding of canid social communication could serve as a model system for the evolution of more complex vocal communication and language.

• Wolves and other canids pose major conservation and management challenges
• Howling is an important behaviour for all canid species
• We analysed over 2,000 howls from 13 species and subspecies of wolves, coyotes, etc.
• Quantitative methods showed different species use different patterns of howl types
• Understanding howl type usage is important both for conservation and management.
ACKNOWLEDGEMENTS

AK thanks Sheela Hira and Knoxville Zoo, Laura Pearson and Asheville Zoo, and Chris Lasher and North Carolina Zoo for access to record their red wolves, and Arthur Povey for assistance coding the data. Recording work was approved by the Institutional Animal Care and Use Committee of the University of Tennessee. AK is supported by a Herchel Smith postdoctoral fellowship at the University of Cambridge. Part of this work was carried out while AK was a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville. BH is thankful to the State Forest Departments of Himachal Pradesh, J&K, and Maharashtra, and to various zoos in India for permitting us to record howls. HRG is grateful to all who helped with the project: the staff at Colchester Zoo; the Wildwood Trust, the Borror Laboratory of Bioacoustics; the British Library; Lupus Laetus; Polish Mammal Research Institute; Tigress Productions; the BBC Natural History Unit; Longleat Safari Park; Tierstimmen Archiv; Wild Sweden; Wolf Park; the Macaulay Sound Library and the UK Wolf Conservation Trust; and Mike Collins, Teresa Palmer, Monty Sloan, Karl-Heinz Frommolt, Yorgos Iliopoulos, Christine Anhalt, Louise Gentle, Richard Yarnell, Victoria Allison Hughes and Susan Parks. BRM thanks the USDA/APHIS/WS/National Wildlife Research Center for supporting his doctoral research and providing access to captive coyotes; recording work was approved by the NWRC IACUC. SW thanks Mariana Olsen for assistance with data collection, and Yellowstone National Park for permission to record.