Show simple item record

dc.contributor.authorEbigbo, Anozie
dc.contributor.authorPhillips, Adrienne J.
dc.contributor.authorGerlach, Robin
dc.contributor.authorHelmig, Rainer
dc.contributor.authorCunningham, Alfred B.
dc.contributor.authorClass, Holger
dc.contributor.authorSpangler, Lee H.
dc.identifier.citationEbigbo A, Phillips A, Gerlach R, Helmig R, Cunningham AB, Class H, Spangler LH, "Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns," Water Resources Research, July 2012 48(7):1-17.en_US
dc.description.abstractThis investigation focuses on the use of microbially induced calcium carbonate precipitation (MICP) to set up subsurface hydraulic barriers to potentially increase storage security near wellbores of CO2 storage sites. A numerical model is developed, capable of accounting for carbonate precipitation due to ureolytic bacterial activity as well as the flow of two fluid phases in the subsurface. The model is compared to experiments involving saturated flow through sand-packed columns to understand and optimize the processes involved as well as to validate the numerical model. It is then used to predict the effect of dense-phase CO2 and CO2-saturated water on carbonate precipitates in a porous medium.en_US
dc.titleDarcy-scale modeling of microbially induced carbonate mineral precipitation in sand columnsen_US
mus.citation.journaltitleWater Resources Researchen_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentElectrical & Computer Engineering.en_US
mus.relation.departmentMathematical Sciences.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.contributor.orcidSpangler, Lee H.|0000-0002-3870-6696en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.