Show simple item record

dc.contributor.authorBray, J. M.
dc.contributor.authorRassi, Erik M.
dc.contributor.authorSeymour, Joseph D.
dc.contributor.authorCodd, Sarah L.
dc.identifier.citationBray JM, Rassi EM, Seymour JD, Codd SL, "Magnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluid," Exp Fluids, 2014 55(7):1777en_US
dc.description.abstractAn ability to predict fluid dynamics and transport in supercritical fluids is essential for optimization of applications such as carbon sequestration, enhanced oil recovery, “green†solvents, and supercritical coolant systems. While much has been done to model supercritical velocity distributions, experimental characterization is sparse, owing in part to a high sensitivity to perturbation by measurement probes. Magnetic resonance (MR) techniques, however, detect signal noninvasively from the fluid molecules and thereby overcome this obstacle to measurement. MR velocity maps and propagators (i.e., probability density functions of displacement) were acquired of a flowing fluid in several regimes about the critical point, providing quantitative data on the transport and fluid dynamics in the system. Hexafluoroethane (C2F6) was pumped at 0.5 ml/min in a cylindrical tube through an MR system, and propagators as well as velocity maps were measured at temperatures and pressures below, near, and above the critical values. It was observed that flow of C2F6 with thermodynamic properties far above or below the critical point had the Poiseuille flow distribution of an incompressible Newtonian fluid. Flows with thermodynamic properties near the critical point exhibit complex flow distributions impacted by buoyancy and viscous forces. The approach to steady state was also observed and found to take the longest near the critical point, but once it was reached, the dynamics were stable and reproducible. These data provide insight into the interplay between the critical phase transition thermodynamics and the fluid dynamics, which control transport processes.en_US
dc.description.sponsorshipNational Science Foundation (CBET 1335534); Department of Energy under (DEFG02-11ER90025); Department of Energy (DEFE0000397); National Science Foundation; M.J. Murdock Charitable Trusten_US
dc.titleMagnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluiden_US
mus.citation.journaltitleExperiments in Fluidsen_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.