Show simple item record

dc.contributor.authorDieser, Markus
dc.contributor.authorForeman, Christine M.
dc.contributor.authorJaros, C.
dc.contributor.authorLisle, John T.
dc.contributor.authorGreenwood, Mark C.
dc.contributor.authorLaybourn-Parry, Johanna
dc.contributor.authorMiller, P. L.
dc.contributor.authorChin, Yu-Ping
dc.contributor.authorMcKnight, Diane M.
dc.identifier.citationDieser M, Foreman CM, Jaros C, Lisle JT, Greenwood M, Laybourn-Parry J, Miller PL, Chin Y-P, McKnight DM, "Physicochemical and biological dynamics in a coastal Antarctic lake as it transitions from frozen to open water," Antarctic Science. March 2013 25(5):663–675en_US
dc.description.abstractPony Lake, at Cape Royds, Antarctica, is a shallow, eutrophic, coastal lake that freezes solid in the winter. Changes in Pony Lake's physicochemical parameters and microbial community were studied during the transition from ice to open water. Due to rising water temperatures, the progressive melt of the ice column and the gradual mixing of basal brines into the remaining water column, Pony Lake evolved physically and chemically over the course of the summer, thereby affecting the microbial community composition. Temperature, pH, conductivity, nutrients and major ion concentrations reached their maximum in January. Pony Lake was colonized by bacteria, viruses, phytoflagellates, ciliates, and a small number of rotifers. Primary and bacterial production were highest in mid-December (2.66 mg C 1-1 d-1 and 30.5 µg C 1-1 d-1, respectively). A 16S rRNA gene analysis of the bacterioplankton revealed 34 unique sequences dominated by members of the ß- and y-proteobacteria lineages. Cluster analyses on denaturing gradient gel electrophoresis (DGGE) banding patterns and community structure indicated a shift in the dominant members of the microbial community during the transition from winter ice, to early, and late summer lakewater. Our data demonstrate that temporal changes in physicochemical parameters during the summer months determine community dynamics and mediate changes in microbial species composition.en_US
dc.titlePhysicochemical and biological dynamics in a coastal Antarctic lake as it transitions from frozen to open wateren_US
mus.citation.journaltitleAntarctic Scienceen_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.contributor.orcidForeman, Christine M.|0000-0003-0230-4692en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.