Microbial CaCO3 mineral formation and stability in an experimentally simulated high pressure saline aquifer with supercritical CO2

Abstract

The use of microbiologically induced mineralization to plug pore spaces is a novel biotechnology to mitigate the potential leakage of geologically sequestered carbon dioxide from preferential leakage pathways. The bacterial hydrolysis of urea (ureolysis) which can induce calcium carbonate precipitation, via a pH increase and the production of carbonate ions, was investigated under conditions that approximate subsurface storage environments, using a unique high pressure (∼7.5 MPa) moderate temperature (32 °C) flow reactor housing a synthetic porous media core. The synthetic core was inoculated with the ureolytic organism Sporosarcina pasteurii and pulse-flow of a urea inclusive saline growth medium was established through the core. The system was gradually pressurized to 7.5 MPa over the first 29 days. Concentrations of NH4+, a by-product of urea hydrolysis, increased in the flow reactor effluent over the first 20 days, and then stabilized at a maximum concentration consistent with the hydrolysis of all the available urea. pH increased over the first 6 days from 7 to 9.1, consistent with buffering by NH4+ ⇔ NH3 + H+. Ureolytic colony forming units were consistently detected in the reactor effluent, indicating a biofilm developed in the high pressure system and maintained viability at pressures up to 7.5 MPa. All available calcium was precipitated as calcite. Calcite precipitates were exposed to dry supercritical CO2 (scCO2), water-saturated scCO2, scCO2-saturated brine, and atmospheric pressure brine. Calcite precipitates were resilient to dry scCO2, but suffered some mass loss in water-saturated scCO2 (mass loss 17 ± 3.6% after 48 h, 36 ± 7.5% after 2 h). Observations in the presence of scCO2 saturated brine were ambiguous due to an artifact associated with the depressurization of the scCO2 saturated brine before sampling. The degassing of pressurized brine resulted in significant abrasion of calcite crystals and resulted in a mass loss of approximately 92 ± 50% after 48 h. However dissolution of calcite crystals in brine at atmospheric pressure, but at the pH of the scCO2 saturated brine, accounted for only approximately 7.8 ± 2.2% of the mass loss over the 48 h period. These data suggest that microbially induced mineralization, with the purpose of reducing the permeability of preferential leakage pathways during the operation of GCS, can occur under high pressure scCO2 injection conditions.

Description

Keywords

Citation

Mitchell AC, Phillips A, Schultz L, Parks S, Spangler L, Cunningham AB, Gerlach R, "Microbial CaCO3 mineral formation and stability in an experimentally simulated high pressure saline aquifer with supercritical CO2," International Journal of Greenhouse Gas Control, July 2013 15: 86–96.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.