Show simple item record

dc.contributor.authorVo, Garret D.
dc.contributor.authorHeys, Jeffrey J.
dc.identifier.citationVo GD, Heys J, "Biofilm deformation in response to fluid flow in capillaries," Biotechnology and Bioengineering, April 2011 108(8):1893-1899en_US
dc.description.abstractBiofilms are complex mixtures of microorganisms and extracellular matrix that exist on many wetted surfaces. Recently, magnetic resonance microscopy has been used to measure fluid velocities near biofilms that are attached to the walls of capillary channels. These velocity measurements showed unexpectedly high secondary velocities (i.e., high velocity magnitudes perpendicular to the direction of bulk flow and perpendicular to the surface that the biofilm is attached), and the presence of high secondary velocities near a biofilm could increase the delivery of substrates to the biofilm. A mathematical model, based on the immersed boundary method, is used here to examine the physical interaction between a biofilm and a moving fluid in a capillary and to analyze possible factors that may contribute to the elevated secondary velocities observed experimentally. The simulation predicts the formation of a recirculation downstream of a biofilm, and this recirculation deforms and lifts the biofilm upward from the surface to which the biofilm is attached. Changing the mechanical properties (i.e., stiffness) of the biofilm impacts both the lifting of the biofilm and the magnitude of the secondary velocities. The maximum lifting of the biofilm occurs when the biofilm properties are similar to previous experimental measurements, which indicates that the mechanical properties of the biofilm may be tuned for the generation of maximum secondary velocity magnitude and transport of substrates to the biofilm.en_US
dc.titleBiofilm deformation in response to fluid flow in capillariesen_US
mus.citation.journaltitleBiotechnology and Bioengineeringen_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCell Biology & Neuroscience.en_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentHealth & Human Development.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.