Show simple item record

dc.contributor.authorDePas, W. H.
dc.contributor.authorHufnagel, D. A.
dc.contributor.authorLee, J. S.
dc.contributor.authorBlanco, L. P.
dc.contributor.authorBernstein, Hans C.
dc.contributor.authorFisher, Steve T.
dc.contributor.authorJames, Garth A.
dc.contributor.authorStewart, Philip S.
dc.contributor.authorChapman, M. R.
dc.date.accessioned2017-01-30T23:45:40Z
dc.date.available2017-01-30T23:45:40Z
dc.date.issued2013-01
dc.identifier.citationDePas WH, Hufnagel DA, Lee JS, Blanco LP, Bernstein HC, Fisher ST, James GA, Stewart PS, Chapman MR, "Iron induces bimodal population development by Escherichia coli," PNAS. 2013 110(7):2629-2634.en_US
dc.identifier.issn1091-6490
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/12479
dc.description.abstractBacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air–biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H2O2 toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress.en_US
dc.titleIron induces bimodal population development by Escherichia colien_US
dc.typeArticleen_US
mus.citation.extentfirstpage2629en_US
mus.citation.extentlastpage2634en_US
mus.citation.issue7en_US
mus.citation.journaltitleProceedings of the National Academy of Sciencesen_US
mus.citation.volume110en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1073/pnas.1218703110en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.data.thumbpage4en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record